
 

Permanent link to this version 

http://hdl.handle.net/11311/1154869 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
Post-Print 
 
 
 
This is the accepted version of: 
 
 
A. Chiarini, M. Quadrio, F. Auteri 
A Direction-Splitting Navier–stokes Solver on Co-Located Grids 
Journal of Computational Physics, Vol. 429, 2021, 110023 (20 pages) 
doi:10.1016/j.jcp.2020.110023 
 
 
 
 
 
The final publication is available at https://doi.org/10.1016/j.jcp.2020.110023 
 
Access to the published version may require subscription. 
 
 
 
 
When citing this work, cite the original published paper. 
 
 
 
 
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 
http://creativecommons.org/licenses/by-nc-nd/4.0/  



A direction-splitting Navier–Stokes solver on co-located grids

A. Chiarini, M. Quadrio, F. Auteri1

Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano.

Abstract

We introduce a new finite-difference solver for the incompressible Navier–Stokes equations that
exploits the direction-splitting method proposed by Guermond and Minev in 2010, but is formu-
lated on a co-located grid. The main ingredients of the new solver are: i) the direction-splitting
approach adopted for both the momentum and the pressure equations; and ii) the co-located grid
approach. The solver is parallelised by the Schur-complement method, and achieves very high
performance levels on thousands of processors. Several test cases are proposed to assess the
accuracy and efficiency of the method.

Keywords:

1. Introduction

As the power of supercomputers increases, new problems become tractable that were out of
reach only a few years ago. A typical application requiring an extensive computational time is
the investigation of the stability properties of 3D laminar flows, the so-called tri-global stability
analysis [1]. For this kind of flows, the methods relying on the explicit construction of the tan-
gent matrix, to be used in Newton’s method to compute the base flow and in the calculation of
the direct and adjoint eigenvectors, are usually too expensive in terms of memory and computing
time, especially when the problem at hand lacks symmetries that can be leveraged to reduce its
computational complexity [2]. For this reason, the most common approach to tri-global stability
analysis is based on time-dependent solvers [3, 4, 5]. Also in this case, however, the high compu-
tational cost of this kind of calculations severely limits the kind of problems within reach. Other
interesting and expensive problems arise in the numerical simulation of complex fluid-structure
interaction problems typical of bio-medical applications [6] or mixing problems in microfluidics
[7].

For such calculations, spectral-element methods are often used [4, 8, 9]. These methods
provide better geometrical flexibility while still retaining high accuracy, and scale very well
on massively parallel computers. Well tested open-source solvers are available online, such as
Nek5000 [10] or Nektar++ [11]. Unfortunately, their computational complexity is quite high,
they are limited to relatively simple geometries and lose part of their accuracy in presence of
corners or singularities in the domain [12]. Moreover, their efficiency can degrade quite a lot in
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the case of moving bodies or fluid-structure interaction problems. This is also the case for finite
element methods, even when XFEM or similar techniques are used to take immersed bodies
into account [13, 14]. The fastest solvers are those based on the finite-difference discretisation
[15, 16], even if quite recently, Lattice Boltzmann Methods are joining finite differences as a fast
discretisation method for the incompressible Navier–Stokes equations [17]. Finite differences
seem to provide the best trade-off between accuracy and efficiency when problems with moving
bodies are tackled with the immersed boundary method [18].

Several fast finite-difference Navier–Stokes solvers have been proposed in the past. Most
of them rely on fast Poisson solvers [19, 15, 16] to solve the pressure equation. Such solvers
exploit a spectral decomposition of the Laplacian operator and Fast Fourier Transforms (FFTs)
in planes — where a uniform Cartesian grid has to be used — to reduce the solution of the
problem to a set of tridiagonal linear systems for the third direction. While this approach leads to
solvers with a suboptimal computational complexity, since the cost of fast Poisson solvers grows
at least like N3 log N, it can leverage highly optimised libraries for FFT [20], thus leading to very
efficient solvers. However, when the number of unknowns becomes very high, as is the case
for very demanding present and future simulations, the uniform grid and the log N term become
increasingly penalising constraints. To obtain an optimal scalable solver, multigrid has usually
been the solver of choice for the pressure Poisson equation [21]. Unfortunately, the multigrid
method has its drawbacks: it is an iterative scheme which may require complicate algorithmic
constructions that limit the performance with respect to fast Poisson solvers [22], and it may
suffer from the presence of nonuniform grids if ad hoc smoothers are not employed. Quite
recently, Guermond and Minev [23, 24] proposed a new fractional-step method that requires
only the solution of tridiagonal linear systems in solving for both the velocity and the pressure.
This method actually extends the use of direction splitting [25], similar to ADI [26], to the
pressure step, thus improving the efficiency and scalability of the solver. Since the method is
direct, neither iterations nor special data structures are necessary. Moreover, using the Schur-
complement method [27, 28, 29], high levels of parallelism can be achieved as well as an optimal
computational complexity.

All of the aforementioned discretisation methods, with the exception of spectral methods in
three-periodic boxes, suffer from the problem that a compatibility condition — the well known
LBB condition [30, 31, 32] — must be satisfied by the spatial discretisation of the velocity field
and that of the pressure field to obtain a stable discretisation. Incompatible discretisations will
allow spurious pressure or velocity modes to appear and will often completely destroy the solu-
tion or, in any case, prevent the numerical solution from converging to the exact one [33]. For
this reason, finite difference solvers are frequently formulated on staggered grids, where four
different grids are employed for the three velocity components and pressure. When dealing with
complicated geometries, or multiscale phenomena, that require local refinement, the staggered
arrangement is quite inconvenient. Moreover, in the immersed-boundary method, interpolation
stencils that are different for each grid must be computed. In fluid-structure interaction problems,
this implies a four-fold increase of the computing time needed for the interpolations in 3D, a sig-
nificant penalty especially for interpolation techniques that use extended stencils [34, 35]. Also,
when the grid is refined, the staggering must be taken into account and complicated interpolation
stencils may be required [36]. For this reasons, the use of co-located grids where all variables
are stored in the same grid point can lead to a distinct performance advantage.

Unfortunately, co-located grids do not satisfy the LBB condition, and are prone to the insur-
gence of pressure checkerboard modes [37]. Several techniques have been proposed in the past
to eliminate such spurious pressure modes. They can be classified in two broad groups: stabili-
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sation methods [38, 39], where a special interpolation is used in the calculation of the divergence
operator, and filtering methods [40]. While filtering methods are in principle an elegant way to
solve the problem, without introducing any stabilisation, since they work by filtering spurious
modes out of the solution, their use is practical only when uniform cartesian grids are employed.
Indeed, the idea behind filtering methods is to remove the unphysical oscillations by subtracting
them from the solution. Since the spurious pressure modes belong to the null space of the discrete
Stokes operator, the solution is first orthogonally projected on this null space, and the projection
is then subtracted from the solution. Regrettably, an orthonormal basis for the null space can be
obtained trivially only for equispaced orthogonal Cartesian grids [40]; for nonuniform grids, it
must be computed numerically by solving an eigenvalue problem. For what concerns stabilisa-
tion methods, the most renowned method was proposed by Rhie & Chow [38]. It was formulated
as an interpolation method to be used in the calculation of the divergence of the momentum equa-
tion, to obtain a Poisson equation for the pressure. Indeed, the method can be reformulated as the
addition of a stabilisation term, arising from the discretisation of a fourth-order elliptic operator,
to the right-hand side of the Poisson equation for the pressure [37]. In [41], the authors showed
that such a stabilisation term can be actually multiplied by a coefficient lower than one, and still
a stable formulation is obtained.

