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Abstract

Numerical method for the inverse problem on the identification of parameters for large-scale systems of non-
linear ordinary differential equations (ODEs) arising in systems biology is introduced. The method combines
Pontryagin optimization or Bellman’s quasilinearization with sensitivity analysis and Tikhonov regulariza-
tion. Embedding a method of staggered corrector for sensitivity analysis and by enhancing multi-objective
optimization enables application of the method to large-scale models with practically non-identifiable pa-
rameters based on multiple data sets, possibly with partial and noisy measurements. The method is tested
in two canonical benchmark models, such as three-step pathway modeled by 8 nonlinear ODEs with 36
unknown and two control input parameters, and a model of central carbon metabolism of Escherichia coli
described by a system of 18 linear ODEs with 116 unknown parameters. The numerical results demonstrate
superlinear convergence with a minimum data sets and with minimum measurements per data set, and
possibly with partial and noisy measurements. Software package qlopt is developed and posted in GitHub.
MATLAB package AMIGO2 is used to demonstrate advantage of qlopt over most popular methods/software
such as lsqnonlin, fmincon and nl2sol.

Keywords: kinetic models, parameter estimation, nonlinear ODEs, three step metabolic network, carbon
metabolism of Escherichia coli, superlinear convergence

1. Introduction

Systems Biology is an actively emerging interdisci-
plinary field between biology and mathematics, based
on the idea of treating biological systems as a whole
entity which is more than the sum of its interre-
lated components. These systems are networks with
emerging properties generated by complex interac-
tion of a large number of cells or organisms. The
mission is to reveal and understand the global prop-
erties of biological or bioengineering systems that oc-
cur through complex interactions on a microscopic
level. One of the major goals of systems biology
is to reveal, understand, and predict such proper-
ties through the development of mathematical models
based on experimental data. In many cases, predic-

tive models of systems biology are described by large
systems of nonlinear differential equations. Quan-
titative identification of such systems requires the
solution of inverse problems on the identification of
parameters of the system. Inverse problems are ill-
posed, meaning that a solution may not exist, may
not be unique, and most importantly, may not be
continuously dependent on the measurements. Since
measurements always contain some error, it is impos-
sible to solve inverse problems without regularization
techniques [1, 2].

Ill-posedness of the inverse problems in large scale
models of systems biology is strongly associated with
the problem of correlation of parameters, expressed
in explicit or implicit functional relation between the
group of unknown parameters. Correlation of pa-
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rameters in realistic large scale models is unavoid-
able, for it is motivated by biological phenomena
of correlation between dynamics and signatures of
genes and proteins. This creates an essential ob-
stacle in solving the inverse problems for many Sys-
tems Biology models [3, 4, 5, 6]. The major diffi-
culty arises due to the fact that correlated param-
eters in general cannot be identified uniquely via
measurements. Therefore, correlated parameters are
called non-identifiable. Besides unknown parameters,
large-scale models include control input parameters,
which are used for experimental design and measure-
ments. Non-identifiable parameters are called struc-
turally non-identifiable, if correlation of parameters
is independent of control input parameters. Struc-
tural non-identifiability of parameters is an intrin-
sic property of the model and cannot be resolved
with additional or more accurate measurements. On
the other hand, if correlation of parameters depends
on control input parameters, it is possible that non-
identifiable parameter set can be remedied to be iden-
tifiable with improved and/or additional measure-
ments. In this case parameters are called practically
non-identifiable [1, 3, 4, 5, 6, 7, 8]. Besides the diffi-
culties associated with ill-posedness of inverse prob-
lems, nonlinearity of the system causes extreme sen-
sitivity with respect to the parameters. Therefore,
delicate sensitivity analysis is of high demand [9]. In-
verse problems on the identification of parameters in
systems biology are an actively growing research area
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 2, 21, 22].
We refer to survey articles [11, 23, 19, 24] for the ex-
tensive list of references. Standard popular approach
to parameter identification problem in systems biol-
ogy is its formulation as nonlinear optimization prob-
lem with objective to find unknown parameters via
minimization of the mismatch or residual between
experimental data and model dynamics. Ultimate
goal is to develop a global optimization method with
least computational cost, which is robust with re-
spect to nonlinearities and scales well with problem
size [24]. Currently such an ideal method does not
exist. Local methods can be classified as gradient-
based methods ([25]) and gradient-free ones [26, 27].
Gradient based methods are very effective, but they
only provide convergence to local optima. Gradient-

free methods are less efficient, and has slow conver-
gence rate [27]. Global optimization methods can be
classified as stochastic ([28]) and deterministic ones
[29]. Stochastic global optimization algorithms are
implementing pseudorandom sequences to determine
search directions toward the global optimum. Most
effective class of stochastic methods are pure random
search and adaptive sequential methods, clustering
methods, population-based methods and nature in-
spired methods [30, 19]. Advantage of popular global
stochastic methods such as simulated annealing, par-
ticle swarm optimization, or genetic algorithms is
their scalability, but the downside is high compu-
tational cost [31]. Deterministic local optimization
methods can be used as global optimization method
by embedding "Multi-start" strategy into it which fa-
cilitates many optimization runs from randomly se-
lected initial parameter guesses [19, 23]. Latin hy-
percube sampling [32] for partition of the parameter
space is used to guarantee that each parameter esti-
mation iteration starts with initial guess from differ-
ent region in parameter space.

Some of the most popular local optimization meth-
ods available as open source software ([19, 33, 34]) are

• Levenberg-Marquardt algorithm and trust-
region-reflective method (function lsqnonlin in
MatLab) [10];

• Sequential Quadratic Programming (function
fmincon in MatLab Optimization toolbox);

• An adaptive non-linear least-squares algorithm
(function nl2sol in MatLab) [20].

One can also consider so called hybrid optimization
algorithms as a combination of stochastic and deter-
ministic algorithms: first candidate set of parameter
values are generated by stochastic algorithm, followed
by deterministic iterative algorithms by choosing can-
didate set elements as initial guesses [23, 19]. In [23]
comprehensive comparison of 15 optimization algo-
rithms from three groups is pursued. 12 stochastic
optimization algorithms ([35]) were compared with a
deterministic trust region algorithm ([36]) in combi-
nation with Latin hypecube sampling and two dif-
ferent approaches for calculating derivatives of the
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objective function: finite difference approximation
and analytically derived sensitivity equations. The
results show that multi-start deterministic optimiza-
tion using the sensitivity equations for the calcula-
tion of derivatives significantly outperforms all other
tested algorithms. The performance of stochastic op-
timization algorithms was surprisingly low compared
to the hybrid and fully deterministic optimization al-
gorithms [23] .

