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Abstract

This work aims at identifying and quantifying uncertainties related to elastic and viscoelastic
parameters, which characterize the arterial wall behavior, in one-dimensional modeling of the hu-
man arterial hemodynamics. The chosen uncertain parameters are modeled as random Gaussian-
distributed variables, making stochastic the system of governing equations. The proposed method-
ology is initially validated on a model equation, presenting a thorough convergence study which
confirms the spectral accuracy of the stochastic collocation method and the second-order accuracy
of the IMEX finite volume scheme chosen to solve the mathematical model. Then, univariate and
multivariate uncertain quantification analyses are applied to the a-FSI blood flow model, concern-
ing baseline and patient-specific single-artery test cases. A different sensitivity is depicted when
comparing the variability of flow rate and velocity waveforms to the variability of pressure and
area, the latter ones resulting much more sensitive to the parametric uncertainties underlying the
mechanical characterization of vessel walls. Simulations performed considering both the simple
elastic and the more realistic viscoelastic constitutive law show that the great uncertainty of the
viscosity parameter plays a major role in the prediction of pressure waveforms, enlarging the con-
fidence interval of this variable. In-vivo recorded patient-specific pressure data falls within the
confidence interval of the output obtained with the proposed methodology and expectations of the
computed pressures are comparable to the recorded waveforms.

Keywords: Arterial hemodynamics, Blood flow models, Fluid-structure interaction, Uncertainty
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1 Introduction

Over the last few decades, the availability of mathematical models of the human cardiovascular
network has led to essential quantitative results in medical researches [23] [43]. Numerical simulations
provide efficient approaches for the quantification of hemodynamics variables, supplying meaningful
data (not available by means of direct measurements or solely by invasive techniques) and even help
the prediction of the possible onset of diseases and the evolution of pathologies [46]. In recent years,
mathematical models have been consistently developed, focusing on different aspects that need to
be addressed to successfully model the circulatory system. Among these issues, the fluid-structure
interaction (FSI) between blood flow and vessel wall gives rise to a complex viscoelastic mechanism
that is difficult to describe properly with simple mathematical models and to efficiently simulate
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numerically [48, 50]. An efficient way to characterize the viscoelastic FSI, including all its primary
features (creep, stress relaxation and hysteresis), has been proposed in [8], presenting the augmented
FSI (a-FSI) blood flow model together with a suitable IMEX finite volume discretization method.

The application of computational models to patient-specific simulations for clinical decision-making
is one of the major challenges of recent years. Inevitably, the inputs to be personalized constitute pos-
sible sources of errors, given the large biological complexity and variability and because all measures
are hampered by measurement uncertainty [5l 14, 20]. Some of the uncertainties (i.e. epistemic uncer-
tainties) can be reduced with more precise measurement or more advanced noise filtering techniques,
while the others (i.e. random uncertainties) are very difficult if not impossible to capture accurately
due to the inhomogeneous and multi-scale properties of the cardiovascular system which undergoes
instantaneous changes in response to the heartbeat [23]. Sources of uncertainty which play an impor-
tant role in the result of computational simulations can be divided into the following general categories
[, 141 20):

1. Computational geometries: Blood flow in the vascular system depends on vessel length, diameter
and thickness of the wall (and, eventually, bends), whose uncertainty depends not only on the
measurement technique adopted, usually recurring to magnetic resonance imaging (MRI) or
computed tomography (CT), but also on the accuracy used during the measurement phase by
the operator and the subject.

2. Fluid and vessel wall dynamics: Blood flow can be associated to a Newtonian or a non-Newtonian
rheology, and the choice of detailed or simplified velocity profiles affects the computation of fric-
tion losses. Moreover, the characterization of the wall mechanics through different mathematical
models (rigid vessels, elastic or viscoelastic constitutive law) is linked to other sources of uncer-
tainty.

3. Physical parameters: Once the modeling is defined, model parameters such as blood viscos-
ity, density, vessel stiffness, elasticity and viscoelastic relaxation are very difficult to measure,
providing significant uncertainties even when single vessels are studied, as in this work.

4. Boundary conditions: Uncertainties of boundary conditions, prescribed at the inlet and at the
outlet of the computational domain, highly influence the confidence of the numerical solution. In-
flow boundary conditions can be imposed through recorded inlet velocity or flow rate waveforms;
while outflow boundary conditions are generally assigned recurring to the RCR or 3-element
Windkessel model, which requires the definition of three additional parameters: two resistances
and one compliance.

5. Numerical approximation: In addition, errors associated to the numerical scheme used for the
resolution of the mathematical model are another well-established issue.

Hence, development and application of efficient computational methods for the assessment of the
impact of parametric fluctuations on numerical solutions, referred as uncertainty quantification (UQ),
is necessary for a correct interpretation of numerical simulations of arterial hemodynamics.

UQ methodologies can be classified into two classes of methods: intrusive and non-intrusive. In-
trusive approaches can be very complex and hard to implement, since a parametrization of the un-
certainty of the inputs is substituted into the model to derive new governing equations. Examples
of these methods are the perturbation method, the momentum equation approach and the stochastic
Galerkin method [111 82 36}, 4], 53]. In particular, stochastic Galerkin methods, based on generalized
polynomial chaos (gPC) expansions, are very attractive thanks to the spectral convergence property
with respect to the random input [29]. However, their intrusive nature leads to very challenging proce-
dures for the reformulation of the problem, especially when the governing equations have complicated
forms and when dealing with problems with multidimensional uncertainty (involving a large num-
ber of stochastic parameters). Intrusive approaches for systems of conservation laws with relaxation



terms may cause the loss of important structural properties of the original problem, like hyperbolicity,
well-balancing, positivity preserving and consistency of large time behavior [29, [42] [£3].

On the other hand, non-intrusive methods do not require structural changes to deterministic nu-
merical codes. Examples of non-intrusive methods are the Monte Carlo method and the stochastic
collocation method [20, 29, 53]. Monte Carlo sampling is extensively used, being a very robust and
easy to parallelize approach since it only requires repetitive executions of deterministic simulations.
Nevertheless, it can result unsuitable especially for systems that are already computationally expensive
in their deterministic settings [17, 29]. Indeed, the solution statistics have a slow rate of convergence,
with a mean value that converges as 1/v&, with k& number of realizations [53]. To address this issue,
Multi-Level Monte Carlo approaches have been proposed recently, showing promising results for multi-
variate UQ [33], but loosing the ease of implementation. On the contrary, stochastic collocation method
is a pseudo-spectral method that reflects the high accuracy of gPC methods, achieving exponential
convergence rates when the solution is sufficiently smooth in the random space, with a straightforward
implementation [53), [54]. The only issue related to this method is that computational costs increase
very fast as the number of uncertain parameters increases, which is known as curse of dimensionality
[53]. One of the major tools used to break the curse of dimensionality of grid-based approaches is the
sparse grid technique, which permits a very efficient handling of stochastic simulations with a large
number of random inputs [29] 53] [54].

