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Abstract

This paper develops the high-order accurate entropy stable (ES) finite difference schemes for

the shallow water magnetohydrodynamic (SWMHD) equations. They are built on the numer-

ical approximation of the modified SWMHD equations with the Janhunen source term. First,

the second-order accurate well-balanced semi-discrete entropy conservative (EC) schemes

are constructed, satisfying the entropy identity for the given convex entropy function and

preserving the steady states of the lake at rest (with zero magnetic field). The key is to

match both discretizations for the fluxes and the non-flat river bed bottom and Janhunen

source terms, and to find the affordable EC fluxes of the second-order EC schemes. Next,

by using the second-order EC schemes as building block, high-order accurate well-balanced

semi-discrete EC schemes are proposed. Then, the high-order accurate well-balanced semi-

discrete ES schemes are derived by adding a suitable dissipation term to the EC scheme with

the WENO reconstruction of the scaled entropy variables in order to suppress the numerical

oscillations of the EC schemes. After that, the semi-discrete schemes are integrated in time

by using the high-order strong stability preserving explicit Runge-Kutta schemes to obtain

the fully-discrete high-order well-balanced schemes. The ES property of the Lax-Friedrichs

flux is also proved and then the positivity-preserving ES schemes are studied by using the

positivity-preserving flux limiter. Finally, extensive numerical tests are conducted to validate

the accuracy, the well-balanced, ES and positivity-preserving properties, and the ability to

capture discontinuities of our schemes.
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1. Introduction

The shallow water equations are widely used in atmospheric flows, tides, storm surges,

river and coastal flows, lake flows, tsunamis, etc. They describe the flow with free surface

under the influence of gravity and the bottom topology, where the vertical dimension is

much smaller than any typical horizontal scale. Numerical simulation is an effective tool

to solve them and a great variety of numerical methods are available in the literature, e.g.

[4, 31, 37, 47, 48, 52, 53, 54] and the references therein.

Here we are concerned with numerical methods for the shallow water magnetohydro-

dynamic (SWMHD) equations, which take into account the effect of the magnetic field,

originally proposed in [23] for studying the global dynamics of the solar tachocline. The

two-dimensional (2D) SWMHD equations with non-flat bottom topography [23, 43] read the

following quasi-linear hyperbolic balance laws

∂U

∂t
+

2∑
`=1

∂F`(U)

∂x`
= −G(U), (1.1)

with the divergence-free condition

∇ · (hB) = 0, (1.2)

where U is the conservative variables vector, and F1 and F2 are respectively the flux vectors

along the x1- and x2 directions and defined by

U =
(
h, hvT, hBT

)T
,

F` =

(
hv`, hv`v

T − hB`B
T +

1

2
gh2eT

` , h(v`B −B`v)T

)T

, ` = 1, 2,

G =
(
0, gh∇b, 0T

2

)T
, 0T

2 = (0, 0),

(1.3)

with the height of conducting fluid h, the fluid velocity vector v = (v1, v2)T, the magnetic

field vector B = (B1, B2)T, the gravitational acceleration constant g, the bottom topography

b = b(x, y), and e` denotes the `th column of the 2× 2 unit matrix.

Existing numerical studies for the SWMHD equations include the evolution Galerkin

scheme [30], space-time conservation element solution element (CESE) method [42], central-

upwind schemes [56], Roe-type schemes [29], second-order entropy stable (ES) finite volume

scheme (satisfying the semi-discrete entropy inequality) [50], high-order CESE scheme up
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to 4th-order [1], etc. Some have dealt with the non-flat topography [50, 56], and are well-

balanced in the sense that the schemes can preserve the lake at rest. For the numerical

solutions of the SWMHD equations, we need to deal carefully with the divergence-free con-

straint (1.2). In the ideal magnetohydrodynamic (MHD) case, many works have focused on

this issue, for example, the projection method [8], the constrained transport method and its

variants [2, 17, 36, 44], the eight-wave formulation of the MHD equations [41], the hyperbolic

divergence cleaning method [13], the locally divergence-free DG method [34], the “exactly”

divergence-free central DG method [35], and so on.

For the quasi-linear hyperbolic conservation laws or balance laws, it may be the case that

no classical solution exists so that the weak solution should be defined in the sense of dis-

tributions. Unfortunately, such weak solutions might be non-unique. The entropy condition

plays an essential role in choosing the physically relevant solution from the collection of all

possible week solutions.

Definition 1 (Entropy function). A strictly convex function η(U) is called an entropy

function for the system (1.1)-(1.3) if there are associated entropy fluxes q1(U) and q2(U)

such that

q′`(U) = V TF ′`(U), ` = 1, 2, (1.4)

where V = η′(U)T is called the entropy variables, and (η, q`) is an entropy pair.

For the smooth solutions of (1.1)-(1.3) with the entropy pair (η, q`), multiplying (1.1) by V T

gives the entropy identity

∂η(U)

∂t
+

2∑
`=1

∂q`(U)

∂x`
= −V TG(U). (1.5)

However, if the solutions contain discontinuities, then the above identity does not hold.

Definition 2 (Entropy solution). A weak solution U of (1.1) is called an entropy solution

or a physically relevant solution if for all entropy pairs (η, q`), the entropy inequality or

condition
∂η(U)

∂t
+

2∑
`=1

∂q`(U)

∂x`
6 −V TG(U), (1.6)

holds in the sense of distributions.
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The entropy conditions are of great importance in the well-posedness of hyperbolic con-

servation laws or balance laws, e.g. (1.1), and may improve the robustness of the numerical

schemes, thus it is meaningful to seek their numerical schemes satisfying the discrete en-

tropy inequality. For the scalar conservation laws, the conservative monotone schemes are

nonlinearly stable and satisfy the discrete entropy conditions so that their solutions can

converge to the entropy solution [11, 24]; the E-schemes satisfy the semi-discrete entropy

condition for any convex entropy [39, 40]. However, those schemes are only first-order accu-

rate. Generally, it is very hard to prove that the high-order accurate schemes of the scalar

conservation laws and the schemes for the system of hyperbolic conservation laws satisfy the

entropy inequality for any convex entropy function. Two relative works are presented in [7]

and [27]. The former is second-order accurate and not in the standard finite volume form,

while the latter approximates the entropy variables and needs solving nonlinear equations at

each time step. In view of this, the researchers usually try to study the high-order accurate

entropy conservative (EC) (resp. entropy stable (ES)) schemes, which satisfy the discrete

entropy identity (resp. inequality) for a given entropy pair. The second-order EC schemes

were built in [45, 46], and their higher-order extension was studied in [32]. It is known

that EC schemes may become oscillatory near the shock waves, thus additional dissipation

terms have to be added into the EC schemes to obtain the ES schemes. Combining the EC

flux of the EC schemes with the “sign” property of the ENO reconstructions, the‘ arbitrary

high-order ES schemes were constructed by using high-order dissipation terms [20]. Some ES

schemes based on the discontinuous Galerkin (DG) framework were also studied, e.g. the ES

space-time DG formulation [3, 25] and the ES nodal DG schemes using suitable quadrature

rules [10]. The ES schemes based on summation-by-parts (SBP) operators were developed

for the Navier-Stokes equations [18]. As a base of those works, the construction of the af-

fordable two-point EC flux is one of the key parts, and has been extended to the shallow

water equations [19, 22], the MHD equations [9, 49], the relativistic (magneto-)hydrodynamic

equations [16, 15, 51], and so on. Those ES MHD schemes are built on the modified MHD

equations with the non-conservative source terms, e.g. the Powell source terms [9, 14, 41]

or the Janhunen source terms [28, 49]. The Powell source term can be used to obtain the

symmetrizable MHD equations, but the solution to the Riemann problem of Powell’s MHD

equations with initial positive gas pressures may contain a nonphysical negative gas pressure

[28], while the Janhunen source term can preserve the conservation of the momentum and
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energy and be used to restore the positivity of gas pressure. Due to the adding source terms,

the sufficient condition proposed in [45] for a finite difference scheme satisfying an entropy

identity should be modified, see [9]. One should also take care of the discretization of the

source terms, to match it to the discretization of the flux gradients and ensure that the final

schemes satisfy the semi-discrete entropy inequality.

The paper aims at constructing the high-order accurate ES finite difference schemes

for the SWMHD equations (1.1) for a given entropy pair. With suitable discretization

of the non-flat bottom topography and Janhunen source terms in the modified SWMHD

equations, a two-point EC flux is derived for constructing the semi-discrete second-order

accurate well-balanced EC schemes satisfying the entropy identity. Our discretization of the

source terms is essential to achieve both high-order accuracy and well-balance, and does

not meet the computational issue in [50] when the magnetic field is zero. The high-order

well-balanced EC schemes are constructed by using the above two-point EC schemes as

building blocks. In order to avoid the numerical oscillation produced by the EC schemes

around the discontinuities, some suitable dissipation terms utilizing the weighted essentially

non-oscillatory (WENO) reconstruction in the scaled entropy variables are added to the EC

fluxes to get the high-order accurate well-balanced ES schemes satisfying the semi-discrete

entropy inequality. The above semi-discrete EC and ES schemes are integrated in time by

using the high-order accurate explicit strong-stability preserving Runge-Kutta schemes to

obtain the fully-discrete high-order accurate well-balanced schemes. The ES property of

the Lax-Friedrichs flux is also proved and then the positivity-preserving ES schemes are

developed by using the positivity-preserving flux limiter.