The aim of the present work is to introduce a new, fast, parallel solver for the incompressible
Navier–Stokes equations that hinges on the direction-splitting, fractional-step method proposed
by Guermond and Minev [23, 24] and uses second-order finite differences on a co-located grid.
The resulting direction-splitting formulation is not prone to checker-board pressure modes, so
that no stabilisation term is required. A simple and fast algorithm is thus obtained that only
requires the solution of 1D tridiagonal linear systems. Such a solver is expected to be faster
than its staggered counterpart, and can be used to implement fast immersed-boundary solvers
aimed at solving triglobal stability problems [2] and fluid-structure interaction problems typical
of biological and bio-medical applications [6, 42].

The paper is organised as follows. After this introduction, in the next section the key elements
of the solver are presented: the adopted time discretisation, the fractional-step algorithm, the
formulation of the non-linear term and the imposition of boundary conditions. The third section
describes the parallelisation. In the fourth section, we report some results to show the accuracy
and efficiency of the method: thorough convergence studies have been carried out to check that
the expected convergence rate was achieved, and several well-documented test cases have been
reproduced to check the solution accuracy for different sets of boundary conditions. A few
concluding remarks are drawn in the last section.

2. Methods

2.1. Mathematical framework

We consider the time dependent, dimensionless incompressible Navier–Stokes equations
solved in a three-dimensional volume Ω = (0, Lx) × (0, Ly) × (0, Lz):

∂u
∂t

+ (u · ∇) u −
1

Re
∇2u + ∇p = f in Ω × (0,T),

∇ · u = 0 in Ω × (0,T),
u|∂Ω = a in ∂Ω × (0,T),
u|t=0 = u0 in Ω,

(1)
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where u is the velocity, p the reduced pressure, f a body force, a contains the boundary data and
u0 is the initial condition. The initial and boundary conditions need to satisfy the well known
compatibility conditions [43].

An approach often used to solve the Navier–Stokes equations is the incremental pressure-
correction scheme, which can be written as the following singular perturbation problem:

∂uε
∂t

+ (uε · ∇) uε −
1

Re
∇2uε + ∇pε = f uε |∂Ω×(0,T) = a, uε |t=0 = u0,

−∆t∇2φε + ∇ · uε = 0
∂φε
∂n
|∂Ω×(0,T) = 0,

∆t
∂pε
∂t

= φε −
χ

Re
∇ · uε pε |t=0 = p0,

(2)

where ε := ∆t is the perturbation parameter and χ ∈ [0, 1]. Guermond and Shen [44] found
that uε is a O(∆t2) perturbation of u in the L2-norm for all χ ∈ [0, 1]. χ = 0 corresponds to
the standard form of the projection method, while χ = 1 corresponds to the rotational form.
Intermediate values of χ are possible.

Recently, Guermond and Minev [23] showed that the same stability properties and error
estimates of the aforementioned singular perturbation problem can be obtained by substituting
the Laplacian operator in the second equation with a more general operator, that will be called A,
provided the bilinear form induced by A, a(p, q) :=

∫
Ω

pAq, is symmetric and ‖∇q‖2L2 ≤ a(q, q).
Therefore, we have

∂uε
∂t

+ (uε · ∇) uε −
1

Re
∇2uε + ∇pε = f uε |∂Ω×(0,T) = a, uε |t=0 = u0,

∆tAφε + ∇ · uε = 0
∂φε
∂n
|∂Ω×(0,T) = 0,

∆t
∂pε
∂t

= φε −
χ

Re
∇ · uε pε |t=0 = p0,

(3)

that coincides with the projection method if A = −∇2. It is interesting to notice that for transient
flow, the computed velocity field is not divergence free, owing to the second and third equations.
However, uε is a second-order-in-time approximation of the exact velocity field.

Let the Crank–Nicolson time scheme be used for advancing the solution in time, with the
leap-frog strategy for the pressure. As a result, the discrete expression of the pressure-correction
scheme reads:

un+1 − un

∆t
−

1
2Re
∇2

(
un+1 + un

)
= f n+1/2 − ∇p∗,n+1/2 − nl(u∗,n+1/2),

Aφn+1/2 = −
1
∆t
∇ · un+1,

pn+1/2 = pn−1/2 + φn+1/2 −
χ

2Re
∇ · (un+1 + un),

(4)

where nl denotes the nonlinear term, the superscripts n and n + 1 indicate two successive time
steps for velocity, n + 1/2 the intermediate time step that is used for pressure and for the right-
hand side. In particular, u∗,n+1/2 = (3un − un−1)/2 is a second-order extrapolation of the velocity
field from the time steps n − 1 and n.
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2.2. Algorithm
In this section we present the solution algorithm that is needed to advance the discrete solu-

tion in time. The solution algorithm exploits direction splitting [25] for the three directions for
both the velocity, as already done in the past, see e.g. [45, 46], and the pressure equation, as first
proposed by Guermond and Minev [23, 24], by suitably selecting the A operator in equation (4).

2.2.1. Pressure predictor
The first step of the algorithm consists in computing the pressure predictor p∗,1/2. The algo-

rithm is initialised by setting p∗,1/2 = p∗,−1/2, and for n > 0 we set

p∗,n+1/2 = p∗,n−1/2 + φn−1/2. (5)

2.2.2. Velocity update
In the second step, the velocity field is updated by solving the momentum equation. This

amounts, by virtue of the direction splitting technique, to the solution of a set of tridiagonal
linear systems in the three directions:

ξn+1 − un

∆t
=

1
Re
∇2un + f n+1/2 − ∇p∗,n+1/2 − nl(u∗,n+1/2),

ηn+1 − ξn+1

∆t
−

1
2Re

∂2

∂x2

(
ηn+1 − un

)
= 0,

ζn+1 − ηn+1

∆t
−

1
2Re

∂2

∂y2

(
ζn+1 − un

)
= 0,

un+1 − ζn+1

∆t
−

1
2Re

∂2

∂z2

(
un+1 − un

)
= 0.

(6)

This formulation can be manipulated to make the computation of un+1 easier and more efficient.
It reads:

(
ηn+1 − un

)
−

∆t
2Re

∂2

∂x2

(
ηn+1 − un

)
= ∆t f n+1/2 − ∆t∇p∗,n+1/2 − ∆t nl(u∗,n+1/2),(

ζn+1 − un
)
−

∆t
2Re

∂2

∂y2

(
ζn+1 − un

)
=

(
ηn+1 − un

)
,

(
un+1 − un

)
−

∆t
2Re

∂2

∂z2

(
un+1 − un

)
=

(
ζn+1 − un

)
.

