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Abstract 

 

This paper proposes a novel fixed inducing points online Bayesian calibration (FIPO-BC) 

algorithm to efficiently learn the model parameters using a benchmark database. The standard 

Bayesian calibration (STD-BC) algorithm provides a statistical method to calibrate the 

parameters of computationally expensive models. However, the STD-BC algorithm scales 

very badly with the number of data points and lacks online learning capability. The proposed 

FIPO-BC algorithm greatly improves the computational efficiency and enables the online 

calibration by executing the calibration on a set of predefined inducing points.  

 

To demonstrate the procedure of the FIPO-BC algorithm, two tests are performed, finding the 

optimal value and exploring the posterior distribution of 1) the parameter in a simple 

function, and 2) the high-wave number damping factor in a scale-resolving turbulence model 

(SAS-SST). The results (such as the calibrated model parameter and its posterior distribution) 

of FIPO-BC with different inducing points are compared to those of STD-BC. It is found that 

FIPO-BC and STD-BC can provide very similar results, once the predefined set of inducing 

point in FIPO-BC is sufficiently fine. But, the FIPO-BC algorithm is at least ten times faster 

than the STD-BC algorithm. Meanwhile, the online feature of the FIPO-BC allows 

continuous updating of the calibration outputs and potentially reduces the workload on 

generating the database. 

 

Keywords:  

Online learning; Bayesian calibration; Stochastic variational inference; Gaussian processes 

 

 
1* Corresponding author. Email: y.duan@imperial.ac.uk 

mailto:y.duan@imperial.ac.uk


1 Introduction 
 

Computational modelling is now an integral tool to predict and understand complex physical 

systems in many branches of science and engineering. Computational modelling enables 

engineers and scientists to analyse physical phenomena which cannot be easily measured by 

experiments and reduces the time and financial cost of analysing complex systems. However, 

a computational model is normally subject to various types of errors, such as discretisation 

error, parametric uncertainty error, and model error. The discretisation error, parametric 

uncertainty error and model error all contribute to the total error in a mathematical or 

computational model. It is only by assessing and reducing each of the components to the total 

error that one can assess the accuracy of a given mathematical or computational model. The 

discretisation and parametric uncertainty errors are relatively easy to reduce, depending upon 

the computational resources and experimental data available. However, the model error is 

normally linked to the underlying mathematical model not representing the exact physics of 

the system being analysed. Therefore, model error is particularly challenging to both 

rigorously analyse and reduce in magnitude. In many applications, such as turbulence 

modelling, the model parameter is determined based upon approximations or simplified 

conditions. Therefore, model parameter calibration with respect to (w.r.t.) the benchmark data 

becomes important to improve the performance of the model. 

 

The determination of the model parameters through calibration, data adjustment or data 

assimilation enables the model more accurately represent the underlying physics of a system 

being analysed. By this definition, it is natural to calibrate the model parameters using the 

best-fit principle. However, the best-fit principle does not consider the uncertainties that the 

data may be subjected to, such as the observational/numerical discretisation errors, which 

should be considered in determining the agreement between two databases [1–4]. Kennedy 

and O’Hagan [5] proposed a Bayesian approach to calibrating the computational model by 

representing model bias and computer model outputs as the Gaussian processes. The method 

automatically integrates the uncertainties into the calibration by treating them as Gaussian 

noises. For simplicity, we will refer to Kennedy and O’Hagan’s approach as standard 

Bayesian Calibration (STD-BC). 

 

Since the development of STD-BC, the concept was adopted and further developed by many 

researchers in different areas of science and engineering. For example, Bayarri et al [6–8] 



applied the method to validate models for resistance spot welding, dynamic stress and vehicle 

collision modelling. In computational fluid dynamic (CFD) simulation, it was applied to 

tuning the model parameters and inferring the true physical value [9,10], quantifying the 

inverse uncertainty [11–18] and informing the design of supercomputer simulations [19]. 

Recently, Wu et al. [20,21] modularised the STD-BC by dividing the database into two 

different sets; a calibration set and an inverse uncertainty quantification set. This framework 

has been successfully applied in Liu et al [22] to carry out the inverse uncertainty 

quantification of the correlation in the two-fluid model based multiphase-CFD simulation. 

Wu et al. [23] furtherly discussed the “lack of identifiability” issue of inverse uncertainty 

quantification using the Bayesian calibration. Karagiannis and Lin [24] proposed a mixture 

Bayesian Calibration framework, which can represent the real system by mixture the outputs 

of available computer models with different fidelity level. 

 

Despite the successful applications listed above, the STC-BC is impractical for science and 

engineering problems involving very large data sets [25]. This is due to the poor scaling of 

inverting the covariance matrix with respect to (w.r.t.) the size of the data sets involved. 

Assuming we have a data set of size N (including numerical and benchmark data), there will 

be an N-by-N covariance matrix to invert. The computational complexity to invert an N-by-N 

matrix is N3. To solve this problem, Higdon et al. [26,27] followed the definition of Kennedy 

and O’Hagan but suggested to decompose the model output and model discrepancy using 

singular value decomposition (SVD). The weights generated in the SVD of the numerical 

output is treated as a function of the model parameters and spatial coordinate. The concept of 

the STD-BC is then applied to the weight functions. Zhang and Fu [16,17] improved the 

efficiency of the original Bayesian UQ framework by using the adaptive HDMR technique to 

decompose the original high dimensional problems into several lower-dimensional 

subproblems. These treatments subsequentially improves efficiency, however, it does not 

invoke the online learning capability. Once more benchmark data becomes available, users 

have to execute, from scratch, the whole procedure with a larger dataset. The work presented 

in this paper aims to provide a solution to improve the efficiency of the STD-BC and enable 

the online capability using methods developed within the research literature on Gaussian 

processes (GP).  