The rest of the paper is organized as follows. Section 2 presents the modified SWMHD

equations, the entropy pair and necessary notations. Section 3 constructs the affordable two-

point EC flux and the semi-discrete EC and ES schemes for the 1D SWMHD equations, and

proves the well-balanced properties of the EC and ES schemes. The positivity-preserving ES

scheme is also studied. Section 4 gives the 2D well-balanced EC and ES schemes. Extensive

numerical tests are conducted in Section 5 to validate the effectiveness and performance of

our schemes. Section 6 gives some conclusions.
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2. Modified SWMHD equations

This section gives an entropy analysis of the SWMHD equations with the non-flat bottom

topography.

If the solutions are smooth, then the SWMHD equations (1.1)-(1.3) can be equivalently

cast into the primitive variable form

∂h

∂t
+∇ · (hv) = 0,

∂v

∂t
+ (v · ∇)v − (B · ∇)B + g∇hT = −gh∇bT +∇ · (hB)B/h,

∂B

∂t
+ (v · ∇)B − (B · ∇)v = ∇ · (hB)v/h,

∇ · (hB) = 0.

(2.1)

Defining the mathematical entropy as the total energy [19, 50]

η(U , b) :=
1

2
h(|v|2 + |B|2) +

1

2
gh2 + ghb, (2.2)

and using (2.1) gives

∂tη +
2∑
`=1

∂x`

[(
1

2
(|v|2 + |B|2) + gh+ gb

)
hv` − hB`(v ·B)

]
− (v ·B)∇ · (hB) = 0,

which means that under the constraint ∇ · (hB) = 0, the following quantities

η(U , b), q`(U , b) :=

(
1

2
(|v|2 + |B|2) + gh+ gb

)
hv` − hB`(v ·B), (2.3)

satisfy an additional conservation law. However, unfortunately, the pair (η, q`) defined in

(2.2)-(2.3) does not satisfy (1.4), since

∂q`(U , b)/∂U = V TF ′`(U) + (v ·B)(hB`)
′(U),

where the vector V = (∂η/∂U)T is explicitly given by

V =

(
g(h+ b)− 1

2

(
|v|2 + |B|2

)
,vT,BT

)T

.

It is not difficult to verify that the matrix ∂U/∂V is symmetric and positive definite.

Similar to the Janhunen source term for the ideal MHD equations [28], one needs to

add some non-conservative source terms to get a modified SWMHD system for (1.1)-(1.3)

as follows
∂U

∂t
+

2∑
`=1

∂F`
∂x`

+ ΨT∇ · (hB) = −G(U ), (2.4)
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where

Ψ = (0, 0, 0,vT),

and satisfies ΨV = Φ(V ) := v · B. Note that the modified SWMHD equations without

bottom topography have been discussed in the literature, see e.g. [50].

Taking the dot product of V with (2.4) yields

V T∂U

∂t
+

2∑
`=1

(
V T∂F`

∂U
+ Φ(V )

∂(hB`)

∂U

)
∂U

∂x`
+ V TG(U)

=
∂η

∂t
+

2∑
`=1

(
∂q`
∂U

+ (Φ(V )− (v ·B))
∂(hB`)

∂U

)
∂U

∂x`
+ V TG(U) = 0,

i.e.
∂η

∂t
+

2∑
`=1

∂q`
∂x`

= 0, (2.5)

where we have used the identity

2∑
`=1

∂q`(U , b)

∂U

∂U

∂x`
+ V TG(U) =

2∑
`=1

∂q`
∂x`

.

Notice that the identity (2.5) is obtained without using the divergence-free condition, and

will be useful in constructing an entropy stable (ES) scheme because the numerical divergence

of ∇ · (hB) may not be zero. Moreover, we define the “entropy potential” ψ` from the given

(η(U , b), q`(U , b)) by

ψ` := V TF`(U) + Φ(V )(hB`)− q`(U) =
1

2
gh2v`,

which makes the following identity true∫
Ω

(
∂η

∂t
+
∂q`
∂x`

)
dx =

∫
Ω

V T

(
∂U

∂t
+
∂F`(U)

∂x`
+ ΨT∇ · (hB) + G(U)

)
dx

=

∫
Ω

(
∂η(U )

∂t
+
∂(V TF`(U))

∂x`
− ∂V T

∂x`
F (U) +∇ · (ΦhB)−∇Φ · (hB)

)
dx

=

∫
Ω

(
∂η(U )

∂t
+
∂(V TF`(U))

∂x`
+∇ · (ΦhB)− ∂ψ`(U)

∂x`

)
dx.

The “entropy potential” plays an important role in obtaining the sufficient condition for the

two-point entropy conservative (EC) fluxes.
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Remark 2.1. Notice that the entropy identity (2.5) is slightly different from (1.5), since the

source terms in the SWMHD equations have special structure, and then V TG(U) in (1.5)

can be absorbed into the left-hand side by using

∂(ghb)

∂t
+

2∑
`=1

∂(ghbv`)

∂x`
= V TG(U).

In other words, the difference between the entropy pair (η, q`) in (2.5) and that in (1.5) is

(ghb, ghbv`).

3. One-dimensional schemes

This section constructs the high-order accurate well-balanced EC and ES schemes for the

x-split system of (2.4), i.e.,

∂U

∂t
+
∂F1(U)

∂x
= −ΨT∂(hB1)

∂x
−GT

1

∂b

∂x
, (3.1)

where G1 = (0, gh, 0, 0, 0)T.

3.1. Second-order EC schemes

Let us consider a uniform mesh in x: x1 < x2 < · · · < xNx , with the spatial step size

∆x = xi−xi−1, i = 2, · · · , Nx and the semi-discrete conservative finite difference scheme for

(3.1) as follows

d

dt
Ui = − 1

∆x

(
F̂i+ 1

2
− F̂i− 1

2

)
−ΨT

i

{{hB1}}i+ 1
2
− {{hB1}}i− 1

2

∆x
−(G1)T

i

{{b}}i+ 1
2
− {{b}}i− 1

2

∆x
, (3.2)

where {{a}}i+ 1
2

denotes the mean value of a at xi+ 1
2
, i.e., {{a}}i+ 1

2
= (ai + ai+1)/2, Ui(t) and

Vi(t) approximate the point values of U (xi, t),V (xi, t), respectively, F̂i+ 1
2
(t) is the numerical

flux approximating F1(x, t) at xi+ 1
2

= xi + ∆x/2, and the second-order central difference is

used to approximate ∂(hB1)/∂x and ∂b/∂x in the source terms.

Definition 3 (Entropy conservative scheme). The scheme (3.2) is entropy conservative

(EC) and corresponding numerical flux F̂i+ 1
2
(t) is called the EC flux, if the solution of (3.2)

satisfies a semi-discrete entropy identity

d

dt
η(Ui(t)) +

1

∆x

(
q̃i+ 1

2
(t)− q̃i− 1

2
(t)
)

= 0, (3.3)

for some numerical entropy flux q̃i+ 1
2

consistent with the given physical entropy flux q1.
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The following lemma gives a sufficient condition for the semi-discrete scheme (3.2) to be

EC, with the discretization of the source terms.

Lemma 3.1. If a symmetric consistent two-point flux F̃i+ 1
2

:= F̃1(Ui,Ui+1) satisfying

JV KT · F̃1 = Jψ1K− JΦK{{hB1}}+ gJhbv1K− gJhv1K{{b}}, (3.4)

is used in (3.2), where JaK and {{a}} denote the jump and mean of a, respectively, then the

semi-discrete scheme (3.2) is second-order accurate and EC, with the numerical entropy flux

q̃i+ 1
2

= {{V }}T
i+ 1

2
F̃i+ 1

2
+ {{Φ}}i+ 1

2
{{hB1}}i+ 1

2
− {{ψ1}}i+ 1

2
+ g{{hv1}}i+ 1

2
{{b}}i+ 1

2
− g{{hbv1}}i+ 1

2
.

(3.5)

Proof. Left multiplying (3.2) by V T
i and using Φ(V ) = ΨV gives

dηi
dt

= − 1

∆x

[
V T
i

(
F̃i+ 1

2
− F̃i− 1

2

)
+ Φ(Vi)

(
{{hB1}}i+ 1

2
− {{hB1}}i− 1

2

)
+ ghi(v1)i

(
{{b}}i+ 1

2
− {{b}}i− 1

2

)]
.

