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Guoqiao You ∗ Shingyu Leung†

Abstract

We propose an Eulerian approach to compute the expected finite time Lyapunov exponent
(FTLE) of uncertain flow fields. The definition extends the usual FTLE for deterministic
dynamical systems. Instead of performing Monte Carlo simulations as in typical Lagrangian
computations, our approach associates each initial flow particle with a probability density
function (PDF) which satisfies an advection-diffusion equation known as the Fokker-Planck
(FP) equation. Numerically, we incorporate Strang’s splitting scheme so that we can obtain
a second-order accurate solution to the equation. To further improve the computational
efficiency, we develop an adaptive approach to concentrate the computation of the FTLE
near the ridge, where the so-called Lagrangian coherent structure (LCS) might exist. We
will apply our proposed algorithm to several test examples including a real-life dataset to
demonstrate the performance of the method.

1 Introduction

Mathematical tools are needed to analyze, visualize, and then extract important information in
complex fluid flows and other time-varying dynamical systems. One interesting approach is to
partition the space-time domain into subregions based on certain quantity measured along with
the passive tracer advected according to the associated dynamical system. Because of such a
Lagrangian property in the definition of these quantities, the corresponding partition is named
the Lagrangian coherent structure (LCS). The most commonly used way to extract the LCS is
based on the so-called finite time Lyapunov exponent (FTLE) [17, 13, 14, 40, 24]. This quantity
measures the rate of change in the distance between neighboring particles across a finite interval
of time with an infinitesimal perturbation in the initial position. To obtain the FTLE field, one
needs to first compute the flow map which links the initial location of a particle with the arrival
position based on the characteristic line. Mathematically these particles in the extended phase
space satisfy the ordinary differential equation (ODE) given by

ẋ(t) = f(x(t), t) (1)

with the initial condition x(t0) = x0 and a Lipschitz velocity field f : Rd × R → R
d. The

flow map Φt0+T
t0

: Rd → R
d is defined as the mapping which takes the point x0 to the particle

location at the final time t = t0 + T , i.e Φt0+T
t0

(x0) = x(t0 + T ) with x(t) satisfying (1). The
FTLE is then defined using the largest eigenvalue of the deformation matrix based on the
Jacobian of this resulting flow map. Following the definition of Haller [13, 15, 16], one can see
that the LCS is closely related to the ridges of the FTLE fields. In a series of recent studies
[25, 26, 44, 47, 46, 45, 27, 32], we have developed various Eulerian approaches to numerically
compute the FTLE on a fixed Cartesian mesh. The idea is to combine the approach with

∗School of Statistics and Mathematics, Nanjing Audit University, Nanjing 211815, China. Email:
270217@nau.edu.cn

†Department of Mathematics, the Hong Kong University of Science and Technology, Clear Water Bay, Hong
Kong. Email: masyleung@ust.hk

1



2

the level set method [34, 33] which allows the flow map to satisfy a Liouville equation. Such
hyperbolic partial differential equations (PDEs) can then be solved by any well-established
robust and high order accurate numerical methods.

Yet all the tools and approaches mentioned above require a noise-free velocity field that,
unfortunately, can hardly be satisfied in practice. Instead, noise or uncertainty is common
in measurements from any real applications such as computational fluid dynamics, weather
research, and aerodynamics. As a result, it is necessary to develop numerical approaches that
can visualize and analyze uncertain unsteady flow fields. There are currently several main
approaches for understanding these flows. The first class are direct methods. A vector glyph
approach has been developed to visualize uncertainty in winds and ocean currents and also
environmental vector field data in [42]. They consider uncertainties in various aspects such
as the direction, the magnitude, the mean direction and the length of the flow field. [19] has
also introduced a new type of glyph to visualize unsteady flows with static images, in order
to discriminate regions of different flow behaviors and regions of different uncertain variations
in space and time. Texture-based techniques [2] are also presented to visualize 2-dimensional
uncertain unsteady flow fields. In particular, they use semi-Lagrangian texture advection to
show flow directions by streaklines and convey uncertainty by blurring these streaklines. All
these direct methods try to encode uncertainties as additional visual channels such as glyphs or
textures, which makes them not feasible for large complex datasets. Another class of uncertain
flow visualization approaches are feature-based ones. They try to extract core features from
uncertain flow fields. For example, vortex detectors such as λ2 and Q-Criterion are applied
to uncertain flow fields [36] and the detected vortices are represented as a probabilistic field.
[37] has extended methods for extracting local features in crisp vector fields to uncertain fields.
They also define probabilistic counterparts for critical points and vortex cores.

In this paper, we propose an Eulerian approach to compute the expected FTLE of uncertain
flow fields, which gives a statistical overview of how transport behaviors differ in neighboring
particle locations. Some recent literature has also studied the FTLE in uncertain velocity fields
[39, 11]. They have extended the original definition of the flow map Φ to a stochastic flow
map based on the Monte Carlo (MC) simulations by first solving the corresponding stochastic
differential equation multiple times. One approach is to define the FTLE directly based on the
maximal variance direction of the arrival location from all adjacent grid points, which can be
done using principal component analysis (PCA) [39]. A more refined way is to compute the
expectation of the gradient of the stochastic flow map from those multiple particle trajectories
[11, 12]. Particles are advected stochastically with a (probably very large) number of MC
simulation runs. The number of runs is iteratively determined. In each iteration, a number
of runs are conducted and the iteration stops if the output does not statistically significantly
change the solution anymore. This can be numerically extremely expensive. All these methods
do not focus on the particular FTLE computation method itself, but on deriving the uncertainty
from particle tracing and the FTLE results.

In our proposed algorithm, we first assign each particle starting from a mesh point a prob-
ability density function (PDF) to denote the distribution of its arrival locations and then show
that these PDFs satisfy the usual Fokker-Planck (FP) equation with different initial conditions
(delta functions). The FP equation can be efficiently solved using operator splitting methods
[9]. These methods are simple yet powerful numerical algorithms to obtain the solution to com-
plex PDEs by decomposing them into several simple subproblems so that the solution to each
subproblem can be easily found. This technique has been widely used in various fields of applied
sciences and engineering including Navier-Stokes equations [4, 29, 30], digital image processing
[10], high frequency wave propagation [6] and related inverse problem [5], the homogenization
problem of the Hamilton-Jacobi operator [7], numerical solutions to the Monge–Ampère equa-
tion [8, 28] and many more. In this work, we will apply Strang’s splitting method so that we
can design an implicit scheme to improve the computational efficiency and also can efficiently
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reuse part of the intermediate information in the computations. After obtaining the PDF cor-
responding to each mesh point, we propose an expected FTLE which actually measures the
differences in the advected PDFs. An advantage of our approach is that we only need discrete
velocity data on mesh points since we are solving PDEs. Another advantage is that we do not
need to care much about or put extra effort into the uncertainty in the flow by, for example,
performing a large number of MC simulations.