 

GP is a naïve Bayes supervised machine learning algorithm. By assuming the data follows an 

adjoint multivariate Gaussian distribution, it offers the potential to determine the mean and 



variances of the unknown. As is the case with the STD-BC, the poor scalability of inversion 

of the covariance matrix has limited the usage of the GP. In recent years, many efforts had 

been made to develop a sparse Gaussian processes for very large data sets. A detailed review 

can be found in [28]. In general, there are several ways to increase the sparsity of a GP, such 

as the Nystrӧm GP [29,30], deterministic training conditional (DTC) GP [31], and kernel 

interpolation for scalable structured GP (KISS-GP) [32]. In this paper, we propose to adapt 

the stochastic variational inference GP (SVI-GP) method [33] to improve the efficiency of 

the Bayesian calibration and enable the online learning capability. We name the new method 

‘fixed inducing points online Bayesian calibration’ (FIPO-BC). 

 

The rest of this paper is organised as follows: A brief introduction to the SVI-GP and STD-

BC is given in section 2 which is followed by the description of FIPO-BC in section 3. In 

section 4, we summarise the results of a toy case, while section 5 is contributed to calibrate a 

key model parameter in a scale resolving turbulence model (SAS-SST model). This paper is 

closed by a summary and discussion of future work in Section 5. 

 

2 Background 
 

According to Kennedy and O’Hagan [5], the physical process 𝑓(∙), noisy observation 𝑦𝑖 ∈ ℝ, 

and model outputs ℎ (∙,∙) at 𝒙𝑖 ∈ ℝ𝑑 has the following form: 

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 = ℎ(𝒙𝑖, 𝝑) + 𝛿(𝒙𝑖) + 𝜖𝑖 (1)  

where 𝜖𝑖is the observation error and 𝜖𝑖 ~ 𝒩(0, 𝛽𝑒𝑥𝑝 
−1 ), δ(∙) is the numerical model inadequacy 

and 𝝑 ∈ ℝ𝜃 is the vector of model parameters. The Bayesian calibration assumes the 

numerical dataset and observations is a joint GP and then proceeds to find the most plausible 

𝝑 via maximise the marginal likelihood.  

 

2.1 Stochastic variational inference Gaussian processes (SVI-GP) 

 

Before further description of the Bayesian calibration method, a concise description of 

Gaussian processes [34,35] and stochastic variational inference Gaussian processes (SVI-GP) 

[33] are given in this section. This allows us to introduce notation and expressions which will 

be used in the description of STD-BC and FIPO-BC methods.  

 



The standard GP assumes that any finite subset of {𝑓(𝒙)|𝒙 ∈ ℝ𝑑} follows an adjoint 

Gaussian distribution. Considering the vector of noisy observations 𝒚 = {𝑦𝑖 ∈ ℝ}𝑖=1
𝑛1  taken at 

𝑿 = {𝒙𝑖 ∈ ℝ𝑑}𝑖=1
𝑛1 . In the standard GP, we have 

𝑝(𝒚|𝒇) = 𝒩(𝒚|𝒇, 𝛽𝑒𝑥𝑝
−1 𝑰) (1) 

𝑝(𝒇|𝑿) = 𝒩(𝒇|𝟎,𝑲𝑒𝑒) (2) 

Using Eq.(1 & 2), we define the prior of the real-valued function 𝑓(𝒙) as an adjoint 

multivariant Gaussian distribution with zero means (𝟎) and covariance matrix (𝑲𝑒𝑒). 𝑲𝑒𝑒 is 

an 𝑛1 × 𝑛1 matrix, whose elements are calculated using a predefined covariance function 

which is typically dependent upon a set of hyperparameters. Hyperparameters can be selected 

by maximise the marginal likelihood 𝑝(𝒚|𝑿) = 𝒩(𝒚|𝟎,𝑲𝑒𝑒 + 𝛽𝑒𝑥𝑝
−1 𝑰) . The posterior GP of 

unknown 𝑦∗ at 𝒙∗ is 𝒩(𝑦∗|𝑲∗𝑲𝒆𝒆
−1𝒚,𝐾∗∗ − 𝑲∗𝑲𝒆𝒆

−1(𝑲∗)𝑇 + 𝛽𝑒𝑥𝑝
−1 ), where 𝑲∗ is a 1 × 𝑛1 

covariance vector and 𝐾∗∗ is calculated at 𝒙∗ using the covariance function.  

 

The computational complexity of GP is governed by the size of 𝑲𝑒𝑒. Assuming, we can find 

inducing variables 𝒖 that are conditioned on inducing points 𝒁 = {𝒛𝑖}𝑖=1
𝑚1 , preferably with 

𝑚1 ≪ 𝑛1. We then augment the GP prior as  

𝑝(𝒇|𝑿) = 𝑝(𝒇|𝒖, 𝒁, 𝑿)𝑝(𝒖|𝒁) (3) 

Similar to 𝑝(𝒇|𝑿),  

𝑝(𝒖|𝒁) = 𝒩(𝒖|𝟎,𝑲𝑢𝑢)  (4) 

, where 𝑲𝑢𝑢 is a 𝑚1 × 𝑚1 covariance matrix evaluated between all the inducing points. Let 

𝑲𝑒𝑢 (a 𝑛1 × 𝑚1 matrix) be the covariance matrix between 𝒙𝑒𝑥𝑝 and 𝒛. We will then have,  

𝑝(𝒇|𝒖, 𝒁, 𝑿) = 𝒩(𝒇|𝑲𝑒𝑢𝑲𝑢𝑢
−1𝒖, 𝑲̃)  (5) 

, where 𝑲̃ = 𝑲𝑒𝑒 − 𝑲𝑒𝑢𝑲𝑢𝑢
−1𝑲𝑢𝑒 and 𝑲𝑢𝑒 is the transpose of 𝑲𝑒𝑢. The task then becomes 

finding the proper 𝒖 with knowledge of 𝒚. In the SVI-GP, the variational distribution 

𝑞(𝒖)~𝑁(𝝁, 𝑺) is introduced to enable the usage of SVI which allows for online training [36]. 

