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The forward problems of pattern formation have been greatly empowered by extensive theoretical
studies and simulations, however, the inverse problem is less well understood. It remains unclear how
accurately one can use images of pattern formation to learn the functional forms of the nonlinear and
nonlocal constitutive relations in the governing equation. We use PDE-constrained optimization to
infer the governing dynamics and constitutive relations and use Bayesian inference and linearization
to quantify their uncertainties in different systems, operating conditions, and imaging conditions.
We discuss the conditions to reduce the uncertainty of the inferred functions and the correlation
between them, such as state-dependent free energy and reaction kinetics (or diffusivity). We present
the inversion algorithm and illustrate its robustness and uncertainties under limited spatiotemporal
resolution, unknown boundary conditions, blurry initial conditions, and other non-ideal situations.
Under certain situations, prior physical knowledge can be included to constrain the result. Phase-
field, reaction-diffusion, and phase-field-crystal models are used as model systems. The approach
developed here can find applications in inferring unknown physical properties of complex pattern-
forming systems and in guiding their experimental design.

I. INTRODUCTION

Beyond the aesthetic value of pattern formation widely
observed in many systems [1], their images can be har-
nessed to distill useful physical properties and test theo-
retical models quantitatively. In contrast to natural im-
ages and neural network models, images of pattern for-
mation often lie on a manifold that can be described by
relatively simple partial differential equations (PDE), de-
spite the high degrees of freedom at the microscopic scale
[2] and the richness of the pattern itself [3]. Identifying
the PDEs that govern an evolving pattern helps to un-
cover its mechanism and the constitutive relations with a
small number of experiments [4]. Physically, the solution
to the inverse problems reveals nonequilibrium behav-
iors that are difficult to compute from first principles,
providing a data-driven approach to modeling complex
behavior. However, due to the nonlinearity of the PDEs,
it remains unclear to what extent the constitutive laws of
pattern formation, especially the uncertainty in the func-
tional form of the nonlinear and nonlocal dependence,
can be reliably and robustly identified from images.

Analytical approaches have yielded valuable insights
into the scaling laws of pattern formation [5, 6] and
hence how the dynamics depend on key parameters.
For spinodal decompositions, it is well known that the
characteristic wavenumber of the initial spinodal pat-
tern is related to the second derivative of the free en-
ergy [7], and when the coarsening is governed by dif-
fusion, the domain size grows as t1/3 in time [8–10].
The growth law is found to vary with different models
of concentration-dependent diffusivity[11]. For noncon-
served fields, Ginzburg-Landau theory predicts a well-
known t1/2 growth law [9, 10]. The structure factor of

the pattern at different stages of the coarsening in both
simulations and experiments has been found to collapse
with the appropriate scaling [8, 12].

However, scaling analysis does not describe the mor-
phology in real space. The growth law only applies when
the domain is sufficiently large and no boundary effects
are present [9, 10]. In addition, for systems with compet-
ing dynamics such as reaction and diffusion, the pattern
depends sensitively on both reaction kinetics and diffu-
sivity [3, 13], and does not necessarily follow a simple
growth law. Hence, in this work, we identify the gov-
erning equation from images through PDE-constrained
optimization and use uncertainty quantification to assess
the accuracy of the constitutive relations.

Previous studies have demonstrated the possibility of
inferring constitutive relations or governing equations
from images [4, 14–21]. Parameter identification (includ-
ing the nonlocal interaction kernel) and model selection
in phase-separating systems has also been studied in de-
tail [4, 22–24]. With images, we have the opportunity
to refine simplified models and allow unknown closures
in the governing equation to be informed by data. How-
ever, for pattern-forming systems, the uncertainty in the
functional form of the nonlinear or nonlocal constitutive
relations remains largely unknown. Similarly, the sensi-
tivity of the pattern morphology to the functional form
is unclear, and cannot be easily elucidated by the scaling
analysis mentioned above. In addition, while the pat-
terns can be strongly influenced by specific conditions
such as the average volume fraction and reaction rate,
a systematic analysis of inversion based on images ob-
tained under different conditions is lacking. We discuss
solutions to these issues above in this work.