The right-hand side term can be further rearranged as follows

V T
i

(
F̃i+ 1

2
− F̃i− 1

2

)
+ Φ(Vi)

(
{{hB1}}i+ 1

2
− {{hB1}}i− 1

2

)
+ ghi(v1)i

(
{{b}}i+ 1

2
− {{b}}i− 1

2

)
=

(
{{V }}i+ 1

2
− 1

2
JV Ki+ 1

2

)T

F̃i+ 1
2
−
(
{{V }}i− 1

2
+

1

2
JV Ki− 1

2

)T

F̃i− 1
2

+

(
{{Φ}}i+ 1

2
− 1

2
JΦKi+ 1

2

)
{{hB1}}i+ 1

2
−
(
{{Φ}}i− 1

2
+

1

2
JΦKi− 1

2

)
{{hB1}}i− 1

2

+ g

(
{{hv1}}i+ 1

2
− 1

2
Jhv1Ki+ 1

2

)
{{b}}i+ 1

2
− g

(
{{hv1}}i− 1

2
+

1

2
Jhv1Ki− 1

2

)
{{b}}i− 1

2

={{V }}T
i+ 1

2
F̃i+ 1

2
+ {{Φ}}i+ 1

2
{{hB1}}i+ 1

2
+ g{{hv1}}i+ 1

2
{{b}}i+ 1

2

− {{V }}T
i− 1

2
F̃i− 1

2
− {{Φ}}i− 1

2
{{hB1}}i− 1

2
− g{{hv1}}i− 1

2
{{b}}i− 1

2

− 1

2
Jψ1Ki+ 1

2
− 1

2
Jψ1Ki− 1

2
− 1

2
gJhbv1Ki+ 1

2
− 1

2
gJhbv1Ki− 1

2

=
(
{{V }}T

i+ 1
2
F̃i+ 1

2
+ {{Φ}}i+ 1

2
{{hB1}}i+ 1

2
+ g{{hv1}}i+ 1

2
{{b}}i+ 1

2

)
− {{ψ1}}i+ 1

2
− g{{hbv1}}i+ 1

2

−
(
{{V }}T

i− 1
2
F̃i− 1

2
+ {{Φ}}i− 1

2
{{hB1}}i− 1

2
+ g{{hv1}}i− 1

2
{{b}}i− 1

2

)
+ {{ψ1}}i− 1

2
+ g{{hbv1}}i− 1

2

=q̃i+ 1
2
− q̃i− 1

2
,

where ai = {{a}}i+ 1
2
− 1

2
JaKi+ 1

2
and ai = {{a}}i− 1

2
+ 1

2
JaKi− 1

2
have been used in the first equality,

the condition (3.4) has been used in the second equality, and 1
2
JaKi+ 1

2
+ 1

2
JaKi− 1

2
= {{a}}i+ 1

2
−
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{{a}}i− 1
2

has been used in the third equality. Thus the scheme (3.2) with F̂i+ 1
2

= F̃1(Ui,Ui+1)

is EC in the sense of

dηi
dt

+
1

∆x

(
q̃i+ 1

2
− q̃i− 1

2

)
= 0.

The discretization of the source terms is second-order accurate since the second-order central

difference is used, and the results in [45] show that the discretization of the flux gradient is

second-order accurate, therefore the the scheme (3.2) with F̂i+ 1
2

= F̃1(Ui,Ui+1) is second-

order accurate.

Remark 3.1. Since the central difference is used for approximating the non-flat river bed

bottom and Janhunen source terms, the sufficient condition (3.4) is different from that in

[19, 50]. Moreover, such discretization of the source terms is essential to achieve high-order

accuracy and well-balance, see the subsection 3.2.

Below we present such EC flux satisfying (3.4).

Theorem 3.2. For the x-split SWMHD equations (3.1), the following flux F̃1(Ui,Ui+1)

F̃1 =



{{h}}{{v1}}
{{h}}{{v1}}2 +

g

2
{{h2}} − {{hB1}}{{B1}}+ g ({{hb}} − {{h}}{{b}})

{{h}}{{v1}}{{v2}} − {{hB1}}{{B2}}
{{h}}{{v1}}{{B1}} − {{hB1}}{{v1}}
{{h}}{{v1}}{{B2}} − {{hB1}}{{v2}}


(3.6)

is an EC flux, consistent with the physical flux F1(U) defined in (1.3).

Proof. The key is to use the identity

JabK = {{a}}JbK + {{b}}JaK, (3.7)

and rewrite the jumps of the entropy variables V , the potential ψ1, Φ, hv1 and hbv1 as some

linear combinations of the jumps of a specially chosen parameter vector. For simplicity in

derivation, the parameter vector is chosen as (h, b, v1, v2, B1, B2), then

JV KT =
(
gJhK + gJbK− {{v1}}Jv1K− {{v2}}Jv2K− {{B1}}JB1K− {{B2}}JB2K,

Jv1K, Jv2K, JB1K, JB2K
)
,

10



Jψ1K =g{{h}}{{v1}}JhK +
1

2
g{{h2}}Jv1K,

JΦK ={{B1}}Jv1K + {{B2}}Jv2K + {{v1}}JB1K + {{v2}}JB2K,

gJhbv1K− gJhv1K{{b}} =g{{h}}{{v1}}JbK + g{{hb}}Jv1K.

Substituting them into (3.4), and equating the coefficients of the same jump terms gives the

numerical flux in (3.6).

If letting Ui = Ui+1, it is easy to see the consistency of the numerical flux in (3.6).

Remark 3.2. For the y-split system of (2.4), the rotational invariance may be used to get

the EC fluxes consistent to F2(U) defined in (1.3). The EC flux (3.6) is the same as the one

in [50].

Remark 3.3. The present discretization of the source terms is different from that in [50],

and does not meet the computational issue in [50] if {{B1}} = 0 or {{B2}} = 0.

Remark 3.4. If the magnetic field B ≡ 0, then the SWMHD equations reduce to the shallow

water equations (SWEs) and the above SWMHD scheme (3.2) with F̂i+ 1
2

= F̃1(Ui,Ui+1)

defined in (3.6) reduces to the well-balanced EC scheme for the SWEs with the EC flux

F̃1 =


{{h}}{{v1}}

{{h}}{{v1}}2 +
g

2
{{h2}}+ g ({{hb}} − {{h}}{{b}})

{{h}}{{v1}}{{v2}}

 ,

which is the same as the EC flux in [19], except for the second component due to the different

approximation of the source terms.

Lemma 3.1 and Theorem 3.2 tell us that the SWMHD scheme (3.2) for (3.1) with F̂i+ 1
2

=

F̃1(Ui,Ui+1) defined in (3.6) is second-order accurate and EC. Moreover, we can show that

it is well-balanced.

Theorem 3.3. The scheme (3.2) with the EC flux (3.6) is well-balanced, in the sense that

when the magnetic field is zero, it preserves the lake at rest, that is to say, for the given

initial data

(v1)i = (v2)i ≡ 0, hi + bi ≡ C, ∀i,

the solutions of (3.2) satisfy

d

dt
hi ≡ 0,

d

dt
(hv1)i ≡ 0,

d

dt
(hv2)i ≡ 0.

11



Proof. Under the hypotheses, one can verify that the scheme (3.2) satisfies
d

dt
hi ≡ 0,

d

dt
(hv2)i ≡

0 and

d

dt
(hv1)i =− g

∆x

[(1

2
{{h2}}i+ 1

2
− 1

2
{{h2}}i− 1

2

)
+
(
{{hb}}i+ 1

2
− {{hb}}i− 1

2

)
−
(
{{h}}i+ 1

2
{{b}}i+ 1

2
− {{h}}i− 1

2
{{b}}i− 1

2

)
+ hi

(
{{b}}i+ 1

2
− {{b}}i− 1

2

) ]
=− g

∆x

[1

2

(
{{h}}i+ 1

2
JhKi+ 1

2
+ {{h}}i− 1

2
JhKi− 1

2

)
+
(
{{h}}i+ 1

2
bi+1 − {{h}}i− 1

2
bi−1

)
−
(
{{h}}i+ 1

2
{{b}}i+ 1

2
− {{h}}i− 1

2
{{b}}i− 1

2

) ]
=− g

∆x

[1

2

(
{{h}}i+ 1

2
JhKi+ 1

2
+ {{h}}i− 1

2
JhKi− 1

2

)
+

1

2

(
{{h}}i+ 1

2
JbKi+ 1

2
+ {{h}}i− 1

2
JbKi− 1

2

) ]
=− g

2∆x

[
{{h}}i+ 1

2
Jh+ bKi+ 1

2
+ {{h}}i− 1

2
Jh+ bKi− 1

2

]
≡0.

Therefore the scheme (3.2) preserves the lake at rest.

Remark 3.5. The second-order EC scheme (3.2) satisfies the 1D moving equilibrium state

[19]

mi+ 1
2

= {{h}}i+ 1
2
{{v1}}i+ 1

2
≡ C1, pi = (v1)2

i /2 + g(hi + bi) ≡ C2, ∀i.

