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Abstract

Partial differential equations are frequently solved using a global basis, such as the Fourier
series, due to excellent convergence. However, convergence becomes impaired when discon-
tinuities are present due to the Gibbs phenomenon, negatively impacting simulation speed and
possibly generating spurious solutions. We resolve this by supplementing the smooth global
basis with an inherently discontinuous basis, incorporating knowledge of the location of the
discontinuities. The solution’s discontinuities are reproduced with exponential convergence,
expediting simulations. The highly constrained discontinuous basis also eliminates the freedom
to generate spurious solutions. We employ the combined smooth and discontinuous bases to
construct a solver for the modes of a resonator in an open electromagnetic system. These modes
can then expand any scattering problem for any source configuration or incidence condition
without further numerics, enabling ready access and physical insight into the spatial variation
of Green’s tensor. Solving for the modes is the most numerically intensive and difficult step of
modal expansion methods, so our mode solver overcomes the last major impediment to the use
of modal expansion for open systems.

1 Introduction

Partial differential equations (PDEs) are ubiquitous across all of engineering and physics, and
their numerical solution is required for the majority of applications. A common feature of many
physical systems is the presence of sharp discontinuities in material parameters corresponding to an
interface. Solutions are piecewise smooth, but the presence of discontinuities pose great difficulties
for many numerical methods, restricting the utility of otherwise excellent methods. In particular,
global basis expansion methods, such as Fourier expansion methods,1,2 are often fast, accurate, and
reliable. These traits are underpinned by their exponential convergence, but this much coveted
property is crippled in the presence of discontinuities due to the Gibbs phenomenon.3

Many successful solutions to the Gibbs phenomenon have been developed, given knowledge
of the locations of the discontinuities. One such technique is reconstruction by Gegenbauer
polynomials,4–6 and other reprojection methods.7–10 Other techniques require knowledge of both
the location and size of the discontinuity.11,12 Remarkably, these techniques can rapidly recover
the true solutions from Fourier series tainted by Gibbs phenomena. Despite their success in
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1D, reconstructions in higher dimensions are more problematic, requiring line-by-line treatment
or tensor products,10,13 neither of which are easily adapted to curved or complex interfaces.
Reconstruction techniques also do not necessarily accelerate the convergence if other high-frequency
features are present, such as exponential decay. Such behavior is characteristic of bound modes and
systems where material parameters change sign across an interface. Since reconstruction techniques
rely on post-processing of the fields, other values such as eigenvalues of modes remain impacted by
the Gibbs phenomenon. A second post-processing step would be required to deduce more accurate
eigenvalues from the reconstructed eigenmodes.12 Lastly, representing products of discontinuous
functions can lead to utter failure of naive methods, requiring the use of complex factorization
rules.14,15

In this paper, we resolve the Gibbs phenomenon by introducing an inherently discontinuous
basis, to be used alongside the regular basis, which is usually smooth. Since the former is
responsible for representing all the discontinuities, the convergence properties of the smooth basis
are recovered. The discontinuous basis incorporates knowledge of the location of discontinuities,
but no knowledge of the size of the discontinuities is necessary. Overall, a smaller basis is
needed, smaller by several orders of magnitude compared to entirely smooth basis sets, even if
only a few digits of accuracy are desired.16,17 This minimizes the size of any linear system of
equations to be solved, expediting numerical solution. The discontinuous basis is easily defined
and readily obtained given knowledge of the location of the discontinuity. Curved interfaces are
easily treated in two or three dimensional problems. Both the smooth and discontinuous basis sets
are used to expand the solution from the outset, with no post-processing necessary. Perhaps of
greater importance is that the tightly constrained discontinuous basis suppresses numerical noise,
eliminating numerical artifacts and spurious solutions. Especially for the eigenmode problem, this
yields a clean set of modes, without any need for manual identification of spurious modes.

We implement this basis to find the modes of an open electromagnetic system. We treat
eigenvalue problems, which remain problematic for reconstruction methods. We treat an open
system since global bases are advantageous for infinite domains, where the far-field response is
efficiently represented by the multipole basis. Open systems were also difficult to treat using modal
methods, though significant research progress has been achieved.18–21 We subsequently use our
modes to simulate a scattering problem. Our inherently discontinuous modes can also be applied
to finite closed systems or periodic systems, or to treat the scattering problem directly.

We shall solve for a set of target modes {xm(r)} by expanding each using a set of basis functions
{x̃µ(r)},

xm(r) = ∑
µ

cµ,m x̃µ(r), (1)

The set {x̃µ(r)} is global, defined to be non-zero across the entire domain. This contrasts with basis
functions for finite element methods for example,22 which are localized to each mesh element. The
plane wave basis is an example of a frequently used global basis, leading to Fourier series solutions
of PDEs,15 with another possibility being Wannier functions.23 To find the coefficients cµ,m, the
series (1) is inserted into the defining PDE for the target modes, and by projecting back onto the
basis, overlap integrals are obtained,

Vνµ = 〈x̃ν|V̂|x̃µ〉, (2)

where V̂ represents the PDE, the geometry, and material parameters. The elements Vνµ fill a dense
linear system of equations, solved using a numerical linear algebra package. Their dense nature is
often offset by their small size due to rapid convergence.
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Figure 1: Modes of an embedding geometry, such as a circle, are available analytically. These are used as a
basis to solve for the modes of an enclosed target geometry, and ellipse in this case. To describe the target and
embedding geometries for future use in Section 2, two functions are introduced. The Heaviside type function
θ̃(r) is defined to be 1 for the interior of the circle and zero everywhere else, and similarly θ(r) is defined to
be 1 in the interior of the ellipse in this example. The remaining quantities are used in Section 4, with polar
coordinates (r, ϑ). The vectors rA and rB are the locus of points along the boundaries of the target and basis
geometries, respectively.