Recently, it is found that the low-dimensional man-
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ifold learned from images of spinodal decomposition is
well correlated with the free energy barrier and average
concentration [25, 26]. Here, we take the inverse problem
approach; instead of creating a forward mapping from
physical properties to patterns, we ask what physical
properties can be accurately inferred from full images.
In contrast with learning from the low-dimensional rep-
resentation of the images (which more broadly can be
obtained from feature engineering [27] and dimensional-
ity reduction techniques [28]), we utilize the full dataset
in defining the objective function and in constructing the
likelihood model to maximize the retrieval of useful in-
formation.

As with any regression problem, care must be taken
with regards to generalization and extrapolation. Regu-
larization is needed for the inversion of functions (infinite-
dimensional inverse problems) to ensure the problem is
well-posed. For example, neural networks have been used
to discover or represent physical laws and constitutive
relations by incorporating physical constraints [29–38].
Sparse or symbolic regression are also commonly used
to achieve parsimony and better physical interpretability
[39–44]. Physical constraints such as force equilibrium
have been integrated with material properties to enable
data-driven solutions to problems in mechanics either by
using data directly without a model or inverting the con-
stitutive model from data[45, 46]. Our approach enforces
the general form of the governing equation while allowing
the unknown dynamics (such as reaction and diffusion)
to be identified. We also allow the unknown constitutive
relations to be nonlinearly or nonlocally dependent on
the order parameters. Additionally, imposing symmetry
in the constitutive relations and other prior knowledge
such as the miscibility gap can narrow down the uncer-
tainty and prevent overfitting.

Recently, surrogate models such as Gaussian processes
[47], polynomial chaos expansion [48, 49], deep neural
networks [50, 51], generative adversarial networks [52],
and physics-informed neural networks [53] have been used
in inverse uncertainty quantification and they are par-
ticularly useful when the model evaluation is expensive.
Here, we choose the full Bayesian approach [17, 54, 55]
based on the full PDE model and given snapshots to in-
fer the posterior distribution of the constitutive relations.
To address the curse of dimensionality that is associ-
ated with the large number of parameters used to repre-
sent functions, we use a dimension-independent Markov
Chain Monte Carlo [56] to ensure efficient sampling.

Our method offers a top-down approach to the con-
struction of constitutive relations of complex systems di-
rectly from macroscopically observed fields. It is com-
plementary to the bottom-up multiscale simulation ap-
proaches of scale bridging and learning closure models
[57–60]. With advanced imaging capabilities and the
availability of more image data, the top-down data-driven
approach to modeling pattern formation becomes in-
creasingly relevant and hence calls for a detailed analysis
of how well constitutive laws can be extracted from data

[61, 62].
We formulate the methods for solving PDE-

constrained optimization and uncertainty quantification
in Section II and apply the methods to various exam-
ples in Section III to study the inversion result, un-
certainty and correlation in the inferred quantities, and
whether models can be distinguished. In Section III A,
the convergence of the optimization is demonstrated; the
uncertainty quantification is applied to phase field and
phase field crystal models to illustrate the quality of
the sampling. We study phase-separating systems driven
by diffusion and/or reaction as they relax toward equi-
librium under different average concentration (Section
III B), identify the contribution of reaction and/or diffu-
sion (Section III C), and when system is chemically driven
out of equilibrium (Section III D). We also study the ef-
fect of imaging conditions including temporal resolution
(Section III E), spatial resolution (Section III F), image
domain size (Section III G), as well as blurring (Section
III H) on the inversion results and corresponding uncer-
tainties.