(7)

These expressions show that updating the velocity field amounts to the solution of tridiagonal
linear systems only.

2.2.3. Penalty step
In the third step, φn+1/2 is computed. In this algorithm, as suggested in [23, 24], we use again

the direction-splitting operator. The second equation of the system (4) reads:

Apn+1/2 = −
1
∆t
∇ · un+1. (8)

The choice of the actual expression for the operator A is key to increasing the performance of the
algorithm. As in [23, 24], in this work we used the following expression for A := (1−∂2/∂x2)(1−
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∂2/∂y2)(1−∂2/∂z2), that satisfies the necessary conditions for the stability and convergence of the
method. We thus obtain that φn+1/2 can be computed by solving the following equation cascade:

ψ −
∂2ψ

∂x2 = −
1
∆t
∇ · un+1,

∂ψ

∂x
|x=0,1 = 0,

ϕ −
∂2ϕ

∂y2 = ψ,
∂ϕ

∂y
|y=0,1 = 0,

φn+1/2 −
∂2φn+1/2

∂z2 = ϕ,
∂φn+1/2

∂z
|y=0,1 = 0.

(9)

As for the velocity update, computing φn+1/2 too amounts to solve tridiagonal linear systems
only.

We observe that, despite the chosen form of A leads to an operator whose kernel is void, in
principle this does not ensure that spurious pressure modes cannot arise in the solution, as clearly
shown in [33]. For some schemes, spurious pressure modes arise when very small time steps are
considered, since the constant in the LBB condition can go to zero with the time step. For other
schemes, the instability is not observed or it is only observed for very long simulations toward a
steady state, see [36] and the references therein. For the proposed scheme, we did a lot of testing
to ascertain the presence of spurious pressure modes, partially reported in section 5. We tried
unsteady simulations with very small time steps with respect to the spatial discretisation, as in
[33], and long simulations leading to a steady state. In both cases, we did not observe spurious
pressure modes, either in the pressure fields or in the pressure-error field, when available. We
also compared the solution obtained by the described algorithm with that obtained by adding a
stabilisation term to the pressure equation according to [41]. The obtained pressure fields were
almost identical. We are aware that numerical tests are not equivalent to a rigorous mathematical
proof, therefore we do not claim that the proposed method is always free from any pressure spuri-
ous mode. Nonetheless, we can say that the proposed method is very robust since no instabilities
were observed in a wide range of simulations with very different time and space resolutions.

2.2.4. Pressure update
In the last step of the algorithm, the pressure is updated as follows:

pn+1/2 = pn−1/2 + φn+1/2 − χν∇ ·

(
1
2

(
un+1 + un

))
. (10)

2.3. Treatment of the non-linear term

The formulation of the non-linear term has been chosen to ensure energy conservation. In-
deed, it is well known that several different forms of the nonlinear term can be chosen, which
are equivalent in the continuum setting but differ once discretised [47]. Such formulations differ
essentially by a term multiplied by the divergence of the velocity, and are therefore equivalent
only when the velocity field is divergence-free at machine precision. When the velocity field is
only approximately divergence-free, as in the present case, the different forms of the nonlinear
term are no longer equivalent and, in general, do not satisfy energy conservation, as it is the case
in the continuum. Failing to conserve energy can lead to an explosive instability, especially at
relatively high Reynolds numbers and when the smaller scales of the flow are not sufficiently
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resolved. We write the nonlinear term so as to conserve energy as suggested in [48]. For simplic-
ity, we show the discretisation for the 2D case on a uniform grid, but the strategy can be easily
extended to the three-dimensional case. The conservative discrete weak formulation is:

bh(uh,φh, ξh) =

M∑
i=1

N∑
j=1

{
[
∆yui+(1/2) jφi+(1/2) jξi j − ∆yui−(1/2) jφi−(1/2) jξi j

+∆xvi j+(1/2)φi j+(1/2)ξi j − ∆xvi j−(1/2)φi j−(1/2)ξi j
]

−
1
2

∆x∆y
(ui+(1/2) j − ui−(1/2) j

∆x
+

vi j+(1/2) − vi j−(1/2)

∆y
)
φi jξi j}

(11)

where ui+(1/2) j denotes the velocity at the mid point between xi j and xi+1 j and its second order
approximation is:

ui+(1/2) j =
ui+1 j + ui j

2
. (12)

The last term of (11) can be recognised to be the divergence of the velocity. This term is sup-
posed to be zero when the end-of-step velocity is used and it is divergence-free, not in our case.
Therefore, this term is retained to ensure conservation. The proof of the conservation properties
of this formulation of the nonlinear term is very similar to what is done in [49], and it is not
repeated here for conciseness. As a result, the conservative formulation of the non-linear term in
3D reads:

(u · ∇) ul|xi,y j,zk ∼

1
4∆x

[
ul(xi+1, y j, zk)

(
u(xi+1, y j, zk) + u(xi, y j, zk)

)
− ul(xi−1, y j, zk)

(
u(xi−1, y j, zk) + u(xi, y j, zk)

)]
+

1
4∆y

[
ul(xi, y j+1, zk)

(
v(xi, y j+1, zk) + v(xi, y j, zk)

)
− ul(xi, y j−1, zk)

(
v(xi, y j−1, zk) + v(xi, y j, zk)

)]
+

1
4∆z

[
ul(xi, y j, zk+1)

(
w(xi, y j, zk+1) + w(xi, y j, zk)

)
− ul(xi, y j, zk−1)

(
w(xi, y j.zk−1) + w(xi, y j, zk)

)]
.

(13)

The numerical tests confirmed that this formulation does not lead to numerical instabilities as
previously observed for the convective form.

3. An additional temporal scheme

This section describes the formulation of the algorithm when a different, more efficient time-
advancement scheme is used instead of Crank–Nicolson’s, characterised by a larger stability mar-
gin in terms of the Courant-Friedrichs-Lewy condition, thus allowing larger time steps. Specif-
ically, we describe the implementation of a popular scheme introduced in [50], hereafter called
RK-RAI3. It is a partially implicit method, where the viscous terms are dealt with by a second-
order-accurate Crank–Nicolson method, whereas a third-order Runge-Kutta scheme is employed
for the convective terms. The single time step ∆t is thus divided into three substeps, each one
corresponding to an advancement of 2

αi∆t . After the time discretisation and by using again the

7



leap-frog strategy for the pressure, the Navier–Stokes equations read:

αi

2
un

i − un
i−1

∆t
−

1
2Re
∇2

(
un

i + un
i−1

)
= f n

i−1/2 − ∇pn
∗,i−1/2 − γi

(
un

i−1 · ∇
)

un
i−1 − δi

(
un

i−2 · ∇
)

un
i−2,

Aφn
i−1/2 = −

αi

2∆t
∇ · un

i ,

pn
i−1/2 = pn

i−3/2 + φn
i−1/2 −

χ

2Re
∇ · (un

i + un
i−1),

b.c.
i.c.