In another recent paper [24] collection of bench-
mark problems were selected to evaluate the perfor-
mance of two families of optimization methods:

• multi-start local optimization (MS),

• enhanced scatter search metaheuristic (eSS),

the latter may be combined with deterministic local
searches, leading to hybrid methods. Selected local
optimization methods were

• nl2sol-FWD: the nonlinear least-squares algo-
rithm nl2sol, using forward sensitivity analysis
for evaluating the gradients of the residuals.

• fmincon-ADJ: the interior point algorithm in-
cluded in fmincon, using adjoint sensitivities for
evaluating the gradient of the objective function.

• dhc-a gradient-free dynamic hill climbing algo-
rithm.

• eSS without any local methods (NOLOC) and
particle swarm optimization (PSO) [37].

Comprehensive evaluation of [24] clearly shows that
high-quality sensitivity calculation methods provide a
competitive advantage to local methods that exploit
them. Optimization using adjoint and forward sen-
sitivity analysis fmincon −ADJ and nl2sol − FWD

usually outperform the gradient-free alternative dhc.
The combinations of eSS with gradient-based meth-
ods, eSS-fmincon-ADJ and eSS-nl2sol-FWD, clearly
outperform the gradient-free alternatives, eSS-dhc
and eSS-NOLOC, as well as the gradient-free PSO.

The comparison analysis performed in [23, 24]
demonstrates that robust deterministic local opti-
mization methods embedded with MS or eSS strat-
egy, and with sharp sensitivity analysis platform are

the best candidates for creation of powerful global op-
timization methods for large-scale models of systems
biology.

The goal of this paper is to develop effective local
optimization method for solving inverse problems on
the identification of finite-dimensional parameter sets
for the large-scale systems of nonlinear ODEs aris-
ing in Systems Biology, and to develop an effective
software which is competitive with currently known
popular methods/software such as lsqnonlin, fmincon
and nl2sol.

In [38] we implemented the numerical method, in-
troduced originally in [39, 40], for the solution of
the inverse problems for the canonical models of Sys-
tems Biology. The iterative method combines ideas
of Pontryagin’s optimization or Bellman’s quasilin-
earization with sensitivity analysis and Tikhonov reg-
ularization. Extensive computational analysis pur-
sued in [38] demonstrates that the method is very
well adapted to canonical models of system biology
with moderate size parameter sets and has quadratic
convergence. Software package qlopt was devel-
oped and posted in GitHub [41]. MATLAB pack-
age AMIGO2 [19] was used to demonstrate the com-
petitiveness and advantage of qlopt with other most
popular local search methods like lsqnonlin, fmincon,
nl2sol.

However, direct adaptation and scalability of the
method implemented in [38] to inverse problems with
significantly larger size was not as effective. In this
paper we introduce a modification of the method
which is effective to solve the inverse problem on
the identification of parameters for large scale mod-
els in systems biology. In Section 2 we introduce the
new modified method accompanied with two types of
Tikhonov regularization algorithms. The modifica-
tion is twofold.

• Method of staggered corrector [42] is embedded
into the step of calculation of the sensitivity vec-
tors. Precisely, instead of solving linearized sys-
tem and associated sensitivity system, we first
solve original system through quasilinearization
[43], and then use its solution to solve linear
sensitivity system corresponding to the origi-
nal nonlinear system. We use software package
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CVODES [44] to implement the method of stag-
gered corrector into our algorithm.

• Multi-objective optimization is added to the
method which enables the application of the
method to large-scale models that are practically
non-identifiable due to parameter correlation.

In Section 3 we present results and analysis of the ap-
plication of the method to benchmark kinetic model
of a biological network for a three-step pathway mod-
eled by 8 nonlinear ODEs describing 8 metabolic con-
centrations with 36 unknown parameters and two
control input parameters specifying the experimen-
tal design. Section 3.1 presents the results for noise-
free simulated data. It is demonstrated that 5 to 16
data sets are satisfactory to uniquely identify all 36
parameters with high precision. This is followed by
Section 3.2 where we demonstrate that the delicate
implementation of the Tikhonov regularization with
optimal choice of the regularization parameter signif-
icantly affects the convergence rate and precision of
the algorithm. In the following Section 3.3 we demon-
strate the effect of the number of time measurements
for each component of the system on the convergence
and accuracy of the method. Subsequently in Sec-
tion 3.4 we explore in depth the major question of
identifiability of the parameters with minimum num-
ber of data sets. It is demonstrated that minimum
five data sets are required to identify uniquely all
parameters with high precision. Section 3.5 demon-
strates that the careful implementation of the Type
II Tikhonov regularization significantly improves the
convergence range of the algorithm. In Section 3.6
we apply the method to simulated noisy data and
demonstrate its robustness. Section 3.7 presents nu-
merical analysis of the rate of convergence of the
method. Section 3.8 demonstrates the robustness of
the method with respect to partial measurements.
In Section 3.9, we pursue comparison and demon-
strate the competitiveness and the advantages of our
method and the associated software package qlopt
against most advance methods/software like lsqnon-
lin, fmincon, nl2sol.

In Section 4 we analyze benchmark kinetic model of
central carbon metabolism of Escherichia coli mod-
eled by 18 linear differential equations for the con-

centrations of 17 intracellular metabolites and ex-
tracellular glycose [45, 46]. We apply the method
to inverse problem on the identification of 116 pa-
rameters which express kinetic properties and maxi-
mum reaction rates. Section 4.1 presents the results
with noise-free simulated data. High accuracy and
robustness of the method with respect to number
of time-measurements both in linear and logarithmic
scale, convergence with partial measurements, and
superlinear convergence rate is demonstrated. In Sec-
tion 4.2 we apply the method to simulated noisy data
and demonstrate its robustness. Section 4.3 demon-
strates that the careful implementation of the Type
II Tikhonov regularization significantly increases con-
vergence range of the method in logarithmic scale.