II. METHOD

We study a class of pattern-forming systems that has
a non-convex free energy F [c] as a functional of the order
parameter field c(x). Phase separation occurs due to in-
stability, that is, there exists δc such that δ2F < 0. When
the order parameter is a conserved parameter such as
concentration, the dynamics can be driven toward equi-
librium by diffusion,

∂c

∂t
= ∇ · (D(c)c∇µ), (1)

where the functional derivative µ = δF/δc is the chem-
ical potential. In chemically driven systems where the
interior of the system is in direct contact with the chemi-
cal reservoir, as found in surface adsorption and surface-
reaction-limited nanoparticles, and when the driving is
small enough to use linear irreversible thermodynamics
[63, 64], the governing equation is

∂c

∂t
= −R0(c)µ. (2)

Being in contact with a chemical reservoir, the free energy
is now F [c]− µres

∫
cdx with the addition of a Lagrange

multiplier. µres is the chemical potential of the chemical
reservoir.

Thermodynamically, the region of instability δ2F <
0 is prohibited unless the system is out of equilibrium.
Therefore, the temporal evolution of the patterns gives
us access to constitutive relations in the unstable region.
In the case of a phase-separating system, the free energy
is typically described by a regular-solution (or Ginzburg-
Landau) type double-well energy with a gradient penalty
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term,

F [c(r)] =

∫ (
gh(c(r)) + κ|∇c|2

)
dr, (3)

where r is the position in space, gh(c) is the volumetric
free energy when the concentration field c(r) is homo-
geneous, κ is the coefficient for penalizing concentration
gradient, which leads to a diffuse interface when the sys-
tem phase separates[7]. When coupled with diffusion as
in Eq. 1, this expression becomes the well-known Cahn-
Hilliard equation used extensively in phase field models
[65]. When coupled with Eq. 2, it is known as the Allen-
Cahn equation. In this case, we attempt to learn the
double-well free energy gh(c) as well as the dynamics
(diffusivity, and reaction kinetics). We define the ho-
mogeneous chemical potential to be µh(c) = dgh(c)/dc.
Hence the chemical potential is

µ = µh(c)− κ∇2c. (4)

Another type of pattern-forming system has a more
generic nonlocal form,

F [c(r)] =

∫
gh(c(r))dr +

∫
c(r′)C2(|r′ − r|)c(r)drdr′.

(5)
The conserved diffusion equation Eq. 1 combined with
Eq. 5 is also known as the phase field crystal equation (or
dynamic density functional theory)[66]. A particular case
of a non-conserved Eq. 2 combined with Eq. 5 is known
as the Swift-Hohenberg equation [66, 67]. Different direct
correlation functions C2 can give rise to spatial patterns
such as lamellar and crystal lattice structures. In this
case, we are interested in the sensitivity of the pattern
with respect to the direct correlation function.

Multiple snapshots taken in time are used as training
data, while the first image is used as the initial condi-
tion. Suppose the measurement noise of the images is an
additive Gaussian white noise, cdata(tj , r

′)− c(ti, r; p) ∼
N (0, σ2δ(ti− tj , r− r′)), where c is the model prediction
and cdata is the observed concentration field, ti is time,
and p are the parameters for the unknown constitutive
relations. The conditional probability of the observed
data, aka the likelihood, is

P (cdata|p) = exp− 1

2σ2

[
M∑
i=1

∫
dr (c(ti, r; p)− cdata(ti, r))

2

]
.

(6)
where M is the total number of images in time. Simi-
larly, we can also define the likelihood when the observed
data is discrete in space and the noise is spatially and
temporally uncorrelated, where the integral becomes a
summation. From a Bayesian perspective, the posterior
distribution of the unknown parameters p satisfies

P (p|cdata) ∝ P (cdata|p)P (p), (7)

where P (p) is the prior probability, which depends on the
prior knowledge of the constitutive relations discussed in
detail below.