The FP equation itself is not new to the computational dynamical system community. For
example, coherent sets are approximated by singular vectors of the transfer operator computed
by the solution of the FP equation [3]. By clustering the first n singular vectors, the method
partitions the domain into n coherent subsets. Also, [20] has introduced a geometric heat-flow
theory which views the LCS as a metastable/almost-invariant set under the Lagrangian FP
equation. In both works, however, the underlying velocity field is assumed to be noise-free. The
FP equation has been introduced only to understand the behavior of the given Lipschitz drift
velocity field.

The rest of the paper is organized as follows. In Section 2, we first review the Eulerian
approaches for constructing the backward flow map and then present the Itô stochastic differ-
ential equation (SDE) governing the uncertain unsteady flows for further development. Our
approach is outlined in Section 3. In particular, we first derive the FP equations whose solu-
tions are exactly the PDFs of the arrival locations of the initially uniformly sampled passive
tracers. After listing the computational challenges in solving the FP equations, we introduce an
effective algorithm based on Strang’s operator splitting scheme. Having obtained these PDFs,
we give the formula to compute the expected flow map starting from each mesh point and hence
the corresponding expected FTLE field. To further improve the computational efficiency of the
FTLE visualization, we propose an adaptive approach in Section 4. Finally, in Section 5 we
test our algorithm on several examples and show its effectiveness compare to the MC schemes.

2 Background

In this section, we list some fundamental concepts and results for further developments. First,
we will review the Eulerian approach for constructing the backward flow map, which will be
used in the proposed algorithm for solving the FP equation. Subsequently, we set up the Itô
SDE governing the particle behaviors in the uncertain unsteady flow fields.

2.1 Eulerian approaches for the backward flow map

As in [25, 26, 43], we define a vector valued function Ψ = (Ψ1,Ψ2, · · · ,Ψd) : Ω×R → R
d where

Ω ⊂ R
d is the computational domain. At t = 0, we initialize these functions by

Ψ(x, 0) = x = (x1, x2, · · · , xd) . (2)

These functions provide a labelling for any particle in the phase space at t = 0. In particu-
lar, any particle initially located at (x0, 0) = (x10, x

2
0, · · · , xd0, 0) in the extended phase space

can be implicitly represented by the intersection of d codimension-1 surfaces represented by
∩d
i=1{Ψi(x, 0) = xi0} in R

d. At the first glance this representation seems redundant. However,
following the particle trajectory with x = x0 as the initial condition in a given velocity field,
any particle identity should be preserved in the Lagrangian framework and this implies that the
material derivative of these level set functions is zero, i.e.

DΨ(x, t)

Dt
= 0 .

This implies the following level set equations, or the Liouville equations,

∂Ψ(x, t)

∂t
+ (f · ∇)Ψ(x, t) = 0 (3)
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with the initial condition (2). This implicit representation therefore embeds all path lines
in the extended phase space. For instance, the trajectory of a particle initially located at
(x0, 0) can be found by determining the intersection of d codimension-1 surfaces represented by
∩d
i=1{Ψi(x, t) = xi0} in the extended phase space.

(a) (b)

Figure 1: Lagrangian and Eulerian interpretations of the function Ψ [25]. (a) Lagrangian ray
tracing from a given grid location x at t = t0. Note that y might be a non-grid point. (b)
Eulerian values of Ψ at a given grid location y at t = t0 + T gives the corresponding take-off
location at t = t0. Note the take-off location might not be a mesh point.

The solution to (3) contains much more information than what we have just interpreted
above. Consider a given mesh location y in the phase space at time t = T , as shown in
figure 1 (b), i.e. (y, T ) in the extended phase space. Since the intersection ∩d

i=1{Ψi(x, t) =
Ψi(y, T )} represents the path line in the extended phase space passing through (y, T ), the level
set functions Ψ(y, T ) represent the coordinates of the takeoff location at t = 0 of a Lagrangian
particle reaching y at t = T . Therefore, these level set functions defined on a uniform Cartesian
mesh in fact give the backward flow map from t = T to t = 0, i.e. Φ0

T (y) = Ψ(y, T ). Moreover,
solution to the level set equations (3) for t ∈ (0, T ) provides also backward flow maps for all
intermediate times, i.e. Φ0

t (y) = Ψ(y, t).

That is, we obtain the backward flow map by numerically solving the Liouville equation
forward in time. In particular, at each timestep, we solve the level set equation (3) forward in
time from t = tn to t = tn+1 with the initial condition Ψ(x, tn) = x imposed on the time level
t = tn. Then the one step backward flow map is given by Φtn

tn+1
(x) = Ψ(x, tn+1), which can

actually be constructed as an explicit formulation. For example, if the forward Euler method
is used, we have

Φtn
tn+1

(xi,j) = xi,j −Δt f(xi,j , tn)

where Δt = tn+1 − tn and xi,j � (xi, yj) with xi the i-th grid point in the x-direction and
yj the j-th grid point in the y-direction. Higher order extensions are possible using typical
weighted essentially non-oscillatory-total variation diminishing Runge-Kutta (WENO-TVDRK)
approaches. For example, using the second order TVD-RK (TVD-RK2) scheme [35] we have

Φtn
tn+1

(xi,j) = xi,j − Δt

2
(f(xi,j , tn) + f(xi,j , tn+1)) +

Δt2

2
f(xi,j , tn+1) · ∇f(xi,j , tn) . (4)

2.2 The stochastic differential equation governing the uncertain unsteady
flows

Dynamical systems are usually modeled by the ODE system (1). However, noise and uncertainty
are common in measurements from any real applications and thus the evolution of particle
trajectories does not necessarily satisfy (1) anymore. Assuming that the velocity field in the
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dynamical system contains white noise, we model the evolution of a particle trajectory by the
following Itô SDE

dx(t) = f(x(t), t)dt+ σ(x(t), t)dw , (5)

with the initial particle location at x(t0) = x0 ∈ R
d. The function f is the underlying Lipschitz

drift velocity function and σ is a d × d function matrix of space and time relating to the
correlations between the random variables in different dimensions, which is a scalar matrix if
the noise in different dimensions is assumed to be independent and identically distributed (i.i.d.).
The function w denotes the Wiener process representing the standard Brownian motion which
is independent of the random initial condition x0.