Finally, in Section 5 we outline the main conclu-
sions.

2. Description of the Method

Consider a dynamical system:

dx

dt
= f(t,x,u,v), t0 ≤ t ≤ t1 (1)

x(t0) = x
0 ∈ R

n, (2)

where

x = x(t) = (x1(t), x2(t), . . . , xn(t)) : [t0, t1] → R
n

is the state vector,

u = (u1, u2, . . . , um) ∈ R
m

is the unknown parameter vector,

v = (v1, v2, . . . , vp) ∈ R
p

is the control input parameter vector, and

f = (f1(t,x,u,v), f2(t,x,u,v), . . . , fn(t,x,u,v)) :

[t0, t1]× R
n × R

m × R
p → R

n

is a continuous vector function with continuous
derivatives

∂f

∂x
,
∂f

∂u
.

4



Consider inverse problem of finding the parameter
u given D measurements for the state vector x cor-
responding to D fixed values of the control vector v:

x = x
d(t) = x

d(t;u) := x(t,u,vd), d = 1, ..., D

on an interval t0 ≤ t ≤ t1, where x
d(t0) = x

0.
Having chosen the initial vector function x

d
N,0 (say,

x
d
N,0 = x

d(t)), and initial approximation u = u0, we
implement quasilinearization of (1) ([43]) and at each
fixed iteration N = 1, 2, ... we find the solution as a
limit

x
d
N (t) = lim

p→∞
x
d
N,p(t), t0 ≤ t ≤ t1, (3)

where xd
N,p solves the linear system of ODEs in [t0, t1]

with u = uN−1:

dxd
N,p

dt
= f(t,xd

N,p−1,u,v
d)+

J(t,xd
N,p−1,u,v

d)(xd
N,p − x

d
N,p−1), (4a)

x
d
N,p(t0) = x

0, (4b)

where

J(t,x,u,v) =
∂f(t,x,u,v)

∂x

is the n×n Jacobian matrix. It is well known that
the convergence (3) has a quadratic rate [43]. Given
the initial guess u0 of the unknown parameter u, we
identify at every step of the iteration a new approxi-
mation

uN = uN−1 +∆u, (5)

which minimizes the L2-norm of the residues

R = x
d(t,u)− x

d
N (t,u

N
).

We have

R = ∆x
d
N (t)−Ud

N∆u+o(|∆u|), as |∆u| → 0, (6)

where

∆x
d
N (t) = x

d(t,u)− x
d
N (t,uN−1),

Ud
N is an n×m sensitivity matrix with columns

U
d,j
N =

(∂xd
N (t,uN−1)

∂uj

)

, j = 1, ...,m.

Ud
N solves the matrix differential system

dUd
N

dt
=

∂

∂u
f(t,xd

N ,uN−1,v
d)+

J(t,xd
N ,uN−1,v

d)Ud
N , t0 ≤ t ≤ t1 (7a)

Ud
N(t0) = 0, (7b)

where x
d
N is the solution of (1),(2) with u =

uN−1,v = v
d as it is constructed in (3). Finding

x
d
N , Ud

N from (3), (4), (7) form the method of stag-
gered corrector [42].

To find ∆u, we minimize the multi-objective func-
tion

J (∆u) =

D
∑

d=1

||∆x
d
N − Ud

N∆u||2Ln
2
(t0,t1)

, (8)

where Ln
2 (t0, t1) is a Hilbert space of vector functions

g : (t0, t1) → R
n with inner product

(g, h)Ln
2
(t0,t1) =

∫ t1

t0

gThdt.

We have

J ′
N (∆u) = 2

D
∑

d=1

t1
∫

t0

[

(Ud
N )TUd

N∆u− (Ud
N )T∆x

d
N

]

dt,

J ′′
N (∆u) = 2

D
∑

d=1

t1
∫

t0

(Ud
N )TUd

Ndt.

Therefore, minimum ∆u satisfies the following sys-
tem of linear algebraic equations

AN∆u = PN , (9)

where

AN =

D
∑

d=1

t1
∫

t0

(Ud
N )TUd

Ndt =
(

a
ij
N

)m

i,j=1

is an m×m symmetric matrix with elements

a
ij
N =

D
∑

d=1

∫ t1

t0

(∂xd
N (t,uN−1)

∂ui

)T ∂xd
N (t,uN−1)

∂uj
dt,
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and

PN =
D
∑

d=1

t1
∫

t0

(Ud
N )T∆xNdt =

(

p
j
N

)m

j=1

is an m-vector with elements

p
j
N =

D
∑

d=1

∫ t1

t0

(∂xd
N (t,uN−1)

∂uj

)T

(xd(t,u)

−xd
N (t,uN−1))dt.

In fact, AN is a sum of Gram matrices Ad
N of vectors

U
d,j
N , and

a
ij
N =

D
∑

d=1

(Ud,i
N , U

d,j
N )Ln

2
(t0,t1).

It is known [47] that

det(Ad
N ) = Γ(Ud,1

N , ..., U
d,m
N ) ≥ 0

and it is positive, that is to say, Ad
N is non-singular, if

and only if the vectors U
d,j
N , j = 1, ...,m are linearly

independent.
Hence, we suggest the following modfication of the

numerical algorithm from [39].

2.1. Algorithm

1. Initialize u0 and set N = 1.
2. Set x

d
N,0(t) and find x

d
N (t,uN−1) via quasilin-

earization from (3),(4).
3. Having x

d
N (·,uN−1) find sensitivity matrices Ud

N

by solving linear ODE system (7).
4. Find ∆u by solving linear algebraic equations

system (9) and update the new value uN of the
parameter using (5).

5. If satisfactory accuracy is achieved, then termi-
nate the process, otherwise replace N with N+1
and go back to Step 2. As termination criteria,
the smallness of either of the expressions

|u
N−1

−u
N
|, JN (∆u),

D
∑

d=1

||xd(·)−x
d
N (·,uN )||Ln

2

can be used.