For binary mixtures, we express the free energy as a
sum of the ideal entropy of mixing (id) to limit the con-
centration within [0, 1] and a non-ideal excess part (ex).
The corresponding chemical potential is

µh(c) = µid(c) + µex(c) = ln
c

1− c
+

N∑
n=1

anPn(c), (8)

where the Pn are normalized Legendre polynomials de-
fined on the interval [0,1], and an are the coefficients to be
determined. Similarly, the diffusivity (or reaction kinetic
prefactor) can be parameterized as lnD(c) =

∑
n bnPn(c)

to ensure positivity. Assuming the prior for the non-ideal
part of the (excess) chemical potential follows a Gaussian
distribution µex(c) ∼ N (0, δ(c − c′)), or similarly if the
prior for diffusivity is lnD(c) ∼ N (0, δ(c− c′)), then due
to the orthonormality of Pn,

P (p) ∝ exp−1

2
‖p‖22, (9)

where p are the coefficients an. The covariance for
the priors may be defined by differential operators to
penalize high-frequency components in the constitutive
relations. For example, lnD(c) ∼ N (0,−L−1), where
Lψ(c) = d

dc

[
c(1− c) d

dcψ(c)
]
. In other words, p(ψ(c)) ∝

exp
[
−0.5

∫
ψ(c)Lψ(c)dc

]
. Legendre polynomials (de-

fined on [0,1]) are eigenfunctions of the differential op-
erator, LPn(c) = −n(n+ 1)Pn(c). Hence,

P (p) ∝ exp−1

2

∞∑
i=0

n(n+ 1)p2i . (10)

Note that the coefficient for the constant term P0(c) is 0
(degenerate in p0).

The direct correlation function in Eq. 5 is represented
in Fourier space in the form

Ĉ2(k) =

N∑
n=0

dn(2nn!
√
π)−1/2e−|k|

2/2Hn(|k|), (11)

where Ĉ2(k) =
∫
C2(r)e−ik·rdr, Hn is the physicists’

Hermite polynomial and the basis functions are orthonor-
mal, and dn is the corresponding coefficient. Similarly, if
we assume that function r 7→ Ĉ2(re) where e is a unit
vector follows a Gaussian distribution with delta vari-
ance, the prior probability distribution can be written as
Eq. 9, where p are the coefficients dn.

For a general prior p ∼ N (0,ΓPr), it is convenient

to transform z = Γ
−1/2
Pr a so that z ∼ N (0, I), which is

shown below to be useful for the Markov chain Monte
Carlo (MCMC) sampling and linear constraints.

In addition to a prior that promotes smoothness and
penalizes high-order basis functions, priors can be mod-
ified to satisfy certain constraints. For example, in ad-
dition to the images that capture the transient behav-
ior, the compositions of equilibrium phases (c1,c2) – also
known as the miscibility gap – can be easily accessible;
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hence the chemical potential is subject to the thermody-
namic constraint,∫ c2

c1

µh(c)dc = µh(c1)(c2 − c1) (12)

µh(c1) = µh(c2). (13)

For the Cahn-Hilliard equation, an arbitrary constant
term can be added to µh(c), so we can set µh(c1) =
µh(c2) = 0. These three equations are a set of linear
constraints on the coefficients Bz = d. For a general
prior on the coefficients, it is convenient to decompose z
into two orthonormal spaces, A and A⊥, where A is the
null space of B, BA = 0. Then we have z = Aξ+A⊥ξ⊥.
Thus the constraint is BA⊥ξ⊥ = d. It can be shown that
the conditional prior is

p(z|Bz = d) ∝ exp−1

2
‖ξ‖22. (14)

According to Bayes theorem, the posterior of the un-
known parameters is P (p|cdata) ∝ P (cdata|p)P (p). The
maximum a posteriori estimate (MAP) is defined by min-
imizing the objective function

S(p) =
1

2σ2

[
M∑
i=1

∫
dr (c(ti, r; p)− cdata(ti, r))

2

]
+

1

2
p∗Γ−1Pr p

(15)
Without loss of generality, 10 parameters are used for all
functions studied here, that is, Legendre polynomials of
order 1 to 10 are used for the chemical potential, and
of order 0 to 9 are used for the diffusivity and reaction
kinetics. When the thermodynamic constraint (Eq. 12) is
applied, Legendre polynomials of order 0 to 12 are used.