(14)

Here the superscript n refers to the time step, while the subscript i refers to the three substeps
needed to advance the solution by one time step ∆t, and αi, γi and δi are the following coefficients:

α1 = 120/32, α2 = 120/8, α3 = 120/20,
γ1 = 1, γ2 = 25/8, γ3 = 45/20,
δ1 = 0, δ2 = −17/8, δ3 = −25/20.

(15)

pn
∗,i−1/2 denotes the pressure predictor, described later.

Now, similarly to what is done for the Crank-Nicolson case, we briefly show the algorithm
to be used at each time step if the RK-RAI3 time scheme is employed.

3.0.1. Pressure predictor

pn
∗,i−1/2 = pn

i−3/2 +
αi

αi−1
φn

i−3/2. (16)

3.0.2. Velocity update

αi

∆t

(
ηn

i − ũn
i−1

)
−

1
Re

∂2

∂x2

(
ηn

i − ũn
i−1

)
= rhs,

αi

∆t

(
ζn

i − ũn
i−1

)
−

1
Re

∂2

∂y2

(
ζn

i − ũn
i−1

)
=

(
ηn

i − ũn
i−1

)
,

αi

∆t

(
ũn

i − ũn
i−1

)
−

1
Re

∂2

∂z2

(
ũn

i − ũn
i−1

)
=

(
ζn

i − ũn
i−1

)
,

(17)

where

rhs =
2

Re
∇2ũn

i−1 − 2∇pn
∗,i−1/2 + 2 f n

i−1/2 − 2γi

(
un

i−1 · ∇
)

un
i−1 − 2δi

(
un

i−2 · ∇
)

un
i−2.

3.0.3. Penalty step 

ψn
i−1/2 −

∂2ψn
i−1/2

∂x2 = −
αi

2∆t
∇ · ũn

i−1

ϕn
i−1/2 −

∂2ϕn
i−1/2

∂y2 = ψn
i−1/2,

φn
i−1/2 −

∂2φn
i−1/2

∂z2 = ϕn
i−1/2.

(18)
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Figure 1: Domain partitioning for parallel implementation. Left: block decomposition of the three-dimensional domain.
Right: grid decomposition for parallel execution on the plane highlighted in the left panel; grey circles denote shared
interface grid points; red stars, blue diamonds and green squares denote the internal grid points of the blocks highlighted
by the same colour code in the left panel; white circles denote the internal grid points of the other blocks. The dotted line
highlights the line in the x direction considered in §4.1.

3.0.4. Pressure update

pn
i−1/2 = pn

i−3/2 + φn
i−1/2 −

χ

2Re
∇ · (un

i + un
i−1). (19)

4. Parallel implementation

The present algorithm has been implemented using central finite differences for the first- and
second-order derivatives. The parallel implementation is based on a Cartesian block decomposi-
tion of the domain (as shown in figure 1), and uses the Message Passing Interface (MPI) library
for maximum portability. Each processor deals with a different block.

The grid points in each block are divided into internal points xi and shared interface points
xs. For internal points, the right-hand side of the linear systems can be assembled locally to the
processor since their stencil is within the same block. In contrast, for the shared interface points,
assembling the right-hand side requires some sort of communication as such points are placed on
the interfaces between the blocks and their stencil is shared between consecutive processors. Two
processors dealing with two consecutive blocks share the interface points placed on the face they
have in common — see the right panel of figure 1 — and both of them solve the linear systems
for such points in the two directions parallel to the face; in the following we show that this
small overhead is necessary to highly reduce the communication among processors. The overall
number of shared interfaces along one direction Ns,i (with i = 1, 2, 3 denoting the direction)
depends on the boundary conditions. Indeed, in case of a periodic direction — where the first
and last block can be thought as consecutive — the number of interfaces is equal to the number
of blocks Np,i in that direction while to Np,i − 1 in all the other cases.

The solver is parallelised keeping the communication among processors to a minimum. Com-
munication is needed only for the solution of the linear systems and the assembling of the right-
hand sides at the interface points.

9



4.1. Parallelisation of the solution of the linear systems

The spatial discretisation we used reduces each one-dimensional linear problem to a tridiag-
onal linear system, that can be easily solved using the Schur complement method [27, 28, 29],
adopting the same strategy proposed in [24]. To explain the procedure, we consider only a line
in the x direction for brevity, along which the solution is split across Npx processors (see the
right panel of figure 1 as an example); for each processor the unknowns u are divided in internal
unknowns ui and shared interface unknowns us. The unknowns and equations of the tridiago-
nal system associated with the considered line can be reordered so as to separate the internal
unknowns from those on the shared interfaces:[

Aii Ais

Asi Ass

] [
ui

us

]
=

[
fi
fs

]
. (20)

The reordered linear system is no longer tridiagonal, clearly. Considering for example the case
in figure 1 with Npx = 3 and Nsx = 2 — corresponding to non-periodic boundary conditions —
the matrices have the following pattern:

Aii =




Ais =




AT

si =




Ass =

[ ]
. (21)

As in figure 1, red stars, blue diamonds and green squares refer to the internal grid point of the
three processors, whereas grey circles indicate the shared interface grid points. As shown in the
previous equation, Aii is tridiagonal and Ass is diagonal, while both Ais and Asi are extremely
sparse.

Using block Gaussian elimination, the reordered linear system can be reduced to triangular
form. Then, the solution reduces to the successive solution of the following linear systems

S us = (Ass − AsiA−1
ii Ais)us = fs − AsiA−1

ii fi, (22)

Aiiui = fi − Aisus, (23)

S is the Schur complement, and in the above example with Npx = 3 and Nsx = 2 its pattern is

S =

[ ]
. (24)

By virtue of the sparse pattern of the matrix blocks, the Schur complement S is also tridiagonal
for the present discretisation, although this is not evident in the present example with two shared
interface unknowns only.

As a result, the equations for the shared interface points (22) and for the internal points (23)
become decoupled. Furthermore, the equations for the internal points of different blocks are

10



decoupled too. Indeed, owing to the tridiagonality of the original linear system and the locality
of the finite-difference operators, Aii is a block-diagonal matrix (see equation (21)). Therefore,
in the present algorithm, only tridiagonal linear system must be solved.

The tridiagonal systems (22) and (23) are solved by Thomas’ algorithm [51] which is equiv-
alent to a banded LU decomposition without pivoting [52] when the coefficients are saved in
the forward step. This is convenient in the present case, since the matrices do not vary in time,
and can therefore be factored once and for all at the beginning of the computation. The internal
linear systems have to be solved twice, the first time to compute the right-hand side of the linear
systems for the shared interface unknowns, right-hand side in (22), the second time to compute
the internal ones by solving (23).

The procedure is explained in more detail in algorithm 1. The tridiagonal matrix S :=

Algorithm 1: Procedure performed by each processor to solve tridiagonal linear sys-
tems in parallel. Black circles denote local computations, while the red square denotes
computations that need communication between processors.