Since each particle trajectory now evolves with uncertainty according to (5), the flow map
Φt0+T
t0

from the initial time t = t0 to the final time t = t0 + T also becomes stochastic. This
makes the FTLE computation a challenging task. Most recent studies concerning the FTLE in
uncertain velocity fields [39, 11] first conduct the MC simulation to solve the above SDE (5)
for multiple runs. In each run, they might obtain a different arrival location at t = t0 + T of
the particle starting from the same point x0 at t = t0. After these runs, they collect all these
different arrival locations for each particular particle and then take an average in some sense to
obtain an expected flow map or directly an expected FTLE. In [11] for example, they define a
so-called FTLE-D as

et0+T
t0

(x) =
1

T
log

√
λmax(E [∇Φ]T E [∇Φ]) ,

where ∇Φ denotes the gradient of the flow map Φt0+T
t0

, [.]T represents the transpose of a matrix,
E [·] is the expectation operator and λmax(·) is used to denote the maximum eigenvalue of the
underlying matrix. In the implementation, E [∇Φ] is estimated by averaging the gradients of
flow maps collected in all runs:

E [∇Φ] ≈ 1

m

m∑
i=1

∇Φ(i) ,

where m is the number of runs conducted and ∇Φ(i) can be estimated by the finite difference
scheme, e.g. the central difference method, for every individual run.

Solving SDEs numerically is well-studied [22, 23, 18]. For example, [18] gives a MATLAB-
based introduction to the SDE simulation. Yet the most widely used way is still the MC
simulation. A detailed and complete toolbox for the MC simulation is presented in [38] which
is called SDELAB also developed based on the MATLAB software. SDELAB is able to simulate
sample paths of an SDE solution, compute statistics and estimate the parameters from data.
In our numerical experiments given in Section 5, we will compare the results of our proposed
algorithm with those from the simulations using the SDELAB.

Independent of the programming language or the toolbox used for the MC simulation, one
has to set the number of MC simulation runs. Based on our experiences, if the noise level of the
velocity data is relatively low, the MC simulation converges quickly. On the other hand, if the
magnitude of the noise is relatively large, one might need to conduct the MC simulation many
times. Even worse, we are not able to know beforehand how many runs is enough in order to
obtain an acceptable and converged result. As a result, one has to monitor the result of each
run and set a criterion to determine a time to stop the iterations.

3 The proposed approach

In this section, we propose an Eulerian approach to compute the FTLE of uncertain unsteady
dynamical systems based on the expected flow map. Instead of the MC simulations, we construct
a PDE (the FP equation) governing the evolution of the PDF of the stochastic arrival location
of a certain particle. In view of the computational challenges in solving the FP equations with
different initial conditions, we propose to use the Strang’s operator splitting scheme to discretize
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the FP equations after carefully treating the solution for the first timestep. Once the PDFs
corresponding to the particles starting from all mesh points are obtained, we can define the
expected flow map and thus the expected FTLE. At the end, we analyze the computational
complexity of the proposed algorithm.

3.1 The Eulerian formulation

Let p = p(x, t;x0) be the PDF of the arrival location at time t of the particle taking off from
x(t0) = x0 at the initial time t = t0. Associated with the SDE (5), it can be shown that
p = p(x, t;x0) satisfies the FP equation given by

∂p

∂t
+∇ · (fp) = 1

2

d∑
i,j=1

∂2

∂xi∂xj
[Di,j(x, t) p]

p(x, t0;x0) = δ(x− x0) , (6)

with the diffusion tensor D(x, t) = σ(x, t)σT (x, t). The initial condition is a Dirac delta function
representing that the particle is initially located at the location x = x0. We note that this
equation is simply a convection diffusion equation. For simplicity, we only consider the case
when the noise in each dimension is i.i.d. and then we have D(x, t) is a scalar matrix. Then
the FP equation (6) can be written as

∂p

∂t
+∇ · (fp) = D0Δp ,

where D0 is the constant diffusion coefficient. Unlike others [39, 11], we propose in this work to
directly solve this PDE using well-developed numerical schemes instead of conducting any MC
simulations. If we further assume that the flow is incompressible, i.e. ∇ · f = 0, we have the
following advection-diffusion equation

∂p

∂t
+ f · ∇p = D0Δp

p(x, t0;x0) = δ(x− x0) (7)

with the velocity f given by the drift velocity function and the diffusion coefficient D0 related
to the variance of the noise or uncertainty in the measurements.

Once we obtain these PDFs corresponding to all the grid points, we propose the expected
flow map Φt0+T

t0
: Rd → R

d as the mapping which takes the point x0 to the expected particle
location at the final time t = t0 + T , i.e

Φ̂t0+T
t0

(x0) = E[Φt0+T
t0

(x0)] =

∫
Rd

x p(x, t0 + T ;x0) dx , (8)

with p(x, t;x0) satisfying the FP equation. Finally we define the expected FTLE field et0+T
t0

based on the expected flow map by

et0+T
t0

(x) =
1

T
log

√
λmax((∇Φ̂)T (∇Φ̂)) .

This definition extends the original definition of the FTLE. In particular, when there is no
uncertainty in the velocity measurements, the diffusion coefficient D0 drops to zero in the FP
equation. The resulting PDF p is, therefore, a delta function and our definition reduces back
to the original definition of the FTLE.

The term∇Φ̂ is the gradient of the expected flow map. It measures the change in the expected
arrival location of the flow particle with respect to an infinitesimal change in the initial takeoff
location. This term is equivalent to the expectation of the PDF gradient. Mathematically, this
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expectation measures the expected difference between two PDFs corresponding to two different
initial takeoff locations x0 and y0 by∫

Rd×Rd

(x− y) p(x, t0 + T ;x0) p(y, t0 + T ;y0) dxdy .

It equals to∫
Rd

x p(x, t0 + T ;x0) dx−
∫
Rd

y p(y, t0 + T ;y0) dy = Φ̂t0+T
t0

(x0)− Φ̂t0+T
t0

(y0) .