The objective function is optimized using a gradient-
based optimizer. The gradient of the objective function
is

∂S

∂p
=

1

σ2

M∑
i=1

∫
dr (c(ti, r; p)− cdata(ti, r))

∂c

∂p
+ Γ−1Pr p.

(16)
The model sensitivity ∂c/∂p for each parameter can be
computed while solving the forward problem. For a gen-
eral PDE ∂c

∂t = g(t, c; p)

∂

∂t

(
∂c

∂p

)
=
∂g

∂c
· ∂c
∂p

+
∂g

∂p
, (17)

which is known as forward sensitivity analysis (FSA).
From the FSA, we estimate the Hessian of the objective
function using Gauss-Newton approximation [68],

H[S] ≈ 1

σ2

M∑
i=1

∫
dr

(
∂c

∂p

)∗
∂c

∂p
+ Γ−1Pr . (18)

The approximation becomes increasingly accurate as the
difference between the model and data is decreased. An
alternative to FSA is adjoint sensitivity analysis (ASA),

which involves solving the adjoint linear sensitivity equa-
tion backward in time once to obtain the sensitivity of
the objective function with respect to all parameters [69–
71] (equivalent to backpropagation for neural networks).
When ASA is used, only the gradient is computed and the
optimizer can use a gradient descent algorithm. This ap-
proach is useful for a large number of parameters, such as
a 2D field or weights in neural nets. When the number of
parameters is small, such as in the case of parametrizing
concentration-dependent functions, the benefit of using
FSA to obtain an estimate of the Hessian outweighs its
computational cost, as the convergence is much faster.
We use the trust-region algorithm[68] for the optimiza-
tion when the Hessian is available.

Given the posterior distribution P (p|cdata), we quan-
tify the uncertainty by sampling the parameter space
using Markov Chain Monte Carlo (MCMC). A popu-
lar adaptive Metropolis algorithm updates the covariance
of the proposal distribution adaptively from the chain
samples [72], that is, the covariance at step n is Cn =
sdCov(X0, . . . Xn−1) + sdεI, where Cov is the sample co-
variance from the previous n samples and sd = 2.42/d,
where d is the dimensionality of the parameter space.
This method does not compute the gradient or Hessian.
In our case, we need an MCMC sampler for functions,
which are parameterized in a finite-dimensional space
by truncating the polynomials. With an increasingly
fine representation of the function (higher dimension),
the adaptive MCMC method becomes slow and the mix-
ing quality of the Markov chain deteriorates rapidly with
finer representations of the functions[55]. The sensitivity
with respect to high-order basis functions leads to poorer
sampling, and the sampler stagnates for a prolonged pe-
riod of time, which is especially problematic for com-
putationally expensive model evaluations of PDEs that
we study here. Here we use a dimension-independent
and likelihood-informed (DILI) MCMC [56] that takes
the local Hessian information and adopts an operator-
weighted proposal distribution to achieve better sampling
efficiency that is independent of the dimensionality of the
parameter space. We start the algorithm from the opti-
mal solution (MAP). The Hessian is computed periodi-
cally using Eq. 18 to determine the parameter subspace
that are most informed by the model (likelihood-informed
subspace). The posterior covariance Σ is more accurately
estimated by combining the covariance of projecting the
chain samples onto the likelihood-informed subspace and
the prior covariance in the complement prior-informed
subspace. The proposal distribution comes from the dis-
cretization of the Langevin equation,

dp = −Σ
∂S

∂p
dτ +

√
2ΣdW, (19)

whose stationary distribution is the posterior distribu-
tion (Eq. 7), and W is random noise 〈W(τ)∗W(τ ′)〉 =
δ(τ − τ ′)I. As an alternative, we adopt the proposal dis-
tribution,

dp = −ΣΓ−1Pr pdτ +
√

2ΣdW (20)
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based on gradient descent from the prior distribution only
to avoid computing the model sensitivity at every step.
This expression requires ΓPr to be nonsingular. In prac-
tice, for a degenerate distribution such as Eq. 10, we
set the variance of the degenerate component (the coef-
ficient of the constant basis function P0(c)) to be suf-
ficiently large. We set a maximum number of Hessian
evaluations that can be performed. Therefore, the extra
computational time needed for this method compared to
the adaptive MCMC with the same number of samples
Ns becomes vanishingly small as Ns increases.