Preprocessing

Assemble the tridiagonal matrix S := (Ass − AsiA−1
ii Ais)

Runtime

Compute right-hand side for internal points fi

Compute processor’s contribution to the right-hand side of the equation for the shared
interface unknowns: fs − AsiA−1

ii fi

Assemble via communication all processors’ contributions to fs − AsiA−1
ii fi

Solve for shared interface unknowns us

Compute fi − Aisus

Solve for internal unknowns ui

(Ass − AsiA−1
ii Ais) of size Nsx × Nsx is computed in the preprocessing stage and stored on each

processor. Then for each time step, after computing the right-hand sides for the internal grid
points fi, each processor computes the contribution to the the right-hand sides of the equations
for the shared interface unknowns, fs−AsiA−1

ii fi, associated with its portion of the stencil; then all
the contributions are assembled on each processor via communication. Once the linear system
(22) is assembled, it can be solved on each processor to minimise the required communication
during time advancement. Indeed, for the usual fluid dynamic problems, the size of the Schur
complement is much lower than the dimension of the internal problems: Ns � Ni. Finally, each
processor evaluates locally its internal unknowns without the need of communication by solving
the tridiagonal system (23), in which the equations for internal points of different blocks are
decoupled, as said above.

With this procedure, the communication is kept to a minimum. It is only needed when as-
sembling the right-hand side of the equations for the shared interface points.

11



x

z
zk

zk+1

zk−1
Proc 1

Proc 2

Figure 2: Grid decomposition for parallel execution in the x − z plane. The domain is divided into two blocks in the z
direction. Red stars denote the internal grid points for block/processor 1; blue diamonds denote the internal grid points
for block/processor 2; grey circles denote the shared interface grid points.

4.2. Parallel treatment of the right-hand side

For simplicity, in this section we consider the domain to be decomposed into two blocks in
the z direction; see figure 2. As said above, at each time step the following linear systems, dealing
with the x, y and z directions, have to be solved for both the momentum and the pressure steps:Axψ = f ,

b.c.

Ayϕ = ψ,

b.c.

Azφ = ϕ.

b.c.
(25)

However, at the shared interface points (the grey points in figure 2) the right-hand side fi for
the system dealing with the x direction cannot be fully computed in any of the two processors
sharing the interface, since the needed stencil is distributed across the two processors. Indeed,
as long as we want to minimise communication, the communication should only occur when
strictly necessary, i.e. when assembling the right-hand side of the Schur complement, in this
case when solving the z direction. For this reason, we avoid the communication of the missing
information necessary to build the right-hand side of the aforementioned linear systems on the
two processors. As it will become clear in a moment, this is not necessary. We show as an
example the component of the pressure gradient in the z direction evaluated on a homogeneous
grid, i.e.

∂pn
k

∂z
:= −

pn
k−1

δz︸ ︷︷ ︸
Processor 1

+
pn

k+1

δz︸︷︷︸
Processor 2

; (26)

where the index k denotes a shared interface point. Without any communication, the first term
of the right-hand side can be evaluated only by processor 1, whereas the second one only by
processor 2.

We therefore leverage the linearity of the equation and split the solution at the shared interface
points among the processors. In detail, we write:

fi = fi,1 + fi,2 (27)

where fi,1 and fi,2 denote the contributions to fi evaluated with the portion of the stencil available
on the two processors, respectively. In doing this one has to pay attention not to consider the
contribution from the shared interface point twice. Considering the above example, the first term
of equation (26) goes into fi,1, whereas the second term into fi,2.

12



Therefore, when we solve for the shared interface points along the x and y directions, the two
processors compute: Axψi,1 = fi,1,

b.c.|1,

Axψi,2 = fi,2,
b.c.|2,

(28)

Ayϕi,1 = ψi,1,

b.c.|1,

Ayϕi,2 = ψi,2,

b.c.|2,
(29)

respectively, where b.c.|1 + b.c.|2 = b.c; this requirement can be met, for instance, by imposing
the actual boundary conditions when solving on one processor and homogeneous conditions on
the other one.

It turns out that, once the previous linear systems have been solved for the shared interface
points along the x and y directions, the two processors computed

ϕi,1 = A−1
y A−1

x fi,1

and
ϕi,2 = A−1

y A−1
x fi,2,

respectively. Finally, when the z direction is considered, which is normal to the interface in
this example, the Schur complement is used. As already mentioned, at this stage the right-hand
side of the equations for the interfaces is built assembling the contributions from the different
processors. Therefore, the shared interface unknown results in

φi = A−1
z

(
ϕi,1 + ϕi,2

)
= A−1

z A−1
y A−1

x
(
fi,1 + fi,2

)
= A−1

z A−1
y A−1

x fi. (30)

Therefore, this procedure requires to solve the tridiagonal systems for the shared interface points
on both processors sharing them, which is a small overhead necessary to limit the inter-processor
communication to the construction of the right-hand side of (22).

5. Numerical Results

In this Section, we assess the accuracy and efficiency of the method with some example prob-
lems. First, the spatial and temporal convergence of the scheme is investigated for a manufactured
solution of the Navier–Stokes equations, i.e. a solution obtained by introducing a suitable body
force in the right-hand side of the equations [53]. Then, three classic, well-documented test cases
are presented to describe the capabilities of the algorithm: one with two periodic directions, one
with a single periodic direction, and two with no periodic directions: the driven cavity problem
(internal flow) and the flow around a rectangular plate (external flow).

5.1. Convergence tests

In order to investigate temporal and spatial convergence, the algorithm has been tested nu-
merically on the following manufactured solution of the Navier–Stokes equations:

u = sin(x) cos(t + y) sin(z), v = cos(x) sin(t + y) sin(z), w = 2 cos(x) cos(t + y) cos(z),

p =
3

Re
cos(x) cos(t + y) cos(z).

(31)
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The body-force field f that closes the momentum equation for this manufactured solution reads:

fx =
sin(x)

Re

[1
2

(Re cos(x) (1 + 2 cos (2(t + y)) + cos(2z)))

− 3 cos(t + y) (cos(z) − sin(z)) − Re sin(t + y) sin(z)
]
,

fy =
1

4 Re

[
Re cos2(x)

(
3 + cos(2z)

)
sin(2(t + y)) − 2Re sin2(x) sin(2(t + y))sin2(z)

+ 4 cos(x)
(
− 3 cos(z) sin(t + y) +

(
Re cos(t + y) + 3 sin(t + y)

)
sin(z)

)]
,

fz =
1

Re

[
cos(x)

(
− 2Re cos(z) sin(t + y) + cos(t + y)

(
6 cos(z) − 3 sin(z)

))
−

1
2

(
Re cos2(x)

(
3 + cos(2(t + y))

)
sin(2z)

)
− Re cos2(t + y) sin2(x) sin(2z)

]
.

The problem is solved in the cubic domain Ω = (0, 6) × (0, 6) × (0, 6) for 0 ≤ t ≤ T = 1
and a Reynolds number Re = 1. Dirichlet boundary conditions are used for the velocity and are
given by the exact solution calculated on the boundary. The initial condition is the exact solution
at t = 0. Temporal and spatial accuracies of the algorithm are tested on five uniform grids of
varying size, i.e. 103, 203, 403, 803 and 1603 points, with seven values of the time step, i.e.
∆tn = 0.1 × 2−n, where n is an integer in the interval [0, 6].