2.2. Regularization

As in [38] we implement two types of Tikhonov
regularization. Type I regularization is performed by
replacing the function (8) with

D
∑

d=1

(

||∆x
d
N − Ud

N∆u||2Ln
2

)

+ α|∆u|2. (10)

This yields the following linear system instead of (9)

(AN + αI)∆u = PN (11)

where I is the identity matrix and α is a regulariza-
tion parameter. Type II regularization is performed
by replacing the function (8) with

D
∑

d=1

||∆x
d
N −Ud

N∆u||2Ln
2
+α|uN−1+∆u−u

∗|2 (12)

where u∗ is a known vector expected to be close to the
true value of the unknown parameter. This implies
the following linear system instead of (9):

(AN + αI)∆u = PN + α(u∗ − uN−1). (13)

2.3. Identifiability vs. Practical Non-identifiabilty

Convergence of the algorithm is connected to the
identifiability of unknown parameters. In fact, dth
Gram matrix summand Ad

N of AN in (9) is called
Fisher information matrix (FIM) for the ODE sys-
tem (1), which characterizes the information con-
tent of the experimental measurement in the dth
data set. Singularity of Ad

N is equivalent to lin-
ear dependence of the sensitivity vectors U

d,j
N , j =

1, ...,m. From (7) it follows that the latter is equiva-
lent to linear dependence of the columns of the ma-
trix ∂

∂u
f(t,xd

N ,uN−1,v
d), which is, in general, equiv-

alent to correlation of parameters. Hence, singularity
of the matrix AN is equivalent to non-identifiability
of parameters. However, note that the matrix ∂f

∂u

depends on the control input parameter v. There-
fore, if selection of v can arrange independence of
the columns of the matrix ∂f

∂u
, the correlation of pa-

rameters will be remedied, and parameters will be
practically non-identifiable. This will guarantee non-
singularity of AN , and convergence of the algorithm
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can be established. The major goal is to pursue ex-
perimental design and collection of measurements for
carefully selected values of the control parameter v,
so that the algorithm converges to the unique solu-
tion of the inverse problem. Yet another difficulty
arises when AN is non-singular but detAN is suf-
ficiently small, and for computer simulation AN is
treated as a singular matrix [48, 17, 8]. Our two reg-
ularization algorithms are developed to address such
practical non-identifiability cases. A major factor for
the convergence of the algorithm for the identifica-
tion of practically non-identifiable parameters is the
increase of number of data sets D. Specifically, there
is a minimum number of data sets with different in-
puts of control parameters for experimental design
needed to relieve the parameter correlations and ac-
quire suitable measurement data for unique parame-
ter estimation [4].

3. Benchmark Model 1: Biological Network

for a Three-step Pathway

We tested the method on a benchmark model of
a biological network for a three-step pathway mod-
eled by 8 nonlinear ODEs describing 8 metabolic con-
centrations and 36 parameters pi, i = 1, ..., 36 ([49]).
Two parameters P and S are control input param-
eters specified by the experimental design. The un-
known parameters pi are correlated, but their func-
tional relationship with one another is dependent on
the input parameters P and S, and in general pa-
rameters are practically non-identifiable, and can be
identified with multiple data sets. In [31], the in-
verse problem was analyzed with 16 noise-free data
sets, and in [8] with 16 both noise-free and noisy data
sets. The results demonstrated strong parameter cor-
relations in several groups, with accurate parameter
values identified in [8]. Parameter correlations were
analyzed in [4]. It is demonstrated that correlated
parameters are practically non-identifiable for a sin-
gle data set and at least 5 data sets with different
control inputs are required to uniquely estimate the
36 parameters of this model.

ẋ1 =
p1

1 +
(

P
p2

)p3

+
(

p4

S

)p5

− p6x1

ẋ2 =
p7

1 +
(

P
p8

)p9

+
(

p10

x7

)p11
− p12x2

ẋ3 =
p13

1 +
(

P
p14

)p15

+
(

p16

x8

)p17
− p18x3

ẋ4 =
p19x1

p20 + x1
− p21x4

ẋ5 =
p22x2

p23 + x2
− p24x5

ẋ6 =
p25x3

p26 + x3
− p27x6

ẋ7 =
p28x4 (S − x7)

p29

(

1 + S
p29

+ x7

p30

) −
p31x5 (x7 − x8)

p32

(

1 + x7

p32
+ x8

p33

)

ẋ8 =
p31x5 (x7 − x8)

p32

(

1 + x7

p32
+ x8

p33

) −
p34x6 (x8 − P )

p35

(

1 + x8

p35
+ P

p36

)

For our experiments we used the common val-
ues for the initial conditions (6.6667e− 1, 5.7254e−
1, 4.1758e − 1, 4.0e − 1, 3.6409e − 1, 2.9457e −
1, 1.419, 9.3464e− 1), with t0 = 0 and t1 = 120. True
values of 36 parameters are outlined in last columns
of Tables 2 and 3 in Appendix. We implemented 16
input parameters given in AMIGO2 [19] (Table 4 in
Appendix) and 5 input parameters given in [4] (Ta-
ble 5 in Appendix) for our experiments. We chose
the regularization parameter α as a function of the
residual:

D
∑

d=1

C||xd − x
d
N ||γL2

(14)

where C, γ > 0 are chosen experimentally.

3.1. Numerical Results with Noise-free Data Sets

We applied the numerical method to identify the
36 parameters with 16 and 5 data sets. We generated
simulated measurements for each data set by solving
the system of 8 nonlinear ODEs with true values of 36
parameters. We chose the number of time data points
for each of the 8 components of the system either at
240 or at 20 uniformly distributed time grid points in
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0 2 4 6 8 10

10−4

10−3

10−2

10−1

100

Iteration

1 D

∑

D d
=
1
||
x
d
−
x
d N
||

Figure 1: The average error at each iteration with (green) 16
data sets, t0 = 0, t1 = 120, ∆t = 0.5, i.e. 240 time points.
Regularization parameter α was determined using (14) where
C = 0.009 and γ = 2; (black) with 5 data sets, t0 = 0, t1 =
120, ∆t = 0.5, i.e. 240 time points. Regularization parameter
α was determined using (14) where C = 0.25 and γ = 1;
(blue) with 16 data sets, t0 = 0, t1 = 120, ∆t = 6.0, i.e.
20 time points. Regularization parameter α was determined
using (14) where C = 0.005 and γ = 2; (red) with 5 data sets,
t0 = 0, t1 = 120, ∆t = 6.0, i.e. 20 time points. Regularization
parameter α was determined using (14) where C = 0.25 and
γ = 2.

the segment [0, 120]. Computational cost of each it-
eration per one data set consists of iterative solution
of the system of 8 nonlinear ODEs through quasi-
linearization; solving a system of 288 linear ODEs
to identify sensitivity matrix-function; calculation of
1332 integrals for entries of the matrix AN and vector
PN ; and finally solving a system of 36 linear algebraic
equations to find the increment of the parameters.
The green line in Figures 1 and 2 demonstrate the
results for 16 data sets with 240 time points. Rapid
convergence to the true solution happens in only 7
iterations. Next we applied the method with 5 data
sets. Though it required 3 extra iterations, the black
line in Figures 1 and 2 demonstrate the rapid conver-
gence of the method with reduced error.