III. APPLICATIONS

A. Optimization and uncertainty quantification

We generate simulated data for the evolution of the
Cahn-Hilliard equation. The boundary conditions are
n · ∇c = 0, which corresponds to no surface wetting, and
n · ∇µ = 0, which corresponds to no flux[63, 73]. Fig. 1
shows the evolution of the objective function during the
optimization MAP using different realizations of spinodal
decomposition snapshots as training data, which are gen-
erated with the same image resolution and physical pa-
rameters and different random initial conditions. These
results demonstrate the robustness of the optimization al-
gorithm. Using FSA, the Gauss-Newton approximation,
and the trust-region algorithm, the optimizer converges
to the truth within tens of iterations robustly with 5, or
as few as 2 snapshots.

10 parameters are used for both µex and lnD(c). The
initial guess for µex and lnD(c) is chosen such that it is
far from the truth and generates a non-pattern-forming
evolution (µh(c) = ln c

1−c + (1− 2c) and D(c)/L2 = 0.1,

where L is the domain size (see the inset at iteration 1
in Fig. 1; these initial guesses are used throughout the
text unless otherwise noted). We recommend choosing a
small D(c) as the initial guess to “freeze” the pattern. If
the pattern relaxes too fast and becomes uniform beyond
the first frame, the sensitivity of the pattern with respect
to all model parameters approaches zero, which is known
as the vanishing gradient problem in machine learning.
The initial guess for the gradient penalty is κ/κtruth =
0.05. The length scale of the diffuse interface is

√
κtruth =

0.045L.
To find the MAP, L2 norm is used as the regularizer

for µex(c) and L norm is used for lnD(c), and regulariza-
tion parameters for both are 10−5 (this set of parameters
is used throughout unless otherwise noted). Due to the
structure of Eq. 1, µh(c) and D(c) can only be deter-
mined up to a constant scale; therefore, throughout the
text, we report µh(c)κtruth/κ and D(c)κ/κtruth. In fact,
the optimizer often converges to a different κ, while the
scaled quantities above are accurately recovered. Allow-
ing κ to vary in the optimization generally speeds up the
convergence.

In the appendix A, we compare the performance of

FIG. 1. Training on 11 realizations of spinodal decomposition
snapshots. Insets show the initial guess for µh(c) and D(c),
a typical state during the training, and its final convergence
to the truth. Blue and orange curves in the main plot corre-
spond to taking 5 and 2 snapshots as the training datasets,
respectively, as highlighted by the outline of an example set
of images on the right. The images are concentration fields
c(x) with black and white corresponding to c = 1 and c = 0,
respectively. The same colormap is used throughout this pa-
per.

optimization using FSA (trust-region algorithm) versus
ASA (gradient descent) and found that FSA leads to a
much faster convergence, lower computational cost, and
higher success rate of convergence to the global minimum
(as opposed to a local minimum).