In this manuscript, we treat the modes of finite inclusions in an infinite domain. Thus, Fourier
series are difficult to use as the basis functions {x̃µ(r)}, since a continuum would be necessary,
transforming the sum in (1) to an integral.1,2 We choose a more efficient basis, defining the modes
of a simpler open system as the basis functions {x̃µ(r)}, whose modes are easily obtained.24,25.
A 2D example is given in Figure 1, where the eigenmodes of an elliptical inclusion in an infinite
background, {xm(r)}, are expanded using the eigenmodes of a circle in an infinite background,
{x̃µ(r)}. The latter modes still form a discrete set and are available analytically.26,27 Equivalently in
1D and 3D, the modes of a slab and sphere are available analytically,28–30 and these are the natural
embedding geometries that can be used to generate the modes of more complex geometries in 1D
and 3D. We shall refer to the circle as the embedding geometry, and to its modes as embedding
modes or basis modes. Its interior encloses the target elliptical geometry, whose modes are the
target modes. Despite the infinite domain, the overlap integrals (2) are evaluated only over the
target geometry. Since the embedding modes {x̃µ(r)} are used to expand the target modes {xm(r)},
which themselves are subsequently used for expansion, we term the first process re-expansion. The
terminology resonant state expansion has also been used by other authors.16,24

One of the benefits of first finding the modes {xm(r)} of an inclusion is that any given scattering
problem involving this inclusion then requires no further numerical computation to solve.18,24,30–33

The solution is simply given by a sum over the eigenmodes, each weighted by the spatial overlap
between the eigenmode and the source, and the detuning between the actual physical parameters
from the eigenvalues.18,31 These eigenmode expansion methods are ideally suited to repeated
simulations with many different source configurations. They have received intensive research effort
over recent years in the context of open electrodynamic systems, and many theoretical and practical
challenges have been overcome.18–20 Yet modal expansions in open systems remain hindered by
the lack of reliable mode solvers. We surmount this last major obstacle, creating a powerful and
practical method for repeated simulations, paving the path towards widespread adoption of modal
expansion methods.
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2 Maxwell’s equation via generalized normal mode expansion

We begin by providing the context in which we introduce our discontinuous basis. We aim to find
the modes of Maxwell’s equations in an open system that provides the solution for any arbitrary
source J(r),

∇× (∇× E)− k2ε(r)E = ikZ0 J, (3)

where k = ω/c and Z0 =
√

µ0/ε0 is the impedance of free space in SI units. We have assumed
harmonic e−iωt time variation, and also assume non-magnetic media across the whole domain. The
structure is defined by its permittivity profile ε(r), which we assume consists of a finite inclusion of
uniform permittivity εi of arbitrary shape, resting in an infinite background of uniform permittivity
εb, such that

ε(r) = εb + (εi − εb)θ(r), (4)

where θ(r) is a step function which is unity within the interior of the inclusion and zero elsewhere
(see Figure 1). We restrict attention here to piecewise uniform structures, since this is where a
discontinuous basis has the greatest impact. For spatially non-uniform inclusions, the techniques
of Refs [25, 34] can be applied.

The modes we desire are eigenmodes of the Lippmann-Schwinger equation for electromagnet-
ism, which can be obtained by manipulating (3) to yield

∇× (∇× E)− k2εbE = ikZ0 J + k2θ(r)(εi − εb)E, (5)

where the second term on the right hand side represents the displacement current. We apply the
Green’s function, which characterizes the response to a unit impulse, to transform the differential
equation (5) to integral form. Since the left hand side (5) is now spatially invariant, the Green’s
function of uniform space, ¯̄G0(|r− r′|),35 may be applied to yield the desired Lippmann-Schwinger
equation,

E(r) = E0(r) + k2
∫

¯̄G0(|r− r′|)(ε(r′)− εb)E(r′) dr′. (6)

The term E0(r) may either be specified or readily obtained from J(r) via

E0(r) = iωµ0

∫
¯̄G0(|r− r′|)J(r′) dr′, (7)

since it is the known radiation pattern of J(r) in a uniform background
In (6), the unknown solution E(r) appears both inside and outside the integral, which can be

solved projecting onto an appropriate set of normal modes, obtained by neglecting the source terms
of (5) or (6). We choose to show the differential form,

∇× (∇× Em)− k2εbEm =
1

sm
k2εbθ(r)Em, (8)

where sm is the mth eigenvalue,
1

sm
≡ εm − εb

εb
, (9)

and εm is the eigenpermittivity of the mode.28,30,31,34,36,37 This provides the modal expansion
solution of Maxwell’s equation suitable for open geometries,30,31,34 which after some manipulation
is

E(r) = E0(r) +
i

ωε0
∑
m

Em(r)
εi − εb

(εm − εi)(εm − εb)

∫
E†

m(r
′)J(r′) dr′, (10)
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where the adjoint mode is simply the transpose of the direct mode,

E†
m(r) = Eᵀ

m(r). (11)

Thus, the solution for any source configuration can be obtained almost immediately once the modes
(8) are available by evaluating the dot product E†

m(r)J(r). An alternative form of (10) is available if
E0(r) is specified instead of J(r).30,31

3 Solving for modes by re-expansion

The bulk of the computational effort in any modal expansion method is typically devoted to finding
the modes. We use the expansion

Em(r) = ∑
µ

cµ,mẼµ(r), (12)

where Em(r) is a target mode defined by (8), and Ẽµ(r) are the embedding modes associated with
a simpler open system,