The L2-norm of the velocity and pressure error is plotted in figure 3 and 4 for χ = 0 and
χ = 1, respectively, and a comparison with the staggered algorithm presented in [24] is also
reported, for the same size of the grid and time step. The left panels concern the spatial con-
vergence; here the time step is fixed at ∆t = 0.003125. They show that both the velocity and
the pressure approximations are second-order accurate, as expected. In the right panels, the time
accuracy is considered; here the grid size is fixed at the smallest value ∆x = 0.0375, to keep the
spatial error below the temporal error, at least for the largest time steps considered. The results
show that both approximations, for velocity and pressure, are second-order accurate. Interest-
ingly, the convergence curves show that the pressure approximation converges faster for χ = 0.
The velocity and pressure approximations seem to be slightly more accurate when the staggered
version of the algorithm is used.

We tested the presence of spurious pressure modes for very small time steps. We advanced
the solution in time for 200 time steps according to what has been proposed in [33]. The pressure-
error field, reported in figure 5 for three different values of ∆t, shows no evidence of spurious
pressure modes.

5.2. Scalability
The scalability of the computer code implementing the method has been tested using the

previously described manufactured solution. The simulations have been run on the GALILEO
supercomputer at CINECA. It features 1022 36-core computing nodes connected through an
Intel OmniPath (100Gb/s) high-performance network. Each node contains two 18-cores Intel
Xeon E5-2697 v4 (Broadwell) at 2.30 GHz. All the computing nodes have 128 GB of memory.
In figure 6 we show the scalability tests of the presented code. The left panel shows the strong
scalability test. It consists in fixing the overall number of grid points and measuring the CPU
time as the number of processing cores Np increases (Np = 16, 32, 64, 128, 256, 512, 1024 is
considered). The figure shows a better-than-ideal behaviour. Indeed, The CPU time per timestep
and grid point goes from 5.78 · 10−7 s for 16 processors to 4.24 · 10−7 s for 1024 processors,
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Figure 3: Standard form, i.e. (χ = 0). L2-norm of the error at T = 1 on uniform grids with respect to the manufactured
solution given in eq. (31) for Re = 1, compared with the results obtained using the code of Ref. [24]. Top: velocity;
bottom: pressure. Left: spatial convergence; right: temporal convergence.
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Figure 4: Rotational form, i.e. (χ = 1). L2-norm of the error at T = 1 on uniform grids with respect to the manufactured
solution given in eq. (31) for Re = 1, compared with the results obtained using the code of Ref. [24]. Top: velocity;
bottom: pressure. Left: spatial convergence; right: temporal convergence.

Figure 5: Pressure error in the X = 5 plane for the problem with manufactured solution (31) after 200 time steps. For this
simulation the domain is Ω = (0, 10) × (0, 10) × (0, 10) with ∆x = ∆y = ∆z = 0.1; the Reynolds number is set to Re = 1.
Left: ∆t = 10−4; centre: ∆t = 10−5; right: ∆t = 10−6
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Figure 6: Scalability tests: CPU time per timestep and grid point versus the number Np of parallel processors. Left:
strong scalability test, with total number of grid points fixed to Npoints = 4003. Right: weak scalability test, with
Npoints/Np = 1003.

with a decrease for Np > 256. A preliminary analysis of the code performance suggests that the
code is memory-bound, i.e. the performance is limited by the memory bandwidth [54]. Indeed, a
high speed-up is observed using a single core per node, irrespective of the number of nodes. This
observation explains the present results for strong scalability, since for smaller local problems
a larger portion of the data fits into higher-level cache memory, thus increasing the available
memory bandwidth for data transfer.

The right panel, instead, shows the results for a weak scalability test. In this case the number
of grid points per processor is fixed. The figure shows that the CPU time per timestep divided per
overall number of grid points goes from 5.707 · 10−7 s for 16 processors to 6.397 · 10−7 for 1024
processors. This is a very good result, considering that the code, although carefully written, still
has to undergo a detailed optimization of the parallel communication, by for instance overlapping
computation and communication.

5.3. Comparison with established benchmarks

In this section we compare the accuracy of our code with that of well established results.

5.3.1. 3D driven cavity
The first validation test consists in solving the three-dimensional lid-driven cavity problem

in the domain Ω = (0, 1) × (0, 1) × (−1, 1) (in the x, y and z direction, respectively) at Re =

Vwh/ν = 1000, where Vw denotes the driving lid velocity, h the length of the cavity edge in
the x and y directions, ν the kinematic viscosity of the fluid. This test has been chosen since
it is an established test case and a benchmark solution obtained with the staggered version of
the present algorithm [55] is available online. Here, quantities are made dimensionless with Vw

and h. The driving lid is the side wall at x = 1, where u = (0, 1, 0) is the imposed velocity,
while homogeneous Dirichlet boundary conditions are imposed on all the other walls. Two grids
consisting of 200×200×400 and 400×400×800 in the x, y, z directions, respectively, have been
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Figure 7: Three-dimensional driven cavity: velocity magnitude in the z = 0 plane at time t = 8, Re = 1000.

Figure 8: Three-dimensional driven cavity: solution at t = 8, Re = 1000. Top: x-component of the velocity along
the vertical line in the z = 0 plane passing through the point (x, y, z) = (0.5, 0.5, 0), see line 1 in figure 7. Bottom:
y-component of the velocity along the horizontal lines in the z = 0 plane passing through the point (x, y, z) = (0.5, 0.5, 0),
see line 2 in figure 7. Left: velocity components. Right: difference between the present results and that reported in [55].
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used to show the convergence. As in [55], if Ni denotes the number of points in the i−direction,
the coordinates of the grid points are defined as:

Ci = 1 + (2/Li)
1
2 , (32)

Xk =
k − 1
Ni − 1

Li k = 1, ..,Ni, (33)

xk =

CiX
3
2
k (1 + X

1
2
k )−1 if Xk ≤ Li/2,

Li −Ci(Li − Xk)
3
2 (1 + (Li − Xk)

1
2 )−1 otherwise,

(34)

to properly resolve the boundary without excessive stretching of the grid cells. The simulation
has been performed using the Crank–Nicolson time scheme with an average CFL ∼ 0.4, slightly
below the stability limit of this scheme. The two spatial discretisations have been used alterna-
tively to verify the accuracy of both near their stability limit.

Figure 7 is a colour plot of the magnitude of the velocity vector in the z = 0 plane at t = 8. The
figure portraits a qualitatively correct solution: one clearly appreciates the high-speed region near
the moving lid, as well as a high-speed region in the shear layer produced near the downstream
corner of the lid. The figure also shows the main vortex that is forming near the centre of the
cavity and the low-speed region near the side opposite to the moving lid. Figure 8 shows the
u and v velocity components along the vertical and horizontal lines in the plane z = 0 passing
through the point x = 0.5, y = 0.5 and z = 0 (see lines 1 and 2 in figure 7) at time t = 8. This
allows a quantitative comparison with the results by Guermond and Minev contained in Ref.
[55], which are also available online. Figure 8 shows that they are in very good agreement; the
differences among the two simulations, shown in the right column, are in average less than one
percent for both u and v. These differences become smaller if the finer grid is used, the ratio
between the differences being consistent with the expected second-order convergence.