Next we applied the method by choosing measure-
ments at 20 time grid points for each of the 8 com-
ponents. The results are demonstrated for 16 and
5 data sets in Figures 1 and 2 by the blue and red
lines, respectively. The algorithm converges in the
same number of iterations with respect to the num-

2 4 6 8 10

10−4

10−3

10−2

10−1

100

Iteration

|u
−
u
N
|

Figure 2: The average parameter error at each iteration with
the same configurations as in Figure 1.

ber of data sets, while maintaining around the same
level of accuracy, as demonstrated in Figures 1 and 2.

3.2. Effect of the Regularization Parameter α

The choice of the regularization parameter α is
an important factor which significantly improves the
convergence rate and computational cost of the algo-
rithm. To demonstrate the existence of the optimal
non-trivial value of α at every fixed step N , we con-
sidered profiles of α vs |uN−1+∆u−u|, where u is the
true solution. Figure 3 corresponds to the 2nd and
4th iterations of the green line in Figure 1. Similarly,
Figure 4 corresponds to 3rd and 6th iteration of the
black line in the same figure. In each example there is
a clear minimum which is the best choice of the regu-
larization parameter. The bullets on the graph corre-
sponds to our choice of the regularization parameter
according to the residual method (14). In fact, op-
timal or nearly optimal choice of the regularization
parameter significantly increases convergence rate of
the method from geometric to be close to quadratic
convergence (see Section 3.7). The residual method
provides a close, but not necessarily optimal value of
α. Figure 3 demonstrates that our choice of the reg-
ularization parameter by the residual method is op-
timal. However, Figure 4 demonstrates that residual
method doesn’t necessarily provide optimal choice of
α. This analysis demonstrates that there is room for
improvement of the convergence rate of the algorithm
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u
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|

Iteration 2

Iteration 4

Figure 3: Profile of α at the 2nd and 4th iteration. Corre-
sponding to the green line in Figure 1.

through implementation of a more effective method
for the search of regularization parameter α without
significantly affecting computational cost.

3.3. Convergence vs. Number of Data Points

The method is very robust and convergence is still
the case if the number of data points is reduced to a
single time measurement at the end of the time in-
terval for each of the 8 components of the system.
Figure 5 demonstrates the dependence of the num-
ber of time measurements for each component on the
average error

1

D

D
∑

d=1

||xd − x
d
N ||Ln

2

calculated at the final iteration in the experiment
with D = 5 data sets. Three graphs correspond to
three different settings of the relative and absolute
tolerances for CVODES. Decrease of the latter in-
creases the overall accuracy of the result. Similar
dependence in the experiment with 16 data sets and
with CVODES tolerance being set up at 1×10−6 is
demonstrated in Figure 6. Some of the variation in
the chart can be attributed to error accumulation and
noise.

10−4 10−2 100 102 104
0

0.5

1

α

|u
N

−
1
+
∆
u
−
u
|

Iteration 3

Iteration 6

Figure 4: Profile of α at the 3rd and 6th iteration. Corre-
sponding to the black line in Figure 1.

100 101 102

10−6

10−5

10−4

10−3

10−2

# of data points per data set

1 D

∑

D d
=
1
||
x
d
−
x
d N
||

1×10
−6

1×10−7

1×10−8

Figure 5: Graph of the number data points per data set vs.
1

D

∑D
d=1

||xd − x
d
N
|| using 5 data sets, where u0 = 1.25u.

Relative and absolute tolerance for CVODES set to
1×10−6, 1×10−7, and 1×10−8.
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Figure 6: Graph of the number time points vs. 1

D

∑D
d=1

||xd−

x
d
N
|| using 16 data sets, , where u0 = 1.25u.

Relative and absolute tolerance for CVODES set to
1×10−6

3.4. Convergence vs. Number of Data Sets

Our numerical analysis confirms the result of [4]
that at least 5 data sets with different control inputs
are required to uniquely estimate the 36 parameters
of this model. Tables 2 and 3 in Appendix demon-
strate the results of the numerical experiments when
the number of data sets vary from 1 to 5, and time
measurements for each of the 8 components of the
system is 240 and 20 respectively. Table 2 demon-
strates that when the number of data sets increases
from 1 to 5 with accuracy 10−3, the number of identi-
fied parameters increases as 22, 27, 32, 34 and 36 ac-
cordingly, provided that 240 time measurements are
given. Table 3 demonstrates that with 20 time mea-
surements the same number increases as 11, 24, 32,
33, 36.

3.5. Range of convergence

We define the range of convergence as a neighbor-
hood of the true solution u in R

36 such that for any
u0 chosen from it, the sequence uN constructed ac-
cording to our algorithm converges to u. Consider
the rectangular prism neighborhood of u:

Pω
τ = {p ∈ R

36 : τui ≤ pi ≤ ωui, i = 1, ..., 36}

0 5 10
10−4

10−3

10−2

10−1

100

101

Iteration

1 D

∑

D d
=
1
||
x
d
−
x
d N
||

u0 = 0.5u

u0 = 1.65u

Figure 7: The evolution of the error, with 5 data sets, using
Type I regularization, starting at varied u0, t0 = 0, t1 = 120,
∆t = 0.5, i.e. 240 time measurements are given. Regulariza-
tion parameter α was chosen optimally.

where τ and ω are two positive real numbers satis-
fying τ < 1 < ω. Numerical analysis demonstrates
that for our model example, P1.65

0.5 is the largest rect-
angular prism contained in the convergence range ac-
cording to the algorithm accompanied by Type I reg-
ularization. Figure 7 demonstrates the convergence
with initial iteration u0 chosen at extremes of P1.65

0.5 ,
namely 0.5u and 1.65u, respectively.