∇× (∇× Ẽµ)− k2εbẼµ =
1
s̃µ

k2εb θ̃(r)Ẽµ. (13)

The function θ̃(r) defines the interior of another geometry, and like θ(r), is a step function which is
unity within a finite region and zero elsewhere (see Figure 1). It is usually chosen to be a slab in
1D, a circle in 2D, or a sphere in 3D, so that its modal fields are available analytically. For (12) to be
valid, the interior of θ̃(r) must enclose the interior of θ(r), as (13) provides a complete basis only
within its interior. In the infinite background, (13) provides a complete basis only for outgoing
fields, corresponding to a multipole expansion. Modes (13) of different eigenvalues s̃µ obey an
orthonormality relation30,31 ∫

Ẽ†
ν(r)θ̃(r)Ẽµ(r) dr = δνµ, (14)

which is useful for projection.
The short derivation for obtaining the unknown coefficients cµ,m is supplied in Ref. [25]. It

involves inserting expansion (12) into the target eigenvalue equation (8) and projecting using
orthonormality (14) to obtain the linear eigenvalue problem

smcν,m = s̃ν ∑
µ

Vνµcµ,m, (15)

where s̃ν is the known eigenvalue of Ẽν(r), sm is the unknown eigenvalue of Em(r), and Vνµ are the
overlap integrals

Vνµ =
∫

Ẽ†
ν(r)θ(r)Ẽµ(r) dr (16)

among known basis modes over the target function θ(r). The matrix Vνµ is complex symmetric,
so (15) can be symmeterized by multiplying and dividing by s̃. Normalization also immediately
follows.25 The numerical implementation of (15) first requires preparation of all the embedding
modes, (13), considered in Section 4.
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4 Discontinuous basis modes

The main aim of this section is to introduce a suitable embedding basis for the expansion (12). This
entails the introduction of longitudinal modes, which we construct to be discontinuous. Before we
embark on this task, we first consider the physical origins of field discontinuities in the context of
Maxwell’s equations, as this shall guide our construction.

Consider the divergence condition
∮

D · dS = 0 of Maxwell’s equations, which is equal to zero
for any mode since there are no external sources by definition. Undergraduate textbook arguments
using a Gaussian pillbox lead to the condition that the normal component of E be discontinuous by
the ratio of permittivities across an interface. For our purposes, it is more illuminating to consider
the differential form

∇ · D = ∇ · (ε(r)E) = ε(r)∇ · E + E · ∇ε(r) = 0. (17)

For piecewise uniform permittivity profiles, ∇ε(r) is nonzero only where ε(r) is discontinuous, so
we find

∇ · E = − 1
ε(r)

E · ∇ε(r) = − ∆ε

ε(r)
E · n̂ δ(r− rA), (18)

defining ∆ε as the discontinuity in permittivity, and rA as the locus of all points along the interface
of θ(r), with n̂ being its unit normal vector.

The precise form of the divergence ∇ · E in (18) is not as important as the following salient
points. A discontinuity in E corresponds to a non-zero divergence, which is infinitesimally localized
to the interface. Equivalently, the field is said to be non-transverse or have a longitudinal component.
This conclusion is perhaps obvious, given that a layer of bound charges is known to be induced at
interfaces, which causes the E field to be non-transverse here. Meanwhile, the divergence ∇ · E
is expected to be continuous along the interface rA, since the field E is everywhere continuous
except at the interface. Corners and other sharp points along rA are exceptions to this, since the
field becomes singular, so the divergence ∇ · E may be discontinuous or singular. From (18), it is
also clear that transverse basis modes are incapable of representing field discontinuities, and basis
modes with a longitudinal component are necessary. Indeed, for piecewise uniform resonators, the
sole purpose of longitudinal basis modes is to reproduce discontinuities, as the fields of the target
mode are otherwise everywhere transverse.

To see whether the defining eigenvalue equation (13) possesses the necessary modes, we now
analyze the types of modes that emerge. We recapitulate some important concepts from previous
publications, but for further details these references should be consulted.17,25,30 The first set of
modes produced by (13) are the most familiar, corresponding to solutions with any eigenvalue
except s̃µ 6= −1, or equivalently ε̃µ 6= 0. These are transverse in the interior of θ̃(r), satisfying
∇ · Ẽµ = 0, which can be shown by taking the divergence of (13). Since there are a discrete infinity
of such modes, they are able to represent the smooth near-field features and all the far-field features.
For a planar, circular, or spherical embedding geometry θ̃(r), these modes can be found by solving
a transcendental equation such as (25).26–29

Another set of basis modes arises when the eigenvalue is s̃µ = −1 or ε̃µ = 0, for which (13)
collapses to ∇× (∇× Ẽµ) = 0. Such modes are mathematically similar to zero frequency or static
solutions. We focus on the subset arising from ∇× Ẽµ = 0, which feature longitudinal E fields
capable of representing discontinuities.17,25,30 These irrotational modes can be represented as a
potential,

Ẽµ = ∇φ̃µ, (19)
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subject to the boundary conditions

φ̃µ

∣∣∣∣
∂B

= 0, (20)

where ∂B defines the interface between the interior and exterior of the embedding geometry θ̃(r).
This boundary condition is a consequence of ε̃µ = 0. From (20), it can also be shown that all
non-trivial modes φ̃µ must have ∇ · Ẽµ 6= 0 somewhere in the domain. Since these longitudinal
modes originate from the same eigenmode equation (13) as the transverse modes, they complement
and can be used alongside the transverse modes. This is simplified by the orthogonality relation
(14) between the transverse and longitudinal sets. Another useful property of these static-like
modes is that they can be used with modes of any eigenvalue equation (8), regardless of the other
parameters in (8).