The optimization allows us to quickly find the MAP,
which serves as the starting point for MCMC. For the
uncertainty analysis, we assume the measurement is a
continuous field. κ is fixed (since µh(c) and D(c) can al-
ways be rescaled, as explained above), and µh(c) is sub-
ject to the constraint Eq. 12. The prior for µh(c) and
lnD(c) are described by Eqs. 14 and 10, respectively,
here and for the rest of the paper. The Markov chain is
converted to µh(c) and D(c) and the uncertainty at each
c is plotted at 95% confidence level throughout the pa-
per. Fig. 2a shows the uncertainty quantification result
and the performance of the DILI MCMC algorithm. The
shaded area corresponds to the confidence interval, while
the solid line is the marginal mean at each c. The mea-
surement noise σ may be obtained from the knowledge
of the instrument or inferred together with other param-
eters. From here on, unless otherwise noted, we assume
σ2 = 10−4 to illustrate the sensitivity more clearly. The
Markov chain achieves good mixing within less than 100
steps for all parameters (20 in total) as shown by the au-
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tocorrelation of the chain in Fig. 2a. Fig. 2 also shows
the trajectory of one of the parameters, which is indica-
tive of good sampling. 2 × 104 samples are used unless
otherwise noted.

In comparison, the adaptive MCMC (Fig. S11) has a
much longer autocorrelation and hence poorer mixing.
The burn-in time is also much longer. Therefore, we use
DILI MCMC to perform uncertainty quantification in the
following examples.

If the system is non-phase-separating, κ = 0, Eq. 1
becomes

∂c

∂t
= ∇ · (D(c)c · µ′h(c)∇c). (21)

Therefore, only the chemical diffusivityDchem = cDµ′h(c)
can be inferred and no thermodynamic information can
be obtained from only the concentration field. How-
ever, the extraction of µh(c) and D(c) is possible in
phase-separating systems, and are largely uncorrelated,
as shown by the correlation coefficients between the pa-
rameters a1, a2, . . . , a10 and b0, b1, . . . , b9 in Fig. S12. The
correlation among odd/even polynomials of low order
(of the same function) is strong, while the correlation
between µh(c) and D(c) is weak. The correlation be-
tween the thermodynamic and transport properties can
also be quantified through certain scalars of interest. At
σ2 = 10−5, −µ′h(c0) and D(c0) are weakly and negatively
correlated (Fig. S13). As explained in further in detail in

Section III C,D(c0)[µ′h(c0)]
2

determines the initial rate of
spinodal decomposition, but information from the entire
field decouples µ′h(c) and D(c).

Another quantity of interest is the interfacial tension,
which is defined as the energy of a flat interface at equilib-

rium γ =
∫∞
−∞

[
gh(c) + 1

2κ
(
∂c
∂x

)2]
. Using the equilibrium

condition µ(x) = µ0 where µ0 is the chemical potential
of the two equilibrium phases, we have

γ =

∫ c2

c1

√
2κ∆gh(c)dc (22)

where ∆gh(c) = gh(c)− gh(c1)− (c− c1)µ0. At the late
stage of coarsening, the domain growth rate is propor-
tional to γD(c) [9]. However, we find that γ and D(c0)
(or D(c1)) are almost uncorrelated (Fig. S13), due to
information at the diffuse interface and early-stage pat-
terns.

For the phase field crystal models (Eq. 5), previous
studies have found correlation functions that generate
certain crystal structures and elastic constants [74, 75].
In Fig. 2, we use MCMC to determine the uncertainty in
the direct correlation function inferred from a set of im-
ages of nucleation that forms hexagonal crystal structure
(σ2 = 10−4). Using the parameterization given by Eq.
11 and the L2 norm, we find the extent that the function
is allowed to vary while keeping the same pattern is very
small around wavenumbers that correspond to the spa-
tial wavelength k0 observed in the image. Uncertainty
increases for wavenumbers as moving away from k0 due

FIG. 2. (a) Uncertainty quantification of the chemical po-
tential and diffusivity from 5 snapshots of spinodal decom-
position as shown in Fig. 1. The measurement noise σ2 is
varied. The shaded regions are the 95% confidence interval
of the functions at each c. The solid lines are the marginal
mean of the functions at each c. The dashed lines are truth.
This plotting convention is used throughout the paper unless
otherwise noted. The two panels on the right are the Markov
chain trajectory of a1 and the autocorrelation of all 20 pa-
rameters, respectively. (b) Uncertainty quantification of the
direct correlation from phase-field-crystal model. Images on
the right are the training data.

to the insensitivity of the model to these components and
the lack of Fourier components at high wavenumbers in
the images provided.