As we move these two initial takeoff locations towards each other giving the expectation of
the PDF gradient, we have the gradient of our expected flow map. This is actually not too
surprising, however. Since the expectation and the gradient operator are both linear, one can
switch the operations and simply replace the term by the expectation of the PDF gradient.

The interpretation of the PDF gradient shares some similarities with the so-called FTLE-D
as defined in [11] which computes the expectation by sending multiple rays from the adjacent
locations y0 chosen near x0. This is a Lagrangian interpretation where one tries to implement
MC-type simulations to approximate the PDF p(x, t0+T ;x0) and p(y, t0+T ;y0). Our Eulerian
approach, on the other hand, computes the PDFs by a PDE formulation based on the FP
equation.

3.2 Computational challenges

Seemingly straightforward, a simple numerical implementation might pose some computational
challenges. The main concern is the overall computational complexity. Let Δx be the mesh size
in each spatial direction, N = O(Δx−1) be the number of mesh points in each spatial direction,
and Δt be the timestep in solving the FP equation. Because the FP equation is of parabolic
type, the typical computational complexity involved in obtaining the PDF p = p(x, t;x0) at the
final time t = t0 + T is

O
(
Nd/Δt

)
= O

(
Nd/Δx2

)
= O

(
Nd+2

)
if an explicit finite difference method is used for the diffusion term. Since the initial condition is
different for each particular grid point (given by the delta function centered at the corresponding
grid point), we have to solve the FP equation for O

(
Nd

)
different initial conditions. As a result,

the overall computational complexity for finding all PDFs and therefore the expected flow map
is O(N2d+2), which is computationally very expensive. One main reason for this complexity
is clearly that it assumes an explicit scheme is used for the diffusion part and, therefore, the
method requires a relatively strict stability condition. One might attempt to replace it by an
implicit scheme in order to relax the stability constraint. This is unfortunately difficult because
the advection term in the equation might require some root-finding step. A better approach is
to develop some explicit-implicit methods by treating the advection part with an explicit scheme
while the diffusion part implicitly. By carefully choosing the timestep, one might be able to relax
the stability condition for the whole numerical scheme. Another possible choice is mentioned
in [3] where a numerical algorithm has been developed using an exponential time differencing
scheme in time and a spectral collocation method in space. However, in our application, we
have to solve the FP equation for O(Nd) different initial conditions. We need to design some
algorithms which would allow us to reuse parts of any intermediate computations.

Another issue is the handling of the initial condition p(x, t0;x0) = δ(x − x0). In the level
set community [34, 33], the delta function in the 2-D case is approximated using

δε(x− x0, y − y0) =

⎧⎨
⎩

0 if d(x, y) > ε,
1

2ε
+

1

2ε
cos

(
πd(x, y)

ε

)
otherwise,
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where d(x, y) =
√
(x− x0)2 + (y − y0)2. The usual practice is to pick ε = O(Δx) so that the

delta function is resolved by several mesh points. However, it might be difficult to decide a
proper choice of the regularization parameter ε in the current application. If the parameter is
too small, we might not have enough grid points to resolve the variation in the function value.
If it is too large, on the other hand, it smoothes out the function over a neighborhood which
has the same effect as having some diffusion in the initial condition. This will introduce some
inconsistency in the approximation of the numerical solution to the FP equation. Therefore,
we need to carefully design a numerical procedure to handle this initial condition. A simple
computational strategy will be given in Section 3.4.

3.3 Strang’s splitting scheme

In view of the computational challenges we mentioned above, in this subsection we first propose
to use Strang’s splitting scheme [41] to discretize the FP equation from t = tn to t = tn+1. In
particular, suppose the PDF p(xi, yj , tn;x0, y0) is known at time t = tn at each grid point (xi, yj)
where (x0, y0) is the initial location of the particle at t = t0. To simplify the notations in the
following discussion, we denote p(xi, yj , tn;x0, y0) by pni,j , temporally hiding the dependence on

the initial location. Then we want to obtain pn+1
i,j by discretizing the following Cauchy problem:

∂p

∂t
+ f · ∇p = D0Δp

p(x, y, tn;x0, y0)|(xi,yj) = pni,j .

The decomposition of the FP equation consists of three steps using Strang’s splitting scheme.

Step One. In the first step, we solve the following Liouville equation

∂p

∂t
+ f · ∇p = 0

p(x, y, tn;x0, y0)|(xi,yj) = pni,j

for half a timestep from t = tn to t = tn+
1
2Δt to obtain an intermediate solution, denoted

by p
n+ 1

2
i,j . In fact, this equation is equivalent to Dp/Dt = 0 implying that the function

p(x, y, t;x0, y0) is constant along each particle trajectory guided by the drift velocity field
f(x, y, t). As a result, we have

p
n+ 1

2
i,j = p

(
Φtn
tn+

1
2
Δt
(xi, yj), tn;x0, y0

)

where Φtn
tn+

1
2
Δt
(·) denotes the backward flow map from t = tn + 1

2Δt to t = tn. This can

be easily constructed using (4) proposed in Section 2.1. After that, constructing p
n+ 1

2
i,j

involves only an interpolation based on pni,j , which could be done using any well-developed
numerical scheme such as the function pchip/interp1/interp2/interp3/interpn developed in
MATLAB.

Step Two. In the second step we handle the diffusion operator. In particular, we solve
the following Cauchy problem

∂p

∂t
= D0Δp

p(x, y, tn;x0, y0)|(xi,yj) = p
n+ 1

2
i,j
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for a whole timestep from t = tn to t = tn+1 to obtain another intermediate solution,

denoted by (pn+1
i,j )′, where p

n+ 1
2

i,j is the intermediate solution obtained in the first step.
This equation is the standard diffusion equation with a constant diffusion coefficient which
could be easily solved using any typical method. One simple approach is to use a finite
difference method. To keep the second order accuracy and relax the restriction on the
timestep Δt of the algorithm, one can simply use the well-known Crank-Nicolson (CN)
scheme. To obtain the spectral accuracy in the solution, one might also use the FFT (for
the periodic flows) or the DST (for Dirichlet boundary condition on the flows). However,
since the operator splitting has already introduced certain errors in the numerical solution,
there is no particular reason to require extremely high accuracy in this intermediate stage.