In fact, it is easy to verify that

d

dt
hi = − 1

∆x

(
mi+ 1

2
−mi− 1

2

)
≡ 0,

d

dt
(hv1)i = − g

∆x

[1

2

(
{{h}}i+ 1

2
JpKi+ 1

2
+ {{h}}i− 1

2
JpKi− 1

2

)
+ (v1)i

(
mi+ 1

2
−mi− 1

2

) ]
≡ 0.

3.2. High-order EC schemes

To develop the high-order well-balanced EC schemes, our task is to get the high-order

numerical fluxes and conduct the matched high-order discretization of the source term related

to the non-flat river bed bottom and the Janhunen source term in (3.1).

Following the way in [32], the EC flux of the 2pth-order (p ∈ N+) accurate scheme can

be obtained by using the linear combinations of the “second-order accurate” EC flux (3.6)

as follows

F̃ 2pth

i+ 1
2

=

p∑
r=1

αpr

r−1∑
s=0

F̃1(Ui−s,Ui−s+r), (3.8)

which satisfies
1

∆x

(
F̃ 2pth

i+ 1
2

− F̃ 2pth

i− 1
2

)
=
∂F1

∂x

∣∣∣
i
+O(∆x2p).

12



The readers are referred to [20, 32] for more details on constructing the “high-order accurate”

EC flux.

To make the resulting schemes high-order accurate, well-balanced and EC, it is essential

that the high-order finite difference approximations of the spatial derivatives ∂(hB1)/∂x and

∂b/∂x in the source terms should match the “high-order accurate” EC flux (3.8). To this

end, based on the observation that the second-order central differences for the source terms

(hB1)i+1 − (hB1)i−1

2∆x
=
{{hB1}}i+ 1

2
− {{hB1}}i− 1

2

∆x
,
bi+1 − bi−1

2∆x
=
{{b}}i+ 1

2
− {{b}}i− 1

2

∆x
,

used in the second-order EC scheme (3.2), have the same form as the discretization of the

flux gradient, using those second-order central differences as a building block can obtain the

high-order approximations of the source terms as follows

(h̃B1)2pth

i+ 1
2

=
1

2

p∑
r=1

αpr

r−1∑
s=0

[(hB1)i−s + (hB1)i−s+r] , (̃b)2pth

i+ 1
2

=
1

2

p∑
r=1

αpr

r−1∑
s=0

(bi−s + bi−s+r) ,

where the linear combination coefficients are the same as those in the “high-order accurate

EC flux” (3.8). Similarly, it is not difficult to verify

1

∆x

(
(̃hB1)

2pth

i+ 1
2
− (̃hB1)

2pth

i− 1
2

)
=
∂(hB1)

∂x

∣∣∣
i
+O(∆x2p),

1

∆x

(
(̃b)

2pth

i+ 1
2
− (̃b)

2pth

i− 1
2

)
=
∂b

∂x

∣∣∣
i
+O(∆x2p).

Such treatment can also be found in [14].

In summary, by approximating (3.1), we obtain the following 2pth order semi-discrete

EC scheme

d

dt
Ui = − 1

∆x

(
F̃ 2pth

i+ 1
2

− F̃ 2pth

i− 1
2

)
− ΨT

i

∆x

(
(̃hB1)

2pth

i+ 1
2
− (̃hB1)

2pth

i− 1
2

)
− (G1)T

i

∆x

(
(̃b)

2pth

i+ 1
2
− (̃b)

2pth

i− 1
2

)
,

(3.9)

which satisfies the entropy identity (3.3) with the numerical entropy flux

(q̃)2pth

i+ 1
2

=

p∑
r=1

αpr

r−1∑
s=0

q̃(Ui−s,Ui−s+r).

It is a linear combination of the two-point numerical entropy flux (3.5). For example, when

p = 3, the expression of the “6th-order accurate” EC flux is explicitly given as follows

F̃ 6th
i+ 1

2
=

3

2
F̃ 1(Ui,Ui+1)− 3

10

[
F̃ 1(Ui−1,Ui+1) + F̃ 1(Ui,Ui+2)

]
13



+
1

30

[
F̃ 1(Ui−2,Ui+1) + F̃ 1(Ui−1,Ui+2) + F̃ 1(Ui,Ui+3)

]
. (3.10)

It can also be verified that the scheme (3.9) is well-balanced in the sense of Theorem 3.3,

since the numerical fluxes and the numerical source terms in (3.9) are formed by the linear

combinations of the fluxes and the source terms in the second-order scheme (3.2) with the

same coefficients, specifically, the second equation in (3.9) is written as follows

d

dt
(hv1)i =− g

2∆x

p∑
r=1

αpr

[hi+r + hi
2

((h+ b)i+r − (h+ b)i) +
hi + hi−r

2
((h+ b)i − (h+ b)i−r)

]
.

For the 1D moving equilibrium states discussed in Remark 3.5, one needs to impose very

restrictive conditions

(hi + hi±r) ((v1)i + (v1)i±r) ≡ C1, ∀i, r = 1, · · · , p,

pi = (v1)2
i /2 + g(hi + bi) ≡ C2, ∀i.

3.3. ES schemes

It is known that for the quasi-linear hyperbolic conservation laws or balance laws, the

entropy identity is available only if the solution is smooth. In other words, the entropy is not

conserved if the discontinuities such as the shock waves appear in the solution. Moreover,

the EC scheme may produce serious unphysical oscillations near the discontinuities. Those

motivate us to develop the ES scheme in this section by adding a suitable dissipation term

to the EC scheme to avoid the unphysical oscillations produced by the EC scheme and to

satisfy the entropy inequality for the given entropy pair.

Following [45], adding a dissipation term to the EC flux F̃i+ 1
2

gives the ES flux

F̂i+ 1
2

= F̃i+ 1
2
− 1

2
Di+ 1

2
JV Ki+ 1

2
, (3.11)

satisfying

JV KT · F̂i+ 1
2
− Jψ1K + JΦK{{hB1}} − gJhbv1K + gJhv1K{{b}} 6 0, (3.12)

where Di+ 1
2

is a symmetric positive semi-definite matrix. It is easy to prove that the scheme

(3.2) or (3.9) with the numerical flux (3.11) is ES, i.e, satisfying the semi-discrete entropy

inequality
d

dt
η(Ui(t)) +

1

∆x

(
q̂i+ 1

2
(t)− q̂i− 1

2
(t)
)
6 0,

for some numerical entropy flux function q̂i+ 1
2

consistent with the physical entropy flux q1.
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Motivated by the Cholesky decomposition and the dissipation term in the (local) Lax-

Friedrichs flux

−1

2
αi+ 1

2
JUKi+ 1

2
≈ −1

2
αi+ 1

2

∂U

∂V

∣∣∣
i+ 1

2

JV K = −1

2
αi+ 1

2
Ri+ 1

2
RT
i+ 1

2
JV K,

the matrix Di+ 1
2

in (3.11) can be chosen as

Di+ 1
2

= αi+ 1
2
Ri+ 1

2
RT
i+ 1

2
.

Here αi+ 1
2

= maxm=i,i+1

{
|(vn1 )m|+

√
ghnm + (Bn

1 )2
m

}
and RRT is the Cholesky decomposi-

tion of the matrix
∂U

∂V
with

R =



1/
√
g 0 0 0 0

v1/
√
g
√
h 0 0 0

v2/
√
g 0

√
h 0 0

B1/
√
g 0 0

√
h 0

B2/
√
g 0 0 0

√
h


,

and αi+ 1
2

and Ri+ 1
2

are calculated by using the arithmetic mean values {{h}}i+ 1
2
, {{v}}i+ 1

2
,

and {{B}}i+ 1
2
.

To obtain the arbitrary high-order accurate ES scheme, the dissipation term in (3.11)

has to be improved. For example, it can be done by using the ENO reconstruction of the

scaled entropy variables w = RTV [20]. More specifically, use the kth order accurate ENO

reconstruction of w to obtain the left and right limit values at xi+ 1
2
, denoted by w−

i+ 1
2

and

w+
i+ 1

2

, and then define

〈〈w〉〉i+ 1
2

= w+
i+ 1

2

−w−
i+ 1

2

.

Combining such reconstructed jump with the “2pth-order EC flux” F̃ 2pth and the 2pth-order

discretization of the source terms gives the kth order ES scheme as follows

d

dt
Ui = − 1

∆x

(
F̂ kth
i+ 1

2
− F̂ kth

i− 1
2

)
− ΨT

i

∆x

(
(̃hB1)

2pth

i+ 1
2
− (̃hB1)

2pth

i− 1
2

)
− (G1)T

i

∆x

(
(̃b)

2pth

i+ 1
2
− (̃b)

2pth

i− 1
2

)
,

(3.13)

where p = k/2 for even k and p = (k + 1)/2 for odd k, and

F̂ kth
i+ 1

2
= F̃ 2pth

i+ 1
2

− 1

2
αi+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
. (3.14)
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The semi-discrete numerical schemes (3.13) is ES if the reconstruction satisfies the “sign”

property [20]

sign(〈〈w〉〉i+ 1
2
) = sign(JwKi+ 1

2
).

which does hold for the ENO reconstructions [21].