5.3.2. 3D Periodic driven cavity
The second validation test case consists in solving the three-dimensional flow in a square lid

driven cavity in Ω = (−0.5, 0.5) × (−0.5, 0.5) × (−0.5, 0.5), with the moving wall placed at x = 0
and the periodic boundary conditions in the z direction. With respect to the previous one, this test
case involves periodic boundary conditions and a steady-state solution. We compare the solution
obtained with the present numerical method with the reference solution reported in [56] that has
been obtained with a different numerical approach, a projection time-advancement scheme and
a Chebyshev spectral method for the spatial discretisation with subtraction of the singularity to
improve the accuracy. As in [56], the Reynolds number Re = Vwh/ν is again set to 1000, and the
grid consists of 96 × 96 × 96 points. Along the x directions the grid points are distributed as:

xi = −
1
2

cos
(

(i − 1)π
Nx − 1

)
i = 1, ..,Nx, (35)

where Nx denotes the number of points. The same grid is used also in the y direction. In the z
direction an uniform grid is used, with the points distributed as:

zk =
1
2

(
2(k − 1)
Nz − 2

− 2
)

k = 1, ..,Nz. (36)
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Figure 9: Three-dimensional periodic driven cavity test. Velocity magnitude of the steady solution in the z = 0 plane for
Re = 1000.

The simulation is advanced with the RK-RAI3 time scheme described in the appendix with an
average CFL ∼ 1 until the steady-state solution is reached. As a criterion to ensure convergence
to the steady solution, the following condition is used:

max|ui(x, t) − ui(x, t − ∆t)|
∆t

< 10−7. (37)

Figure 9 shows the magnitude of the velocity in the z = 0 plane. The picture is qualitatively
similar to that shown for the start-up of the 3D cavity, with two regions of high speed and the
vortex. In this steady case, the vortex is more extended, and the recirculation regions in the
corners opposite to the moving lid can be recognised. A separation region forms also on the
lower horizontal side, not far from the intersection with the moving lid. To validate the results,
figure 10 plots u, v and p along the horizontal and vertical lines in the z = 0 plane passing through
x = 0 and y = 0; see figure 9, with superimposed the results taken directly form the paper of [56]
shown with open symbols. Again, a complete agreement is found as the two results perfectly
overlap.

5.3.3. Optimal perturbations in plane Couette flow
A further validation test involves two periodic directions. It concerns the amplification of

optimal transient perturbations in plane Couette flow. For this purpose the work of [57] is con-
sidered as a reference and the main results replicated. The authors investigated the transition
scenario in a Couette flow in which the transient growth mechanism is initiated by four decaying
modes, showing that if their initial structure corresponds to counter-rotating vortex pairs, they are
sufficient to capture the transient growth mechanism. Indeed, the energy growth based on non-
linear DNS simulations for small initial amplitudes of the disturbances is in very good agreement
with the linear analytical one based of the first four even modes.

In this test we replicate such work. We compute the energy growth with our program and we
compare it with the analytical solution of the linearised Navier–Stokes equations based on the
following velocity field:

u(y, z, t) = Ub(y) + u1(y, z, t) (38)

where x, y and z denote the streamwise, wall-normal and spanwise directions; Ub = (0, y, 0) and
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Figure 10: Three-dimensional periodic driven cavity test, steady state at Re = 1000. Top: x-component of the velocity
(left) and pressure (right) along the vertical line in the z = 0 plane passing through the point (x, y, z) = (0.5, 0.5, 0) (see
line 1 in figure 9). Bottom: y-component of the velocity (left) and pressure (right) along the horizontal lines in the z = 0
plane passing through the point (x, y, z) = (0.5, 0.5, 0) (see line 2 in figure 9). Results, computed at time t = 8, are
compared with data in [56], denoted with white squares.
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Figure 11: Two-dimensional visualisation of the initial cross-stream velocity field, consisting on a counter rotating vortex
pair superimposed to the laminar Couette base flow. Left: wall-normal velocity component; right: spanwise velocity
component.

u1 as:

u1(y, z, t) =ΩReA0[A1Fsq1(y)e−iωsq1t + Fos1(y)e−iωos1t

+ A2Fsq2(y)e−iωsq2t + A3Fos2(y)e−iωos2t] cos(βz)
(39)

v1(y, z, t) = A0[Vos1(y)e−iωos1t + A3Vos2(y)e−iωos2t] cos(βz) (40)

w1(y, z, t) = −A0[Wos1(y)e−iωos1t + A3Wos2(y)e−iωos2t] sin(βz) (41)

where the expressions of ω, F, V and W and the values of A1, A2 and A3 are given in [57].
The domain is Ω = (0, 2π) × (−1, 1) × (0, 2π) and the grid consists on 96 × 96 × 96 points

uniformly placed along the periodic directions and with a hyperbolic-tangent distribution along
the y direction to provide enhanced resolution the near-wall regions:

yi = ymin +
ymax − ymin

2


tanh

(
a
(

2i
Ny
− 1

))
tanh (a)

+
ymax − ymin

2

 i = 1,Ny,

where a = 1.2, ymin = −1, ymax = 1 and Ny denotes the number of points in the wall-normal
direction. The Reynolds number Re = Uwh/ν (where Uw is the velocity of each wall and h the
half height of the channel) is set to 1000. The initial condition at t = 0 consists on a counter
rotating vortex pair superimposed on the laminar Couette solution, with the perturbation field u1
defined with β = 1, see figure 11. Three values of A0 have been considered: A0 = 0.0001, A0 =

0.001 and A0 = 0.002. The simulation is advanced for T = 400h/Uw with the Crank–Nicolson
time scheme with an average CFL ∼ 0.1. We have used the same averaged CFL as in [57].
Figure 12 compares the energy growth measured by the present code with the analytical curve,
shown with open symbols. Our simulation is in very good agreement with the results reported
in [57] (see figure 3 in their paper): the DNS with the smallest A0 follows the predicted curve.
This is because the reference solution is obtained for the linearised equations, and therefore it is
exact in the limit of infinitesimal perturbations. For this reason a small gap between the DNS
and the predicted results can be observed close to the maximum of the curve. Such difference,
also visible in the pseudo-spectral DNS results reported in [57], decreases as the amplitude A0 is
decreased as expected, see the right panel in figure 12.
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Figure 12: Couette flow test. Energy growth curve for Re = 1000 and β = 1 Comparison between the analytical curve
based on four even modes as in [57] and our non-linear DNS results. Left: complete curve; right: zoom of the maximum.