Several recent studies address the UQ problem in computational hemodynamics, investigating the
effects of different sources of parametric uncertainty and adopting different stochastic frameworks.
Some of them explore the sensitivity of blood flow and pressure to uncertainty in the inlet boundary
condition [5[13] or in the outlet boundary condition [I4}[16], with outcomes suggesting a high sensitivity
on these uncertain inputs. More literature studies concern the impact of uncertainties related to
geometrical and elastic mechanical parameters of vessels [2T] 40, [56], but very few UQ analysis have
been conducted considering the uncertainty underlying viscoelastic parameters that characterize the
arterial wall behavior [14] [39).

The aim of this work is to investigate the effects of uncertainties of parameters involved in the
elastic and viscoelastic constitutive equation on which it is based the recently proposed a-FSI blood
flow model [8 [T0]. To this end, an IMEX finite volume stochastic collocation method is proposed,
which combines:

e The stochastic collocation method, which guarantees spectral convergence in the stochastic space
and ease of implementation compared to intrusive methods, avoiding the risk of loss of hyper-
bolicity of the approximated stochastic system of governing equations.

e A second-order stiffly-accurate IMEX Runge-Kutta scheme that satisfies the AP property in the
stiff limit (i.e. the scheme is consistent with the equilibrium limit, which corresponds to the
asymptotic elastic behavior), hence for small relaxation times.

e A second-order finite volume solver, which guarantees the correct treatment of the non-conservative
terms of the hyperbolic model when computing fluxes and fluctuations.

The rest of the paper is structured as follows. In Section [2} the a-FSI blood flow model is briefly
presented, in its elastic and viscoelastic characterization. The numerical method is summarized in
Section [3] presenting the IMEX finite volume scheme, its AP property for the specific system of
equations, and the stochastic collocation approach. In Section [d] a convergence study applied to the
viscous Burgers equation (taken as model equation) is reported, for which the stochastic methodology
is also presented in details. UQ analysis applied to the a-FSI blood flow model are presented and
discussed in Section Two baseline tests and two patient-specific tests are chosen, considering as
vessels the upper thoracic aorta (TA), the common carotid artery (CCA) and the common femoral
artery (CFA). For each test case, three univariate analysis are performed, followed by a multivariate
one. Finally, conclusions are drawn in Section [6}



2 The a-FSI blood flow model

The standard 1D mathematical model for blood flow, valid for medium to large-size vessels, is
obtained averaging the incompressible Navier-Stokes equations over the cross-section, under the as-
sumption of axial symmetry of the vessel and of the flow, obtaining the well established equations of
conservation of mass and momentum [23]. To close the resulting partial differential equations (PDE)
system, a tube law, representative of the interaction between vessel wall displacement (through the
cross-sectional area A) and internal blood pressure p, is required. In the simplest case, the pressure-
area relationship is defined considering a perfectly elastic behavior of the vessel wall, with the widely
adopted elastic constitutive tube law [22] B4 [43]. But even though mathematical models representing
the blood circulation frequently neglect the viscous component of the vessel wall, it is well known that
blood vessels present viscoelastic properties [35, [44]. The Standard Linear Solid (SLS) model is yet
able to exhibit all the three primary features of a viscoelastic material: creep, stress relaxation and
hysteresis. Adding the constitutive equation derived from the SLS model in PDE form into the system
of governing equations, leads to the following a-FSI system [8] [10]:

O A+ 0,(Au) =0 (la)
0y (Au) + 0, (Au?) + %&p =f (1b)
Op+d 0, (Au) = S. (1c)

Here u is the cross-section averaged blood velocity, p is the blood density, f is the friction loss term, d
is the parameter depending on the elastic component of the wall, while S is the source term accounting
for viscoelastic damping effects, and x and ¢ are space and time respectively.

Blood velocity profile is considered self-similar and axisymmetric even in sections with large cur-
vature (e.g. in the aortic arch). The choice of the typical velocity profile used for blood flow satisfying
the no-slip condition [3] leads to a friction loss term which reads

f=-2(¢ +2)vmu, (2)

where v is the kinematic viscosity of blood and { = % is a parameter depending on «., the Coriolis
coefficient. It has been demonstrated that the velocity profile is on average rather blunt in central
arteries [43], with the consequence that the choice of o, = 1.1 (¢ = 9) provides the best compromise
to fit experimental data in these vessels. A parabolic velocity profile (o, = 3/4,( = 2) is instead more
suitable for non-central arteries [51].

In Eq. , the parameter d represents the elastic contribution of the vessel wall:

(2 ()]

where Ag is the equilibrium cross-sectional area, K represents the stiffness coefficient of the material
and m and n are parameters associated to the specific behavior of the vessel wall, whether arterial or
venous. In this work, dealing with arteries, the characterization of these parameters leads to:

Eoho
Ry’
with Ej instantaneous Young modulus, hy wall thickness and Ry equilibrium inner radius of the vessel.

For further details, also regarding veins, the reader can refer to [8, B4, 47]. The source term S carries
the viscous and damping information:

K =

m=1/2, n=0, 4)

1
S=—W-p). (5)
Tr
Here, 7, is the relaxation time of the wall [8]:
n(Eo — Ex)
o BT (©)



which depends on the three primary viscoelastic parameters of the SLS model: the instantaneous
Young modulus Ejy, the asymptotic Young modulus F., and the viscosity coefficient n of the wall;

while B AN ANT
v=r2|(5) - (5) | e ®

where pe.: is the external pressure.

The reader is invited to notice how the formulation of the source term is coherent with the assumed
mechanical behavior and consistent with the equilibrium limit. Indeed, when considering the elastic
asymptotic limit, therefore 7, — 0, even S — 0. In fact, it can be observed from Eq. that a
vanishing relaxation time leads to a constant value of the Young modulus in time, with = o 1,
which exactly returns the limit of the classic elastic tube law [§].

Writing the non-linear non-conservative system in the general compact form leads to:

in which
A Au 0 0 0 O
Q=|Au|, fFQ=(A?], S@Q=|f|. B@=[00 2
p 0 S 0 d 0

Considering J(Q) = 0f/0Q + B(Q), it can also be expressed in the quasi-linear form:

9:Q + J(Q)0.Q = S(Q). (9)

This system is hyperbolic, being the matrix J(Q) diagonalizable, with a diagonal matrix containing
all real eigenvalues, whose non- zero entries are Ay = u — ¢, A2 = u + ¢, and with a complete set of
linearly independent eigenvectors [§]. Here ¢ represents the wave speed:

- m e e

2.1 Boundary conditions

The lumped-parameter model commonly used to simulate the effects of peripheral resistance and
compliance on pulse wave propagation in large 1D arteries is the so-called RCR model (or 3-element
Windkessel model), which consists of a resistor, with resistance Ry, connected in series with a parallel
combination of a second resistor, with resistance Ry, and a capacitor, with compliance C' [2], 5I]. At
the outlet boundary of the 1D domain, the RCR model is coupled with the a-FSI blood flow model
through the solution of the Riemann problem at the interface. Details of this coupling procedure are
presented in [I0]. Similarly, inflow boundary conditions are prescribed through an inlet flow rate or
an inlet velocity (based on the available data), solving the Riemann problem at the inlet [3] [10].