A continuous infinity of zero eigenpermittivity modes exist, subject only to the conditions (19)
and (20). Great freedom exists in their construction to suit particular simulation needs. In previous
publications,25 a complete orthonormal set of longitudinal modes was defined by imposing the
additional restriction that they be eigenmodes of the Laplace operator,

∇2φ̃µ + α2
µφ̃µ = 0. (21)

This results in smooth modes, and in the special case of circular and spherical domains, a Fourier-
Bessel basis. Furthermore, their divergence is non-zero across the domain, ∇ · Ẽµ = ∇2φ̃µ =
−α2φ̃µ 6= 0. While (21) yields a complete set, in principle capable of representing any pattern
of longitudinal fields, it suffers from severe Gibbs phenomenon when representing (18), where
fields are longitudinal only along the infinitesimal step-change region. In our case, use of (21) also
produces many spurious target modes, which are longitudinal even within the uniform regions of
the target geometry, where the field should be strictly transverse. Though perhaps easy to identify
by eye via visual inspection of the modal fields, distinguishing and discarding such modes through
automated methods can be difficult due to numerical noise.

At this point, we depart from the established literature and seek to define a more suitable,
inherently discontinuous basis of longitudinal modes by exploiting the flexibility of (19) and (20).
To achieve this, we return to (18), which stipulates that the field be longitudinal only along the
interface of θ(r). While we know the location of the longitudinal component, we do not know its
magnitude prior to solving for the modes. So the basis we desire should (a) be constrained to be
longitudinal only along the interface, and (b) be able to capture the variation along the interface.
This variation is also expected to be smooth, so long as the interface contains no corners.

For the 2D case, we assume that the interface is given in polar coordinates by rA = (r, ϑ) =
(a(ϑ), ϑ), where a(ϑ) is a smooth function. These coordinates are displayed in Figure 1. To satisfy
the two requirements above, we construct a set of modes whose longitudinal components are all
infinitesimally localized radially and vary as a Fourier series azimuthally,

∇ · Ẽλ = ∇2φ̃λ =
1

2πr
δ(r− a(ϑ))eiλϑ, (22)

where λ is some integer angular order. The factor of 2πr ensures that the integral is unity,∫
∇2φ̃λ dr = 1, though this is not strictly necessary as the modes require normalization according

to (14) before use. For the 3D case, the process is similar assuming that rA can be specified in
spherical coordinates, expanding the spatial variation along this interface via spherical harmonics.

Equation (22) defines a Poisson equation for φ̃λ, subject to Dirichlet boundary conditions (20).
As such, it can be solved by a straightforward application of the finite element method, boundary
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element method, or directly using the Green’s function for Laplace’s equation. It is remarkable
that (22) is an inhomogeneous PDE, yet its solutions ultimately obey the homogeneous eigenvalue
equation (13) via (19). This means we may introduce discontinuities into Ẽλ(r) wherever we please
to suit the interface of the target geometry θ(r), as opposed to the homogeneous (13), where
discontinuities typically exist only where embedding geometry θ̃(r) is discontinuous.

By incorporating knowledge of the location of the discontinuity, we have constructed a more
minimal set than (21),17,25 reducing the dimensionality of the basis by one. For example, for 2D
geometries, (22) forms a discrete 1D set of modes, in contrast to the Fourier-Bessel basis (21),
which forms a discrete 2D set of modes. And unlike the Fourier-Bessel basis, we expect the linear
combination of (22) to converge exponentially towards (18), since it incorporates the Dirac-delta
component by construction, while the Fourier series expands the smooth variations of the modes on
a periodic domain, which is known to converge exponentially.3 We shall numerically demonstrate
this efficiency in Section 5.

One of the few disadvantages of (22) is that the set {φ̃λ} is not in general orthogonal with
respect to the inner product (14), for two reasons. Firstly, they all share the same zero eigenvalue
of the differential equation (8), so they do not automatically inherit orthogonality from (14).
The definition (22) also does not furnish an orthogonality relation. Fortunately, this is merely a
minor inconvenience, as an orthogonalization procedure such as Gram-Schmidt can be applied
if necessary, using (14) as the metric. We choose to use the Löwden method, since it treats each
member symmetrically. This requires evaluating overlap integrals (14) among each mode (22),

Nνµ ≡
∫

Ẽν(r)θ̃(r)Ẽµ(r) dr, (23)

and multiplying to obtain orthonormalized longitudinal modes F̃µ,

F̃µ = ∑
ν

Ẽ†
νN−

1
2

νµ . (24)

5 Numerical implementation and examples

The numerical examples of this section serve several purposes, to be a visual illustration of the
discontinuous longitudinal basis modes defined by (22), to demonstrate their use in the expansion
(12) of the target modes (8) of an arbitrary geometry, to showcase their convergence properties, and
ultimately to solve Maxwell’s equations with source terms (3). We choose two target 2D geometries
for this purpose, a circle and an ellipse.

We first summarize the numerical implementation of the method. This begins by preparing the
two sets of basis or embedding modes that emerge from (13). A simple embedding geometry is
chosen, with analytically known modal fields. For 2D simulations, we choose a circular inclusion
of radius 1, corresponding to θ̃(r) = H(1− r), where H(z) is the Heaviside step function. We may
choose this specific radius without any loss of generality, since only the unitless quantity kr is
significant, and k = ω/c = 2π/λ can be chosen arbitrarily.