There is difficulty in determining the optimised inducing inputs (𝒛) as it will introduce a 

dependence on the training data if the optimisation procedure is done w.r.t it. To solve this 

problem, a fine predifined inducing points can be used [33,37]. 

 

Parameters in 𝑞(𝒖), including 𝝁, 𝑺, and hyperparameters of the kernel function, are 

optimised using the lower boundary of 𝑝(𝒚|𝑿).The objection function can be written as 



𝐿𝑆𝑉𝐼−𝐺𝑃 = ∑ {𝑙𝑜𝑔𝑁(𝑦𝑖|𝒌𝑖
𝑇𝑲𝑢𝑢

−1𝝁, 𝛽−1) −
𝑘̃𝑖𝑖 + 𝒌𝑖𝑲𝑢𝑢

−1𝑺𝑲𝑢𝑢
−1𝒌𝑖

𝑇

2𝛽−1
}

𝑛1

𝑖=1

− 𝐾𝐿(𝑞(𝒖)|𝑝(𝒖)) 

(6) 

with 𝒌𝑖 being the ith row of 𝑲𝑒𝑢 and the 𝑘̃𝑖𝑖 is the diagonal element of 𝑲̃. Once 𝑞(𝒖) is 

determined, the posterior GP mean and covariance can be approximated as described in [38].  

 

2.2 Standard Bayesian calibration (STD-BC) revisited 

 

Consider observations 𝒚 = {𝑦𝑖 ∈ ℝ}𝑖=1
𝑚1  at 𝑿𝑒𝑥𝑝 = {𝒙𝑒𝑥𝑝,𝑖 ∈ ℝ𝑑}

𝑖=1

𝑚1
, and simulation outputs 

𝒉 = {ℎ𝑖,𝑗 = 𝑀(𝒙𝑛𝑢𝑚,𝑖, 𝝑𝑗)} at 𝑿𝑛𝑢𝑚 = {𝒙𝑛𝑢𝑚,𝑖 ∈ ℝ𝑑}
𝑖=1

𝑛1
 and 𝜽 = {𝝑𝑖 ∈ ℝ𝜃}

𝑖=1

𝑎1
. The 

number of elements in 𝒉 is 𝑁1 = 𝑎1𝑛1. It is well known that numerical outputs are also 

subject to numerical error (𝛽𝑛𝑢𝑚). Therefore, we assume 𝒉 ~𝒩(𝟎, 𝑳𝑛𝑛), in which 𝑳𝑛𝑛 =

𝑲𝑛𝑢𝑚 + 𝛽𝑛𝑢𝑚
−1 𝑰 and 𝑲𝑛𝑢𝑚 is a 𝑁1 × 𝑁1 matrix where the element is evaluated using 

𝑘𝑛𝑢𝑚{(𝒙𝑛𝑢𝑚,𝑖, 𝝑𝑘), (𝒙𝑛𝑢𝑚,𝑗 , 𝝑𝑙)}. Now, let us assume 𝒚~𝒩(𝟎, 𝑳𝑒𝑒), where 𝑳𝑒𝑒 = 𝑲𝑒𝑒 +

𝛽𝑒𝑥𝑝
−1 𝑰 and 𝑲𝑒𝑒 = 𝑲𝑛𝑢𝑚 + 𝑲𝛿 is the covariance matrix of true values (𝒇). 𝑲𝛿 is a 𝑚1 × 𝑚1 

matrix for the model inadequacy with elements calculated using 𝑘𝛿(𝒙𝑒𝑥𝑝,𝑖, 𝒙𝑒𝑥𝑝,𝑗). The 

hyperparameters in the 𝑘𝑛𝑢𝑚 and 𝑘𝛿 are 𝝋𝑛𝑢𝑚 and 𝝋𝛿, respectively. Also, it should be noted 

that, for simplicity, we imply that the number of grid/mesh in numerical simulations are the 

same. 

 

Let us denote 𝒅𝑇 = [𝒉 𝒚]. According to the definition of the STD-BC [5], we then have 

𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚, 𝝋𝛿) = 𝒩(𝒅|𝟎, 𝑽𝐵𝐵) (7) 

In Eq. (7),  

𝑽𝐵𝐵 = [
𝑳𝑛𝑛 𝑪𝑛𝑒

𝑪𝑒𝑛 𝑳𝑒𝑒
] (8) 

𝑽𝐵𝐵 is (𝑚1 + 𝑁1) × (𝑚1 + 𝑁1) matrix. 𝑪𝑒𝑛 is a 𝑚1 × 𝑁1 cross-covariance matrix and is 

designed to describe the relationship between numerical outputs and observations with 𝝑. 

The elements in 𝑪𝑒𝑛 are evaluated using 𝑘𝑛𝑢𝑚{(𝑥𝑖,𝑗, 𝝑𝑖), (𝑥𝑒𝑥𝑝,𝑘, 𝝑)} and 𝑪𝑛𝑒 = 𝑪𝑒𝑛
𝑇 . It 

should be noted that we eliminated 𝑿 = [𝑿𝑛𝑢𝑚 𝑿𝑒𝑥𝑝] in Eq. (7). It is noted in [5] that 

marginalised the effect of 𝝋𝑛𝑢𝑚 and 𝝋𝛿 would be too complex. Therefore, the optimal 

hyperparameters 𝝋𝑛𝑢𝑚
∗  and 𝝋𝛿

∗  are suggested to be used. It should be noted that 𝛽𝑛𝑢𝑚 and 

𝛽𝑒𝑥𝑝 are folded in 𝝋𝑛𝑢𝑚
∗  and 𝝋𝛿

∗  here.  