3 Numerical method

3.1 IMEX Runge-Kutta finite volume scheme

Considering the i-th cell I; = [xH% , xifé] of a uniform mesh with grid size Az = 2;, 1 —x; 1, the
discretization of system by an IMEX Runge-Kutta finite volume scheme is summarized by:

QP =qr - ];Z:;iakj [(FD, ~F? )+ (D2, + DV, ) + B(QY) AQY] + At ]zij ari S (@)
(11a)

> [(Fy - F9) + (B + DY) + B (@) i) + o kz_j bs (@)
(11b)

where At = t"T1 — " is the time step satisfying the CFL condition and Q! is the vector of the
cell-averaged variables on I; at t".

An IMEX Runge-Kutta scheme is characterized by two s X s matrices, the explicit one, @ = (ax;),
with ag; = 0 for j > k, and the implicit one, a = (ay;), with ax; = 0 for j > k, and by the weights
vectors b = (51, ey BS)T, b= (by,...,bs)T (with s identifying the number of the Runge-Kutta stages).
The distribution of these matrices leads to a scheme that treats implicitly the stiff terms (in the case
here presented, the source terms) and explicitly all the non-stiff terms [37]. The explicit Runge-Kutta
methods, indeed, are those for which non-zero entries in the a matrix lie strictly below the diagonal.
Entries at or above the diagonal will cause the right hand side of Eq. to involve QZ(-J ), giving a
formally implicit method.

In the present work, the stiffly accurate IMEX-SSP2(3,3,2) Runge-Kutta scheme has been chosen,
which is defined by the following explicit (on the left) and implicit (on the right) tableau in the usual
Butcher notation [37]:

0 0o 0 0 1/41/4 0 0

/2 (1/2 0 0 /41 0 1/4 0
1 |1/2 12 0 1 {1/3 1/3 1/3
| 1/3 1/3 1/3 | 1/3 1/3 1/3

This scheme, characterized by s = 3 stages for both the implicit part and the explicit part and 2-nd
order of accuracy, is AP and asymptotic accurate in the zero relaxation limit (7, — 0), which means
that the consistency of the scheme with the equilibrium system is guaranteed and the order of accuracy
is preserved in the stiff limit. To verify the AP property of the proposed scheme, let us concentrate on
Eq. , which depends on the relaxation time 7., and express it following the IMEX Runge-Kutta
discretization:

At
p=p'e—Ata(dd:q) + —a(y —p) (12a)
mH =t — AT (d 0 Alyr 12b
P =p to" (d0zq) + —b" (¥ —p), (12b)
T
where we denote e? = (1,...,1) € R®. From Eq. (12a]) we obtain
—(ll+a)71 (i e —71.a(d0 )—|—a¢) (13)
pP= Al Atp r zq )
which leads to: - -
_ v -1 n_, —1~ 1 2
p= 0 ple—Ta a(d@zq)—i—(l A% )1/}4—(9(7‘,,). (14)
If we now substitute Eq. into Eq. (12b)), it results that:
Tr n Ty — n 1~ 7 Ty _
N 1= AL (1 —bla 1e)p + 7 (bTa g — bT) (d0q) + Ktha Ly, (15)



which implies consistency in the elastic (stiff) limit, for 7. — 0. In fact, recalling from Eq. @ that
when 7. — 0, then E,, — Fjy, in the elastic limit, from Egs. and @, we recover exactly the elastic

constitutive law [8 [34]:
AN AN"
K — | — . 1
= () () o B

As emerged from this proof, another advantage of the chosen scheme lays in the possibility to obtain
a totally explicit algorithm, avoiding the adoption of iterative procedures (e.g. Newton-Raphson
method), with a consequent consistent reduction of the computational cost (the reader can refer to [8]
for further details).

To assure the correct treatment of both the conservative and the non-conservative part of system
(8), at each stage of the method, numerical fluxes and non-conservative jump terms are obtained
applying the Dumbser-Osher-Toro (DOT) solver [I8] 19]:

Foy =2 [r(@n,)+7(Q J (@ Qfyes))| P, (17)
2 2 2 ds

D1 = ;/01 B (xp (Q;i%,Q;%,s)) ‘?)—‘fds. (18)

The boundary-extrapolated values l.ii , are evaluated using a total-variation-diminishing (TVD) ap-
2

=

proach, adopting the minmod slope limiter to achieve second-order accuracy also in space and to avoid
spurious oscillations near discontinuities [45]. Integrals in Eqgs. and are approximated by a
3-points Gauss-Legendre quadrature formula after that a simple linear path ¥, connecting left to right
boundary values in the phase-space, has been chosen [9]. More details concerning the implemented
scheme can be found in [§].

3.2 Stochastic Collocation Method

To present the stochastic model, we consider the probabilistic framework described in [14] [54]
56] and employ the concept of random variable in probability theory to randomize a deterministic
parameter to a real-valued random variable Y (w),w € Q, which is defined in a complete probability
space (€, A, P) consisting on a set of outcomes 2, the o-algebra of events .4 and probability measure
P. Replacing the deterministic variable by the random one, the deterministic model of Eq. @ becomes
the following stochastic model:

0Q(z,t,w) + J(Q(x,1,w))0,Q(x,t,w) = S(Q(z,t,w)). (19)

We consider that the probability density function (PDF) p, : I' = R of the random variable is known,
in particular assuming (without loss of generality) that it has a Gaussian distribution with mean w,
and standard deviation o: 1

_ (w—wm)?

o () = <™ 5

In this context, the stochastic state process depends on the uncertainties only through Y in the image
I'=Y(Q) and the stochastic system can be seen as a parametrized system [14].
The solution of problem can be computed employing a gPC expansion [24], 25]. In this

= h
approach, the approximated solution, @ (x,t,w), is expressed for each component of the vector as a
finite series of orthonormal polynomials in terms of the stochastic variable:

xtw Zé (x,t)¢p;(w), (20)

where M is the number of terms of the truncated series and ¢;(w) are orthonormal polynomials, with
respect to the measure p,(w)dw. For a given Gaussian distribution, polynomials ¢;(w) are chosen



as Hermite polynomials [55]. Accordingly, the expansion coefficients Qj(x,t) can be conceptually
obtained by:

éj(m,t):/FQ(x,t,w)qu(w)pp(w)dw, =1, M (21)

Following the stochastic collocation method [7], the integrals for the expansion coefficients in
Eq. are replaced by suitable quadrature U™» characterized by the set {wm,wm}m 1, Where
W, is the m-th collocation point, w,, is the corresponding weight and N, represents the number
of quadrature points. For a random variable associated to a Gaussian PDF7 a suitable quadrature is
the Gauss-Hermite one, which reads:

N:D
Q;(w,t) =u"r Qd(mw)czsj(w)} =3 QUx.tiwm) bj(wm) wm,  j=1,... .M  (22)

m=1

where Qd(m, tiwm), with m =1,..., Np, is the deterministic solution of problem (9) (or problem
for the fixed value wy,), obtained through the IMEX scheme presented in § In this way, the
previously discussed AP property of the chosen IMEX scheme is preserved, leading to a stochastic
asymptotic-preserving (sAP) scheme [30] 28], which permits to switch from a stochastic collocation
method for the viscoelastic problem to a stochastic collocation method for the elastic problem in a
uniform way with respect to the involved parameters.

