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Abstract

Compositional simulation is challenging, because of highly nonlinear couplings be-
tween multi-component flow in porous media with thermodynamic phase behavior. The
coupled nonlinear system is commonly solved by the fully-implicit scheme. Various com-
positional formulations have been proposed. However, severe convergence issues of New-
ton solvers can arise under the conventional formulations. Crossing phase boundaries
produces kinks in discretized equations, and subsequently causing oscillations or even
divergence of Newton iterations.

The objective of this work is to develop a smooth formulation that removes all the
property switches and discontinuities associated with phase changes. We show that it
can be very difficult and costly to smooth the conservation equations directly. Therefore,
we first reformulate the coupled system, so that the discontinuities are transferred to
the phase equilibrium model. In this way a single and concise non-smooth equation
is achieved and then a smoothing approximation can be made. The new formulation
with a smoothing parameter provides smooth transitions of variables across all the phase
regimes. In addition, we employ a continuation method where the solution progressively
evolves toward the target system.

We evaluate the efficiency of the new smooth formulation and the continuation
method using several complex problems. Compared to the standard natural formulation,
the developed formulation and method exhibit superior nonlinear convergence behaviors.
The continuation method leads to smooth and stable iterative performance, with a neg-
ligible impact on solution accuracy. Moreover, it works robustly for a wide range of flow
conditions without parameter tuning.

1. Introduction

Gas injection processes play an important role in enhanced oil recovery (EOR). Gas
injection into oil reservoir involves a number of physical mechanisms that help in mobi-
lizing and extracting oil. Depending on pressure, temperature, and fluid compositions,
immiscible or miscible displacements could occur. The physical model required to de-
scribe the mass transfer between phases is the isothermal compositional model (Coats
1980). An Equation of State (EoS) model is usually used to determine the component
partitioning across phases (Michelsen 1982).

Compositional simulation continues to be a challenging problem. Complexities are
mainly due to nonlinear couplings between multi-phase multi-component flow in porous
media with thermodynamic phase behavior (Alpak 2010; Voskov 2012). Several temporal
discretization schemes are available to solve the compositional model (Aziz and Settari
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1979). Explicit schemes pose severe restrictions on the timestep size and are impractical
for large-scale detailed reservoir models, in which the Courant-Friedrichs-Lewy (CFL)
numbers can vary by several orders of magnitude throughout the domain (Jenny et
al. 2009). Therefore, the fully-implicit method (FIM) is preferred in practice, with the
nonlinear system solved by a Newton method.

Various nonlinear formulations for the compositional model have been proposed (Wong
et al. 1990). Two popular formulations employ two different variable sets: (1) natural
variables (Coats 1980) and (2) molar variables (Acs et al. 1985). The primary un-
knowns for the natural-variables set include pressure, saturations, and component molar
fractions. The conservation equations and thermodynamic constraints are assembled for
cells with two phases. If one of the phases disappears during a nonlinear iteration, the
corresponding saturation variable is removed, and the nonlinear system is reduced to the
conservation equations. This process is referred to as ‘variable substitution’ and is an
essential ingredient of the natural-variables formulation (Wong et al. 1990; Cao 2002).
Under the molar formulation, one variable-set choice is the overall composition of each
component. This approach has the advantage of avoiding the need for variable substi-
tution, since the equations and unknowns are the same for any phase state. Numerical
behaviors of nonlinear formulations were investigated and compared in some recent stud-
ies (Voskov and Tchelepi 2012; Alpak and Vink 2018). Note that Alpak and Vink (2018)
devised a flexible variable-switching formulation for general thermal-compositional flow
problems. They demonstrated that the adaptive formulation effectively improved field-
scale simulations of complex processes.

For large timestep size, or poor initial guess, the standard Newton method suffers
from serious convergence difficulties. Obtaining a suitable initial guess for the Newton
method is referred to as globalization (Knoll and Keyes 2004). Damping, or safeguarding
Newton updates is a class of globalization techniques (Deuflhard 2011). One simple
heuristic strategy is to apply a local damping of variable to ensure that the value change
is limited to a pre-defined range (ECLIPSE 2008). Physics-based trust-region solvers
were also introduced to greatly improve the nonlinear convergence of discrete transport
problems (Jenny et al. 2009; Wang and Tchelepi 2013). Voskov and Tchelepi (2011)
developed a nonlinear solver specifically for molar-variables formulations. Trust regions
are constructed based on the flux functions along key tie-lines in compositional space.
The Newton updates are controlled from crossing inflection points and phase boundaries.
Although locating trust-region boundaries is straightforward in two-phase problems with
simple flow physics, it can be quite difficult for general compositional models with gravity
and phase changes. Moreover, computations become expensive when the flux functions
vary significantly during the iterations.

Recent studies revealed that the non-differentiability (kink) resulted from switching
criteria in the numerical flux may cause frequent oscillations or divergence of Newton
iterations (Wang and Tchelepi 2013; Lee et al. 2015; Lee and Efendiev 2016; Hamon et al.
2016; Jiang and Younis 2017). Likewise, severe convergence problems of Newton solvers
can also arise under the conventional compositional formulations. This is due to the
kinks produced when crossing phase boundaries. Phase change leads to the corresponding
switches in fluid properties and discretized equations.

Several formulations were proposed, attempting to improve the nonlinear performance
of compositional simulations (Abadpour and Panfilov 2009; Lauser et al. 2011; Voskov
2012; Gharbia et al. 2015). Unified system of equations is achieved and thus the variable-
substitution process is avoided. Saturations (or phase fractions) can change continuously
across phase boundaries under these formulations. However, the switches of fluid proper-
ties still occur, in one form or another. The kinks in discretized equations as the essential
mechanism that causes convergence difficulties are not resolved by the previous works.
Consequently, their results reported insignificant improvement in nonlinear performance
compared with the standard natural formulation.