 

With fixed hyperparameters, the plausibility of 𝝑 is then expresses as 

𝑝(𝝑|𝒅,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ) =
𝑝(𝝑)𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚

∗ , 𝝋𝛿)

∫ 𝑝(𝝑)𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿)𝑑𝝑

 
(9) 

Then, the objective in the coupled calibration is to obtain 𝑎𝑟𝑔𝑚𝑎𝑥
𝜃⃗⃗ ∈𝐴

𝑝(𝝑|𝒅,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ). The 

denominator in Eq. (9) is a constant and the prior of 𝝑 (𝑝(𝝑)) should be as flat as possible to 

avoid strong bias. As a result, the shape and the maxima of 𝑝(𝝑|𝒅,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ) are effectively 

determined by 𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿). Then 𝑎𝑟𝑔𝑚𝑎𝑥

𝜃⃗⃗ ∈𝐴

𝑝(𝝑|𝒅,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ) becomes 

𝑎𝑟𝑔𝑚𝑎𝑥
𝝑∈𝑨

𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ). The logarithm form of 𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ )can be written as 

𝑙𝑜𝑔 𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ) =  −
1

2
𝒅𝑇𝑽𝐵𝐵

−1𝒅 −
1

2
𝑙𝑜𝑔|𝑽𝐵𝐵| −

𝑚1 + 𝑁1

2
𝑙𝑜𝑔2𝜋 

 

(10) 

The STD-BC is then to solve 𝑎𝑟𝑔𝑚𝑎𝑥
𝝑∈𝑨

𝑙𝑜𝑔(𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ ))  in which 𝑨 ⊆ ℝ𝜃. For the 

sake of simplicity, we will exclude 𝝋𝑛𝑢𝑚
∗  𝑎𝑛𝑑 𝝋𝛿

∗  in Eq.(10) and write 

𝑙𝑜𝑔(𝑝(𝒅|𝝑,𝝋𝑛𝑢𝑚
∗ , 𝝋𝛿

∗ )) as 𝑙𝑜𝑔(𝑝(𝒅|𝝑)) in the following discussion.  

 

The flow chart for STD-BC is illustrated in the Figure 1. STD-BC contains three major steps: 

1. Determine a set of optimal hyperparameters (𝝋𝑛𝑢𝑚
∗ ) for 𝑘𝑛𝑢𝑚 w.r.t. the marginal 

likelihood of 𝒉 ~𝒩(𝟎, 𝑳𝑛𝑛).  

2. Determine a set of optimal hyperparameters (𝝋𝛿) for 𝑘𝛿 with knowledge of 𝝋𝑛𝑢𝑚
∗ . 

3. Solve 𝑎𝑟𝑔𝑚𝑎𝑥
𝝑∈𝑨

𝑙𝑛(𝑝(𝒅|𝝑))  to obtain calibrated 𝝑 or to obtain the posterior 

distribution of 𝝑 w.r.t. 𝑝(𝒅|𝝑) for the inverse uncertainty quantification purpose. 

 

 

Figure 1 Flow chart of the standard Bayesian calibration (STD-BC). 



 

3 Fixed inducing points online Bayesian calibration (FIPO-BC) 
 

In the FIPO-BC framework, an extra layer formed by the inducing points is introduced to 

eliminate the dependence of the size of the covariance matrix on available data. The form of 

the likelihood defined in the Bayesian calibration is applied to the variables on the inducing 

points. The likelihood is then marginalised w.r.t the variational distribution of the inducing 

variables which is obtained using the SVI method.  

 

Let 𝒖̃ = {𝑢𝑖 = 𝑓(𝒛𝑒𝑥𝑝,𝑖), 𝒛𝑒𝑥𝑝,𝑖 ∈ ℝ𝑑} and 𝑾 = {𝑤𝑖,𝑗 = 𝑀(𝒛𝑛𝑢𝑚,𝑖, 𝝎𝑗), 𝒛𝑛𝑢𝑚,𝑖 ∈

ℝ𝑑  𝑎𝑛𝑑 𝝎𝑗 ∈ ℝ𝜃  } to be the inducing variables for 𝒇 and 𝒉. Let 𝒁𝑒𝑥𝑝 = {𝒛𝑒𝑥𝑝,𝑖 ∈ ℝ𝑑}
𝑖=1

𝑚2
, 

𝒁𝑛𝑢𝑚 = {𝒛𝑛𝑢𝑚,𝑖 ∈ ℝ𝑑   }
𝑖=1

𝑛2
, 𝜴 = {𝝎𝑗 ∈ ℝ𝜃}

𝑗=1

𝑎2
 , and 𝒁 = [𝒁𝑛𝑢𝑚 𝒁𝑒𝑥𝑝]. So 𝑾 contains 

𝑁2  =  𝑎2𝑛2 elements and 𝑁2 + 𝑚2 ≪ 𝑁1 + 𝑚1. Let 𝒘̃ be the vectorised 𝑾 and 𝒅𝑆
𝑇 =

[𝒘̃ 𝒖̃]. Similar to the STD-BC, we now define the 𝒑(𝒅𝑆|𝝑) as 

𝑝(𝒅𝑆|𝝑, 𝝋̃𝒏𝒖𝒎
∗ , 𝝋̃𝜹

∗) = 𝒩(𝒅𝑆|𝟎, 𝑽𝑆𝑆) (11) 

, and 

𝑽𝑆𝑆 = [
𝑳𝑤𝑤 𝑪𝑤𝑢

𝑪𝑢𝑤 𝑳𝑢𝑢
] (12) 

In Eq. (12), 𝑳𝑤𝑤 = 𝑲𝑤𝑤 and 𝑳𝑢𝑢 = 𝑲𝑢𝑢. 𝑲𝑤𝑤 and 𝑲𝑢𝑢 = 𝑲𝑤𝑤 + 𝑲𝛿′ are the covariance 

matrix for 𝒘̃ and 𝒖̃, respectively. 𝑲𝛿′ is the covariance matrix with element calculated using 

kernel function 𝑘𝛿 for the model inadequacy related to  𝒖̃. 𝑪𝑢𝑤 is the cross-covariance matrix 

for 𝒘̃ and 𝒖̃ with element evaluated using 𝑘𝑛𝑢𝑚 and 𝑪𝑤𝑢 = 𝑪𝑢𝑤
𝑇 . 