Finally, the complete approximated solution is given by:

M, t,w) Z (z,t) ¢j(w). (23)

After the computation of the expansion coefficients by Eq. and their substitution in Eq. , a
convenient solution for further post-processing estimations is available. In particular, the computation
of the random solution statistics can be easily evaluated. For instance, the expected (mean) value of

Q(z,t,w),
/Q x,t,w) pp(w) dw,

is approximated as:

EQ]~E /Q (z,t,w) pp(w dwNZQ (z, t;wm) W (24)

m=1

if the same quadrature chosen for the approximation of the integral in Eq. is used. Once the
expectation is obtained, also the variance can be computed [53]:

VIQI=E[(Q-E[Q)’| ~E [(Qh)z} —elQ. (25)

The advantages behind the choice of this stochastic collocation approach for our specific problem
can be summarized as follows:

e Stochastic collocation methods belong to the class of non-intrusive methods, hence they only
require the evaluation of the solutions of the corresponding deterministic problems at each col-
location point. Such a feature makes these methods very attractive especially for problems
with complicated nonlinear governing equations like Eq. where the uncertainty is related to
different elastic and viscoelastic parameters.

e They avoid the loss of important structural properties of the original problem. For example,
intrusive approaches applied to systems of balance laws, like the a-FSI blood flow model here
treated, can lead to the loss of hyperbolicity [42].



e They are pseudo-spectral methods that reflect the high accuracy of gPC approaches. When the
solutions possess sufficient smoothness in the stochastic space, these methods have been proven
to achieve an exponential convergence rate [29] 53] 54].

A thorough convergence study of the method is presented also in this work in § applied to
a model equation. Further, the application study concerning UQ of arterial hemodynamics is fully
discussed taking into account univariate and multivariate analysis. In the latter case, assuming the
independence of the chosen stochastic variables, the joint PDF p, (w) of the random vector is given
by [20, (3]:

N,
pp (@) = [T pour (@r),
k=1

with Ng number of stochastic parameters.

4 UQ applied to a model equation

4.1 The viscous Burgers equation

The analysis of the proposed methodology is presented in a simplified framework, using an initial
values problem (IVP) based on the viscous Burgers equation (vBE) as model problem [40]. The general
IVP reads:

Oq(z,t) + q(x,t)0q(z,t) = V@ixq(x, t); (26a)
q(x,0) = qo(z), (26b)

where the field ¢(z,t) depends on the space x and the time ¢ and v is the kinematic viscosity (or
diffusion coefficient). The given function go(z) defines the initial condition.
This problem can be solved applying the Cole-Hopf transformation [I5] 27], with a reference solution
that can be written explicitly, once initial conditions have been assigned. For the following analysis,
a Gaussian initial condition is chosen and the details of the procedure for obtaining a quasi-exact
solution of the problem are given in[A] Concerning numerical solutions, the application of the IMEX
Runge-Kutta finite volume method presented in § B.1]is discussed in [B]

Assuming v as random variable, ¢ in Eq. becomes a stochastic variable that is also function
of the kinematic viscosity itself: ¢(z,¢,v). Thus, the deterministic IVP becomes the following
stochastic IVP:

Aeqla, t,v) + q(a, t,v)dpq(x, t,v) = vI2, q(a,t,v) (27a)
q(x,0,v) = qo(x). (27b)

The solution of the problem can be computed following the methodology presented in §[3.2] solving
the deterministic problem at each collocation point. In particular, it is underlined that, for the
specific stochastic problem of the vBE here discussed, ¢%(z, ¢; v,,) can be computed using a quasi-exact
approach (see or numerically through the proposed IMEX Runge-Kutta scheme (see .

It is worth noting that, for the given problem and PDF associated to the random kinematic viscosity,
a stochastic solution obtained with the procedure here presented is completely defined by the number
of collocation points and by the kind of solution of the deterministic problem. For instance, a reference
stochastic solution can be obtained using a quite large value for IV, and the quasi-exact solution for
the deterministic problem. Conversely, the ordinary application of the method prescribes the use of
a reduced number of IV, and the solution of the deterministic problem through the chosen numerical
scheme.



Table 1: Error estimates and empirical order of accuracy of the expected value of the solution of the
stochastic vBE, obtained applying the stochastic collocation method and computing the deterministic
part using the quasi-exact solution reported in @ N, indicates the number of points used for the
stochastic collocation method.

N, Lt O (L) L2 0 (L?) L>® O (L>™)
4 1.8618%x 10~ %9 2.7279x10~ 99 7.1109%x10799

6 2.7363x10710 47291  4.9552x10710  4.2067 1.5424x107%  3.7692
8  4.2071x107'  6.5087 8.3597x107'  6.1860 2.9480x10710  5.7522

10 5.8690x10~'2  8.8270 1.3834x10~'' 8.0614 5.2417x10~''  7.7397
12 9.6577x10~1%  9.8974 2.2977x10"'2  9.8467 1.0277x10"''  8.9368
14 1.4371x10~'  12.3587 3.8636x10~'% 11.5658 1.7218x10~'2 11.5892
16 2.3687x10~' 13.5016 6.6042x10~'* 13.2290 3.3459x10~13 12.2686

Table 2: Error estimates and empirical order of accuracy of the variance of the solution of the stochastic
vBE, obtained applying the stochastic collocation method and computing the deterministic part using
the quasi-exact solution reported in @ N, indicates the number of points used for the stochastic
collocation method.

N, L' O (LY L? 0 (L?) L> O (L>)
4 2.5806x10~11 3.3878x10~ 11 6.5353x 10~ 11

6 2.8759%x 1072 54116 5.9102x10~'2  4.3063 2.2551x10~'  2.6242
8 3.9799x10713  6.8746 1.0532x10~'2 59958 4.8976x10"'?  5.3081
10 4.9432x10~™  9.3475 1.4211x10~'3 89762 5.7513x10~13  9.5988
12 5.5714x107%  11.9731 1.7143x107'* 11.6004 9.1420x10~'* 10.0873
14 6.1931x10716  14.2509 1.8864x10~1°> 14.3166 8.5873x10~'°> 15.3433
16 6.9080x10~17 16.4256 2.1110x10~'6 16.4015 1.1512x10~'® 15.0485

1074

1 1 1 1

10716 ¢ :
4 6 8 10 12 14 16
NT’

Figure 1: Convergence study performed to test the accuracy of the stochastic collocation method
applied to the vBE. Results shown in terms of L? norm errors of expected value and variance of the
solution. IV, indicates the number of points used in the stochastic collocation method.
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Table 3: Error estimates and empirical order of accuracy of the expected value of the solution of the
stochastic vBE, with respect to the IMEX finite volume method and fixed grid of collocation points.
N, indicates the number of cells in the physical domain.