For circular and spherical embedding geometries, the discontinuous longitudinal basis modes
defined by (22) can be obtained directly using the Green’s function for the Laplace operator,
supplemented with the method of images to satisfy the Dirichlet boundary condition (20).38

The modes are orthonormalized using (24). The set of transverse embedding modes and their

8



eigenvalues can be found by solving the well-known dispersion relation for a step-index fiber,(
1√

εττ′kB
J′τ(
√

εττ′kB)
Jτ(
√

εττ′kB)
− 1√

εbkB
H′τ(
√

εbkB)
Hτ(
√

εbkB)

)(√
εττ′

kB
J′τ(
√

εττ′kB)
Jτ(
√

εττ′kB)
−
√

εb

kB
H′τ(
√

εbkB)
Hτ(
√

εbkB)

)
= 0.

(25)
for which a reliable root search algorithm is available.26 Due to its continuous rotational symmetry,
the modes of (25) can be identified by two so-called quantum numbers: τ the azimuthal order, and
τ′ the radial order, which count the number of nodes along the respective directions. Eigenvalues
associated with different azimuthal orders τ originate from different orders of (25), while different
radial orders τ′ are different roots of the same azimuthal order.

Then, the overlap integrals among the embedding modes (16) are evaluated for the particular
θ(r) that defines the target geometry. This forms the matrix eigenvalue equation (15). Its numerical
solution yields the eigenvalues of the target modes and their fields (8). Finally, to solve Maxwell’s
equations (3) using GENOME, (10) is applied to calculate the total fields produced by any given
source configuration.

5.1 Circular target geometry

As an initial demonstration, we use the circular embedding modes to obtain the modes of a smaller
enclosed circle of radius 0.5, specifically θ(r) = H(0.5 − r). While this is a seemingly trivial
application, it allows us to compare the results against one of the few analytical available results,
obtained by computing (25) again, this time with B = 0.5. The target modes (8) require a frequency
k to be specified, corresponding to an excitation by a monochromatic source with a yet to be defined
location. We choose k = 1, in units of inverse length.

The cylindrical symmetry of the embedding and target geometries means that all embedding
and target modes can be organized by azimuthal quantum number, none of which interact with
each other. This symmetry means that its convergence properties are not representative of the
general case, so we will defer the convergence analysis until the next geometry. Meanwhile,
embedding modes of different radial orders τ′ from (25) do interact to yield the target modes.
Since we simulate 2D structures, corresponding to infinite translational symmetry along the third
dimension, all modes are either transverse magnetic (TM) or transverse electric (TE). Solving for
the TM modes is relatively uninteresting, as no field discontinuities exist and the divergence ∇ · E
is everywhere zero. Thus, no longitudinal basis modes of any kind are necessary during expansion,
so we treat this case only briefly.

We show only one example of finding the TM modes by the re-expansion method. Figure 2
shows the two fundamental TM modes of the smaller target cylinder for azimuthal order τ = 1,
simulated using 50 TM transverse basis modes. The eigenvalues computed by the re-expansion
method are εm = 21.61379− 2.44872i and 120.3096− 2.3193i, which are accurate to more than
5 digits compared to the reference values of εm = 21.61374492431008− 2.44871448053306i and
120.3080844540516e− 2.319301692175698i , computed directly from the dispersion relation (25).26

Before obtaining the TE target modes, we first discuss some properties of the discontinuous
longitudinal modes (22). Figure 3 shows an example longitudinal mode for λ = 1. In this special
case, the integers λ correspond to azimuthal orders, since both the basis and target geometries
have continuous rotational symmetry. We display the real parts of the potential and electric field
components. The potential φ̃ is zero along the embedding boundary ∂B, satisfying the Dirichlet
boundary condition (20). It is everywhere continuous. It is derivative-discontinuous normal to the
target interface ∂A, but is smoothly everywhere else. The modal field Ẽ = ∇φ̃ has corresponding
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(a) Re(Ez) (b) Re(Ez)

Figure 2: The electric field of the (a) first and (b) second TM modes, with eigenpermittivities are εm =
21.6141− 2.44876i and εm = 120.3096− 2.3193i. The real parts are shown. The imaginary parts are not
shown, but are identical to the respective real parts after a 90◦ rotation. The black circle corresponds to the
boundary of the target cylinder.

(a) Re(φ̃) (b) Re(Ẽx) (c) Re(Ẽy)

Figure 3: A discontinuous longitudinal mode defined by (22) for λ = 1. Shown are the real parts of the
potential φ̃ and field components Ẽx and Ẽy. The imaginary part of φ̃ is a 90◦ rotation of the real part, and
thus the imaginary parts of Ẽx and Ẽy are also related to rotations of the real parts. The outer and inner black
circles correspond to the basis and target boundaries, respectively.

features: its tangential components are zero along the embedding boundary, but there are no
restrictions on its normal component here. Fields are discontinuous across the interface ∂A,
sometimes changing sign. This is important for representing plasmonic modes for example, as
these also change sign. Fields of the discontinuous longitudinal basis modes are smoothly varying
everywhere else. The fields either decay away from the interface, or remain constant in some special
cases. The potential and all fields are zero outside the embedding boundary.

We now present numerical examples of using a discontinuous longitudinal embedding mode
to generate TE modes of the smaller enclosed circle. Displayed in Figure 4 is the plasmonic
mode and fundamental dielectric mode, both of azimuthal order τ = 1. A major component
of both these modes is the same λ = 1 discontinuous longitudinal mode of Figure 3. Indeed,
failure to include any longitudinal modes will never result in a mode with the correct eigenvalue
regardless of the number of transverse embedding modes used. The simulated eigenpermittivities
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(a) Re(Ex) (b) Re(Ey)

(c) Re(Ex) (d) Re(Ey)

Figure 4: (a), (b) As in Figure 2, but showing instead the brightest plasmonic mode of the circle, displaying
the real parts of Ex and Ey, with eigenpermittivity εm = −1.175664− 0.454290i. (c), (d) Shows the
fundamental dielectric TE mode, with εm = 56.4856− 0.8179i.

are εm = −1.1756666− 0.4542910i and 56.4804− 0.8178i, which compares with the reference values
εm = −1.175666945325108− 0.454291223574987i and 56.480144191790039− 0.817845963134636i.
Shown are the real and imaginary parts of the Ex and Ey fields. The fields of the plasmonic mode
changes sign at the interface, as expected, which the λ = 1 discontinuous longitudinal mode plays
a considerable role in accurately reproducing. It is also important for reproducing the discontinuity
at the interface of the dielectric mode, even though no sign change occurs.