 

We further write the variational distribution of 𝒘̃ and 𝒖̃ to be  

𝑞(𝒘̃) = 𝒩(𝒘̃|𝑴𝒘̃, 𝑺𝑤𝑤)  (13) 

𝑞(𝒖̃) = 𝒩(𝒖̃|𝑴𝒖̃, 𝑺𝑢𝑢)  (14) 

Let 𝑴𝑆
𝑇 = [𝑴𝒘̃ 𝑴𝒖̃]  and 𝑺 =  [

𝑺𝑤𝑤 𝟎
𝟎 𝑺𝑢𝑢

], then 

𝑞(𝒅𝑆) = 𝒩(𝒅𝑆|𝑴𝑆, 𝑺)  (15) 

Expectation of 𝑝(𝒅𝑆|𝝑, 𝝋̃𝒏𝒖𝒎
∗ , 𝝋̃𝜹

∗) given 𝑞(𝒅𝑆) is 



〈𝑝(𝒅𝑆|𝝑, 𝝋̃𝒏𝒖𝒎
∗ , 𝝋̃𝜹

∗)〉𝑞(𝒅𝑆)

=
1

√(2𝜋)𝑚2+𝑁2|𝑽𝑆𝑆 + 𝑺|
exp (−

1

2
𝑴𝑠

𝑇(𝑽𝑆𝑆 + 𝑺)−1𝑴𝑠)

= 𝒩(𝑴𝑠|𝟎, 𝑽𝑆𝑆 + 𝑺 )  

(16) 

By eliminating the hyperparameters in the expression, we can now comfortably write 

〈𝑝(𝒅𝑆|𝝑, 𝝋̃𝒏𝒖𝒎
∗ , 𝝋̃𝜹

∗)〉𝑞(𝒅𝑆) as 𝑝(𝑴𝑆|𝝑) and its logarithm form is 

𝑙𝑜𝑔(𝑝(𝑴𝑆|𝝑))

= −
1

2
𝑴𝑠

𝑇(𝑽𝑆𝑆 + 𝑺)𝐵𝐵
−1𝑴𝑠

−
1

2
𝑙𝑜𝑔|𝑽𝑆𝑆 + 𝑺| −

𝑚2 + 𝑁2

2
𝑙𝑜𝑔(2𝜋)  

(17) 

 

Hyperparameters (𝝋̃𝒏𝒖𝒎
∗  and 𝝋̃𝜹

∗ ) and 𝑞(𝒅𝑆) can be continuously updated according to the 

new training data, therefore enables online learning. The flow chart of the FIPO-BC is 

illustrated in Figure 2. The proposed FIPO-BC algorithm contains following steps: 

1. Design the inducing points; 

2. Determine a robust set of hyperparameters (𝝋̃𝑛𝑢𝑚
∗ ) and infer the model output (𝑴𝒘̃) at 

the inducing points using the SVI-GP regarding to the whole set/a batch of model 

outputs; 

3. Determine a robust set of hyperparameters (𝝋̃𝛿
∗ ) and infer the measurements (𝑴𝒖̃) at 

the inducing points using the SVI-GP regarding to the whole set/a batch of the 

benchmark database; 

4. Obtain the calibrated model parameters by solving 𝑎𝑟𝑔𝑚𝑎𝑥
𝝑∈𝑨

𝑙𝑜𝑔(𝑝(𝑴𝑆|𝝑)) or obtain 

the posterior probability distribution of 𝝑 w.r.t 𝑝(𝑴𝑆|𝝑). 

5. Update the calibrated 𝝑 and posterior probability distribution of 𝝑 with knowledge 

(𝑴𝒘̃,𝑺𝑤𝑤, 𝑴𝒖̃, and 𝑺𝑢𝑢) obtained in the previous FIPO-BC process, once more data is 

available. 

 



 

Figure 2 Flow chart of the fixed inducing points online Bayesian calibration framework. 

 

4 Application of the FIPO-BC algorithm to a simple test case  
 

This section verifies the implementation as well as demonstrating the practical application of 

the FIPO-BC algorithm by determining the parameter within a simple mathematical function. 

Both the STD-BC and FIPO-BC algorithms are used to identify the parameter in the 

mathematical function 𝑓(𝑥) = 𝑥𝑠𝑖𝑛(4.0𝑥). To distinguish the true function and model, the 

latter is expressed as ℎ(𝑥, 𝐶) = 𝑥𝑠𝑖𝑛(𝐶𝑥). Moreover, forty measurements are manufactured 

by adding noise (𝜖~𝑁(0, 0.052)) to the function outputs. Outputs of ℎ(𝑥, 𝐶) are obtained 

using different values for 𝐶 but the same mesh. Twenty constants are sampled in the uniform 

distribution 𝑈(0.0, 8.0) using the Latin hypercube sampling (LHS) method. Manufactured 

measurements and model outputs together with the profile of 𝑓(𝑥) are presented in Figure 

3(a). Extra validation data is generated to validate the hyperparameters of GP models in the 

calibration process. The validation dataset, shown in Figure 3(b), contains twenty 

measurements and outputs of ℎ(𝑥, 𝐶) with ten 𝐶 values sampled in the uniform 

distribution 𝑈(0.0, 8.0).  