N, Lt O (L) 2 0 (L?) L O (L™)
99 1.1143x1072 5.6782x1073 5.7118x1073

297  1.6424x1073 1.7428 8.3112x10~* 1.7491 7.3295x10~*  1.8689
891  2.0144x10™% 19101 1.0127x10™* 1.9160 8.3604x10~° 1.9761
2673  2.3091x107° 1.9716 1.1574x107° 1.9744 9.4153x10~6  1.9877
8019 2.5934x10°6% 1.9902 1.2988x10°6% 1.9910 1.0434x10-6%  2.0024

Table 4: Error estimates and empirical order of accuracy of the variance of the solution of the stochastic
vBE, with respect to the IMEX finite volume method and fixed grid of collocation points. N, indicates
the number of cells in the physical domain.

N, ! O (L) 2 0 (L?) L O (L>)
99 0.2671x 10~ 7.6418 %10~ 1.2095x10~°

297  1.3025%x1076 1.7861 1.0384x10~% 1.8168 1.5558x1076  1.8667
891  1.5510x10~7 1.9369 1.2142x10~7 1.9535 2.0209%x10~7  1.8578
2673 1.7442x107% 1.9890 1.3531x10~% 1.9973 2.0626x10~%  2.0773
8019 1.9524x1079 1.9933 1.5135%x10~° 1.9939 2.4337x10~°  1.9453

4.2 Convergence study

To give a complete view of the proposed methodology, 3 accuracy analyses are performed. First
of all, the exponential convergence of the stochastic collocation method described in § is verified.
Then, a convergence study of the method obtained coupling the stochastic collocation method with
the IMEX Runge-Kutta scheme is performed both in the physical space and in the stochastic space.
All these analyses are performed considering the IVP given by Eq. with the initial condition

22

q(x,0) = qo(x) = qo,me >, (28)

choosing the maximum value of the field ¢o,, = 2.0 and o, = 0.2. The computational domain [—L, L]
is defined by L = 10 and the final computational time is fixed at ¢t = 3.

To verify the spectral convergence of the stochastic method used, the kinematic viscosity is consid-
ered as random variable, with a Gaussian PDF having mean value v, = 0.2 and standard deviation
o = 0.01. The expected value of the solution and its variance are computed following the stochastic
collocation approach. The deterministic part (i.e. the solution of the deterministic problem for a given
value of v) is performed using the quasi-exact solution reported in |Al Numerical results are compared
to reference solutions obtained using N, = 100 collocation points, in terms of expected value and
variance. The expected exponential convergence is shown in Tables [1] and [2| where L', L? and L>®
error norms and the related order of accuracy are presented. The result is highlighted by Fig. |1} in
which the rapid decay of the L? norm error as the number of collocation points increases is observed
in terms of expected value and variance.

In the convergence study of the method obtained coupling the stochastic collocation method with
the IMEX Runge-Kutta scheme, the kinematic viscosity is again considered as a normally distributed
stochastic variable. In the first case, to test the convergence in the physical space, the expected value
of the solution and its variance are computed fixing IV, = 8 collocation points. The reference solution
is obtained using N, = 100 collocation points on each mesh, with the deterministic part computed
following the quasi-exact approach (see[A]). Tables [3| and [4] show the resulting error norms and confirm
that the second-order of accuracy given in the physical space by the IMEX Runge-Kutta scheme is
correctly achieved.
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Table 5: Deterministic values of the model parameters considered for the viscoelastic baseline upper
thoracic aorta (TA) and common carotid artery (CCA) and for the patient-specific common carotid
artery (CCA-A) and common femoral artery (CFA-F), reported from [I0]: vessel length L, inlet
equilibrium radius Ry ;,, outlet equilibrium radius R o+, vessel wall thickness hg, reference celerity
¢y, instantaneous Young modulus Ey, asymptotic Young modulus F,, viscosity coefficient 1, relaxation
time 7,., external pressure pe.;, Coriolis coefficient ., RCR model resistance R;, RCR model resistance
Ry, RCR model compliance C. In all the tests, p = 1060 kg/m?, ;1 = 0.004 Pa s.

Parameter TA CCA CCA-A CFA-F
L [cm] 24.137 12,60  17.70 1450
Ry, out [mm] 12.0 3.0 3.7 3.14
ho [mm] 1.2 0.3 0.3 0.3
co [ms™] 5.016  6.635 5.92 7.05
Ey [MPa] 0.7275  1.7367  1.7742  2.2352
Es [MPa] 0.5333  0.9333  0.9535  1.2012
n [kPas] 23.884 47.768  47.768  47.768
7 [s] 0.009  0.013  0.0125  0.010
Pest [mmHg] 71.0 82.0 90.0 90.0
ae [-] 1.1 Y3 Y3 Ys

Ry [MPasm™] 11.752 24875 14591  241.26
Ry [MPasm™] 111.67 1869.7 768.17  2352.1
C [m®GPa™'] 10163 0.17529 0.29178 0.13208

In the second case, to test the convergence in the stochastic space, expected value and variance of
the solution are computed using the stochastic collocation method with different grids of collocation
points. The deterministic solutions are performed using the IMEX Runge-Kutta scheme on a mesh
with N, = 891 cells. For the solution over each grid, error norms are evaluated using the reference
solution obtained considering IV, = 100 collocation points on each mesh, with the deterministic part
again computed through the quasi-exact approach. Clearly, in this case, the exponential convergence
is not achieved (explicit results are omitted). To justify this behavior, in [62] it has been shown
that the error of the approximate gPC solution through the stochastic collocation scheme is given by
the sum of three contributions. The first contribution is associated with the truncation errors of the
gPC expansion , the second one is related to the error associated with the numerical solution of
the IMEX Runge-Kutta scheme and the third one is related to the errors due to the quadratures of
Eqgs. and . Given this, it is easy to observe that errors associated with the IMEX Runge-
Kutta finite volume discretization (see Tabs. [3| and |4) are predominant compared to errors related to
the stochastic collocation procedure (see Tabs. |1 and . Indeed, with the same grid refinement, the
overall error in the computation of the expected value and the variance of the solution does not decay
as the number of collocation points increases.