Previous studies demonstrated that a smooth numerical flux can improve Newton



behaviors (Wang and Tchelepi 2013; Lee et al. 2015; Hamon et al. 2016; Jiang and
Younis 2017). The objective of this work is to develop a smooth formulation that removes
all the property switches and discontinuities associated with phase changes. But as we
will show, it can be very difficult and costly to make smoothing approximations directly
for the conservation equations under the standard formulations. Therefore, we first
reformulate the coupled system, so that the discontinuities are transferred to the phase
equilibrium model. In this way a single and concise non-smooth equation is achieved
and then a smoothing approximation can be made. The reformulation is based on a
mixed complementarity problem (MCP) proposed for the phase equilibrium in the field of
chemical process simulation (Bullard and Biegler 1993; Gopal and Biegler 1997; Sahlodin
et al. 2016). The MCP model contains complementarity conditions that represent phase
changes. The subsequently developed formulation with a smoothing parameter can lead
to smooth transitions of variables across all the phase regimes.

For a smoothing parameter with sufficient values, the smooth coupled system exhibits
superior global convergence behavior. However, solution accuracy may be degraded, with
a fixed smoothing parameter. Its value needs to be adaptively determined to achieve
an optimal balance between accuracy and nonlinear performance. For more robust and
general applications, we employ a continuation method with the smooth system as a ho-
motopy mapping. The smoothing parameter is progressively reduced after each Newton
iteration, and the solution evolves toward the target system. In this work, the continua-
tion method acts as a globalization stage to obtain better initial guesses for the Newton
process (Jiang and Tchelepi 2018). As will be shown, the new smooth formulation is
very effective for globalizing the compositional flow problem. It is worth noting that the
smooth formulation and the continuation method can be used for different applications
depending on specific accuracy and implementation considerations.

We evaluate the efficiency of the new approaches using several complex examples.
We focus on the nonlinear behavior of the coupled conservation and phase equilibrium
system. The smooth formulation produces valid and unique solutions in all the three
phase regimes. For most of the cases, the standard natural formulation suffers from mul-
tiple timestep cuts and subsequent wasted Newton iterations. In contrast, the smooth
formulation and the smoothing based continuation method (SBC) exhibit superior global
convergence, requiring no timestep cut. Moreover, the SBC method can largely resolve
the convergence issues due to phase changes, with a negligible impact on solution ac-
curacy. We find that applying SBC for a few iterations in the globalization stage is
sufficient. In addition, the developed method works robustly for a wide range of flow
conditions without parameter tuning.

2. Isothermal compositional model

We consider compressible gas-oil flow in porous media without capillarity. We ignore
water that does not exchange mass with the hydrocarbon phases.

The conservation equations for the isothermal compositional problem containing n.
components are written as,

% [¢ (xcposo + ychSg)] + V- (mcpouo + ycpgug) —q.=0, (1)
where ¢ € {1,...,n.}. z. and y. are molar fractions of component ¢ in the oil and gas
phases, respectively. ¢ is rock porosity and ¢ is time. p; is phase molar density. s; is
phase saturation. ¢. is well flow rate.

Phase velocity w; is expressed as a function of phase potential gradient V®; using the
extended Darcy’s law,

w = —k\NVO, = —k)\ (Vp — plth) . (2)



where k is rock permeability. p is pressure. Capillarity is assumed to be negligible. ¢
is gravitational acceleration and h is height. Phase mobility is given as A\ = ky; /. ki
and y; are relative permeability and viscosity, respectively.

Phase velocity can also be expressed under the fractional-flow formulation,

Al AmAl
= — kgVh — Pm) 3
w N ur + K9 Em gy (pr = pm) (3)
which involves the total velocity,
ur = E w = —kArVp+Ek E AipigVh. (4)

l l

where the total mobility Az = >°, A, In this work, Eq. is used for fully-implicit
compositional simulations.

To close the nonlinear system, additional equations are needed. These include the
thermodynamic equilibrium constraints,

fc,o(pa X) - fc,g(pa Y) =0, (5>

where p, T', and z. denote pressure, temperature, and overall molar fraction, respectively.
fe, is the fugacity of component ¢ in phase I.
We now write the phase constraints,

ixc—lz(), iyc—lz(), (6)
c=1 c=1

and the saturation constraint as,
So+8,—1=0. (7)

The above system of equations provides a complete mathematical statement for two-
phase multi-component flow. The local equilibrium constraints are enforced only when
both phases are present.

3. Natural-variables formulation

An important aspect of any compositional formulation is the choice of dividing the
equations and unknowns into primary and secondary sets. Two widely used formulations
are (1) natural variables (Coats 1980) and (2) overall-composition variables (Collins et
al. 1992; Voskov and Tchelepi 2012).

The primary unknowns include pressure, saturations, and molar fractions:

(1) p — pressure [1],

(2) s; — phase saturations [2],

(3) x., y. — phase compositions of each component [2n.].

The size of each variable is given in square bracket.

The various coefficients can be obtained as functions of the base variables. For a

two-phase cell, the molar phase fraction is related to saturation as follows,

P11
N bk S 8
=gt (8)

and overall molar fraction of component c¢ is written as,
Ze = Tl + Yclyg (9)

Note that for single-phase (I) mixture, v; = s; = 1, and z.; = 2.



3.1. Variable substitution

An essential ingredient of the natural-variables formulation is the ‘variable substi-
tution’ process (Wong et al. 1990; Cao 2002; Voskov and Tchelepi 2012). A common
strategy for variable-switching between Newton iterations during a time step is:

1. For any cell whose status in the previous iteration is single-phase, run the phase
stability test (Michelsen 1982a) to check if the mixture becomes two-phase. For the
mixture that splits into two phases, perform the flash to compute the phase compositions
(Michelsen 1982b).

2. If a cell is already in the two-phase state, the thermodynamic constraints are
included in the nonlinear system as part of the global Jacobian.

3. If a phase saturation, or phase fraction, becomes negative between two successive
iterations, the phase disappears, and appropriate variable-switching is performed.

The system of conservation equations is solved for single-phase regimes, and the
combination of conservation equations and thermodynamic constraints is solved for the
two-phase regime.