Careful implementation of Type II regularization
allows significant expansion of the convergence range.
In fact, by selecting u

∗ at the extremes of P1.65
0.5 ,

namely u
∗ = 0.5u and u

∗ = 1.65u we increased
the convergence range to P∞

0.03 according to the algo-
rithm accompanied by Type II regularization. Fig-
ure 8 demonstrates the results of convergence of the
method with Type II regularization when u

∗ = 0.5u,
and initial iteration is chosen as 0.03u. It also demon-
strates the results when u

∗ = 1.65u, and initial iter-
ation is chosen as 1001u.

3.6. Convergence with Noisy Measurements

We pursued numerical experiments with simulated
noisy data with Gaussian noise

yi = xd
i (t;u) + pxd

i (t;u)νi, i = 1, ..., n (15)

10



0 5 10 15

10−4

10−2

100

Iteration

1 D

∑

D d
=
1
||
x
d
−
x
d N
||

u0 = 0.03u

u0 = 1001u

Figure 8: The evolution of error with 5 data sets, using Type
2 regularization, starting at varied u0, t0 = 0, t1 = 120, ∆t =
0.5, i.e. 240 time measurements are given. Regularization
parameter α was chosen optimally.

where p is a percentage and νi is a random variable
with standard normal distribution:

νi ∼ N(0, 1).

Figure 9 demonstrates the convergence in the exper-
iment with 5 data sets and 240 noisy time measure-
ments with p = 1, 3 and 5. In Figures 10 and 11 we
show the box plot based on 100 simulations for the
residual and parameter vector error dependence on
the noise percentage p. Similar results with 20
noisy time measurements are given in Figure 12.

3.7. Rate of convergence

To estimate the convergence rate γ from the rela-
tion

|uk+1 − uk| ∼ C|uk − uk−1|
γ

we plot log |uk+1 − uk| vs. log |uk − uk−1| and find
a line of best fit to identify γ and C. Figures 13
and 14 demonstrate the outcome. For the numerical
experiment for the green line in Figure 1 we have
γ = 1.6104, C = 3.1622E−3, and for the black line we
have γ = 1.1674, C = 6.3271E − 1. The difference in
convergence rate of two examples is in particular due
to choice of the regularization parameter α. Choosing
the optimal choice for α, as it is demonstrated in
Figure 3 vs. Figure 4, causes higher convergence rate

0 2 4 6

10−0.5

100

Iteration
1 D

∑

D d
=
1
||
x
d
−
x
d N
||

1%

3%

5%

Figure 9: The evolution of error for varied levels of noise us-
ing 5 data sets, t0 = 0, t1 = 120, ∆t = 0.5, i.e. 240 time
measurements are given.
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Figure 10: Distribution of the average residual error for several
noise levels. Each run had 240 time measurements.
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Figure 11: Distribution of the parameter error at several noise
levels. Each run had 240 time measurements.
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Figure 12: The evolution of error for varied levels of noise
using 5 data sets, t0 = 0, t1 = 120, ∆t = 6.0, i.e. 20 time
measurements are given.
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Figure 13: The convergence rate graph corresponding to green
curve in Figure 1, where r = 1.6104 and C = 3.1622E − 3.

for the numerical experiment expressed in Figure 13
vs. Figure 14. We expect theoretical convergence
rate of the method is quadratic [39].

3.8. Convergence with Partial Measurements

We tested the convergence of the method when
only some of the components of the system have avail-
able measurements or partial measurements. In this
case the inverse problem must be solved with partial
observations. A typical result is demonstrated in Fig-
ure 15. We considered our numerical experiment with
5 data sets, and with 20 time measurements of only
components 3, 4, 5, and 7. Figure 15 demonstrates
the convergence, although convergence rate slowed
down in comparison with the experiment when full
set of measurements are given.

3.9. Comparison with lsqnonlin, nl2sol and fmincon

As in our previous paper [38] we are comparing our
method qlopt with the most popular methods avail-
able as open software [19, 33, 34] such as

• Levenberg-Marquardt algorithm and trust-
region-reflective method (function lsqnonlin in
MatLab) [10].

• An adaptive non-linear least-squares algorithm
(function nl2sol in MatLab) [20].
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Figure 14: The convergence rate graph corresponding to black
curve in Figure 1, where r = 1.1674 and C = 6.3271E − 1.
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Figure 15: The average error at each iteration for 5 data sets
with partial measurements given for 4 out of 8 states, t0 = 0,
t1 = 120, ∆t = 6.0, i.e. 20 time measurements for 4 compo-
nents are given. Regularization parameter α was determined
using (14) where C = 0.5 and γ = 2.

metric qlopt lsqnonlin nl2sol

r.e. 4.271×10−4 3.236×10−5 4.354×10−4

n.i. 8 16 7

c.t. (s) 1.389 7.656 5.043

f.e. 8 593 299

Table 1: Comparison of several local optimization methods
with the presented method for the three step metabolic net-
work. The relative errors (r.e.), the number of iterations (n.i.),
mean of the computational time (c.t.) of 20 runs, and the num-
ber of function evaluations (f.e.) are compared in numerical
experiment designed by AMIGO2 which contained 16 datasets
with 21 time measurements per component and per data set.

• Sequential Quadratic Programming (function
fmincon in MatLab Optimization toolbox)

We used model example provided by AMIGO2, which
had 16 data sets with each component evaluated at
21 time points giving a total of 2688 data points. We
ran each algorithm 20 times and recorded the average
relative error of the parameter values (r.e.), the me-
dian number of objective function evaluations (f.e.),
the average computational time (c.t.), and the median
number of iterations (n.i.). The results are demon-
strated in Table 1. Algorithm performed by fmincon
did not converge. All three other methods have a
comparable relative error. In terms of required num-
ber of iterations, our method is comparable to nl2sol,
and both have a clear advantage over lsqnonlin. In
terms of computational time and function evaluations
our method has an enormous advantage over both
methods. It should be noted that our software pack-
age qlopt is using C++ and Eigen, which gives an
advantage over MatLab-based methods with respect
to computational time.