5 UQ applied to the a-FSI blood flow model

One of the biggest challenges in the clinical application of mathematical models is the adaptation
of input data to patient-specific conditions, hence the personalization of models. The inputs to be
personalized are included in various categories [5l, 14, 20]. All measurements of these inputs are
hampered by uncertainty as well as large biological variability, leading to uncertainties in the inputs.
It has to be considered that very often measurements are not repeated enough times to return reliable
statistical estimates. Moreover, not all the inputs can be measured, directly or indirectly (such as the
mechanical viscosity of the vessels), and if they are, their measurement may be very expensive, like
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Figure 2: Numerical results representative of one cardiac cycle obtained in the baseline TA test when
characterizing the mechanical behavior of the vessel wall through an elastic law. Results are presented
in terms of flow rate (a), velocity (b), pressure (c¢) and area (d) at the midpoint of the domain, for
95% confidence intervals (colored area) and corresponding expectations (colored line). Each color is
associated to a specific simulation, concerning the 2 univariate and the multivariate analysis.

with the MRI option [20]. In this case, traditional approaches assign the most likely value to these
parameters, through parameter estimation procedures, but still leaving a consistent inadequacy to the
model, since the behavior of complex biological systems can be very sensitive to these parameters [56].
Thus, assuming parametric uncertainty, one has then to quantify their impact on the computational
results.

In this work, we are interested in investigating the effects of uncertainty regarding the parameters
involved in the viscoelastic constitutive equation, on which the a-FSI system is based. Therefore,
we assume uncertainty in the equilibrium area Ag = Ag(w), in the reference celerity ¢y = ¢o(w) and in
the viscosity coefficient of the wall n = n(w). With this choice, we are capturing all the uncertainty
enclosed in the 3 parameters characterizing the viscoelastic SLS model, estimated in the a-FSI blood
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Figure 3: Numerical results representative of one cardiac cycle obtained in the baseline CCA test when
characterizing the mechanical behavior of the vessel wall through an elastic law. Results are presented
in terms of flow rate (a), velocity (b), pressure (c) and area (d) at the midpoint of the domain, for
95% confidence intervals (colored area) and corresponding expectations (colored line). Each color is
associated to a specific simulation, concerning the 2 univariate and the multivariate analysis.

flow model as follows [10]:

Bool) = QPCO(Q;;\/EAO(M)’ Ep(w) = oo (w)e! #1071, (29)

It is worth to underline that, with the choice of ¢y, Ag and 7 as stochastic variables, the model is
already accounting for the maximum number of independent random mechanical parameters. In fact,
considering as stochastic also the Young modulus would lead to violate the condition of independence
of stochastic variables that is at the basis of multivariate analyses [53] 29], since in the proposed model
Eyx = Ex(Ao,c0) and Ey = Eo(Eoo,n) = FEo(Ao,co,n). Even though acting in a similar manner
on the solution of the problem, ¢y and Ay are independent parameters in the proposed methodology.
Finally, the uncertainty related to the thickness of the wall hy and blood density p are not taken into
account because it has already been demonstrated the minimal impact they have on the solution in
central arteries [14].

n(w) (Bo(w) — Ex(w))
Ep(w)? '

Tr(w) =
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Figure 4: Numerical results representative of one cardiac cycle obtained in the baseline TA test when
characterizing the mechanical behavior of the vessel wall through a viscoelastic law. Results are
presented in terms of flow rate (a), velocity (b), pressure (c¢) and area (d) at the midpoint of the
domain, for 95% confidence intervals (colored area) and corresponding expectations (colored line).
Each color is associated to a specific simulation, concerning the 3 univariate and the multivariate
analysis.

Generally, for a patient-specific simulation, Ay can be defined recurring to MRI or Doppler ultra-
sound measurements, the latter being often preferred because of the lower cost, even though possible
sources of error and non-optimal accuracy of this technique are well-known [26] [38]. The carotid-
femoral pulse wave velocity (cf-PWYV) is considered the gold standard method for the determination
of the arterial stiffness (hence ¢p), which is assessed by dividing traveled distance by travel time [6].
However, many different procedures have been proposed to determine the value of the carotid-femoral
distance, resulting in different cf-PWV values and increasing confusion among users [49]. Finally, there
are no effective methods for the measurement of 7. The evaluation of this parameter can be usually
performed recurring to hysteresis curves, through mathematical approaches, or, very rarely, carrying
ex-vivo tests [4], B1].

In the absence of sufficient observation for the calibration of the PDF associated to the uncertain
parameters, in this work it is assumed a general Gaussian distribution, which reflects errors related
to measurements [20]. Furthermore, we consider that deterministic values available in literature and
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Figure 5: Numerical results representative of one cardiac cycle obtained in the baseline CCA test
when characterizing the mechanical behavior of the vessel wall through a viscoelastic law. Results are
presented in terms of flow rate (a), velocity (b), pressure (c) and area (d) at the midpoint of the domain,
for 95% confidence intervals (colored area) and corresponding expectations (colored line). Each color
is associated to a specific simulation, concerning the 3 univariate and the multivariate analysis.

previously used in [I0] are the most likely values, close to the expectation, and that the uncertainty
rate does not change the sign of the parameter value. Given the different sources of error related to
the above mentioned estimate procedures, different degrees of uncertainty are associated to the three
parameters of interest: a medium error of the order of 10% for Ag and ¢o and a 50% error for 1, which
is affected by a more significant uncertainty.

To test the impact of these parametric uncertainties on the numerical solution of the a-FSI blood
flow model here proposed on single vessel applications, for each test case, three univariate analysis
are performed (considering, in turn, only one parameter as stochastic, while keeping the others as
deterministic), followed by a multivariate analysis (considering all the three parameters as stochastic).
In the following, all the graphical results presented refer to a 95% confidence interval of the predicted
variable of interest (in turn, flow rate, velocity, pressure and area) resulting from each one of the
stochastic simulations (2 elastic or 3 viscoelastic univariate stochastic output and one multivariate
stochastic output).
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Figure 6: Numerical hysteresis curves representative of one cardiac cycle obtained in the TA test (a) and
CCA test (b) when characterizing the mechanical behavior of the vessel wall through a viscoelastic
law. Loops develop in time counter-clockwise and are presented in terms of relative pressure and
relative diameter with respect to diastolic values, pp and Dp respectively. On each plot, the expected
hysteresis (u) is shown, together with those associated to the extreme values of a 95% confidence
interval of the multivariate analysis, evaluated with respect to the standard deviation of both area
(diameter) and pressure (p £ 20).

5.1 Numerical Results

Referring to deterministic numerical tests presented in [I0], two initial stochastic simulations are
performed taking into account an upper TA and a CCA, with constant-radius over length (baseline
arteries). For the characterization of the mechanical behavior of the vessel wall, both the elastic
and the viscoelastic constitutive law are considered for these test cases, to evaluate the relevance of
the damping effect in terms of sensitivity of the model. Furthermore, two patient-specific tests are
evaluated, concerning again a tapered CCA and a tapered CFA, which correspond to tests CCA-A and
CFA-F discussed in [I0], respectively. In tests CCA-A and CFA-F the tapering has been introduced
considering a linear variation of the radius Ry, while the thickness of the vessel wall hg is kept constant
along the length.