3.2. Phase behavior

Phase behavior computation is usually a stand-alone procedure for detecting phase
changes. For a mixture of n. components and two phases, the mathematical model de-
scribing the thermodynamic equilibrium is (Voskov and Tchelepi 2012),

fc,o(pa X) - fc,g(pa Y) =0, (10)
2e = Voo — (1 — 1) ye = 0, (11)
S (e —pe) = 0. (12)

where v; is molar fraction of phase [. We assume that p, T, and 2. are known. The
objective is to find all the z., y. and v;.

Phase behavior is often described using an Equation of State (EoS) model. EoS-
based computations are expensive and may consume a large portion of total simulation
time. But their cost can be largely reduced through some advanced approaches (Voskov
and Tchelepi 2009; Zaydullin et al. 2012; Yan et al. 2013).

In this work, we mainly focus on the K-value based method to perform phase behav-
ior computations. Our motivation is to isolate the nonlinear difficulties (discontinuities)
specifically caused by phase boundaries. We intend to pinpoint and analyze the asso-
ciated mechanisms, without the complication from the nonlinearities of EoS models.
The K-value method assumes that components partition across phases with fixed ratios
(K-values). Then the fugacity constraint can be rewritten as,

fc,o_fc,gzo = yc—Kcﬂﬁczo (13)
where K. is the equilibrium ratio, which depends on pressure and temperature.

3.3. Discontinuous issues crossing phase boundaries

Recent studies have revealed that the non-differentiability (kink) in the numerical
flux due to switching criteria can be a major cause of nonlinear convergence difficulties
(Wang and Tchelepi 2013; Lee et al. 2015; Hamon et al. 2016; Jiang and Younis 2017).
The curvature of residual function changes abruptly at the kink, leading to oscillations
between Newton iterations (flip-flopping) or convergence failure.



Likewise, crossing phase boundaries produces kinks in compositional models. Fre-
quent phase changes and oscillations around phase boundaries can cause severe conver-
gence problems (Abadpour and Panfilov 2009; Lauser et al. 2011; Voskov and Tchelepi
2011; Voskov 2012).

In a single-phase regime, the component compositions are no longer controlled by the
thermodynamic equilibrium. Then Egs. and cannot be satisfied at the same
time. The compositions of the existing phase can only be obtained from Eq. , where
v is set to 1 (or 0). For the missing phase, the compositions become undefined.

Phase change leads to the corresponding switches in fluid properties and discretized
equations. To demonstrate this, we present the accumulation term in for the different
phase states as,

(14)

JZCPO(X)SO + ych(Y)Sg i two—phase,
z.p1(z) , one-phase.

where p,(x) indicates the density computed at a composition x, and p;(z) is the density
computed in the single-phase regime at a composition z.

In the absence of gravity, the overall fractional flow function of component ¢ derived
from becomes,

Ao A
v = {wcpoAT + YepgxL , two-phase, (15)

Zepr , one-phase.

By assigning unit values to p; and p;, Eq. for component 1 can be further
simplified as,

(16)

kro krg _
v = s T ety two-phase,
z1 , one-phase.

We consider a two-component system {K; = 3.5, Ko = 0.3} and quadratic relative
permeabilities with unit end points. Fig. [1| shows the plot of u; as a function of z;.
Clearly, we observe two non-differentiable points associated with the phase changes.
Within the two-phase regime, the flow curve has the typical S-shape. The flow curve
becomes a straight line for the single-phase states. The discontinuous derivatives in the
flow function can largely degrade the convergence performance of Newton solvers.

1

08 |
o : 0,¢g g
06 |
Uy

04

0.2 |+

. g , , »

0 0.2 0.4 0.6 0.8 1

Figure 1: Overall fractional flow of component C;

Several nonlinear formulations were previously proposed for compositional simula-
tions (Abadpour and Panfilov 2009; Lauser et al. 2011; Voskov 2012; Gharbia et al.



2015). Through reformulation or certain consistence conditions, unified system of equa-
tions is achieved so that the variable-substitution process is avoided. Although satura-
tions (or phase fractions) can change continuously across phase boundaries under these
formulations, the switches of fluid properties still occur, in one form or another. The
kinks in discretized equations as the essential mechanism that causes nonlinear con-
vergence difficulties are not resolved by the previous works. Consequently, the results
reported insignificant improvement in nonlinear performance compared with the conven-
tional natural formulation.

4. Smooth formulation

From the previous studies (Wang and Tchelepi 2013; Lee et al. 2015; Lee and Efendiev
2016; Hamon et al. 2016; Jiang and Younis 2017), it is expected that a smooth system
can provide much improved Newton behaviors. According to Eqs. (14) and (15) the
nonlinearities (discontinuities) associated with phase changes are due to the switches of
properties from the accumulation and flux terms. We can see that it is hard to develop
smoothing approximations directly for those terms in the conservation equations.

Therefore, we seek to first reformulate the coupled system, transferring the discon-
tinuities to the phase equilibrium model. In this way a single and concise non-smooth
equation is achieved and then a smoothing approximation can be derived.

4.1. Non-smooth reformulation

In the field of chemical process simulation, a mixed complementarity problem (MCP)
was proposed for the phase equilibrium system (Bullard and Biegler 1993; Gopal and
Biegler 1997; Sahlodin et al. 2016).

The MCP model containing complementarity conditions that represent phase changes
can be equivalently written in a non-smooth form as,

Rc =Yc — Bchc y (17)

RchnC = Zc T Vole — (1 - Vo) Ye (18)

Ne

R2nc+1 = Z (xc - yc) ) (19)

c=1

Ran, sz =mid{ (1=v,) . (8-1),(~v0) } - (20)

where ¢ € {1, ...,n.}. The system R = 0 is simultaneously solved for the given z. and K,
using a Newton method. A flash procedure that combines the Successive Substitution
Iteration (SSI) and Newton method can be employed to solve the above system (Michelsen
1982b). The mid function picks the median of its three arguments,

a ifec<a<b,
mid {a,b,c} = b if c<b<a, (21)
c ifb<c<a.

for any (a,b,c) € R3.
A non-physical variable f is introduced to relax the equilibrium equation. Then the
conditions for the three phase states are given as,

Bgla l/o:O
=1, v,=1 (22>
=1, 0<ry,<1



The solutions obtained from the non-smooth system — are valid and unique
in all the three phase regimes. We can see that the phase fractions (thus saturations)
are bounded between 0 and 1. The variables for the non-existent phase can be viewed as
pseudo molar fractions that also sum to one. For the two-phase state, the non-smooth
system provides the same results as the conventional phase equilibrium model.