4. Benchmark Model 2: Central Carbon

Metabolism of Escherichia coli

The method is tested in a benchmark model of cen-
tral carbon metabolism of Escherichia coli introduced
in [45] and labeled as model B2 in [46]. The math-
ematical model reproduces the response to a pulse
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in extracellular glucose concentration. It consists of
a system of 18 differential equations for the concen-
trations of metabolites, which include 17 intracellu-
lar metabolites and extracellular glycose. As in [46]
we consider inverse problem on the identification of
116 parameters which express kinetic properties and
maximum reaction rates.

4.1. Numerical Results with Noise-free Data

We applied the numerical method to identify the
116 parameters with one data set (d = 1). We gener-
ated simulated measurements by solving the system
of 18 linear ODEs with true values of 116 parame-
ters. We choose the number of time data points for
each of the 18 components of the system at 1200 uni-
formly distributed time grid points in the segment
[0, 300]. Note that since the system is linear, there is
no need on quasilinearization step in our algorithm.
Computational cost of each iteration consists of solu-
tion of the original system of 18 linear ODEs; solving
a system of 2088 linear ODEs to identify sensitiv-
ity matrix-function; calculation of 13572 integrals for
entries of the matrix AN and vector PN ; and finally
solving a system of 116 linear algebraic equations to
find the increment of the parameters. We applied
our algorithm by selecting number of uniformly dis-
tributed in [0, 300] data points varying between 1 and
1200. The method is extremely robust and conver-
gence is still the case if the number of data points
is reduced to a single time measurement at the end
of the time interval for each of the 18 components of
the system. Figure 16 demonstrates the dependence
of the number of time measurements for each com-
ponent on the Euclidean norm difference of the true
parameter vector from the parameter vector at the
final iteration. Figure 17 demonstrate the results of
the same experiment pursued in logarithmic scale. In
general, solving problems in the logarithmic scale im-
proves convergence, especially when the parameters
vary greatly in magnitude [24, 23].

Next, we pursued an experiment with partial mea-
surements: 100 data points taken only for the 9 com-
ponents of the system. This is similar to experiments
analyzed in [45, 46]. Figure 18 demonstrates rapid
numerical convergence. Error ||x − xN ||Ln

2
reaches

desired accuracy 10−5 in 8 steps, if initial iteration is
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|

Figure 16: Graph of the number time points vs. |ufinal − u|
for benchmark model 2; u0 = 1.75u, regularization parameter
α is chosen optimally.
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Figure 17: Graph of the number time points vs. | log(ufinal)−
log(u)| for benchmark model 2; u0 = 1.75u, regularization
parameter α is chosen optimally.
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|| for benchmark model

2 with partial measurement without noise; u0 = 1.75u.

chosen as u0 = 1.75u, where u is a true parameter
vector. Figure 19 demonstrates that the algorithm
maintains superlinear convergence rate.

4.2. Convergence with Noisy Measurements

We pursued numerical experiments with simulated
noisy data with Gaussian noise as in (15). Figure 20
demonstrates the box plot based on 100 simulations
for the parameter vector error dependence on the
noise percentage p changing between 1% to 10%. In
every experiment the iterative value of the regular-
ization parameter α was chosen optimally.

4.3. Range of convergence

Numerical analysis demonstrates that for our
model example B2 using the logarithmic scale for the
parameters, with the help of Type II regularization,
the convergence range can be extended to P105

0.05 (be-
fore log transformation). Figure 21 demonstrates the
convergence with initial iteration u0 chosen at ex-
tremes of P105

0.05, namely 0.05u and 105u, respectively.

5. Conclusions

This paper develops the numerical method for solv-
ing inverse problem on the identification of parame-
ters for large scale kinetic models in systems biology.
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Figure 19: The convergence rate graph corresponding to Fig-
ure 18, with r = 1.4444 and C = 0.5114.
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Figure 20: Distribution of the relative parameter error for the
benchmark model 2 at several noise levels. Each run had 100
data points.
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Figure 21: The evolution of error using type 1 regularization,
starting at varied u0, t0 = 0, t1 = 300, ∆t = 3.0, i.e. 100 time
points. Regularization parameter α was chosen optimally.

The iterative method combines ideas of Pontryagin
optimization or Bellman quasilinearization with sen-
sitivity analysis and Tikhonov regularization. Em-
bedding a method of staggered corrector for sensitiv-
ity analysis and by enhancing multi-objective opti-
mization enables application of the method to large-
scale models with practically non-identifiable param-
eters based on multiple data sets, possibly with par-
tial and noisy measurements. The method is tested
in two benchmark kinetic models, such as three-
step pathway modeled by 8 nonlinear ODEs with 36
unknown and two control input parameters, and a
model of central carbon metabolism of Escherichia
coli described by a system of 18 linear ODEs with
116 unknown parameters. Extensive analysis demon-
strates that the modified method is extremely well
adapted to large scale problems. The main conclu-
sions of the paper can be summarized as follows:

• There is a minimum number of data sets with
different control parameter inputs required to
achieve superlinear/quadratic convergence and
unique identifiability of parameters for large-
scale problems.

• Increase of data sets beyond the minimum
doesn’t significantly affect convergence rate and
accuracy, but possibly affects the computational
cost.

• The method is extremely robust in terms of re-
quired number of time measurements for com-
ponents of the system for every data set. For
the benchmark models, high accuracy is achieved
even with the single measurement for each com-
ponent at the final time instance.

• Optimal choice of the Tikhonov regularization
parameter significantly increases the conver-
gence rate and precision.

• The method is robust with respect to noisy mea-
surements. Simulating up to 5% Gaussian noise
in benchmark models does not affect the conver-
gence rate, but only adds some additional error
to final output in accordance with the noise level.

• Implementation of the Type II Tikhonov regu-
larization significantly increases the convergence
range of the algorithm.

• Method is robust with respect to partial mea-
surements. Application to the benchmark model
with measurements of only half of the compo-
nents demonstrates convergence with slightly re-
duced but still quite high accuracy.

• The method is highly competitive and has an ad-
vantage over popular methods such as lsqnonlin,
fmincon, nl2sol in terms of computational time,
number of iterations and function evaluations.