Since these are TE modes, the Ez field should be identically zero, which the re-expansion method
reproduces to numerical precision. The modes show no obvious discontinuities at the artificial
embedding boundary ∂B, even though the constituent longitudinal and transverse embedding
modes are discontinuous here. This is one indication of the accuracy of the modes, since only the
correct combination of both longitudinal and transverse embedding modes produces a smooth
field here, since otherwise a halo would appear at r = 1. The mode has been normalized.

The discontinuous longitudinal modes are in some sense the ideal basis modes for piecewise
uniform geometries, which is exemplified by this special case of a circular target geometry. For each
azimuthal order, only one longitudinal mode (22) exists, while an infinite number of transverse
modes exists of different radial orders τ′. Since modes of different azimuthal orders do not intermix,
only a single discontinuous longitudinal embedding mode is necessary to generate each target
mode of the smaller enclosed circle, even though an infinite number of transverse embedding
modes is in principle necessary. Furthermore, this one discontinuous longitudinal embedding mode
is capable of generating all the target modes of a single azimuthal order, regardless of whether

11



(a) Re(φ̃) (b) Re(Ẽx) (c) Re(Ẽy)

Figure 5: As in Figure 3, showing a discontinuous longitudinal mode defined by (22) for λ = 1. Shown
are the real parts of the potential φ̃ and field components Ẽx and Ẽy. The outer circle indicates the basis
boundary, while the inner ellipse is the target geometry.

these target modes are plasmonic or dielectric in character, and regardless of other parameters such
as frequency. This is apparent from the similarity between the λ = 1 discontinuous longitudinal
mode of Figure 3 and the two modes of Figure 4, in particular by comparing the field patterns in
the annular region between the inner and outer circles of Figure 3. These remarkable facts are due
to the dimension reduction inherent to the discontinuous longitudinal modes.

5.2 Elliptical target geometry

We now apply the re-expansion method with discontinuous longitudinal modes to find the modes
of an elliptical geometry pictured in Figure 1, defined by θ(r) = H(1− (x/a)2 − (y/b)2). The
semi-major axis is chosen to be a = 0.4 and the semi-minor axis is b = 0.1. It is excited by a
monochromatic source, oscillating at k = 1, in units of inverse length. This is a subwavelength
structure, where the ratio of the length of the ellipse along the major axis to the wavelength is
approximately 0.125.

To expand the target modes, we employ the same transverse embedding modes, found via (25),
as in the previous example. But the discontinuity of the longitudinal embedding modes (22) is
now specific to the elliptical interface. We plot an example of these modes in Figure 5. Again, the
potential φ̃λ and electric field components are shown, for order λ = 1. Their behavior resembles
the mode of Figure 3. The various boundary conditions are satisfied. Correspondingly, fields are
discontinuous across the elliptical interface, and are otherwise smooth.

Now, overlap integrals (16) between modes of all azimuthal orders are performed, corresponding
to all values of λ and τ up to truncation. In other words, the different orders do not decouple,
unlike the circular example of Section 5.1. For demonstration purposes, we initially employed
many embedding modes, 100 longitudinal and 5000 transverse, to ensure that a highly accurate
reference result is obtained. After diagonalizing (15), we generate in a single simulation many
hundreds of usable modes of the ellipse, both plasmonic and dielectric, and both TE and TM. In
particular, a large number of accurate plasmonic modes were found, without any missing modes.
Their eigenvalues are plotted in Figure 7. The number of accurate higher-order plasmonic modes
we find seems to be limited only by the number of longitudinal modes employed.

We now briefly discuss the physical significance of the eigenvalues εm. A negative Re(εm)
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(a) Re(Ex) (b) Re(Ey)

Figure 6: The brightest plasmonic mode of the ellipse, showing the real parts of field components Ex and Ey.
The eigenpermittivity is εm = −4.78991− 2.33514i.

0 100 200
-8
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0

Figure 7: Eigenpermittivites of the modes of the ellipse, plotting the real and imaginary parts. TM modes are
indicated by hollow round markers, and TE modes by solid square markers.

indicates a plasmonic mode, with modal fields that change sign at the elliptical interface, while a
positive Re(εm) indicates a dielectric mode with no such sign change. All modes have negative
Im(εm), with more negative values indicating brighter modes that radiate more energy into the
far-field. In Figure 7, all plasmonic modes are clustered near the origin, except the bright plasmonic
mode at −4.78991− 2.33514i, which we shall call the fundamental plasmonic mode. The dielectric
modes are distributed across the figure, with few discernible trends. The only trend is that modes
with small Re(εm) tend to have more negative Im(εm). This is because modes with large Re(εm)
have more nodes in the angular direction, leading to greater trapping of energy, an effect known as
the whispering gallery mode.