The proposed non-smooth formulation can be readily applied to general EoS-based
systems, by replacing Eq. with the fugacity constraint (10). f.; will be governed by
a nonlinear EoS model in such cases.

4.2. Smoothing approzimation

To present the smooth formulation for the MCP model, we first write the mid function
as a mixed complementarity function,

0 (a,b,0) = (atc) — /(@ — ) +1/(b— ) (23

Then we construct a smoothing function for Eq. as follows (Chen and Harker
1993; Kanzow 1996; Li and Fukushima 2000),

O (,a,b,0) = (a+¢) = /(a—b> +e+/(b—) +e (24)

where € > 0 is a smoothing parameter, and ©, (¢, a,b,c) is continuously differentiable
with € > 0. We can easily see that,

©¢(0,a,b,¢) = 0O (a,b,c) =2 mid{a, b, c} (25)

whenever a > c.

There are several other ways to make smoothing approximations for the mid function.
We choose Eq. because the function is computationally simple and is well-behaved in
terms of nonlinearity. The phase equilibrium model with provides smooth transitions
of the variables across all the phase regimes.

Again we consider the two-component system from the last section. We compare
the solutions between the standard flash and smooth formulations. Fig. |2| shows the
compositions y; and z; as a function of z;. Fig. [3| compares the results of v, and u;.

Note that the negative flash concept (Whitson and Michelsen 1989) is applied for
allowing phase fractions (saturations) to exceed the bounds of 0 and 1 in the standard
flash. Even though the compositions are constant along the tie-line, the discontinuities
across the phase boundaries will still appear in the accumulation and flux terms. In
contrast, we can see that the smooth formulation with a fixed € provides continuously
differentiable functions of all the variables.

We also study a ternary system with {K; = 3.5, Ky = 1.5, K3 = 0.2} and quadratic
relative permeability. The composition z; = 0.3 has constant value. Fig. [4] shows the
compositions y; and z; as a function of z;. We do not further plot overall fractional flow
here because of its similar form as the two-component case.

In addition, we study a two-component fluid {C;(60%), C4(40%)} at a temperature
of 250 K. The K-values for the two components are computed from Wilson’s equation,

K, — % exp (5.37(1 +we) (1 - 1;) ) (26)

where p, and T.. are critical pressure and temperature, respectively. We plot the compo-
sitions y; and x; as a function of p in Fig. The gas phase fraction versus pressure is
shown in Fig. [6] Compared to the standard flash, the smooth formulation can achieve
smooth transitions with respect to pressure. This is very beneficial for the compositional
scenario driven by pressure.
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Figure 2: Compositions of the two-component fluid under the different flash formulations.

Lauser et al. (2011) proposed a compositional formulation that is also based on com-
plementarity conditions for handling phase changes. Compared to the smooth formula-
tion proposed in this work, their approach has several limitations:

1. For a nonexistent phase in single-phase regimes, the sum of the molar fractions
becomes less than one. This can produce additional discontinuities in evaluating fluid
properties. Moreover, there is no guarantee that the values of molar fractions remain
positive under all conditions, especially if smoothing approximations are applied.

2. Phase equilibrium and compositional systems are non-smooth in nature. Therefore
a Newton solver will still suffer from the discontinuous issues due to phase changes.

3. The simulation studies demonstrated only insignificant improvement in nonlinear
convergence, compared with the conventional natural formulation (Lauser et al. 2011;
Gharbia et al. 2015). We give detailed descriptions and discussions on the approach of
Lauser et al. (2011) in Appendix A.

4.8. Smooth formulation for coupled system

For the smooth compositional formulation, the primary unknowns include:
(1) p — pressure [1],
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Figure 3: vy and u1 of the two-component fluid under the different flash formulations.

(2) s; — phase saturations [2],
(3) B — non-physical variable [1],
(4) z¢, yo — phase compositions of each component [2n.].

The coupled system contains: the [n.] conservation equations , the phase (@ and
saturation @ constraints, and the [n.] relaxed equilibrium equations,

Yo — BKcxe =0, (27)
and the smoothing equation derived from ,
O (e (1=5),(8=1),(=5,) ) =0. (28)

The smoothing parameter € can be kept constant during simulation. It is expected that a
suitable value of € will be chosen for a target class of problems. Compared to the natural-
variables set, an obvious advantage of the new smooth formulation is that the equations

10
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Figure 4: Compositions of the three-component fluid under the different flash formulations.

and unknowns are the same for any phase state. The complex variable-substitution pro-
cess is thus avoided.

For general multi-component models, phase boundaries are quite complex, which
makes it difficult and costly to apply damping (safeguarding) based solution strategies.
One particular type of discontinuity is the transition between two tie-lines (Orr 2007).

As previously demonstrated, the saturations are bounded to [0, 1] in the smooth
system, so that the physical limiting is not necessary for the conservation equations. As
a result, all the discontinuities associated with the phase changes transfer to the single
and concise equation , and get removed through the smoothing approximation. The
coupled system becomes smooth across the entire phase boundaries, bringing enormous
benefits for Newton solvers.

Here we mainly focus on the K-value method to describe the phase equilibrium. Our
first application target is on black-oil models (with dissolved-gas and vaporized-oil data).
The developed smooth formulation can be readily applied to general EoS-based problems.
Some discussions and preliminary test results are given in Appendix C.

11
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Figure 5: Compositions versus pressure under the different flash formulations.

5. Nonlinear solver

The spatial and temporal discretization schemes used for the compositional low model
are summarized in Appendix B.