Model parameters of each test are here reported in Table [5| for viscoelastic simulations. In the
elastic case considered for tests TA and CCA, Ey = F,, n — 0 and 7. — 0, with the resulting source
term S = 0, as discussed in §[3.1] Concerning numerical parameters, CFL = 0.9 in all the simulations.
The number of cells in the physical domains is N, = 12 in the TA test, N, = 6 in the CCA test
and N, = 7 in the two patient-specific cases. It is here underlined that, with respect to the values
of 7, reported in Table [f] the chosen discretization leads to deal with weakly stiff problems in the
viscoelastic case. For each stochastic parameter investigated, Ao, co and 1 (the latter considered only
when concerning the viscoelastic tube law), N, = 3 collocation points resulted enough in the light of
what discussed in § with a total of 27 collocation points involved in the viscoelastic multivariate
analysis (9 collocation points in the elastic multivariate analysis). In this configuration, indeed, the
contribution of the stochastic mesh size results comparable to the physical mesh size one and further
refinement of the stochastic grid, augmenting the number of collocation points, does not increase
the overall accuracy of numerical solutions [40]. For the TA case, 20 cardiac cycles are simulated,
corresponding to a final time te,q = 19.10 s; while for the CCA case, 9 cardiac cycles are simulated,
corresponding to a final time t.,q = 9.90 s. In both the patient-specific simulations, 10 cardiac cycles
are reproduced, corresponding to a final time ¢.,q = 10.00 s.
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Figure 7: Numerical results representative of one cardiac cycle of patient-specific CCA test (CCA-A),
presented in terms of flow rate (a), velocity (b), pressure (c¢) and area (d) at the midpoint of the
domain, for 95% confidence intervals (colored area) and corresponding expectations (colored line).
Each color is associated to a specific simulation, concerning the 3 univariate and the multivariate
analysis. Computed pressures are compared to the patient-specific waveform measured in-vivo with
the PulsePen tonometer, as described in [10].

5.1.1 Baseline arteries

Numerical results of the stochastic problems concerning baseline TA and CCA characterized by a
simple elastic behavior of the wall are shown in Figs. [2| and [3] respectively. For each test case, results
of all the univariate and multivariate analysis are shown together in a single plot, to better highlight
differences in terms of expected waveforms and confidence intervals.

First of all, it is clearly visible that expected waveforms result very similar in each type of stochastic
analysis, being even indistinguishable in certain cases. Concerning confidence intervals, in Fig. [2] it
can be observed that flow rate, and in part also velocity waveforms, are very little sensitive to all
the parametric uncertainties investigated in the elastic TA case. On the other hand, for pressure and
area (which evolve in synchrony in the elastic case) it is sufficient a moderate change (10% error) of
geometric and mechanical characteristics to cause large variabilities in the final solution. As expected,
the uncertainty on ¢y has a major impact on the pressure trend, while uncertainty on Ag mostly affects

18



0.55

25
_____ univariate Ay e UNiVariate Ay
————— univariate ¢ 05 = univariate ¢y
_____ univariate 7 —-—-— univariate 7
20+ multivariate 045 - multivariate
04 r
151 \ 035
El \ £ osf
10 F / ¢ 025 | \
| X [ \
| 02t | \
| | \
| ; \
5 0.15 \
/ |
4 01r |
0 0.05 w
9 9.2 9.4 9.6 9.8 10 9 9.2 9.4 9.6 9.8 10
t s ts]
(a) (b)
-5
180 55210
_____ univariate Ay e UNiVariate Ay
————— univariate ¢, e Univariate ¢
_____ univariate 7 —-—-— univariate 7
160 - multivariate 5 multivariate
measured data
140 - 45F
=3 —
= =
g 120 £ 4
= <
IS8
100 F 35 = n
80 F 3k
60 25 - - - + !
9 9.2 9.4 9.6 9.8 10
t [s]

Figure 8: Numerical results representative of one cardiac cycle of patient-specific CFA test (CFA-F),
presented in terms of flow rate (a), velocity (b), pressure (c¢) and area (d) at the midpoint of the
domain, for 95% confidence intervals (colored area) and corresponding expectations (colored line).
Each color is associated to a specific simulation, concerning the 3 univariate and the multivariate
analysis. Computed pressures are compared to the patient-specific waveform measured in-vivo with

the PulsePen tonometer, as described in [10].

area and velocity variation over time. It can be verified that these results are in line with literature
findings [I4] [40]. Similar observations can be made concerning results of the CCA case, shown in
Fig. [3l Here, a higher sensitivity of the velocity waveform is reported with respect to the uncertainty
related to Ag and in the joint effect produced by both the two stochastic parameters (Fig. . This
more visible sensitivity is probably due to the reduced magnitude of the velocity in the CCA with
respect to the TA.

Results obtained taking into account a more realistic viscoelastic FSI characterization are presented
in Figs. [dland [5] with corresponding qualitative hysteresis curves shown in Fig.[6] Again, a considerable
difference in the sensitivity of flow rate and velocity with respect to the sensitivity of pressure and area
emerges, with the same characteristics discussed for the elastic case. However, it can be noticed that
due to the very high uncertainty (50%) associated to the viscosity parameter 7, simulation outputs
show that in pressure confidence intervals a prominent role is played by the wall viscosity. Nevertheless,
the uncertainty of n (by which pressure is most affected) principally impacts the systolic peak and the
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Figure 9: Numerical hysteresis curves representative of one cardiac cycle obtained in the CCA-A test
(a) and CFA-F test (b). Loops develop in time counter-clockwise and are presented in terms of relative
pressure and relative diameter with respect to diastolic values, pp and Dp respectively. On each plot,
the expected hysteresis () is shown, together with those associated to the extreme values of a 95%
confidence interval of the multivariate analysis, evaluated with respect to the standard deviation of
both area (diameter) and pressure (u & 20).

dicrotic limb, not acting on the anacrotic limb.

Finally, in Fig. [f] hysteresis loops of multivariate tests TA and CCA generated with the expected
values of p and A (expressed in terms of diameter D in the plot), which are evaluated with ,
are shown together with upper and lower bounds of the 95% confidence interval obtained adding
and subtracting twice the corresponding standard deviation, which is the square root of the variance
computed with , at each of the two variables’ mean prediction. It can be observed that hysteresis
curves resulting from the multivariate analysis vary in response of the parametric uncertainties both
in slope and amplitude, since all the three viscoelastic parameters of the SLS model are involved by
the stochastic characterization [10].