Step Three. In the third step, we solve

∂p

∂t
+ f · ∇p = 0

p(x, y, tn +
1

2
Δt;x0, y0)|(xi,yj) =

(
pn+1
i,j

)′

from t = tn + 1
2Δt to t = tn+1 to obtain pn+1

i,j . This can also be easily achieved by using
(4) and an interpolation together. In particular, we first use (4) to obtain the backward

flow map Φ
tn+

1
2
Δt

tn+1
(xi, yj), then pn+1

i,j can be obtained by interpolating at Φ
tn+

1
2
Δt

tn+1
(xi, yj)

based on
(
pn+1
i,j

)′
.

In Step One and Step Three, we need to construct the numerical solution to the Liouville
equation. This imposes a stability constraint Δt = O(Δx) limited by the CFL condition.
Because we are using an implicit scheme (the CN scheme) in Step Two, the overall numerical
scheme is therefore constrained only by the CFL condition. Note that if the flow map between
any time-levels is pre-computed beforehand, however, there will be no stability condition on
both Step One and Step Three when constructing the PDF. This makes the overall scheme
unconditionally stable and Δt can be chosen solely based on the consideration of the accuracy
instead of the stability. In Section 5, because we construct the flow map together along with
the PDF, we have used Δt = O(Δx) in the numerical implementations.

Concerning the computational complexity, since the implicit scheme to the diffusion operator
can be inverted using the LU decomposition or the ADI method, the overall computational
complexity is now dropped to O(Nd+1) for each initial condition corresponding to the PDF
associated to that location. Even though the overall computational complexity for solving all
expected flow maps is still O(N2d+1) which might seem to be overwhelmingly expensive, the

flow maps Φtn
tn+

1
2
Δt

and Φ
tn+

1
2
Δt

tn+1
are actually reused for all O(Nd) different initial conditions in

Step One and Step Three, respectively. Now, because the MC simulation requires O(LNd+1)
operations for all mesh points where L is the runs of simulations conducted, our PDE-based
approach would be computationally very attractive if L � O(Nd). Qualitatively, as the noise
level gets larger in the velocity field, one has to increase the number of trials in order to
obtain a better approximation of the PDF on the arrival locations. Therefore, intuitively, our
proposed approach is preferable for flows with a higher level of uncertainty. Having said that,
however, we do not have any quantitative results on the convergence of the MC simulation in
our current application. There is indeed analysis of the MC simulations [21], including some
strong convergence and weak convergence results. For example, an approximating process Y
is said to be strongly convergent with order γ ∈ (0,∞] if there exists a constant K ∈ (0,∞]
such that E|XT − Yn| ≤ KΔtγ , where Δt ∈ (0, 1] is the step size, XT is the exact solution at
time t = T and Yn is the approximation at t = T . Different integration algorithms may lead
to different orders of accuracy in the MC simulations. For example, the Milstein algorithm has
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a first order of strong convergence [31], while the Euler-Maruyama algorithm is of the order
0.5 [1]. However, there is no a prior explicit relationship between the value of L and the error
in the MC simulation. As a result, one has to monitor the result of each run until a certain
accuracy in the numerical solution is achieved.

In applications when the noise in each dimension is not independent and identically dis-
tributed (i.i.d.), the diffusion tensor D(x, t) in (6) will no longer be a constant multiple of an
identity matrix. In this case, Step One and Step Three of the overall algorithm can remain
unchanged. The only modification required is an efficient solver for the anisotropic diffusion
equation in Step Two given by

∂p

∂t
=

1

2

d∑
i,j=1

∂2

∂xi∂xj
[Di,j(x, t) p]

p(x, y, tn;x0, y0)|(xi,yj) = p
n+ 1

2
i,j .

3.4 The treatment of the first timestep

As mentioned, the discretization to the initial condition p(x, y, t0;x0, y0) = δ(x − x0, y − y0)
might not be that straightforward. Therefore, we need to carefully construct the solution at
the first timestep t = t1 = t0 + Δt, i.e. p(x, y, t1;x0, y0), based on the initial condition. It
turns out that, without the need to discretize the initial condition, p(x, y, t1;x0, y0) can be
explicitly represented in the operator splitting scheme. For simplicity, we consider only the two
dimensional case. Higher dimensional generalization is relatively straightforward and, therefore,
we will skip the discussion. We also represent the backward flow map from t = t1 to t = t0
obtained by our Eulerian approach as in Section 2.1 using Φt0

t1
(x, y) =

(
φt0
t1
(x, y), ψt0

t1
(x, y)

)
.

In Step One, we solve the Liouville equation with the initial condition

p(x, y, t0;x0, y0) = δ(x− x0, y − y0)

from t = t0 to t = t0 +
1
2Δt. The solution can be analytically constructed as

p
1
2 (x, y) = p

(
Φt0
t0+

1
2
Δt
(x, y), t0;x0, y0

)

= δ

(
φt0
t0+

1
2
Δt
(x, y)− x0, ψ

t0
t0+

1
2
Δt
(x, y)− y0

)

= δ

(
x− φ

t0+
1
2
Δt

t0
(x0, y0), y − ψ

t0+
1
2
Δt

t0
(x0, y0)

)
.

In the second step, we obtain the solution to the diffusion equation from t = t0 to t = t0 +Δt
with the initial condition p(x, y, t0;x0, y0) = p

1
2 (x, y) as

(
p1
)′
(x, y) = GΔt ∗ p 1

2 (x, y) =
1

4πD0Δt
exp

[
− 1

4D0Δt

∥∥∥∥x− Φ
t0+

1
2
Δt

t0
(x0, y0)

∥∥∥∥
2

2

]

where GΔt is the free space heat kernel for diffusion for a timestep of Δt and ∗ is the usual
convolution operator. Finally, in Step Three, the advection equation is solved from t = t0+

1
2Δt

to t = t0+Δt with the initial condition p
(
x, y, t0 +

1
2Δt;x0, y0

)
=

(
p1
)′
(x, y). The solution can

also be constructed using the flow map given by

p1(x, y) =
(
p1
)′(

Φ
t0+

1
2
Δt

t0+Δt (x, y)

)

=
1

4πD0Δt
exp

[
− 1

4D0Δt

∥∥∥∥Φt0+
1
2
Δt

t0+Δt (x, y)− Φ
t0+

1
2
Δt

t0
(x0, y0)

∥∥∥∥
2

2

]
.
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Therefore, instead of plugging in the delta function to the initial condition in the first step, we
sample the approximated solution p1(x, y) constructed above at the grid points (x, y) = (xi, yj)
and use that as the initial condition for the next timestep.