5.1. Newton method
At each timestep of a FIM simulation, given the unknown vector U™ and a fixed

timestep size At, we intend to obtain the new state U™,
The nonlinear system is cast in residual form and solved by the Newton method,

RU™) =0, (29)

The Newton method comprises a sequence of iterations, each involving the construc-
tion of a Jacobian matrix and solution of the resulting linear system,

J(UMHAU™ = —R(UM), (30)

12
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Figure 6: Gas fraction versus pressure under the different flash formulations.

where
AU =yttt g, (31)

and J(U") = 2—75 |Un denotes the Jacobian matrix of R with respect to U". The iterative
process is performed until the nonlinear system is converged.

The formulation and method developed in this work are integrated into the Automatic
Differentiation General Purpose Research Simulator (AD-GPRS) (Younis and Aziz 2007;
Zhou et al. 2011; Voskov and Tchelepi 2012). The nonlinear framework of AD-GPRS is
built on top of Automatic Differentiation with Expression Templates Library (ADETL).

The Jacobian is automatically assembled and analytically derived through ADETL.

5.2. Homotopy continuation method

The Newton process may often converge slowly, or even diverge, due to poor initial
guess and large timestep size (Younis et al. 2010). The smooth formulation has nice
global convergence property. However, solution accuracy may be degraded, with a fixed
smoothing parameter €. The value of € needs to be adaptively determined for an optimal
balance between accuracy and nonlinear performance.

The coupled system with the smoothing equation can be viewed as a homotopy
mapping H. The objective is to solve the original system R(U) = 0 containing the
non-smooth mid function. We can see that H(U,0) = R(U) with the modified residual
H(U, €) and the smoothing (continuation) parameter ¢ > 0. Consider that H (U, €p) = 0 is
much easier to solve than the target problem #(U,0) = 0. The continuation method can
be developed by discretizing in € to form a sequence of nonlinear systems #H (U, e,) = 0.
The target solution is reached by progressively decreasing e from ¢y towards 0 to globalize
the flow equations. As a result, the algorithm will not have an impact on the accuracy
of the final solutions.

The continuation method only acts as a globalization stage to obtain better initial
guesses for the Newton process (Jiang and Tchelepi 2018). In our experience, applying
the continuation for a few iterations in the globalization stage is already highly effective.
A simple strategy is used to evolve € during each timestep,

€y = {max ('767771 ) 6m,in) 9 n S Nmazx (32)
€min N> Nmax

with €y as the initial value of a timestep. After each Newton iteration, € is multiplied by
a constant 7. 7mqe 18 the number of iterations taken for globalization. The parameter

13



values used for all the following cases are: €y = 0.1, Mmee = 4 and v = 0.5. €mipn 1
specified to ensure that the system is smooth enough at the convergence limit. From the
simulations we find that a value around €,,;, = 1.0e-4 can produce the solutions with
satisfactory accuracy and nonlinear convergence.

We note that the smooth formulation and the continuation method involve different
complexities and efforts for implementation. Subsequently, their applications depend on
specific accuracy and implementation considerations.

6. Results: 1D model

Nonlinear convergence is based on the following criterion: max; . |R; .| < 10~%, where
R; . is the residual of ¢-th equation in i-th cell (for conservation equations, we normalize
by the total mass of c-th component).

A simple time-stepping strategy is employed: if the Newton method converges for
the current timestep, the next timestep will be doubled; if the nonlinear solver fails to
converge, the timestep is reduced by half and solved again. The solution from previous
timestep n is taken to be the initial guess for a new timestep. During the iterative process,
all fractions in the variable-set are kept within the physical interval [0, 1]. Also the
damping strategy is employed to stabilize Newton updates: the local chopping (maximum
allowable change) values of 0.2 are used for saturations and 0.1 for molar fractions.

We evaluate the efficiency of the new approaches using several complex problems. Five
different fluids, and two different reservoir models are considered. The models include:
(a) homogeneous 1D model; (b) heterogeneous 2D model taken from the bottom layer
of the SPE 10 problem. In the following cases, simple relative permeabilities given by
quadratic function are used, unless otherwise indicated. Note that both phase density
and viscosity depend on pressure and compositions. Phase molar density p; is evaluated
based on the compressibility (Z) factor from the Peng-Robinson EoS. Phase viscosity
is computed by the correlation of Lohrenz et al. (1964). The specification of the 1D base
model is provided in Table

Table 1: Specification of the 1D base model

Parameter Value Unit
NB 500
DX /DY / DZ 10 /10 / 10 m
Permeability 1000 md
Porosity 0.2
Rock compressibility le-5 1/bar
Max timestep size 50 day
Total simulation time 500 day
Max number of nonlinear iterations 20

6.1. Two-component fluid

We test a comprehensive suite of 1D problems. The first problem is the displacement
of propane C3z by methane C; in a horizontal domain. Cell size of 1m is used. The fluid
and compositions are given in Table[2l Z; and Z;,; are initial and injection compositions,
respectively. Pressure is kept constant as 65 bars at the production end. A constant
volumetric rate 5 m?/day is specified at the injection end. Initial pressure is 70 bars and
temperature is 311 K.

6.1.1. Case 1
The nonlinear performance of the two-component case is summarized in Table
We report the total number of Newton iterations and timesteps. In parentheses, we
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Table 2: Fluid and compositions of the two-component case.

COHlp K Zz Zan
Cq 3.5 | 0.001 | 0.99
Cs 0.5 ] 0.999 | 0.01

also give the number of wasted iterations that correspond to the iterations spent on

unconverged timesteps. ‘SBC’ denotes the smoothing based continuation method, and
€min is specified for Eq. (32). For each simulation, the maximum CFL number, averaged

over the timesteps taken, is reported. The corresponding maxCFL of the case is 16.

As we can see from the results, there is no timestep cut during the simulations. Even

for this simple scenario, the SBC method requires much fewer iterations to converge.

Table 3: Computational performance of Case 1 with the two-component fluid.
Total iterations (Wasted) | Timesteps (Wasted)
ol T 2 0
o P e 115 (0) 12 (0)
OB e 107 (0) 12 (0)

1.0e-4 fully match the standard natural formulation. For €,,;, = 1.0e-2, some differences
around the shocks are observed.