• Combination of the method with "multi-start"
strategy and latin hypercube sampling will open
a way to develop a powerful global optimization
method with least computational cost, which is
robust with respect to nonlinearities and scales
well with problem size
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6. Appendix

Tables 2 and 3 demonstrate the dependence of the
parameter identification on the number of data sets
1-5 for the Benchmark Model 1 (see Section 3.4).

~u 1 2 3 4 5 ~u

p1 0.99 0.99 1.00 1.00 1.00 1
p2 1.25 1.24 1.20 0.87 1.00 1
p3 2.50 2.49 2.47 2.34 2.00 2
p4 1.25 1.32 1.15 1.00 1.00 1
p5 2.50 2.48 1.89 2.00 2.00 2
p6 1.00 1.00 1.00 1.00 1.00 1
p7 1.00 1.00 1.00 1.00 1.00 1
p8 1.25 0.88 1.00 1.00 1.00 1
p9 2.50 2.31 2.00 2.00 2.00 2
p10 1.00 1.00 1.00 1.00 1.00 1
p11 2.00 2.00 2.00 2.00 2.00 2
p12 1.00 1.00 1.00 1.00 1.00 1
p13 1.00 1.00 1.00 1.00 1.00 1
p14 1.25 0.88 1.00 1.00 1.00 1
p15 2.50 2.30 2.00 2.00 2.00 2
p16 1.00 1.00 1.00 1.00 1.00 1
p17 2.00 2.00 2.00 2.00 2.00 2
p18 1.00 1.00 1.00 1.00 1.00 1
p19 0.10 0.10 0.10 0.10 0.10 0.1
p20 1.00 1.00 1.00 1.00 1.00 1
p21 0.10 0.10 0.10 0.10 0.10 0.1
p22 0.10 0.10 0.10 0.10 0.10 0.1
p23 1.00 1.00 1.00 1.00 1.00 1
p24 0.10 0.10 0.10 0.10 0.10 0.1
p25 0.10 0.10 0.10 0.10 0.10 0.1
p26 1.00 1.00 1.00 1.00 1.00 1
p27 0.10 0.10 0.10 0.10 0.10 0.1
p28 1.03 1.00 1.00 1.00 1.00 1
p29 1.28 1.00 1.00 1.00 1.00 1
p30 1.25 1.00 1.00 1.00 1.00 1
p31 1.00 1.00 1.00 1.00 1.00 1
p32 1.00 1.00 1.00 1.00 1.00 1
p33 1.00 1.00 1.00 1.00 1.00 1
p34 1.00 1.00 1.00 1.00 1.00 1
p35 1.01 1.00 1.00 1.00 1.00 1
p36 1.26 1.00 1.00 1.00 1.00 1

Table 2: The evolution of the parameters vs. the number of
data sets changing from 1 to 5, with t0 = 0, t1 = 120, ∆t = 0.5,
240 time measurements for each of the 8 components are given,
u0 = 1.25u, and α is determined using (14).
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~u 1 2 3 4 5 ~u

p1 0.96 0.99 1.00 1.00 1.00 1
p2 1.25 1.25 1.20 0.84 1.00 1
p3 2.50 2.49 2.47 2.47 2.00 2
p4 1.25 1.32 1.15 1.00 1.00 1
p5 2.50 2.48 1.89 1.99 2.00 2
p6 0.97 1.00 1.00 1.00 1.00 1
p7 0.96 1.00 1.00 1.00 1.00 1
p8 1.25 0.88 1.00 1.00 1.00 1
p9 2.50 2.30 2.00 2.00 2.00 2
p10 0.99 1.00 1.00 1.00 1.00 1
p11 1.98 2.00 2.00 2.00 2.00 2
p12 0.96 1.00 1.00 1.00 1.00 1
p13 1.00 1.01 1.00 1.00 1.00 1
p14 1.25 0.88 1.00 1.00 1.00 1
p15 2.50 2.31 2.00 2.00 2.00 2
p16 1.00 1.00 1.00 1.00 1.00 1
p17 2.00 1.99 2.00 2.00 2.00 2
p18 1.00 1.01 1.00 1.00 1.00 1
p19 0.09 0.10 0.10 0.10 0.10 0.1
p20 0.85 1.00 1.00 1.00 1.00 1
p21 0.10 0.10 0.10 0.10 0.10 0.1
p22 0.10 0.10 0.10 0.10 0.10 0.1
p23 0.99 1.00 1.00 1.00 1.00 1
p24 0.10 0.10 0.10 0.10 0.10 0.1
p25 0.10 0.10 0.10 0.10 0.10 0.1
p26 1.00 1.00 1.00 1.00 1.00 1
p27 0.10 0.10 0.10 0.10 0.10 0.1
p28 1.02 1.00 1.00 1.00 1.00 1
p29 1.27 1.00 1.00 1.00 1.00 1
p30 1.26 1.00 1.00 1.00 1.00 1
p31 1.00 1.00 1.00 1.00 1.00 1
p32 1.02 1.00 1.00 1.00 1.00 1
p33 1.03 1.00 1.00 1.00 1.00 1
p34 1.01 1.00 1.00 1.00 1.00 1
p35 1.03 1.00 1.00 1.00 1.00 1
p36 1.26 1.00 1.00 1.00 1.00 1

Table 3: The evolution of the parameters vs. the number of
data sets changing from 1 to 5, with t0 = 0, t1 = 120, ∆t = 6.0,
20 time measurements for each of the 8 components are given,
u0 = 1.25u and α is determined using (14).

Data sets P S

1 0.1 0.05
2 0.1 0.135 72
3 0.1 0.3684
4 0.1 1.0
5 0.464 16 0.05
6 0.464 16 0.135 72
7 0.464 16 0.3684
8 0.464 16 1.0
9 2.1544 0.05
10 2.1544 0.135 72
11 2.1544 0.3684
12 2.1544 1.0
13 10 0.05
14 10 0.135 72
15 10 0.3684
16 10 1.0

Table 4: The values of the control paramters P and S for
estimations that used 16 data sets.

Data sets P S

1 0.05 10
2 0.3684 2.1544
3 1.0 0.1
4 0.092 86 2.1544
5 0.135 72 2.1544

Table 5: The values of the control paramters P and S for
estimations that used 5 data sets.
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