5.1.2 Patient-specific arteries

Numerical results of the stochastic problems concerning patient-specific CCA and CFA are pre-
sented in Figs. [7] and [8] respectively, with the corresponding qualitative hysteresis curves shown in
Fig. [0l As for the previous tests, for each artery, results of all the univariate and multivariate analysis
are shown together in a single plot, to permit immediate comparisons. The sensitivity emerging from
the patient-specific cases well reflects the one registered in the baseline tests. Indeed, similar differ-
ences in the variability of flow rate and velocity emerge with respect to the variability of pressure and
area, the latter resulting more sensitive to the parametric uncertainties underlying geometrical and
mechanical characterization of vessels. However, a slightly higher sensitivity in the flow rate waveforms
can be noticed in Figs. [7a] and [Sa] with respect to Figs. [da] and This difference reflects the diverse
inlet boundary condition used in the two type of tests: while in the baseline tests it has been imposed
an inlet flow rate available in literature [I2], in CCA-A and CFA-F tests only a velocity waveform
extrapolated from patient-specific Doppler measurements could be used as inlet condition [I0]. Hence,
in the patient-specific tests, the flow rate carries the uncertainty associated to Ag.

In Figs. |7/ and expectations of the computed pressures are compared to patient-specific wave-
forms measured in-vivo, respectively on the CCA and on the CFA, by means of the arterial applanation
tonometry technique (the reader can refer to [10] for details on data acquisition and extrapolations).
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Concerning both the types of artery, confidence intervals resulting from multivariate analysis well cap-
ture the in-vivo signal. Expected pressure waveforms are comparable to the measured ones, especially
in the CCA case, with a little overestimation of the systolic value in the CFA case. Finally, by looking
at hysteresis loops presented in Fig. [0} we can affirm that when geometrical and mechanical parameters
involved in the constitutive law governing the FSI mechanism are underestimated with respect to the
expected value, hysteresis curves appear enlarged in amplitude; vice-versa, when these parameters are
overestimated, loops get narrower.

6 Conclusions

In the present work, the effects of uncertainties of the parameters involved in the elastic and
viscoelastic characterization of the FSI dynamics occurring between arterial wall and blood flow have
been investigated through univariate and multivariate UQ analysis based on an IMEX finite volume
stochastic collocation approach. The proposed method combines a finite volume solver suitable for the
non-conservative terms of the hyperbolic model with an IMEX method that satisfies the AP property
for small relaxation times.

The methodology has been validated using a model equation through a thorough convergence
study, which confirms the spectral accuracy of the stochastic collocation method and the second-order
accuracy of the chosen IMEX Runge-Kutta finite volume method.

Concerning UQ analyses applied to the a-FSI blood flow model, a different sensitivity emerges
when comparing the variability of flow rate and velocity waveforms to the variability of pressure
and area, the latter ones resulting much more sensitive to the parametric uncertainties considered.
When comparing variables predicted adopting the elastic tube law with respect to the viscoelastic
one, it can be noticed that, as expected, the great uncertainty of the viscosity parameter 7 (£50%
of possible error) plays a major role in the output of pressure waveforms, enlarging the confidence
interval of this variable. Nevertheless, the impact of the wall viscosity is principally visible in the
systolic peak and dicrotic limb and not in the anacrotic limb. Moreover, at the clinical level, results
suggest that, with respect to the same uncertainty of the parameters taken into account in the proposed
work, there is greater uncertainty in predicting a patient’s accurate area waveform than predicting a
pressure waveform. In fact, in the latter, the chosen stochastic parameters impact the systolic peak
and the dicrotic limb, leaving basically untouched the anacrotic limb. Concerning hysteresis curves,
we have observed how the underestimation of geometrical and mechanical parameters, involved in
the viscoelastic constitutive law, gives rise to enlarged hysteresis loops; while the overestimation of
them results in narrower loops. Finally, in patient-specific tests, confidence intervals resulting from
multivariate analysis well capture in-vivo measured data and expectations of the computed pressures
are comparable to recorded waveforms, confirming that the proposed model is a valuable tool for
improving cardiovascular diagnostics.

Future perspectives include UQ analyses of the stochastic a-FSI blood flow model concerning ar-
terial networks (including proper junction conditions), to assess the effects of elastic and viscoelastic
parameters in more complex domains. With this intent, sparse grids techniques, aimed at increasing
the efficiency of the method even for simulations with a very large number of random inputs (like those
involved in extended networks), will be investigated.
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A Quasi-exact solution of the vBE with (Gaussian initial con-
ditions

The IVP can be solved applying the Cole-Hopf transformation [I5] 27]:

Oyp(x,t
q(z,t) = —21/(;(0;75)), (30)
to obtain the new simpler IVP based on the diffusion equation in the dependent variable ¢(z,t):
Orp(w,t) = vOrap(x,1); (31a)
¢(@,0) = po(x); (31b)
which solution reads: Foo oo(e) (oo
o(z,t) = Vi exp [—4%} d¢. (32)

To write an explicit quasi-exact solution, let us consider the Gaussian initial condition presented in
Eq. . Using the Cole-Hopf transformation , after an integration by parts, the initial condition
can be expressed in terms of ¢(z,t), in the form:

o(2,0) = po(z) = exp [— Umzqyo*m \/E erf ( \/ggmﬂ . (33)

The solution of the IVP 1) is formally given by Eq. with @o(x) given by Eq. . For
the specific initial conditions considered here, Eq. cannot be analytically solved and a numerical
procedure is needed.
A simple approach consists in the introduction of the auxiliary variable:
r—§
= , 34
=" (34)

and in the selection of a Gauss-Hermite quadrature [I], which allows to express the solution as:

nNGH

+o0 R
p(z,t) = —%/_ oz —nVavt) e dn ~ —% > wolz = nv/avt)w;, (35)

where 7; and w; are nodes and weights of the quadrature.
Similarly, the space derivative of ¢ can be expressed as:

nNGH

1 [t N 1
69:‘:0(37,”—%/_00 po(z —nvivt) —=e dﬁNﬁﬁ;UﬂPO(l‘

i — Vvt w;.  (36)

Finally, the approximated solution ¢(z,t) can be computed using Eq. .

B IMEX Runge-Kutta scheme applied to the vBE

For a numerical solution of the vBE based on the application of the second-order IMEX Runge-
Kutta finite volume method described in § Eq. (26a)) is written in the conservative form

0vq + 61f(Q) = Q(Q)7 (37)

22



where the analytical flux is f(q) = % and the diffusive part is treated as a source term g(q) = v92,q
Hence, the IMEX discretization proposed in Egs. becomes:

k-1
At _ (i
q(k) — g - D I” (fi(i)l f(J) ) " At} :akj g(J) (38a)
Jj=1 j=1
g+t =g = AL b, (f("’) F¥ ) +At§ b 9, (38b)
i 7 Al‘ it x

where f; +1 are the numerical fluxes and g; is a suitable discretization of the source term. The direct
apphcatlon of the path-conservative DOT solver to Eq. ( . 37) permits to define the numerical flux as:

fi+%:%[f<l+l)+f Z+1 /‘\Il l+1’ql+é’)’%d’ (39)

where the selection of a linear segment path W is again sufficient to obtain the required accuracy.
The diffusive term can be simply discretized by second-oder central finite differences. The use of this
approximation, together with the explicit treatment of the homogeneous part of Eq. 7 leads to
a simple tridiagonal system of equations, which is solved at each stage of the IMEX Runge-Kutta
method using the Thomas algorithm.
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