1

Gas saturation and overall composition profiles are plotted in Fig. [7] The profiles
show two shocks formed in the two-phase region. The solutions from SBC with €,,;, =

0.8
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Figure 7: Gas saturation and overall composition profiles of Case 1 with the two-component fluid
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6.1.2. Case 2

We also test a case with gravity. Temperature is set to 380 K. The maximum time step
size reduces to 30 days, due to severe degradation of nonlinear convergence encountered
by the standard natural formulation. The total simulation time becomes 400 days. The
other parameters from the previous case remain unchanged.

The nonlinear performance of the case with gravity is summarized in Table [ The
maxCFL is 20. As can be seen, the standard formulation suffers from multiple timestep
cuts and subsequent wasted iterations. In contrast, the SBC method does not require
any timestep cut, resulting in much smaller number of iterations.

Table 4: Computational performance of the two-component case with gravity.

Total iterations (Wasted) | Timesteps (Wasted)
Slflzrtlizld 430 (140) 28 (7)
Emmsf (13.0e-4 201 (0) 18 (0)
emmsf (13.0(3—2 176 (0) 18 (0)

6.1.3. Case 3

We further study a case with variable K-values computed from Eq. . Production
pressure changes to 70 bars. Initial pressure is 80 bars at a temperature of 370 K. The
maximum timestep size becomes 50 days, with a total simulation time of 400 days.

Here we simply apply the smooth formulation without the continuation method. The
case is to demonstrate the applicability of the smooth formulation using a fixed smoothing
parameter €. The value level of € = 1.0e-2 is sufficient to provide much improved conver-
gence performance. Solution profiles are not shown because the differences between the
two formulations are small.

The nonlinear performance of Case 3 is summarized in Table[5] The maxCFL is 21. As
can be seen, the pressure-dependent K-values make it very challenging for the standard
formulation. By comparison, the smooth formulation is continuously differentiable with
respect to pressure, leading to significant convergence speedup.

Table 5: Computational performance of Case 3 with the two-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Standard
S 516 (260) 33 (13)
Smooth 110 (0) 13 (0)

6.2. Three-component fluid

We test cases with three-component fluid systems. Cubic relative permeabilities are
used. Initial pressure is 70 bars and temperature is 320 K. Pressure is kept constant at
the both injection and production ends. Production pressure is 60 bars, with injection
pressure as 130 bars. The maximum timestep size is 50 days, with a total simulation
time of 400 days.

6.2.1. Case 1

The fluid and compositions for Case 1 are given in Table [6]

The nonlinear performance of Case 1 is summarized in Table []} The maxCFL is 6.
In this case, the SBC method does not require any timestep cuts.
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Table 6: Fluid and compositions of the three-component case.

Comp K Zz Zinj
Ch 2.5 | 0.01 | 0.97
Cy 0.6 | 0.5 | 0.02
Cho 0.2 | 0.49 | 0.01

Table 7: Computational performance of Case 1 with the three-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Slffz?jj;? 320 (100) 27 (5)
emmsf Loes 175 (0) 21 (0)
emmsf ?,06_2 164 (0) 21 (0)

The gas saturation and overall composition profiles are plotted in Fig. Here
the timestep size is reduced to 10 days, to ensure that the solutions from the different
methods are compared under the same time-stepping schedule. As we can see, SBC
produces solutions that are very close to the standard formulation.

1

0.8 — Standard
= = SBC €min = 1.0e-4
0.6 eeee SBC €min = 1.0e-2
uF

0.4

0.2

0

200 300 400
Distance (cells)

100

(a) Gas saturation

- Standard
= = SBC €nin = 1.0e-4
eeee SBC €min = 1.0e-2

0 L
100

200
Distance (cells)

300 400

(b) Overall composition of Cq

Figure 8: Gas saturation and overall composition profiles of Case 1 with the three-component fluid.

6.2.2. Case 2

We also study a three-component system with {K; = 2.5, K4 = 1.5, K19 = 0.3}, and
the other parameters remain unchanged.

The nonlinear performance of Case 2 is summarized in Table |8} The maxCFL is 6.
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The standard formulation suffers from a large number of timestep cuts and wasted iter-
ations, despite a small CFL number for this case. The SBC method effectively stabilizes
the iterative process, leading to superior convergence performance.

Table 8: Computational performance of Case 2 with the three-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Standard 605 (320) 45 (16)
o P e 167 (0) 20 (0)
o e 144 (0) 20 (0)

6.3. Case 3

We consider a gas-condensate mixture with the fluid and compositions given in Table
O Quadratic relative permeabilities are used. Initial, production, injection pressures are
85, 80, 120 bars, respectively. Temperature is 325 K.

Table 9: Fluid and compositions of the gas-condensate system with three-component fluid.

Comp K Zz Zinj
Ch 25 | 05| 098
Co 1.5 | 04 | 0.01
Cs 0.05 | 0.1 | 0.01

The nonlinear performance of the gas-condensate case is summarized in Table[I0] The
maxCFL is 54. The gas saturation and overall composition profiles are plotted in Fig.
@ The gas-condensate mixture forms a sharp front in the domain. For €,,;, = 1.0e-2,
small errors are produced around the shock. Note that the solution difference near the
production end between SBC and the standard formulation is due to different time-
stepping schedules.

Table 10: Computational performance of the gas-condensate system with three-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Slfl?tlldlj;? 413 (200) 35 (10)
emmsf (1}.0e_4 150 (0) 20 (0)
emmsf (IJ.Oe—2 143 (0) 20 (0)

6.3.1. Case 4

We further consider a case with variable K-values. Initial pressure is 100 bars, at a
temperature of 340 K. Production and injection pressures are 95 and 140 bars, respec-
tively. Initial compositions are {C1(1%), C2(50%), C5(49%)}, and injection mixture is
{C1(97%), C2(2%), C3(1%)}.

The value of € = 1.0e-2 is used for the smoothing parameter. The nonlinear per-
formance of Case 4 is summarized in Table [1I The maxCFL is 24. The standard
formulation shows a poor nonlinear performance, while the iteration number is largely
reduced under the smooth formulation.
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Figure 9: Gas saturation and overall composition profiles of Case 3 with the three-component fluid.