We now focus on the fundamental plasmonic mode. Figure 6 plots its fields, which is dipolar
with an oscillation along the long axis. Shown are the real and imaginary parts of the Ex and
Ey fields. As a plasmonic mode, visible sign changes at the interface of these modes, which is
well-represented by the discontinuous longitudinal embedding modes. As with all plasmonic
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(a) Re(Ex) (b) Re(Ey)

(c) Re(Ex) (d) Re(Ey)

Figure 8: The total field produced by a monochromatic dipole source at (0.5, 0) with orientation (1, 1, 0),
near a metallic ellipse of permittivity εi = −5.3 + 0.22i.

modes, the mode is TE, so the Ez field should be identically zero, which the re-expansion method
reproduces to numerical precision. The mode shows no obvious discontinuities at the artificial
basis boundary, which comports with the behavior of the plasmonic mode of Figure 4. In part
because of its importance, the convergence tests of Section 5.3 are performed on this mode.

We now place a near-field dipolar source at (x, y) = (0.5, 0) with a diagonal orientation,
(px, py, pz)/ε0 = (1, 1, 0)/

√
2, and set the inclusion permittivity to εi = −5.3 + 0.22i. The dipole

strength is |p|/ε0 = 1 Vm, where p is the dipole moment per unit length in the perpendicular
direction. This choice of units allows the figures to simultaneously represent the electric field, in
units of Vm−1, and the Green’s tensor, which is a unitless quantity in 2D. We use GENOME (10) to
expand the total field, employing all of modes found above without any filtering. Figure 8 shows
the real and imaginary parts of the total Ex and Ey fields. Since the dipole has zero component in
the z-direction, the Ez field should be identically zero, which our simulation again reproduces to
numerical accuracy. Since we did not filter any of the modes, the results are potentially polluted
by higher-order modes, which are liable to be inaccurate due to truncation. However, no such ill
effects were detected, demonstrating the absence of any spurious modes and the reliability of the
method and the basis.

5.3 Convergence properties

We now analyze the convergence properties of the discontinuous longitudinal modes, and the
re-expansion method in general, in generating modes of the elliptical geometry of Section 5.2. In
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Figure 9: Shows the convergence in the eigenvalue of the eigenmode displayed in Figure 6 on a decibel scale,
as a function of longitudinal and transverse modes. The red dots trace the path taken by the line in Figure 10.
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Figure 10: Similar to Figure 9, with the red curve showing the convergence as a function of total number of
modes. The combination of longitudinal and transverse modes used for each point is indicated by the red dots
in Figure 9. The blue curve is added for comparison purposes, and is given by the function f (N) = 40N−2.5,
where N is the total number of modes.

particular, we choose to study its brightest plasmonic mode, displayed in Figure 6. This mode is
important for simulating Maxwell’s equations via (10) and is also challenging to generate using
other simulation methods. We shall consider two different measures of convergence.

We first demonstrate the convergence in the eigenvalue of the brightest plasmonic mode
as more discontinuous longitudinal (22) and transverse (25) embedding modes are included in
the expansion (12). We compare against a reference eigenvalue computed from a more accurate
calculation performed in Section 5.2, plotting in Figure 9 on a decibel scale the normalized difference
10 log10 |(εm − εref)/εref|. More transverse embedding modes than longitudinal embedding modes
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Figure 11: Shows the contribution of each longitudinal basis mode during the expansion of the plasmonic
mode displayed in Figure 6. Magnitudes of the coefficients are plotted on a logarithmic scale.

Figure 12: As in Figure 11 but shows the contribution of each transverse mode, arranged by azimuthal and
radial order. The color scale represents the magnitude of the coefficients on a logarithmic scale.

are necessary for convergence, with 4− 5 digits of precision eventually attained with the parameters
considered. It is also useful to consider the convergence with the total number of embedding
modes, whether transverse or longitudinal. We thus extract from Figure 9 the combination of
transverse and longitudinal modes that gives the best agreement with εref, indicated by the series of
red dots. Figure 10 plots the convergence along this trajectory. This shows that convergence to 10−4

can be achieved using approximately 200 modes, which, from Figure 9 consists of approximately
only 23 longitudinal modes with the remainder being transverse modes.

These plots also demonstrate that the discontinuous longitudinal modes are responsible for
most of the initial convergence, especially the first 15 modes. Further convergence is only achieved
by including many more transverse modes, and the eventual rate of convergence is determined by
the number of transverse modes, masking the rapid convergence of the discontinuous longitudinal
modes. Here, the convergence appears to be governed by a power law, and is approximately N−2.5,
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Figure 13: Duplicates the data of Figure 12, but on two separate line plots. The magnitudes are plotted with
respect to azimuthal order while the radial order is fixed to 1, then the magnitudes are plotted with respect to
radial order while the azimuthal order is fixed to 1.

where N is the total number of modes. For comparison, a blue reference curve is plotted in Figure
10, given by f (N) = 40N−2.5. This scaling is comparable with other methods that expand the
modes of an open system using the modes of a simpler open system.16,17,25

We now consider convergence from a different angle, to disentangle and isolate the convergence
properties of the discontinuous longitudinal embedding modes from the transverse modes. We
consider the contribution of each embedding mode µ to the highly accurate reference calculation
of the chosen target mode m, simply by plotting the magnitudes of each expansion coefficient
|cµ,m|. The index µ is a combined index that can represent either longitudinal or transverse modes.
This analysis is also useful for determining truncation limits for each type of mode. We first
consider the discontinuous longitudinal modes, plotting their magnitudes in Figure 11. Exponential
convergence is clearly evident. The transverse modes are indexed by azimuthal order τ and
radial order τ′, with their magnitudes indicated by the color scale of Figure 12. The fundamental
azimuthal and radial orders provide the greatest contribution, with the weights of higher orders
progressively diminishing. We further isolate the convergence along τ and τ′ in Figure 13, plotting
the magnitudes while holding the other parameter constant. This demonstrates the exponential
decay of the the coefficients with azimuthal but not radial order.