Moreover, one can also obtain higher-order accurate ES scheme with the WENO re-

construction instead of the ENO reconstruction, if the same number of candidate points

values are used. In view of that a general WENO reconstruction may not satisfy the “sign”

property, following [5], the dissipation term in (3.11) may be modified as follows

F̂ kth
i+ 1

2
= F̃ 2pth

i+ 1
2

− 1

2
αi+ 1

2
Si+ 1

2
Ri+ 1

2
〈〈w〉〉i+ 1

2
. (3.15)

where Sl
i+ 1

2

is a switch function defined by

Sl
i+ 1

2
=

1, if sign(〈〈w〉〉l
i+ 1

2

) = sign(JwKl
i+ 1

2

) 6= 0,

0, otherwise,

here the superscript l denotes the lth entry of the diagonal matrix Si+ 1
2

or the lth component

of the jump of w. One can verify that the adding dissipation term becomes zero when

the WENO reconstruction does not satisfy the “sign” property, and thus the semi-discrete

numerical scheme with the flux (3.15) is ES.

Remark 3.6. At the steady state, the entropy variables V T become (gC, 0, 0, 0, 0), so that

the low-order dissipation term with JV K and the high-order dissipation term with 〈〈w〉〉 =

R〈〈V 〉〉 all vanish. Thus the constructed ES schemes are well-balanced.

3.4. Time discretization

This paper uses the following third-order accurate strong stability preserving explicit

Runge-Kutta (RK3) time discretization

U (1) = Un + ∆tL(Un),

U (2) =
3

4
Un +

1

4

(
U (1) + ∆tL(U (1))

)
,

Un+1 =
1

3
Un +

2

3

(
U (2) + ∆tL(U (2))

)
,

(3.16)

to integrate in time the semi-discrete schemes (3.2), (3.9) or (3.13), where [L(U)] corresponds

to their right-hand side.
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3.5. Positivity-preserving ES schemes

This section restricts to the flat bottom topography. Generally, the high-order ES scheme

(3.13) integrated with the RK3 (3.16) may numerically produce the negative water height so

that the numerical simulation fails. This section develops a high-order positivity-preserving

ES scheme based on (3.13), satisfying hn+1
i > ε,∀i, if hni > ε,∀i for a small positive number ε

(usually taken as 10−13 in numerical tests), which means there is no dry area in the solutions.

Since the RK3 (3.16) is a convex combination of the forward Euler time discretization, it only

needs to consider the first component of the semi-discrete scheme (3.13) with the forward

Euler time discretization, that is

hn+1
i = hni −

∆t

∆x

[
h(F̂ kth

i+ 1
2
)− h(F̂ kth

i− 1
2
)
]
, (3.17)

where h(F̂ ) denotes the first component of the vector F̂ .

Before that, we first prove that the scheme (3.2) with the local Lax-Friedrichs flux is

positivity-preserving.

Lemma 3.4. The semi-discrete scheme (3.2) discretized with the forward Euler time dis-

cretization and with the local Lax-Friedrichs flux

F̂ LF
i+ 1

2
= {{F1}}i+ 1

2
− αi+ 1

2
JUKi+ 1

2
/2, αi+ 1

2
= max

m=i,i+1

{
|(vn1 )m|+

√
ghnm + (Bn

1 )2
m

}
, (3.18)

is positivity-preserving under the CFL condition

∆t =
µ∆x

max
i

{
|(v1)i|+

√
ghi + (B1)2

i

} , µ 6
1

2
. (3.19)

Proof. The first component of the Lax-Friedrichs scheme can be split as

hn+1
i =:

1

2

(
h+,LF
i + h−,LF

i

)
, h±,LF

i = hni ∓
2∆t

∆x
h(F̂ LF

i± 1
2
),

so it holds

h±,LF
i = hni

(
1− ∆t

∆x

(
αi± 1

2
± (v1)ni

))
+

∆t

∆x
hni±1

(
αi± 1

2
∓ (v1)ni±1

)
.

Thus h±,LF
i > 0 under the CFL condition (3.19), and then hn+1

i > 0.

The following lemma shows that the Lax-Friedrichs flux (3.18) is ES even if hB1 or hB2 is

not constant. Its proof is direct without the assumption that the 1D exact Riemann solution

of x-split system is ES. In fact, when there are jumps in hB1 or hB2 at the cell interface in

the 2D case, whether such assumption is available needs further investigation.
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Lemma 3.5. The Lax-Friedrichs flux is ES when the bottom topography is flat.

Proof. Substituting the Lax-Friedrichs flux into the inequality (3.12) and using identity (3.7)

gives

JV KT · F̂ LF − Jψ1K + JΦK{{hB1}}

=g{{hv1}}JhK−
gα

2
JhK2 +

g

2
{{h2}}Jv1K−

g

2
Jh2v1K

− 1

2
{{hv1}}Jv2

1 + v2
2 +B2

1 +B2
2K +

α

4
JhKJv2

1 + v2
2 +B2

1 +B2
2K

+ {{hv2
1 − hB2

1}}Jv1K + {{hv1v2 − hB1B2}}Jv2K−
α

2
Jhv1KJv1K−

α

2
Jhv2KJv2K

+ {{hv1B1 − hB1v1}}JB1K + {{hv1B2 − hB1v2}}JB2K−
α

2
JhB1KJB1K−

α

2
JhB2KJB2K

+ Jv1B1 + v2B2K{{hB1}}

=g
(

({{hv1}} − {{h}}{{v1}})JhK−
α

2
JhK2

)
− α

2
{{h}}

(
Jv1K2 + Jv2K2 + JB1K2 + JB2K2

)
+ ({{hv2

1}} − {{hv1}}{{v1}})Jv1K + ({{hv1v2}} − {{hv1}}{{v2}})Jv2K

+ ({{hv1B1}} − {{hv1}}{{B1}})JB1K + ({{hv1B2}} − {{hv1}}{{B2}})JB2K

− ({{hB2
1}} − {{hB1}}{{B1}})Jv1K− ({{hB1B2}} − {{hB1}}{{B2}})Jv2K

− ({{hB1v1}} − {{hB1}}{{v1}})JB1K− ({{hB1v2}} − {{hB1}}{{v2}})JB2K.

It can be further simplified by using the identity {{ab}} − {{a}}{{b}} = 1
4
JaKJbK as follows

JV KT · F̂ LF − Jψ1K + JΦK{{hB1}}

=
g

4
JhK2

(
Jv1K2 − α

)
− 1

2
JhB1K (Jv1KJB1K + Jv2KJB2K)

+

(
1

4
Jhv1K−

α

2
{{h}}

)(
Jv1K2 + Jv2K2 + JB1K2 + JB2K2

)
+ ({{hv2

1}} − {{hv1}}{{v1}})Jv1K + ({{hv1v2}} − {{hv1}}{{v2}})Jv2K

,A+ B + C,

where

A =
g

4
JhK2 (Jv1K− 2α) ,

B =
1

4

(
Jv1K2 + JB1K2

)
(Jhv1K− 2α{{h}})− 1

2
JhB1KJv1KJB1K,

C =
1

4

(
Jv2K2 + JB2K2

)
(Jhv1K− 2α{{h}})− 1

2
JhB1KJv2KJB2K.
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Since α = max
{
|(v1)L|+

√
ghL + (B1)2

L, |(v1)R|+
√
ghR + (B1)2

R

}
, it is easy to obtain

Jv1K 6 2α, (v1 ±B1)L,R 6 α,

then A 6 0.

If JhB1K > 0, then B 6 0, because

Jh(v1 +B1)K− 2α{{h}} = hR [(v1 +B1)R − α]− hL [(v1 +B1)L + α] 6 0,

and

B =
1

4

(
Jv1K2 + JB1K2

)
(Jh(v1 +B1)K− 2α{{h}})− (Jv1K + JB1K)

2 JhB1K;

otherwise, it still holds that B 6 0, because

Jh(v1 −B1)K− 2α{{h}} = hR [(v1 −B1)R − α]− hL [(v1 −B1)L + α] 6 0,

and

B =
1

4

(
Jv1K2 + JB1K2

)
(Jh(v1 −B1)K− 2α{{h}}) + (Jv1K− JB1K)

2 JhB1K.

Similarly, C 6 0. Therefore the Lax-Friedrichs flux is ES.