As we can see from this construction, the heat kernel has a support of O(Δt1/2). When
we have Δt = O(Δx), the Gaussian is distributed and sampled locally on a domain of size
O(Δx1/2) � O(Δx). This approach thus automatically provides a better numerical initial
condition for later computations than the smeared delta function approach as in the usual level
set community.

4 An adaptive refinement approach for visualization

To further improve the computational efficiency of the expected FTLE, we propose the following
adaptive refinement strategy. We first determine the coarsest and the finest scales for the
computations with the mesh size denoted by Δx0 and ΔxM . For simplicity, we can relate them
by ΔxM = 2−MΔx0 for some integer M > 0. In practice, one can already significantly reduce
the computational time using a relatively small integer M such as 2 or 3. On the finest scale
ΔxM , we solve the Liouville equation for all flow maps Φ between the initial time and the final
time. These solutions will be stored on the disk and will be used in all interpolation steps for
solving the FP equations for the rest of the algorithm.

Now, at each grid point on the coarsest level Δx0, we compute the expected flow map in a
small neighborhood determined by the finest scale ΔxM , i.e. a grid point on the coarsest level
together with four other initial locations at (x, y) = (xi ±ΔxM , yj ±ΔxM ). This means that,
for each grid point on the coarsest level Δx0, we compute five expected flow maps by solving the
FP equation five times (with the delta function locating at different initial conditions). Then
we can construct the corresponding deformation tensor at the coarsest level and obtain a very
rough visualization of the expected FTLE.

To improve the resolution, we collect a subset of those grid points which have the expected
FTLE larger than a thresholding value μ0 and denote this set by Ω0. Then we move to the
next finer level Δx1. For each grid point from Ω0, we collect eight neighboring grid points in
the neighborhood

(xi ±Δx1, yj), (xi, yj ±Δx1), (xi +Δx1, yj ±Δx1), (xi −Δx1, yj ±Δx1)

and compute the expected FTLE if its value has not been found. We collect a subset of all
grid points which have the expected FTLE larger than μ1 and denote the set by Ω1. This
procedure continues iteratively until in the last stage we have constructed the set ΩM−1 and
have determined the expected FTLE on the finest scale

(xi ±ΔxM , yj), (xi, yj ±ΔxM ), (xi +ΔxM , yj ±ΔxM ), (xi −ΔxM , yj ±ΔxM ) .

Finally, since the expected FTLE is not available at all grid points on the finest level ΔxM ,
we propose to fill in the missing values using the elliptic continuation. That is, we solve −Δe = 0
on those grid points where the expected FTLE is missing while keeping the existing value if we
have already computed it from the above iterative procedure. Mathematically, we denote Ω′ to
be the set where we have visited in the above procedure with e′ to be the corresponding value
of the expected FTLE, and let Ω\Ω′ be the set where the expected FTLE value is missing. Then
the continuation can be easily computed by solving the following equation within the whole
computational domain, (

1Ω′ − 1Ω\Ω′Δ
)
e = 1Ω′e′

with the boundary condition ∂ne = 0 on ∂Ω where the function 1Ω′(x) is the characteristic
function equal to 1 if x ∈ Ω′ and 0 otherwise.
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In the iteration procedure, the choice of the parameter μm is obviously not unique. The
smaller the value of this thresholding parameter, the more times the FP equation needs to be
solved. If this value is chosen to be too large, we will not be able to resolve the FTLE solution
on a finer scale. A possible choice is to determine μm adaptively on each level of refinement by
setting it to be the average or the median of all available expected FTLE values. In this work,
we determine the threshold value by the largest k-percentile of all available expected FTLE
values. We have considered a wide range of k and found that even when we use as few as
top 5-percentile FTLE values, the adaptive refinement approach would still lead to a numerical
solution that matches extremely well with that of the full implementation.

Finally, note that in this adaptive algorithm, all expected flow maps are determined by
solving the FP equation on the same finest scale ΔxM and therefore the accuracy can be
consistently maintained on the same level. The adaptivity is imposed only on the visualization
stage. To improve the computational time of the overall algorithm, however, one might explore
parallel implementations for solving the FP equation such as various domain decomposition
methods for the advection-diffusion equation. But this is not the main concentration of the
current work and, therefore, we will not further investigate this direction.

5 Numerical results

In this section, we will demonstrate our proposed algorithm on two examples. The first example
is the double gyre flow whose velocity field is synthetic and analytically determined by a stream-
function. The second velocity field is given by a real dataset. Indeed, our proposed algorithm
can also be easily extended to three-dimensions. It might require further improvement in the
computational efficiency, and we will investigate any high dimensional example in the future.

5.1 The double gyre flow

This example is taken from [40] to describe a periodically varying double-gyre. The flow is
modeled by the following stream-function ψ(x, y, t) = A sin[πg(x, t)] sin(πy) where

g(x, t) = a(t)x2 + b(t)x ,

a(t) = ε sin(ωt) ,

b(t) = 1− 2ε sin(ωt) .

In this example, we follow [40] and use A = 0.1, ω = 2π/10 and ε = 0.1.

At first, we use our proposed approach to simulate the evolution of the PDF p(x, y, t;x0, y0)
which corresponds to a particular particle taking off from (x0, y0) at the initial time. We
set D0 = 0.001 and use 513 × 257 mesh points to discretize the computational domain Ω =
[0, 2]×[0, 1], i.e. Δx = Δy = 1/256, where all required interpolation steps are implemented using
the interp2 function in MATLAB. Figures 2 and 3 show the solutions of the PDFs p(x, y, t; 1, 0.5)
and p(x, y, t; 0.5, 0.75), respectively, at several time slices. At the beginning, the PDF is densely
distributed near the center where a high peak value is achieved. As time evolves, the PDF
spreads all around and becomes flatter and flatter. Then we numerically verify the accu-
racy of the proposed approach. The blue line in Figure 4 shows the L2 error of the PDF
p(x, y, t; 0.5, 0.75) at time t = 10 computed using our proposed approach with Δx varying from
1/32 to 1/512 while keeping Δt/Δx fixed. We can see that our proposed approach is approx-
imately second order accurate, which matches our expectation. We have also implemented
the corresponding Lie’s splitting scheme, where one takes one whole Δt step in Step One
while removing the Step Three in the algorithm. The corresponding L2 error of the PDF
p(x, y, 10; 0.5, 0.75) is plotted as the red line in Figure 4, which does show approximately first
order accuracy. Since we do not have the exact solution, we first directly solve equation (7)
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using the explicit scheme with small Δx and Δt and then use the resulting solution as the
reference solution.
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Figure 2: (Section 5.1) The PDF p(x, y, t; 1, 0.5) computed using Δx = Δy = 1/256 at (a) t = 1,
(b) t = 3, (c) t = 6 and (d) t = 10.
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Figure 3: (Section 5.1) The PDF p(x, y, t; 0.5, 0.75) computed using Δx = Δy = 1/256 at (a)
t = 1, (b) t = 3, (c) t = 6 and (d) t = 10.