6 Discussion and conclusion

In this paper, we find the modes of a target system open system (8) by expanding using embedding
modes of a simpler open system (13), in a process we call re-expansion. We resolve the Gibbs
phenomenon by including among the embedding basis a subset that is discontinuous, defined by
(19), (20), and (22). This discontinuous set is constructed by incorporating knowledge that field
discontinuities occur only at step interfaces, with fields otherwise being smooth. In the context of
Maxwell’s equations, there exists a physical interpretation for field discontinuities, corresponding
to a non-zero divergence of the field. Thus, we construct a longitudinal set of modes to reproduce
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the discontinuity, with a simple definition that can be adapted to any curved surface. Conveniently,
these longitudinal modes emerge as static-like solutions of electrodynamic Maxwell’s equations (13),
and so are inherently complementary to the usual transverse embedding modes. The definition via
a Laplace equation also means that they are easily found using standard numerical techniques.

The two key advantages of the discontinuous longitudinal embedding modes are convergence
and reliability. Rapid convergence in turn implies speed and efficiency. Convergence is analyzed in
Section 5.3. We focus on the fundamental plasmonic mode, since our method is equally adept at
finding this mode as any other mode, but such modes are difficult to find using other methods.
Figure 11 shows that the convergence rate is exponential with longitudinal order λ confirming
expectations set forth near the end of Section 4. This efficiency is because the modes need only be
defined along the interface, enabling the dimension of the basis to be reduced by one. Furthermore,
the complex amplitude of the discontinuity varies smoothly along the interface, which Fourier series
can capture with exponential convergence. The contribution of the discontinuous longitudinal
embedding modes to the target mode is large, so the overall convergence rate of the re-expansion
method is initially rapid, as seen in Figures 9 and 10.

These convergence properties contrast with that of the transverse embedding basis, which is
smooth in its interior. As shown in Figures 12 and 13, convergence is exponential with azimuthal
order τ, but is roughly polynomial with radial order τ′. Convergence is slower also because there
is now a 2D set of modes. This mirrors observations associated with analogous methods where
modes of a target open system were expanded using the modes of an open embedding system.17,25

The slower convergence properties of the transverse modes ultimately limits the convergence rate
of the re-expansion method, as seen is Figure 10.

Another advantage of the discontinuous longitudinal modes (22), perhaps even more important
than speed, is the reliability they impart. Since it is far more constrained than the Fourier-Bessel
basis (21), it has limited freedom for generating numerical noise, and prevents spurious modes
from appearing. There are two spurious modes that typically afflict other modal solvers. Firstly,
for methods that discretize space such as the finite element method, plasmonic behavior is liable
to produce artificially localized modes. This occurs with triangular or tetrahedral mesh elements,
creating sharp points along the interface during discretization that cause field divergence during
solution. Only a very fine discretization can prevent their appearance. However, such spurious
modes are never generated using the discontinuous longitudinal modes (22), since this basis is
smooth along the interface and contains no singularities. For practical purposes though, this
ultimate limit is less relevant than the rapid initial convergence to 2-3 digits.

Secondly, an infinite number of longitudinal modes of the type (19) exist. As explained in Section
4, their modal fields can be arbitrary. While the longitudinal modes of the embedding geometry
are useful for defining a discontinuous basis for expanding the modes of target geometry, the
longitudinal modes of the target geometry are largely useless in subsequently expanding Maxwell’s
equations via GENOME (10). In this sense, the longitudinal modes of the target geometry can be
considered spurious. Methods that do not enforce transversality can generate many such modes,
whose modal fields are typically meaningless when found numerically. Ordinarily, such spurious
modes can be identified and discarded based on their eigenpermittivity εm, which should be zero.
But some spurious longitudinal modes are generated with non-zero εm, possibly due to numerical
noise, and these may require visual inspection to identify. Even the mere presence of spurious
longitudinal target modes can be hazardous, particularly for iterative eigenvalue solvers, as there
exists an infinite number of such modes that serve as attractors. Such spurious target modes also
cannot be generated using the discontinuous longitudinal embedding basis, since longitudinal
component of the latter has been constrained to the interface of the target geometry, eliminating
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the freedom to generate arbitrary longitudinal target modes.
Overall, use of the discontinuous longitudinal embedding modes enabled the re-expansion

method (15) to generate many accurate modes of the target geometry. Exponential convergence
means that each discontinuous longitudinal mode (22) is capable of replacing many hundreds of
Fourier-Bessel longitudinal modes (21). This drastically reduces the number of modes needed to
solve (15), expediting simulation times. With very few embedding modes, the target modes were
quickly obtained to approximately 3 digits of accuracy. Further accuracy is also possible, but hinged
instead on the slower convergence behavior of the transverse embedding modes. A complete set
of target modes is obtained, up to truncation, which is important since missing modes negatively
impact the subsequent expansion of Maxwell’s equations via GENOME (10). Many plasmonic
modes are also found, which is often difficult to achieve using other methods due to their tight field
confinement. Finally, no spurious modes of the target geometry are produced. Spurious modes
pollute the expansion (10), also leading to erroneous results. Thus, manual inspection or filtering is
unnecessary prior to use. This reliability means the method is suitable for automation and scripting
if desired.

Finally, we have focused on piecewise uniform permittivity profiles consisting of a step interface
whose locus can be traced as a smooth function in polar form (22). However, the analysis of Section
4 is flexible and future work will consider extensions to more complex step interfaces featuring
corners and junctions. Future work may also consider permittivity profiles with both smooth
variations and step jumps.
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