 

Four FIPO-BC cases with different sets of inducing point are generated. The details of the 

sets of the inducing points are documented in Table 1. From Case 1 to Case 4, the number of 

the inducing points gradually increases. Outputs of FIPO-BC algorithm, including the 

calibrated model parameter, the posterior distribution of the parameter, and the profile of the 

objective function, are compared to those of STD-BC algorithm. The hyperparameters of the 

surrogate models are optimised using the adaptive Nelder-Mead algorithm [39]. The validity 

of the GP/SVI-GP models for ℎ(𝑥, 𝐶) and measurements (𝑦) are checked using the validation 



dataset. For the sake of simplicity, the GP model is expressed as 𝑔 and the SVI-GP model is 

expressed as 𝑔𝑠. Several attempts to determine the optimal hyperparameters have been done. 

In each attempt, the initial searching point of the adaptive Nelder-Mead simplex algorithm is 

carefully selected. Only the best-performed model is considered in the following discussion. 

 

The quantity-to-quantity (Q-Q) plot and the mean square error (MSE) are illustrated in Figure 

4. Outputs of 𝑔𝑠(𝑥, 𝐶) are very similar to those of ℎ(𝑥, 𝐶) except for Case 1, seeing Figure 

4(a). 𝑔𝑠(𝑥, 𝐶) in Case 1 is visibly different from the validation data with MSE ≅ 1.0E-1. The 

MSEs of 𝑔𝑠(𝑥, 𝐶) in Cases 2, 3 & 4 are smaller than 1.0E-4, while the MSE of 𝑔(𝑥, 𝐶) in 

standard BC (STD-BC) is just above 1.0E-4. Furthermore, 𝑔𝑠(𝑥) and 𝑔(𝑥) for the 

manufactured measurement almost overlap with each other, referring to Figure 4(b). The 

MSEs (<1.0E-02) of 𝑔𝑠(𝑥) and 𝑔(𝑥) are much smaller than the standard deviation (0.05) of 

𝜖. It is confident to claim that the surrogate models in the STD-BC case and last three FIPO-

BC cases are valid. 

 

The posterior distribution of 𝐶 is obtained using the Metropolis-Hasting (MH) algorithm, by 

assuming that the prior distribution of 𝐶 follows a uniform distribution in [0, 8]. 10,000 

samples have been taken in each case. The histogram of the posterior distribution of 𝐶, the 

profile of log marginal likelihood defined in both FIPO-BC and STD-BC, as well as maxima 

of the profiles are plotted in Figure 5. Because of the deficiency of 𝑔𝑠(𝑥, 𝐶) in Case 1, the 

calibrated 𝐶 is well away from 4.0. In other FIPO-BC cases and STD-BC, calibrated 𝐶 is the 

same as the true value. With more inducing points added in the FIPO-BC, the profile of 

𝑙𝑜𝑔(𝑝(𝑴𝑆|𝝑)) becomes more and more akin to the profile of 𝑙𝑜𝑔(𝑝(𝒅|𝝑)) until the FIPO-

BC is converged on the inducing points, i.e. outputs of Case 4 is similar to outputs of Case 3. 

However, the posterior distribution of 𝐶 in Case 4 is still visibly different from the outcome 

of STD-BC. This difference may be due to the non-marginalised hyperparameter effect. 

 

The CPU time per 1000 MH sampling in each case is presented in Figure 6. The in-house 

Matlab code runs on a laptop with the Intel i7-7600U CPU. The time efficiency of MH 

sampling is greatly improved when using FIPO-BC algorithm. For instance, the CPU time 

per 1000 MH sampling in Case 3 is 135.8 s just a tenth of that in the STD-BC algorithm. 

 



In order to demonstrate the online capability of the proposed method, the output of ℎ(𝑥, 𝐶) in 

the training dataset is split into four batches. Each batch is separately fed into the FIPO-BC 

solver of Case 3. The results are shown in Figure 7, which includes the value of 𝐶 used to 

generate the data in the batches, response surface of true model output approximated using 

the 𝑔𝑠(𝑥, 𝐶), as well as the calibrated value of 𝐶 at each step. With more data fed in the SVI-

GP solver, the response surface gradually converges, and therefore to the calibrated value of 

𝐶. The calibrated 𝐶 with the first set of data (‘Batch-1’) is 3.92. With the ‘Batch-2’ fed into 

the calibration, while ‘Batch-1’ is omitted, the calibrated 𝐶 is 4.0. Although the calibrated 𝐶 

shifted to 4.01 with ‘Bath-3’ and ‘Bath-4’, such a small difference does not cause much 

difference in the function output. Therefore, it is reasonable to claim that the online FIPO-BC 

converges with dataset ‘Batch-2’. 

 

  
(a) (b) 

Figure 3 (a) Training dataset: (model outputs with different constant (𝑥𝑠𝑖𝑛(𝐶𝑥)) and 

manufactured measurements (benchmark database)); (b) Verification dataset. 

 

Table 1 number of points in the standard Bayesian calibration and resolution of fixed 

inducing points online Bayesian calibration. 

Cases: C x Measurements Data points/Inducing points 

STD-BC:  

Standard BC 20 40 40 840 

FIPO-BC:  

Case 1 6 11 16 82 

Case 2 9 16 21 165 

Case 3 11 21 26 257 

Case 4 17 26 31 473 



 

 

Figure 4 Validation for (a) surrogate models for ℎ(𝑥, 𝐶) (b) surrogate models for 

measurements in FIPO-BC and STD-BC. 