Table 11: Computational performance of Case 4 with the three-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Standard
o 644 (340) 47 (17)
Smooth 150 (0) 20 (0)

6.4. Four-component fluid

We use a four-component fluid system, comprised of {C7,COs,Cy4, C1p} throughout
our calculation examples.

6.4.1. Case 1

The fluid and compositions are given in Table Initial pressure is 75 bars, at a

temperature of 410 K. Production pressure is 70 bars, with injection pressure as 140
bars. The total simulation time is 400 days.

Table 12: Fluid and compositions of the four-component fluid.

Comp K Zi Zinj
Cy 25 | 0.2 | 0.028
COs 1.5 ] 0.01 | 0.97
Cy 0.5 | 0.29 | 0.001
Cip | 0.05] 0.5 | 0.001

The nonlinear performance of Case 1 is summarized in Table The maxCFL is
17. The case is to validate the applicability of the smooth formulation without the
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continuation method. We can see that the value of ¢ = 1.0e-2 brings a reduction in the
iteration number, though both the formulations perform well for this case.

Table 13: Computational performance of Case 1 with the four-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
e ww X
Smooth 160 (0) 20 (0)
Smooth, 110 (0) 20 (0)

The gas saturation and overall composition profiles are plotted in Fig. Note
that the two formulations present the same solution profiles.

6.4.2. Case 2

We test a gas-condensate system with initial compositions as {80%, 1%, 14%, 5%} at
an initial pressure of 100 bars and at a temperature 344 K. Production pressure is 95
bars. Injection pressure is 140 bars, and injection gas mixture is {1%,97%, 1%, 1%}. The
total simulation time is 500 days.

The nonlinear performance of Case 2 is summarized in Table [[4] The maxCFL is 60.
A significant reduction in the iteration number is achieved by the smooth formulation.

Table 14: Computational performance of Case 2 with the four-component fluid.

Total iterations (Wasted) | Timesteps (Wasted)
Standard
o 248 (40) 18 (2)
Smooth 90 (0) 15 (0)

7. Results: SPE 10 model

Permeability field of the bottom layer of the SPE 10 model is shown in Fig. A
uniform cell size 10 m is specified, and the porosity is 0.1. Positions of the producer and
injector are (60, 1) and (1, 220), respectively. The relative permeabilities are quadratic
for both phases.

7.1. Case 1

The fluid and compositions are the same as summarized in Table[6] Initial pressure
is 70 bars, at a temperature of 320 K. Production and injection pressures are 65 and 100
bars, respectively. The total simulation time is 400 days.

The nonlinear performance of Case 1 is summarized in Table The maxCFL of
the case is 88. The heterogeneous model is very challenging because of a large variation
in the CFL numbers across the domain. Also frequent phase changes make the fluid
displacement process highly nonlinear. As can be seen, the standard formulation suffers
from many timestep cuts and wasted iterations. By comparison, the SBC method shows
a smooth behavior, resulting in much improved nonlinear convergence.

The gas saturation and overall composition profiles are plotted in Fig. and Fig.
The solutions from SBC closely matches the standard formulation, even for the level
of €min = 1.0e-2.

20



0 1 1
0 100 200 300
Distance (cells)

400

(a) Gas saturation

03 r

¢ (2)

0 Il Il Il
0 100 200 300
Distance (cells)
(b) Overall composition of Cy

400

0 100 200 300
Distance (cells)
(¢) Overall composition of CO2

400

Figure 10: Gas saturation and overall composition profiles for the four-component fluid.
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Figure 11: Permeability (md) field of the SPE 10 model.

7.2. Case 2

We also study a three-component system with {K; = 2.5, Ky = 1.5, K19 = 0.3}, and
the other parameters remain unchanged.
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Table 15: Computational performance of Case 1 with the SPE 10 model.

Total iterations (Wasted) | Timesteps (Wasted)
Slflzrtljgld 560 (300) 44 (15)
emmsf (13.0e_4 193 (0) 20 (0)
emmsf (1).Oe—2 171 (0) 20 (0)

(a) Standard natural (b)) SBC €pin = 1.0e-4  (c) SBC €pin = 1.0e-2

Figure 12: Gas saturation profiles for Case 1.

The nonlinear performance of Case 2 is summarized in Table [I6] The maxCFL is 87.
The iteration performance of the standard formulation becomes worse for the different
K-values. Crossing phase boundaries along a single tie-line causes oscillations in the
Newton solver. For multi-component systems, additional discontinuities can arise with
the switches between key tie-lines. The SBC method provides smooth transitions across
the entire phase boundaries, leading to superior global convergence performance.

Table 16: Computational performance of Case 2 with the SPE 10 model.

Total iterations (Wasted) | Timesteps (Wasted)
Sﬁﬁfﬁf 707 (360) 50 (18)
emmsf ?.0(3-4 196 (0) 20 (0)
Gmmsf ?.06—2 173 (0) 20 (0)
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Figure 13: Overall composition profiles of C; for Case 1.

7.8. Case 3

We study the same fluid and K-values presented in Table [[2] Initial compositions
are {80%,0.1%,14.9%, 5%}, at an initial pressure of 100 bars and at a temperature of
344 K. Production pressure is 95 bars. Injection pressure is 130 bars, and injection gas
mixture is {0.98%,99%, 0.01%,0.01%}.

The nonlinear performance of Case 3 is summarized in Table The maxCFL is
520. The SBC method exhibits favorable nonlinear convergence for this challenging case.

Table 17: Computational performance of Case 3 with the SPE 10 model.

Total iterations (Wasted) | Timesteps (Wasted)
Sﬁ?ﬂfﬁf 356 (140) 24 (7)
emmsf (1).0e—4 110 (0) 13 (0)
Emmsf?.Oe—Q 96 (0) 13 (0)

The overall composition profiles are plotted in Fig. Here the timestep size is
reduced to 10 days, ensuring that the solutions from the different methods are compared
with the same time-stepping schedule.