Based on those discussions, the high-order positivity-preserving ES schemes can be con-

structed by using the Lax-Friedrichs flux and the positivity-preserving limiter [26]. The

limited numerical flux F̂ kth,PP

i+ 1
2

is given by

F̂ kth,PP

i+ 1
2

= θi+ 1
2
F̂ kth
i+ 1

2
+ (1− θi+ 1

2
)F̂ LF

i+ 1
2
,

where θi+ 1
2

= min{θ+
i+ 1

2

, θ−
i+ 1

2

} ∈ [0, 1] is the scaling factor corresponding to the two neigh-

boring grid points, which share the same flux F̂ kth
i+ 1

2

, and

θ±
i+ 1

2

=


(
h±,LF

i+ 1
2
∓ 1

2

− ε
)
/
(
h±,LF

i+ 1
2
∓ 1

2

− h±,kth

i+ 1
2
∓ 1

2

)
, if h±,kth

i+ 1
2
∓ 1

2

< ε,

1, otherwise.

It is worth noting that the discretization of the source terms should also be replaced by the

corresponding convex combinations as follows

(̃hB1)
2pth,PP

i+ 1
2

= θi+ 1
2
(̃hB1)

2pth

i+ 1
2

+ (1− θi+ 1
2
){{hB1}}i+ 1

2
.
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It is easy to verify that the water height updated by the high-order positivity-preserving ES

schemes satisfies

hn+1
i =

1

2

(
hni −

2∆t

∆x
h(F̂ kth,PP

i+ 1
2

)

)
+

1

2

(
hni +

2∆t

∆x
h(F̂ kth,PP

i− 1
2

)

)
=

1

2

[
θi+ 1

2
h+,kth
i + (1− θi+ 1

2
)h+,LF

i

]
+

1

2

[
θi− 1

2
h−,kth
i + (1− θi− 1

2
)h−,LF

i

]
> ε,

and the limited flux F̂ kth,PP

i+ 1
2

is consistent and ES since it is a convex combination of the

high-order ES flux and the ES Lax-Friedrichs flux, and does not destroy the high-order

accuracy ∣∣∣∣∣∣F̂ kth,PP

i+ 1
2

− F̂ kth
i+ 1

2

∣∣∣∣∣∣ 6 (1− θi+ 1
2
)
∣∣∣∣∣∣F̂ LF

i+ 1
2
− F̂ kth

i+ 1
2

∣∣∣∣∣∣ ,
with 1− θi+ 1

2
= O(∆xk) [26].

4. Two-dimensional schemes

This section extends the 1D high-order EC and ES schemes developed in Section 3 to the

2D SWMHD system (1.1). For convenience, the notation (x1, x2) is replaced with (x, y). Our

attention is limited to a uniform Cartesian mesh {(xi, yj), i = 1, · · · , Nx, j = 1, · · · , Ny}
with the spatial step sizes ∆x,∆y so that the extension of the 1D schemes to (1.1) can be

done by approximating (2.4) in a dimension by dimension fashion. To avoid repetition, the

detailed extension is not described below.

At each grid point (xi, yj), i = 1, · · · , Nx, j = 1, · · · , Ny, the 2D SWMHD system (1.1)

can be approximated by the following second-order accurate well-balanced semi-discrete EC

scheme

d

dt
Ui,j +

1

∆x

(
F̃1,i+ 1

2
,j − F̃1,i− 1

2
,j

)
+

1

∆y

(
F̃2,i,j+ 1

2
− F̃2,i,j− 1

2

)
=

−ΨT
i,j

{{hB1}}i+ 1
2
,j − {{hB1}}i− 1

2
,j

∆x
−ΨT

i,j

{{hB2}}i,j+ 1
2
− {{hB2}}i,j− 1

2

∆y

− (G1)T
i,j

{{b}}i+ 1
2
,j − {{b}}i− 1

2
,j

∆x
− (G2)T

i,j

{{b}}i,j+ 1
2
− {{b}}i,j− 1

2

∆y
, (4.1)

where G2 = (0, 0, gh, 0, 0)T, and F̃1,i± 1
2
,j and F̃2,i,j± 1

2
are the x- and y-directional EC

fluxes, respectively.

Similarly, using the EC scheme (4.1) as building block can give a 2pth-order well-balanced

semi-discrete EC scheme for the 2D SWMHD system (1.1) as follows

d

dt
Ui,j +

1

∆x

(
F̃ 2pth

1,i+ 1
2
,j
− F̃ 2pth

1,i− 1
2
,j

)
+

1

∆y

(
F̃ 2pth

2,i,j+ 1
2

− F̃ 2pth

2,i,j− 1
2

)
=
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−
ΨT
i,j

∆x

(
(̃hB1)

2pth

i+ 1
2
,j − (̃hB1)

2pth

i− 1
2
,j

)
−

ΨT
i,j

∆y

(
(̃hB2)

2pth

i,j+ 1
2
− (̃hB2)

2pth

i,j− 1
2

)
−

(G1)T
i,j

∆x

(
(̃b)

2pth

i+ 1
2
,j − (̃b)

2pth

i− 1
2
,j

)
−

(G2)T
i,j

∆y

(
(̃b)

2pth

i,j+ 1
2
− (̃b)

2pth

i,j− 1
2

)
, (4.2)

where

F̃ 2pth

1,i+ 1
2
,j

=

p∑
r=1

αpr

r−1∑
s=0

F̃1(Ui−s,j,Ui−s+r,j),

F̃ 2pth

2,i,j+ 1
2

=

p∑
r=1

αpr

r−1∑
s=0

F̃2(Ui,j−s,Ui,j−s+r),

(h̃B1)2pth

i+ 1
2
,j

=
1

2

p∑
r=1

αpr

r−1∑
s=0

[(hB1)i−s,j + (hB1)i−s+r,j] ,

(h̃B2)2pth

i,j+ 1
2

=
1

2

p∑
r=1

αpr

r−1∑
s=0

[(hB2)i,j−s + (hB2)i,j−s+r] ,

(̃b)2pth

i+ 1
2
,j

=
1

2

p∑
r=1

αpr

r−1∑
s=0

(bi−s,j + bi−s+r,j) ,

(̃b)2pth

i,j+ 1
2

=
1

2

p∑
r=1

αpr

r−1∑
s=0

(bi,j−s + bi,j−s+r) .

Then adding a suitable dissipation term to (4.2) gives a kth-order well-balanced semi-discrete

ES scheme for the 2D SWMHD system (1.1) as follows

d

dt
Ui,j +

1

∆x

(
F̂ kth

1,i+ 1
2
,j
− F̂ kth

1,i− 1
2
,j

)
+

1

∆y

(
F̂ kth

2,i,j+ 1
2
− F̂ kth

2,i,j− 1
2

)
=

−
ΨT
i,j

∆x

(
(̃hB1)

2pth

i+ 1
2
,j − (̃hB1)

2pth

i− 1
2
,j

)
−

ΨT
i,j

∆y

(
(̃hB2)

2pth

i,j+ 1
2
− (̃hB2)

2pth

i,j− 1
2

)
−

(G1)T
i,j

∆x

(
(̃b)

2pth

i+ 1
2
,j − (̃b)

2pth

i− 1
2
,j

)
−

(G2)T
i,j

∆y

(
(̃b)

2pth

i,j+ 1
2
− (̃b)

2pth

i,j− 1
2

)
, (4.3)

where p = k/2 for even k and p = (k + 1)/2 for odd k,

F̂ kth
1,i+ 1

2
,j

= F̃ 2pth

1,i+ 1
2
,j
− 1

2
αi+ 1

2
,jSi+ 1

2
,jRi+ 1

2
,j〈〈w〉〉i+ 1

2
,j,

F̂ kth
2,i,j+ 1

2
= F̃ 2pth

2,i,j+ 1
2

− 1

2
αi,j+ 1

2
Si,j+ 1

2
Ri,j+ 1

2
〈〈w〉〉i,j+ 1

2
,

the jumps 〈〈w〉〉i+ 1
2
,j, 〈〈w〉〉i,j+ 1

2
are respectively obtained by using the WENO reconstruction

in the x- and y-directions, and the viscosities αi+ 1
2
,j and αi,j+ 1

2
are respectively chosen in x-

and y-directions.

For the time discretization, the third-order Runge-Kutta scheme (3.16) is used. The

analysis of the EC, ES, and well-balanced properties of the above 2D EC and ES schemes
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is similar to the 1D case, so that it is omitted here. Moreover, the ES property of the Lax-

Friedrichs flux can also be used to develop the 2D positivity-preserving ES schemes by using

the positivity-preserving flux limiter.

5. Numerical results

This section conducts some numerical experiments to validate the performance of our EC

and ES schemes for the SWMHD equations (1.1) and its x-split system. Unless otherwise

stated, all computations take the CFL number µ as 0.5, and the 5th-order schemes with the

fifth-order WENO reconstruction in [6]. For the accuracy tests, the time stepsize ∆t is taken

as µ∆x6/3 (resp. µ∆x5/3) for the 6th order EC schemes (resp. the 5th order ES schemes) to

make the spatial error dominant.