5.4. Wake instability of a 1:6 aspect ratio flat-plate oriented perpendicularly to the incoming
flow

The last validation consists in investigating the destabilisation of the three-dimensional steady
wake developing behind a thin rectangular plate oriented perpendicularly to the uniform incom-
ing flow. Here, x is the streamwise direction, whereas y and z denote the two cross-stream direc-
tions. The thickness-to-width ratio of the plate is Lx/Ly = 1/6, while the length to width ratio in
Lz/Ly = 6. The work of Marquet and Larsson [2], where this problem is addressed via linear sta-
bility analysis and finite elements, is taken as reference. The presence of the flat plate is dealt with
by an explicit immersed-boundary method [58]. At each time iteration, after the viscous step and
before the pressure step, the velocity is linearly interpolated on the points nearest to the bound-
ary. The Reynolds number based on the undisturbed incoming flow and on Ly, Re = U∞Ly/ν,
is set to 60, which is just above the first critical Reynolds number for such flow configuration
according to [2]. The size of the computational domain is −15 ≤ x ≤ 20, −20 ≤ y ≤ 20 and
−20 ≤ z ≤ 20 with the geometric centre of the plate placed at (x, y, z) = (0, 0, 0). The grid con-
sists of 272× 376× 448 points in the three directions, with 50, 100 and 200 points over the plate
sides in the x, y and z directions, respectively. A geometric progression is adopted to distribute
the points:

xi = xi−1 + ki−1
x ∆x1

y j = y j−1 + k j−1
y ∆y1

zk = zk−1 + kk−1
z ∆k1

where ∆x1 = 0.00335, ∆y1 = 0.00494 and ∆z1 = 0.0032751 indicate the x- y- and z-size of
the cells at the corners of the plate in the three directions; kx is 1 for 0 ≤ x ≤ 1/6 and 1.05
otherwise; ky = 1.04; kz is 1.03 for −3 ≤ z ≤ 3 and 1.04 otherwise. The simulation is advanced
with the Crank–Nicolson time scheme for a time interval of 630Ly/U∞; the time step is set to
∆t = 0.00125 which corresponds to a CFL ≈ 0.5. The boundary conditions of the problem are
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Figure 13: Three-dimensional visualisation of the steady three-dimensional at Re = 60. The white isosurface denotes
U = 0 and highlights the recirculating region behind the plate. The color contours show the streamwise velocity at
different stations down the wake.

the no-slip condition on the surface of the plate together with unperturbed velocity (U∞, 0, 0)
at the inlet, symmetry conditions at the far field in the y and z directions and a homogeneous
Neumann condition for the velocity at the outlet.

In order to represent the shape of the unstable mode, the steady three-dimensional velocity
field has been subtracted from an instantaneous velocity field of the unsteady nonlinear simula-
tion. To compute such steady-state solution, corresponding to the baseflow in the linear stability
analysis [2], we carried out an additional simulation inhibiting the onset of the instability by
imposing the symmetry of the flow with respect to the two symmetry planes of the plate aligned
with the free-stream velocity. Therefore, the simulation is carried out considering only 1/4 of the
overall computational domain, i.e. −15 ≤ x ≤ 20, 0 ≤ y ≤ 20 and 0 ≤ z ≤ 20, using symmetry
boundary conditions on the planes y = 0 and z = 0. This simulation is carried out with the same
parameters described above and is advanced in time until the steady state is reached, i.e. when
the difference of the velocity between two successive iterations is ≤ 10−5. Figure 13 shows the
three-dimensional base flow obtained after mirroring it with respect to the two symmetry planes.
The white isosurface indicates U = 0 and highlights the recirculation region downstream the
plate, whereas the contour of U is shown in different stations downstream the place. The figure
closely recalls what found in [2]; indeed, both the U = 0 isosurface and the evolution of U in
the wake have the same spatial evolution. To be more quantitative we found that the length of
the recirculation region is Lb ≈ 6.34 that is very close to the value of Lb = 6.33 found in [2], the
difference being about 0.15%.

The simulation carried out on the complete domain reveals that at this Reynolds number
the wake is unstable: an unstable mode is found to break the top/bottom symmetry. Figure 14
shows the power spectral density of the v velocity component computed at the point (x, y, z) =

(0.2189, 0.3458, 1.7400) via Fourier Transform. There is a clear spike, which reveals that the
frequency of the unstable mode is f ≈ 0.0835. This is again very close to the value f = 0.084
reported in [2]. The spatial distribution of the unstable mode is depicted in figure 15 with iso-
surfaces of positive (red) and negative (blu) streamwise velocity. As in [2], spatial structures of
alternating sign are observed to develop in the x direction in both the shear layers. Such structures
have opposite sign in the two shear layers as can be seen looking at the y − x plane.
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Figure 14: Power spectral density of the v velocity component computed at (x, y, z) = (0.2189, 0.3458, 1.7400).

Figure 15: Three-dimensional visualisation of the unstable mode for Re = 60. Isosurfaces of positive (red) and negative
(blu) streamwise velocity are shown in red and blue respectively. The isosurface of zero streamwise steady velocity is
displayed in white.
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6. Conclusions

We have presented an original finite-difference solver for the incompressible Navier–Stokes
equations, based on a direction-splitting fractional step method to advance the equations in time.
It extends the approach proposed by Guermond & Minev [24], with the important difference that
a co-located grid is used instead of a staggered one. The main characteristics of the solver are:
(i) the use of the direction-splitting technique for both the viscous and the pressure steps of the
algorithm; (ii) the use of the Schur-complement method for the parallelisation.

The solver is extremely efficient from the computational viewpoint. Indeed, combining the
direction-splitting technique with the discretization of derivatives through second-order central
differences leads to a computer code whose kernel consists in solving tridiagonal linear systems,
which takes place via the Thomas algorithm. The Schur-complement method allows a massive
and effective parallelisation of such solutions and of the code as a whole; we have demonstrated
very good parallel performance on thousands of processors, measuring a CPU time equal or less
than 6 × 10−7 seconds per time step and per point, with both weak and strong scaling.

The most notable feature of this solver is the use of a co-located grid combined with direction
splitting. This is an important step forward in view of its use combined with the immersed-
boundary technique, to deal for example with situations with moving boundaries of complex
shape, as in many fluid-structure interaction problems. In this case a co-located grid reduces the
required number of interpolations in comparison with the staggered case, further contributing
to the computational efficiency of the solver, while decreasing its algorithmic complexity. A
common disadvantage of using co-located grids is the need to annihilate the spurious modes of
the pressure. In the present solver, by virtue of the properties of the operator used in the penalty
step where the pressure is computed, no spurious pressure modes are observed, and there is no
need to add a stabilisation term in the formulation. Like other co-located methods, the present
approach conserves energy only in the limit of ∆t and ∆x approaching zero. Therefore, the space
and time resolution required for the direct numerical simulation of turbulent flows is higher than
in standard solvers, making the present approach less interesting for this kind of flows.

The second-order convergence in space and time have been assessed by using the solver on a
manufactured solution of the Navier–Stokes equations. Several tests have also been presented to
check the accuracy of the code with different sets of boundary conditions and flow phenomena,
including steady and time-dependent, internal and external flows .
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