8. Summary

Frequent phase changes and oscillations around phase boundaries can cause severe
convergence problems during compositional simulations. The objective of this work is to
develop a smooth formulation that removes all the property switches and discontinuities
associated with phase changes. Here we first reformulate the coupled system, so that
the discontinuities are transferred to the phase equilibrium model. A single and concise
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Figure 14: Overall composition profiles of CO32 for Case 3.

non-smooth equation is achieved and then a smoothing approximation can be made.
The reformulation is based on a mixed complementarity problem (MCP) proposed for
the phase equilibrium. The developed formulation with a smoothing parameter pro-
vides smooth transitions of variables across all the phase regimes. We also employ a
continuation method with the smooth system as a homotopy mapping.

We evaluate the efficiency of the new formulation and the continuation method using
several complex problems. For most of the cases, the standard natural formulation suffers
from multiple timestep cuts and subsequent wasted Newton iterations. In contrast, the
developed formulation and method exhibit superior global convergence, requiring no
timestep cut. The SBC method shows a negligible impact on solution accuracy, while
providing smooth and stable iterative performance. Moreover, SBC works robustly for a
wide range of flow conditions without parameter tuning.

In this work, we mainly focus on K-values to evaluate the phase equilibrium. Prelim-
inary tests are conducted for an EoS-based compositional problem. The smooth formula-
tion can be readily applied to the black-oil fluid model (with dissolved gas and vaporized
oil). Our first application target is on real-field black-oil models.
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Appendix A. Formulation with complementarity conditions

Lauser et al. (2011) proposed a formulation based on complementarity conditions for
handling phase changes. For each phase, the sum of the molar fractions is bounded from
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above by one, with equality holding if the phase is present,

Ne Ne
Zxc)l <1, Zxc)l =1 if phase [ is present. (33)
c=1

c=1

The corresponding complementarity conditions are given as,

1= w120, v20, u (12%71) =0 (34)
c=1 c=1

The complementarity conditions with the inequalities, can be reformulated equiva-
lently as non-smooth equations, so that the phase equilibrium system becomes,

Yo — Kexe =0, (35)

Ze — Voe — (1 — Vp) ye = 0, (36)

min {l/l, (1 — Zcxc,l> } =0. (37)

The minimum function represents the nonlinear complementarity function.

The above formulation may produce the solutions with negative molar fractions,
especially if smoothing approximations are applied. This limitation can cause severe
numerical issues for compositional problems of practical interest.

In Lauser et al. (2011), a semismooth Newton method with locally superlinear con-
vergence is employed to solve the non-smooth system. However, the semismooth method
may exhibit poor global convergence: the iterations may diverge, when the starting point
is not close enough to a solution.

Appendix B. Discretization methods

A standard finite-volume scheme is applied as the spatial discretization for the mass
conservation equations. A two-point flux approximation (TFPA) is used to approximate
the flux across a cell interface. The method of choice for the time discretization is the
fully-implicit scheme. The discrete form of conservation equation is given as,

\%4 n n n
— |[(Ppr2) - (pr2c) ] - Z (TepoFo + ycngg) o Q?H =0. (38)

At —
ij
where superscripts denote timesteps, and At is the timestep size. V is the cell volume.
All indexes related to the cell numeration are neglected. The accumulation term involves
the total density,
PTZc = TePoSo T YePgSg (39>
and

(40)

SoPo(X) + sng(Y)a two phase,
p =
pi(z), one phase.

where p,(x) indicates the density computed at a composition x, and p;(z) is the density
computed in the single-phase regime at a composition z.
The discrete phase flux across the interface (ij) between two cells is written as,

Frij = TijNij Ay 45 (41)

where subscript (ij) denotes quantities defined at the cell interface. T;; is the interface
transmissibility. A®;;; = Ap;; — g1,45 is the phase potential difference with the discrete
weights ¢;; = p1,ij gAh;j. The phase and compositional coeflicients associated with the
flux terms are evaluated using the Phase-Potential Upwinding (PPU) scheme.
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Appendix C. Simulation results on EoS-based problems

We provide preliminary test results that demonstrate the applicability of the smooth
compositional formulation to EoS-based problems. The Peng-Robinson EoS model is
used. The reservoir models include: (a) homogeneous 1D model; (b) SPE 10 model.

We note that although the new formulation can be directly applied, additional chal-
lenges could arise within super-critical regions of compositional space. In practice, im-
provements for the stability analysis and flash procedures may be necessary to ensure
robustness. Modeling of complex miscible displacements is subject to future research.

Results: 1D model

We first validate the efficiency of the new nonlinear solver on the 1D model speci-
fied in Table The four-component fluid system {C;, CO3, Cy, C19} is used. The initial
compositions are {20%, 1%, 29%, 50%}, at an initial pressure of 80 bars and at a tem-
perature 373 K. The injection pressure is 190 bars, and the injection gas mixture is
{28%, 70%,1%,1%}. The gas saturation and overall composition profiles are plotted in
Fig. Comparison of the nonlinear results between the standard and smoothing-based
continuation methods is summarized in Table I8
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Figure 15: Gas saturation and overall composition profiles of the EoS-based 1D model.
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Table 18: Computational performance of the EoS-based 1D model.

Total iterations (Wasted) | Timesteps (Wasted)
Standard
Nt 842 (435) 29 (22)
SBC
o et 192 (0) 16 (0)

Results: SPE 10 model

We run a test on the SPE 10 model with the four-component fluid. The initial com-
positions are {C1(80%), CO2(0%), C4(15%), C10(5%)}, at an initial pressure of 101 bars
and at a temperature 344 K. The injection pressure is 130 bars, and the injection fluid
is a two-component mixture {C;(1%), CO2(99%)}.

The gas saturation and overall composition profiles are plotted in Fig. The non-
linear results are summarized in Table We can see that the standard formulation
suffers from a large number of timestep cuts and wasted iterations. In contrast, the SBC
method significantly improves the nonlinear convergence performance.

— 1.0e+00

(a) Gas saturation (b) CO2

Figure 16: Gas saturation and overall composition profiles of the EoS-based SPE 10 model.

Table 19: Computational performance of the EoS-based SPE 10 model.

Total iterations (Wasted) | Timesteps (Wasted)
Standard
Natural 386 (180) 17 (9)
SBC
e = 1.06-4 138 (0) 12 (0)
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