5.1. One-dimensional case

Example 5.1 (Accuracy test). This example is used to verify the accuracy. The computa-

tional domain is [0, 1] with periodic boundary conditions, and g = 1. The constructed exact

solution is given as follows

h(x, t) = 1, v1(x, t) = 0, v2(x, t) = sin(2π(x+ t)), B1(x, t) = 1, B2(x, t) = v2(x, t).

Table 5.1 lists the errors and the orders of convergence in v2 at t = 1 obtained by using

our EC and ES schemes. It is seen that these schemes get the sixth-order and the fifth-order

accuracy as expected.

Nx

EC scheme ES scheme

`1 error order `∞ error order `1 error order `∞ error order

10 1.575e-04 - 2.433e-04 - 1.126e-03 - 1.605e-03 -

20 2.706e-06 5.86 4.181e-06 5.86 3.015e-05 5.22 5.303e-05 4.92

40 4.276e-08 5.98 6.690e-08 5.97 9.048e-07 5.06 1.486e-06 5.16

80 6.700e-10 6.00 1.051e-09 5.99 2.830e-08 5.00 4.492e-08 5.05

160 1.050e-11 6.00 1.650e-11 5.99 8.852e-10 5.00 1.393e-09 5.01

Table 5.1: Example 5.1: Errors and orders of convergence in v2 at t = 1.

22



Example 5.2 (Well-balanced test [56]). It is used to verify the well-balanced property of

our EC and ES schemes. The bottom topography is taken as a smooth function

b(x) = 0.2e−(x+1)2/2 + 0.3e−(x−1.5)2 , (5.1)

or a discontinuous function

b(x) = 0.5χ[−4,4], (5.2)

and then the initial data are specified as h(x) = 1 − b(x), v1 = 0, and B = 0. The

computational domain is [−10, 10], and the problem is numerically solved until t = 10 with

Nx = 40 and g = 1.

The surface level h+ b and the bottom b are shown in Figure 5.1, and the errors in h and

v1 are given in Table 5.2. It can be seen that the errors are at the level of round-off errors

for the double precision, and the well-balanced property is verified.
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(a) Bottom topography (5.1)
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(b) Bottom topography (5.2)

Figure 5.1: Example 5.2: The symbols “4” and “◦” denote the numerical solutions at t = 10 obtained by

using the EC and the ES schemes with Nx = 40, respectively.

Example 5.3 (Steady state problem with wavy bottom [56]). This example is adapted from

the problem in [55] and used to check the dissipative and dispersive errors in the ES scheme.

The computational domain and the bottom topography are the same as the last problem,
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EC scheme ES scheme

`1 error `∞ error `1 error `∞ error

(5.1)
h 9.825e-16 2.554e-15 1.035e-15 2.554e-15

v1 5.463e-16 1.636e-15 5.902e-16 1.638e-15

(5.2)
h 2.484e-16 1.776e-15 2.262e-16 8.882e-16

v1 2.445e-16 2.046e-15 2.309e-16 1.617e-15

Table 5.2: Example 5.2: Errors in h and v1 at t = 10 for the bottom topography (5.1) and (5.2).

g = 9.812, and the initial data are

(h, v1, v2, B1, B2) =

(1, 1, 0, 0.05, 0), x < 0,

(1, 1, 0, 0.1, 0.1), x > 0.

The results obtained by using the ES scheme with Nx = 50, 100 are shown in Figure 5.2,

and the reference solutions are obtained by using the ES scheme with Nx = 1000. We can

see that the accurate solutions can be obtained even with the coarse mesh Nx = 50.
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Figure 5.2: Example 5.3: Left: The bottom topography and the reference solutions obtained by using the

ES scheme with Nx = 1000. Right: The enlarged view of the numerical solutions obtained by using the ES

schemes with Nx = 50 (“O”) and Nx = 100 (“◦”), respectively.

Example 5.4 (Small perturbation of a steady state). To examine the ability of capturing

small perturbation of a steady state, consider two quasi-stationary problems. The first
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problem is considered in [33, 54]. The bottom topography consists of one hump

b(x) =

0.25(cos(10π(x− 1.5)) + 1), if 1.4 < x < 1.6,

0, otherwise,

and the initial data are

h =

1− b(x) + ε, if 1.1 < x < 1.2,

1− b(x), otherwise,

with zero velocity and zero magnetic field. The second quasi-stationary problem takes into

account the magnetic field such that hB1 = 1. Those problems are solved until t = 0.2 with

the computational domain [0, 2], g = 9.812, and ε = 0.2, 0.001.

The results with zero magnetic field are shown in Figure 5.3, while those with non-zero

magnetic field are shown in Figure 5.4. The solutions obtained by using the ES scheme with

Nx = 200 are compared to the reference solutions obtained by using the ES scheme with a

fine mesh of Nx = 3000. It can be seen that the structures in the solutions are well captured

with no spurious oscillations, and the results with zero magnetic field are well comparable

to those in [54].
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Figure 5.3: Example 5.4: The surface level h+b and the discharge hv1 obtained by using the ES scheme with

Nx = 200. The solid lines denote the reference solutions obtained by using the ES schemes with Nx = 3000.

Example 5.5 (Riemann problem [12]). The initial data are

(h, v1, v2, B1, B2) =

(1, 0, 0, 1, 0), x < 0,

(2, 0, 0, 0.5, 1), x > 0.

25



0 0.5 1 1.5 2
0.9

0.95

1

1.05

1.1

1.15

(a) h+ b for ε = 0.2

0 0.5 1 1.5 2
­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

(b) hv1 for ε = 0.2

0 0.5 1 1.5 2
0.9

0.95

1

1.05

1.1

1.15

(c) h+ b for ε = 0.001

0 0.5 1 1.5 2
­0.05

0

0.05

0.1

0.15

0.2

0.25

(d) hv1 for ε = 0.001

Figure 5.4: Same as Figure 5.3 except for hB1 = 1.

The initial discontinuity will be decomposed into two magnetogravity waves and two Alfvén

waves propagating away in two directions as the time increases. The problem is solved until

t = 0.4 with g = 1.

Figure 5.5 presents the solutions h, v1, v2, B1, B2 at t = 0.4 obtained by the ES schemes

with Nx = 100. One can see that our numerical solutions are in good agreement with the

reference solutions, and the discontinuities are well captured without obvious oscillations.
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Figure 5.5: Example 5.5: The solutions at t = 0.4 (“◦”) are obtained by the ES schemes with Nx = 100.

The solid lines denote the reference solutions obtained by using the Lax-Friedrichs scheme with a fine mesh

of Nx = 20000.

5.2. Two-dimensional case

Example 5.6 (Vortex). This genuine 2D vortex problem is designed to test the accuracy and

the positivity-preserving property of our schemes. With the aid of the SWMHD equations

in the polar coordinates given in Appendix A, a steady vortex is constructed as follows

h′ = hmax −
(
v2

max −B2
max

)
e1−r2/(2g),

(v′1, v
′
2) = vmaxe

0.5(1−r2)(−y, x),

(B′1, B
′
2) = Bmaxe

0.5(1−r2)(−y, x),
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with vmax = 0.2, Bmax = 0.1, r =
√
x2 + y2. Using the Galilean transformation x′ = x −

t, y′ = y − t, t′ = t can give a time-dependent exact solution

h(x, y, t) = h′(x− t, y − t, t), (v1, v2)(x, y, t) = (1, 1) + (v′1, v
′
2)(x− t, y − t, t),

(B1, B2)(x, y, t) = (B′1, B
′
2)(x− t, y − t, t),

which describes a vortex moving with a constant speed (1, 1).

The computational domain is [−8, 8]2 with periodic boundary conditions, g = 1, hmax = 1,

and the output time is t = 16 so that the vortex travels and returns to the original position

after a period. Table 5.3 lists the errors in h and corresponding orders of convergence. The

results show that our EC and ES schemes achieve the optimal convergence order. Figure 5.6

plots the contours of h and the magnitude of the magnetic field |B| with 40 equally spaced

contour lines. It can be seen that our schemes can preserve the shape of the vortex well after

a whole period.

To check the positivity-preserving property, let us do a test with

hmax = 10−6 +
(
v2

max −B2
max

)
e/(2g),

which implies that the lowest water height is 10−6. The errors and orders of convergence

obtained by using the ES scheme with or without the positivity-preserving (PP) limiter are

listed in Table 5.4. One can see that the ES scheme fails with Nx = Ny = 20, 40 and without

the positivity-preserving limiter, and the positivity-preserving limiter does not destroy the

high-order accuracy.

Nx = Ny

EC scheme ES scheme

`1 error order `∞ error order `1 error order `∞ error order

20 4.079e-05 - 1.787e-02 - 3.756e-05 - 2.446e-02 -

40 7.025e-07 5.86 1.543e-03 3.53 4.082e-06 3.20 1.012e-02 1.27

80 6.401e-09 6.78 3.028e-05 5.67 1.015e-07 5.33 7.531e-04 3.75

160 5.244e-11 6.93 4.994e-07 5.92 1.582e-09 6.00 2.340e-05 5.01

320 4.143e-13 6.98 7.904e-09 5.98 2.453e-11 6.01 7.205e-07 5.02

Table 5.3: Example 5.6: Errors and orders of convergence in h at t = 16 obtained by using the EC and ES

schemes, hmax = 1.
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Figure 5.6: Example 5.6: The contours of h (left) and |B| (right) at t = 16 obtained by using the ES scheme

with Nx = Ny = 320 and 40 equally spaced contour lines.