 

 

Figure 5 The posterior PDF of 𝐶 and the log marginal likelihood for cases of FIPO-BC (a) 

Case 1; (b) Case 2; (c) Case 3; (d) Case 4 and (e) the STD-BC case. 

 



 

Figure 6 CPU time(s) per 1000 MH sampling in each case. 

 

  

  
Figure 7 The online calibration of the parameter in the toy case using FIPO-BC. Each pane 

shows the response surface of the inducing output for the models as well as the calibrated 

parameter after a batch of model output using different 𝐶 values, marked as solid points. 

Previously used (and discarded) 𝐶 values and the calibrated constant are marked as empty 

points. 

 

5 Calibrating 𝐶𝑠 in a SAS-SST simulation 
 



Turbulence modelling has been a continuous endeavour since the 1950s. The challenge is 

caused by the misalignment of the scale of a flow system and the turbulent eddies with the 

spatial scale of micrometre/millimetre and the time scale of microsecond/millisecond. 

Despite their small scale, the turbulent eddies dominate the behaviour of the turbulent flow. 

Major efforts have been spent in the development of turbulence models which describe the 

effect of turbulent eddies sufficiently well. In this section, the FIPO-BC algorithm is used to 

calibrate a damping factor (𝐶𝑠) in a scale-resolving CFD turbulence model (SAS-SST). The 

SAS-SST model [40,41] aims to generate turbulent eddies using information obtained from 

the mean flow. Unrealistic turbulent eddies in the high-wave number region may be 

introduced into the simulated turbulent flow system. As a result, a specific term is designed to 

filter those unphysical turbulent eddies. The damping factor (𝐶𝑠) controls the size of the filter 

and is the key parameter in this term. It changes the balance of the modelled and resolved 

turbulence effect, and hence affecting the model accuracy. 

 

The FIPO-BC algorithm is applied to calibrate the 𝐶𝑠 with regard to the streamwise velocity 

measurement of incompressible flow passing a prism bluff body [42,43]. The SAS-SST 

model is implemented within the commercial CFD solver, STAR-CCM+ 12.04, using user-

defined functions. Eleven SAS-SST simulations are performed to provide the database for the 

surrogate model of the numerical simulation. Except for 𝐶𝑠, other settings, such as boundary 

conditions and numerical set-up, are the same in these simulations. Further details about how 

the simulations are set-up can be found in [4]. The chosen 𝐶𝑠 are 0.0, 0.1, …, 1.0. Each 

simulation takes more than 96,000 CPU hours to reach time-convergence. Experimental 

measurements and SAS-SST predictions of 𝑈/𝑈𝑏 just after the bluff-body are plotted in 

Figure 8(a). After comparing the SAS-SST outputs to measurements graphically, it is clear 

that the SAS-SST with 𝐶𝑠 = 0.8, 0.9   𝑎𝑛𝑑 1.0 better matches the measurements. Hereby, we 

plot the mean square difference (MSD) between SAS-SST prediction using 𝐶𝑠 = 0.9 and 

other SAS-SST predictions in Figure 8 (b). The MSD of simulation using 𝐶𝑆 = 1.0 is 6.6E-6. 

It suggests the SAS-SST using 𝐶𝑠 between 0.9 and 1.0 would produce almost the same 𝑈/𝑈𝑏 

at the location. 

 

The FIPO-BC with several different sets of inducing points are performed of which details 

are included in Table 2. In the first three cases, the number of the inducing points for 𝐶𝑠 

gradually increases from 6 to 11, while it is kept the same (36) on the spatial coordinate (𝑋). 



Spatial inducing points increase to 41 and 46 in the last two cases, respectively. Again, the 

adaptive NM simplex algorithm is chosen to obtain the hyperparameters. But in this part of 

the study, the initial searching points are randomised. Dozens of attempts have been made 

and the hyperparameters resulting in the best results are chosen to show here. 

 

Suitability checking of the surrogate models for CFD models and measurements are 

illustrated in Figure 9. As in the toy case, the surrogate models in the FIPO-BCs are checked 

by using the inducing data points to predicted the training dataset, whilst the LOO-CV test is 

adopted to assess the validity of surrogate models in the STD-BC. As shown in Figure 9 (a), a 

visible improvement of surrogate model accuracy is achieved by refining the inducing points. 

Compared to the other FIPO-BC cases, data points produced in FIPO-BC-5 are closer to the 

equilibrium line in the quantity-to-quantity plot. With a small number of inducing points for 

spatial coordinate, the improvement on SVI prediction of CFD outputs due to refined 𝐶𝑠 

resolution is too small to be seen, referring to the MSE of FIPO-BC-1, 2, 3. As the number of 

inducing points for spatial coordinate increases, the MSE drops from ~4.0E-4 to ~9.0E-5 in 

FIPO-BC-4 and 5. Additionally, the surrogate model for CFD models in the STD-BC also 

performs well (MSE≅1.0E-4). As shown in Figure 9 (b), the SVI-GP model for measurement 

converges at FIPO-BC-2, containing 16 inducing points. The MSEs of SVI-GP predictions of 

measurements are around 3.0E-3 in FIPO-BC cases, except for FIPO-BC-1. Interestingly, the 

STD-GP model for the measurements in the STD-BC shows worse accuracy comparing to 

the SVI grid converged SVI-GP models, as its MSE is ~2.0E-02. This may be due to the 

sparsely distributed noisy data points and the LOO-CV test. 