Then we compute the FTLE e100 based on the expected flow map Φ̂10
0 . Figure 5 shows

the solutions of e100 for D0 = 0.0001, 0.001, 0.005 and 0.01, respectively, computed using the
mesh size Δx = Δy = 1/128. We can see that, as the diffusion coefficient D0 increases, the
corresponding FTLE ridge becomes wider and flatter. As a comparison, we have also used the
SDELAB toolbox [38] to directly conduct the MC simulation, as discussed in Section 2.2. In
particular, we first conduct the MC simulation with a large number, L, of trials and thus can
obtain L stochastic arrival locations at t = 10 for each particular particle starting from a mesh
point xi,j at t = 0. Subsequently, we take an average of these L arrival locations to approximate
the expected flow map Φ̂10

0 (xi,j) for this mesh point xi,j . After collecting the approximations
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Figure 4: (Section 5.1) The L2 error of the PDF p(x, y, 10; 0.5, 0.75) computed with Δx varying
from 1/32 to 1/512. The blue line corresponds to the solutions computed using our proposed
Strang’s splitting approach, while the red line represents the corresponding solutions computed
using the Lie’s splitting scheme. Reference lines are plotted in black.

to Φ̂10
0 (xi,j) for all mesh points, we are able to compute the corresponding FTLE e100 . Figure

6 gives the corresponding solutions when L = 900. We cannot observe obvious FTLE ridges
except for the relatively small diffusion coefficient D0 = 0.0001. However, as we increase L from
900 to 10000, the solutions (as shown in Figure 7) using the MC simulation for all D0’s become
closer to the solutions of our proposed approach. In particular, the solution for D0 = 0.001 is
already good using L = 10000. Yet we still cannot see any obvious FTLE ridge for D0 = 0.005
and D0 = 0.01.
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Figure 5: (Section 5.1) The FTLE e100 with Δx = Δy = 1/128 for (a) D0 = 0.0001, (b)
D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.

We also increase the number of trials in the MC simulation L from 10000 to 90000 for
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Figure 6: (Section 5.1) The FTLE e100 computed by the MC simulation with 900 trials using
Δx = Δy = 1/128 with (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.
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Figure 7: (Section 5.1) The FTLE e100 computed by the MC simulation with 10000 trials using
Δx = Δy = 1/128 with (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.

D0 = 0.005 and D0 = 0.01. The solutions are shown in Figure 8. As expected, these solutions
get even closer to the solutions of our proposed approach given in Figure 5(c) and (d). But the
two solutions still do not have sufficiently smooth FTLE ridges. We believe that the solutions
of the MC simulation will eventually converge to the solutions computed using our approach as
we further increase the number of runs.

L 900 10000 90000 Our approach

Duration (in hours) 1.01 11.11 160.22 36.79

Table 1: Computational time of our proposed algorithm and the MC scheme with different L’s

Another issue concerning the MC scheme is the treatment of the boundary condition. The
double gyre flow is a measure-preserving flow with no flux going across the boundary of the
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Figure 8: (Section 5.1) The FTLE e100 computed by the MC simulation with 90000 trials using
Δx = Δy = 1/128 with (a) D0 = 0.005, (b) D0 = 0.01.
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Figure 9: (Section 5.1) The FTLE e100 with the periodic boundary condition and mesh size
Δx = Δy = 1/128 corresponding to (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d)
D0 = 0.01.

computational domain Ω. However, some particles might actually leave the computational
domain during the MC simulation due to the Brownian motion. In the previous implementations
of the MC simulation, we have set a mechanism to monitor the evolution of each particle
trajectory and abandoned the trajectory once it leaves the domain. This might introduce
unnecessary error in the numerical simulations. To better compare the solutions using the MC
scheme and our proposed approach, we propose to impose the periodic boundary condition for
both approaches. The solutions of our proposed approach are given in Figure 9, from which
we can still clearly identify the FTLE ridges for all D0’s. The solutions of the MC simulations
are given in Figure 10 and 11, corresponding to L = 10000 and 90000, respectively. We can
see that the solution for L = 90000 is closer to the solution of our approach. Furthermore, no
obvious FTLE ridge can be identified for D0 = 0.005 and D0 = 0.01, even with L = 90000.

Here we discuss the adaptive refinement approach as proposed in Section 4. We first set
the coarsest and the finest scales with the mesh size Δx = Δy = 1/32 and Δx = Δy = 1/128
respectively, i.e. we simply have M = 2. In the implementation, the thresholding values μ0

and μ1 are determined based on the k-percentile of all available expected FTLE values. This
means that k = 100 implies the original algorithm and k = 50 leads to the median of all
computed values. First, we set k = 20 and compute the FTLE e100 with the periodic boundary
condition. That is, we use the adaptive refinement approach to recompute the solutions given
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Figure 10: (Section 5.1) The FTLE e100 computed by the MC simulation with 10000 trials using
the periodic boundary condition and Δx = Δy = 1/128 corresponding to (a) D0 = 0.0001, (b)
D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.
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Figure 11: (Section 5.1) The FTLE e100 computed by the MC simulation with 90000 trials using
the periodic boundary condition and Δx = Δy = 1/128 corresponding to (a) D0 = 0.0001, (b)
D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.

in Figure 9. The results corresponding to different D0’s are shown in Figure 12. We can see
that the adaptive approach gives very good approximations to the solutions in Figure 9. To
measure the difference between these two solutions in Figures 9 and 12 more quantitatively,
we have plotted the absolute difference in Figure 13. We first concentrate on those locations
with large expected FTLE values computed on the finest adaptive level. In Figure 14, these
grid locations are highlighted in red. Since the solution at these places matches exactly with
the direct computations, the absolute difference at those locations is in fact zero. The region
with large deviations in Figure 13 mainly concentrates in those locations whose FTLE values
are determined from the elliptic continuation, as highlighted in green in Figure 14.