Nx = Ny

Without PP limiter With PP limiter

`1 error order `∞ error order `1 error order `∞ error order

20 - - - - 4.007e-05 - 2.680e-02 -

40 - - - - 3.426e-06 3.55 7.087e-03 1.92

80 1.109e-07 - 2.284e-03 - 1.209e-07 4.82 2.657e-03 1.42

160 6.357e-09 4.25 1.000e-03 1.41 5.520e-09 4.45 9.224e-04 1.53

320 3.094e-11 7.68 1.703e-05 5.88 3.089e-11 7.48 1.703e-05 5.76

Table 5.4: Example 5.6: Errors and orders of convergence in h at t = 16 obtained by using the ES schemes,

hmax = 10−6 +
(
v2max −B2

max

)
e/(2g).

Example 5.7 (Well-balanced test [33]). It is used to validate the well-balanced property of

our EC and ES schemes. The bottom topography is taken as

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2), (5.3)

or

b(x, y) = 0.5χ[0.5,1.5]×[0.25,0.75]. (5.4)

The computational domain is [0, 2]× [0, 1], g = 1, and the initial data are h(x, y) = 1−b(x, y)

with zero velocity and magnetic field.
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The problem is solved until t = 1 with Nx = Ny = 40. The errors in h, v1, v2 are listed

in Table 5.5. Similar to Example 5.2, one can see that the well-balanced property of the 2D

schemes has been verified in the sense that the errors are at the level of round-off errors for

the double precision.

EC scheme ES scheme

`1 error `∞ error `1 error `∞ error

(5.3)

h 4.943e-15 3.886e-14 2.293e-15 1.077e-14

v1 5.091e-15 4.091e-14 2.577e-15 1.010e-14

v2 3.766e-15 3.168e-14 1.887e-15 9.742e-15

(5.4)

h 8.437e-16 5.329e-15 8.102e-16 4.663e-15

v1 5.720e-16 4.585e-15 5.731e-16 3.792e-15

v2 1.385e-15 7.659e-15 1.367e-15 6.306e-15

Table 5.5: Example 5.7: Errors in h, v1, v2 at t = 1 for the bottom topography (5.3) and (5.4).

Example 5.8 (Small perturbation of a steady state (without magnetic field) [33]). This

problem is used to check the capability of the ES schemes for the perturbation of the steady

state. The computational domain and the bottom topography are the same as the last test,

and the initial data are

h =

1.01− b(x), if 0.05 < x < 0.15,

1− b(x), otherwise,

with zero velocity and magnetic field. Outflow boundary conditions are used and the problem

is solved until t = 0.6 with g = 9.812.

Figure 5.7 shows the contours of the surface level h+ b (40 equally spaced contour lines)

at t = 0.12, 0.24, 0.36, 0.48, 0.6 obtained by using the ES scheme with Nx = 600, Ny = 300,

which describe a right-going disturbance as it propagates past the hump. It can be seen

that the complex small features are well captured without any spurious oscillations, and the

results are comparable to those in [54].

Example 5.9 (Orszag-Tang like problem [56]). It is similar to the Orszag-Tang problem for

the ideal MHD equations [38]. The computational domain is [0, 2π]2 with periodic boundary
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Figure 5.7: Example 5.8: The surface level h + b at t = 0.12, 0.24, 0.36, 0.48, 0.6 (From left to right, top to

bottom) obtained by using the ES scheme with Nx = 600, Ny = 300. 40 equally spaced contour lines are

used.

conditions and g = 1. The initial data are

(h, v1, v2, B1, B2) = (25/9,− sin y, sinx,− sin y, sin 2x).

The solution of this problem is smooth initially, but the complicated pattern will arise

as the time increases and it has the turbulence behavior. Figure 5.8 presents the results

obtained by using the ES scheme with Nx = Ny = 200 at t = 1 and 2. The solutions are in

good agreement with those in [56]. The left plot in Figure 5.10 shows the time evolution of

the discrete total entropy
∑

i,j η(Ui,j)∆x∆y with three spatial resolutions Nx = Ny = 100,

200 and 400. The total entropy is conserved when the solutions are smooth during an initial

period, but it decays when discontinuities arise.
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Figure 5.8: Example 5.9: The contours of the height h and the magnitude of the magnetic field |B| at t = 1

(the 1st row) and 2 (the 2nd row) obtained by using the ES scheme with Nx = Ny = 200. 40 equally spaced

contour lines are used.

Example 5.10 (Rotor like problem [30]). It is an extension of the classical ideal MHD rotor

test problem [30]. The computational domain is [−1, 1]2 with outflow conditions with g = 1.
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Initially hB1 = 1 and hB2 = 0, and there is a disk of radius r0 = 0.1 centered at (0, 0),

where fluid with large h is rotating in the anti-clockwise direction. The ambient fluid is

homogeneous for r > r0, where r =
√
x2 + y2. Specifically, the initial data are

(h, v1, v2) =

(10,−y, x), r < r0,

(1, 0, 0), r > r0.

This problem is solved until t = 0.2.

Figure 5.9 shows the height h, the velocity v, and the magnetic field B obtained by

using the ES scheme with Nx = Ny = 400. The ES scheme gets the high resolution results

without obvious spurious oscillations comparable to those in [30]. The right plot of Figure

5.10 displays the time evolution of the discrete total entropy with three spatial resolutions

Nx = Ny = 100, 200 and 400. The results show that the total entropy decays as expected,

and the fully discrete scheme is also ES.

6. Conclusion

The paper proposed the high-order accurate entropy stable (ES) finite difference schemes

for the one- and two-dimensional shallow water magnetohydrodynamic (SWMHD) equations

with non-flat bottom topography. The Janhunen source term was added to the conserva-

tive SWMHD equations. For the modified SWMHD equations, the second-order accurate

well-balanced semi-discrete entropy conservative (EC) finite difference scheme was first con-

structed, in the sense that it satisfied the semi-discrete entropy identity for the given entropy

pair (the total energy served as the mathematical entropy) and preserved the steady state

of lake at rest (with zero magnetic field). The key was to match both discretizations for the

fluxes and the source term related to the non-flat river bed bottom and the Janhunen source

term, and to find the affordable EC fluxes of the second-order EC schemes. Next, the high-

order accurate well-balanced EC schemes were obtained by using the second-order accurate

EC schemes as building block. In view of that the EC schemes might become oscillatory near

the discontinuities, the appropriate dissipation terms were added to the EC fluxes to develop

the semi-discrete well-balanced ES schemes satisfying the semi-discrete entropy inequality.

The WENO reconstruction of the scaled entropy variables and the high-order explicit Runge-

Kutta time discretization were implemented to obtain the fully-discrete high-order schemes.

The ES and positivity-preserving properties of the Lax-Friedrichs scheme were also proved
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without the assumption that the 1D exact Riemann solution of x-split system was ES, and

then the high-order positivity-preserving ES schemes were developed by using the positivity-

preserving flux limiter. Extensive numerical tests showed that our schemes could achieve the

designed accuracy, were well-balanced or positivity-preserving, and could well capture the

discontinuities.

Appendix A. SWMHD in polar coordinates

In the polar coordinate system (r, θ), the modified SWMHD equations (2.4) without the

bottom topography become

∂h

∂t
+∇ · (hv) = 0,

∂(hvr)

∂t
+∇ · (hvrv − hBrB) +

∂(gh2/2)

∂r
=
h(v2

θ −B2
θ )

r
,

∂(hvθ)

∂t
+∇r · (hvθv − hBθB) +

∂(gh2/2)

∂θ
= 0,

∂(hBr)

∂t
+

1

r

∂(hvθBr − hvrBθ)

∂θ
= −Br∇ · (hB),

∂(hBθ)

∂t
− ∂(hvθBr − hvrBθ)

∂r
= −Bθ∇ · (hB),

(A.1)

where

∇ · F =
1

r

∂(rFr)

∂r
+

1

r

∂Fθ
∂θ

, ∇r · F =
1

r2

∂(r2Fr)

∂r
+

1

r

∂Fθ
∂θ

, (A.2)

and Fr, Fθ are the radius and azimuth components of the vector F , respectively.
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Figure 5.9: Example 5.10: The contours of of the h, v1, v2, B1, B2 at t = 0.2 obtained by using the ES scheme

with Nx = Ny = 400. 40 equally spaced contour lines are used.
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Figure 5.10: The time evolution of the discrete total entropy for Example 5.9 and 5.10 with several different

resolutions in space.
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