 

Figure 10 illustrates the histogram of the posterior PDF of 𝐶 (obtained using the MH 

algorithm), as well as profiles of log marginal likelihood and maximums in FIPO-BC cases 

and STD-BC are plotted. As the inducing points refined, the shape of 𝑙𝑜𝑔(𝑝(𝑴𝑠|𝐶𝑠)) 

becomes more like that of 𝑙𝑜𝑔(𝑝(𝒅|𝐶𝑠)). Since the effect of hyperparameters is not 

marginalised, the range of the marginal likelihood greatly varies and causes differences in the 

posterior PDF. For instance, the range of 𝑙𝑜𝑔(𝑝(𝑴𝑠|𝐶𝑠)) in FIPO-BC-2 and 4 are much 

larger than that in the other cases. Subsequently, the posterior distribution of 𝐶𝑠 in these three 

cases is more concentrated than others. The maximum values in the log marginal likelihood 

of all cases are 1.0, 0.83, 0.89, 0.92, 0.92, and 0.9 for FIPO-BC-1, 2, 3, 4, 5 and STD-BC 

respectively. Since the SAS-SST prediction using 𝐶𝑆 ∈ [0.9, 1.0] can be deemed to be similar 



due to the very small MSD between them. It is reasonable to claim the inducing points 

convergence is achieved at FIPO-BC-4. Figure 11 illustrates the computing efficiency 

(represented by CPU time(s) per 1000 MH sampling) of different cases. As expected, the 

time spent on MH sampling greatly reduces in all FIPO-BC cases. Even for FIPO-BC-5 (with 

finest SVI grid), CPU time(s) per 1000 MH sampling is less than a tenth of that of the STD-

BC. 

 

To demonstrate the online FIPO-BC, the original data is split into four different data batches 

and fed into the FIPO-BC solver sequentially, whilst the inducing is the same as that used in 

FIPO-BC-5. The results of this online calibration are shown in  

Figure 12. Each pane of Figure 12 includes the 𝐶𝑠 used to generate the numerical outputs, 

response surface of absolute error (|numerical output – SVGP prediction|), as well as the 

optimal 𝐶𝑠. Clearly, with more data fed into the FIPO-BC solver, the absolute error is reduced 

across the parameter space. Meanwhile, the optimal 𝐶𝑠 continuously improves. The optimal 

𝐶𝑠 obtained using ‘Batch-1, 2, 3 & 4’ are 0.5, 1.0, 1.0, and 0.94, respectively. In particular, 

the absolute errors produced at the stage of ‘Batch-3’ and ‘Batch-4’ are very similar. We can 

confidently claim that the calibration can be achieved only using Batch-1, 2 & 3 when the 

FIPO-BC is used. 

 

Table 2 Numbers of the inducing points for calibrating 𝐶𝑠 in SAS-SST using FIPO-BC and 

numbers of data point in the STD-BC. 

Cases: 𝐶𝑠 x-coordinate Measurements Inducing Points / 

Data points 

FIPO-BC-1 6 36 11 227 

FIPO-BC-2 9 36 16 340 

FIPO-BC-3 11 36 21 417 

FIPO-BC-4 11 41 26 477 

FIPO-BC-5 11 46 26 532 

STD-BC 11 121 54 1385 

 



 

Figure 8 (a) Profiles of 𝑈/𝑈𝑏 after the prism bluff-body predicted using SAS-SST model 

with different 𝐶𝑠, (b) mean square difference of 𝑈/𝑈𝑏 between different SAS-SST simulation 

and results obtained using 𝐶𝑠 = 0.9. 

 

 



 

Figure 9 Validation of surrogate models for (a) CFD outputs (b) measurements in FIPO-BC 

cases and STD-BC (Leave-one-out test is adopted to validate the surrogate models in STD-

BC). 

 

 

Figure 10 The posterior PDF of 𝐶𝑠 and the distributions log marginal likelihood for the FIPO-

BC cases and the STD-BC case. 

 



 

Figure 11 CPU time(s) per 1000 MH sampling in each case for exploring posterior 

distribution of 𝐶𝑠. 

 

  

  

 

Figure 12 The online calibration of 𝐶𝑠 in SAS-SST model. Each pane shows the response 

surface of the inducing output for the models as well as the calibrated 𝐶𝑠 after a batch of 

model output using different 𝐶𝑠, marked as solid points. The 𝐶𝑠 used to generate model 



outputs considered in the previous step (but discarded the current step) and previously 

obtained calibrated value are marked as empty points. 

 

6 Summary and Discussion 
 

We have proposed a novel fixed inducing points online Bayesian calibration framework 

(FIPO-BC) algorithm for improving the accuracy of numerical simulations of science and 

engineering problems. The framework improves the computational efficiency and enables the 

online learning capability of the STD-BC algorithm by incorporating the SVI-GP. The FIPO-

BC algorithm can use far fewer data points, resulting in a much smaller covariance matrix, 

and hence producing a much more computationally efficient algorithm. The new approach 

also allows online updates of the calibrated model parameter with data being supplied to the 

solver sequentially. The procedure of using the FIPO-BC algorithm is demonstrated by using 

it first to calibrate the parameter in a simple mathematical function, and then to calibrate an 

essential parameter of scale-resolving CFD modelling method, SAS-SST. The performance 

of the FIPO-BC algorithm is compared against the STD-BC algorithm. 

 

It has been demonstrated in both test cases that FIPO-BC algorithm provides the same 

calibrated parameter as the STD-BC algorithm, once the FIPO-BC algorithm is converged on 

the number of inducing points. Due to the online learning capability of the FIPO-BC 

algorithm, the calibration can be achieved using less data. Like the STD-BC algorithm, the 

posterior distribution of the parameter will be affected by the optimal hyperparameters. Both 

the STD-BC and FIPO-BC algorithms require marginalisation to eliminate this effect. In 

order to enable the algorithms to utilise marginalisation requires additional computational 

resources. However, the inclusion of marginalisation within the FIPO-BC algorithm would be 

more computationally efficient than the STD-BC algorithm with marginalisation. The FIPO-

BC algorithm with marginalisation will be investigated in future work. 
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