In terms of the computational efficiency, we can clearly see the effect of the proposed adap-
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Figure 12: (Section 5.1) The FTLE e100 computed using the adaptive refinement approach with
k = 20 corresponding to (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.
These solutions match well with those in Figure 9.
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Figure 13: (Section 5.1) The absolute difference between the solutions in Figure 9 and Figure
12 corresponding to (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.

tivity that most of the computational time is now spent on those locations near the ridge where
the FTLE is relatively large. For those regions away from the ridge, we simply fill in the values
approximately using an elliptic operator. This significantly reduces the computational time. In
particular, the adaptive approach takes about 35.1%, 38.1% and 44.0% of the original compu-
tational time, for k = 5, 10 and 20, respectively. For example, the computation of e100 in Figure
9 and 12 takes about 36.85 hours and 16.22 hours, respectively, for each subfigure. In Figure
15, we consider the case with the diffusion coefficient given by D0 = 0.005 and compare the
solutions with different values of k’s. For the most extreme case, we only refine the solution
near those locations giving the top 5-percentile FTLE values. As we can see, the solution well
approximates the one by the full implementation. We have also repeated the test for a slightly
larger diffusion coefficient D0 = 0.01. The solutions are plotted in Figure 16.
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Figure 14: (Section 5.1) We plot in red those mesh points for which the FTLE is computed
directly. The FTLE e100 computed using the adaptive refinement approach with k = 20 corre-
sponding to (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.
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Figure 15: (Section 5.1) The FTLE e100 computed using the adaptive refinement approach with
D0 = 0.005 and (a) k = 5, (b) k = 10, (c) k = 20 (i.e. Figure 12(c)) and (d) k = 100 (i.e. full
implementation as in Figure 9(c)), respectively.

To end this example, we briefly report the computational time of various approaches. All
solutions in this work are computed using a laptop computer with a 2.6 GHz Intel core i7
processor. Table 1 shows the time required to compute e100 using our proposed algorithm
(corresponding to Figure 5) and the MC scheme with different L’s (corresponding to Figures 6,
7 and 8) for each individual D0. We agree that it is not fair to provide any comparison on the
computational efficiency of the Lagrangian and the Eulerian approaches and it is not the main
purpose here. Instead, we simply want to demonstrate that the computational time of the MC
approach depends heavily on both the magnitude of D0 and also the number of trials L. As
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Figure 16: (Section 5.1) The FTLE e100 computed using the adaptive refinement approach with
D0 = 0.01 and (a) k = 5, (b) k = 10, (c) k = 20 (i.e. Figure 12(d)) and (d) k = 100 (i.e. full
implementation as in Figure 9(d)), respectively.

we observed earlier, the MC scheme can already give a reasonably good solution for a relatively
small diffusion coefficient D0 (such as D0 = 0.0001) using roughly 900 simulations. However, as
we increase D0, one has to significantly increase the number of trials in the MC simulation. For
example, when we increase D0 by 50 times (i.e. D0 = 0.005), the solution still does not seem to
converge even with (L =) 90000 trials in the MC simulation (Figures 6(c), 7(c) and 8(c)) which
already requires over 160 times the computational time needed for the case D0 = 0.0001. One
has to carefully choose the number of trials to balance the computational cost and the accuracy
in the solution. This observation is consistent with our claim at the end of Section 3.3.

Of course, there are various ways how one can improve the computational time and the
efficiency of the MC simulation. For example, one can surely try to improve the efficiency of
the SDELAB package. Since this is the most crucial component in the MC simulation, one
can significantly reduce the computational time of the overall algorithm. Another way is to
parallelize the computations, which can be naturally done in the Lagrangian framework by
assigning either different initial conditions or different trials to different processors. However,
like what we have emphasized several times in the article, we are not focusing on ways to
improve the Lagrangian computations and, therefore, we will not further investigate on the
SDE implementations. Finally, as mentioned in Section 3.3, if the noise along each dimension
is not i.i.d., the diffusion tensor D(x, t) in (6) is not a scalar multiple of the identity matrix.
Our proposed scheme can be easily adapted but we will leave this as future work to compare
the performance with that by the MC simulations.

5.2 An application to real dataset

To demonstrate the effectiveness of our proposed algorithm, we consider the Ocean Surface
Current Analyses Real-time (OSCAR) dataset in which the velocity data is only available at
discrete locations. The OSCAR data was obtained from JPL Physical Oceanography DAAC
and developed by ESR. It covers 0◦ to 360◦ longitude and −80◦ to 80◦ latitude. The resolution
is 1/3◦ in each spatial direction and about 5 days in the temporal direction. We have chosen an
ocean region near the Line Islands as the computational domain, which is enclosed by S17◦ to
N8◦ latitude and E180◦ to E230◦ longitude. In the temporal direction, we have chosen the first
50 days in year 2015. For a better visualization, we first interpolate the velocity data to obtain
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a finer resolution of 1/6◦ in each spatial direction and 0.25 days in the temporal direction, which
gives Δx = Δy = 1/6 and Δt = 0.25.

For this dataset, the velocity is available only at some uniformly sampled locations, interpo-
lation is required at each time step for each initial particle if the MC simulation is used. This is
extremely time-consuming. Instead, in this example, we only show the solutions of our Eulerian
algorithm. We are not able to quantitatively compare our solution with any exact solution but
can only qualitatively examine the effect of D0 on our numerical solution. In Figure 17, we
reproduce Figure 11 from [47] or Figure 7(a) from [46] showing the FTLE e500 for the noiseless
velocity, i.e. D0 = 0. The Eulerian approach can capture all fine features in the FTLE field.
Now, Using the proposed algorithm, we compute the FTLE e500 based on the expected flow map
Φ̂50
0 . Figure 18 shows the solutions of e500 for D0 = 0.0001, 0.001, 0.005 and 0.01, respectively.

As we increase the diffusion coefficient D0, we see that the computed FTLE field is smoothened
and the ridge in the FTLE diminished as expected.
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Figure 17: (Section 5.2) The FTLE e500 for the velocity without uncertainty, i.e. D0 = 0, as
shown in Figure 11 from [47] or Figure 7(a) from [46].
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Figure 18: (Section 5.2) The FTLE e500 computed using our proposed approach corresponding
to (a) D0 = 0.0001, (b) D0 = 0.001, (c) D0 = 0.005 and (d) D0 = 0.01.
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