B. Starting composition

Images taken at different operating conditions can re-
veal information with different levels of confidence. Pat-
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FIG. 3. Training on spinodal decomposition snapshots of mix-
tures from 30% to 70%. Different composition ratios are col-
ored consistently for all figures. (a) Relative residuals for
all ratios. (b) The training datasets and their composition
histograms, where the average composition is highlighted by
dashed lines. (c) The uncertainty in the learned chemical
potential µh(c) and diffusivity D(c).

terns of spinodal decomposition at different average con-
centration range from tortuous regions near c0 = 0.5 to
dispersed droplets near c0 = 0.3 and c0 = 0.7. First,
an optimization is performed to find the MAP, starting
from the same initial guesses as Fig. 1, convergence to
the truth is achieved within 20 iterations. Then MCMC
is performed to study the uncertainty in the µh(c) and
D(c). Histograms of the images show a peak near the av-
erage concentration (also the initial condition) as strong
as the peak at the miscibility gap near 0 and 1. With suf-
ficient pixel values around c0 and their dynamics driven
by µ′h(c0) and D(c0) at the average concentration (µh(c1)
is fixed to be 0), the uncertainty consistently reaches a
minimum at c0 for both constitutive relations and all con-
centrations studied. Overall, images of c = 0.5 reduce the
maximum uncertainty, while away from c = 0.5, multiple
experiments may be necessary to accurately determine
the functions on a larger range of c.

C. Model selection: Diffusion and reaction

When the governing dynamics of the system is un-
known, or it is unknown whether the order parameter
is locally conserved, we consider the possibility of both
conserved and nonconserved dynamics, by generalizing

Eqs. 1 and 2, and allow the magnitude of both dynamics
to be inferred from the patterns,

∂c

∂t
= ∇ ·D(c)c∇µ+R0(c)(µres − µ). (23)

where When solving the inverse problem, the reservoir
chemical potential µres is unknown. We allow it to vary
in time such that the average concentration

∫
cdV /

∫
dV

is equal to that of the images, which is constant in
this case. This becomes an algebraic constraint on the
model. Reaction-diffusion models have been studied ex-
tensively in literature [13, 76, 77]. Here we focus on a
one-component system where the reaction takes place be-
tween the system and reservoir. Lithium in lithium iron
phosphate (LFP) platelet particles is known to undergo
diffusion in the lateral direction via a surface layer while
the platelet also exchanges lithium with the electrolyte
reservoir [78]. The dynamics of a thin platelet particle
may be modeled with Eq. 23 on a 2D plane [63].

The time scale of relaxation can be understood from
the dispersion relation of Eq. 23 linearized around a
homogeneous state c(r) = c0, obtained by substitut-
ing a perturbation eωt+ikr into the linearized equation
[63, 79, 80], and together with the chemical potential de-
fined by Eq. 3,

ω(k) = −
(
c0D(c0)k2 +R0(c0)

)(
µ′h(c0)− κk2

)
, (24)

where k = |k|. When diffusion dominates,
−c0D(c0)µ′h(c0) > R0(c0)κ, the maximum instability
growth rate is

ωmax = max
k

ω(k) =
(c0D(c0)µ′h(c0)−R0(c0)κ)

2

4c0D(c0)κ
, (25)

When there is no reaction, ωmax = c0D(c0)[µ′h(c0)]
2
/4κ.

Otherwise, reaction dominates and

ωmax = −R0(c0)µ′h(c0). (26)

When diffusion dominates, the maximum growth rate of
instability is obtained at a nonzero wavenumber, while
when reaction dominates, the maximum growth rate cor-
responds to k = 0. Therefore, the patterns are visually
different. However, when both effects are important, the
relative strength of reaction and diffusion cannot be eas-
ily distinguished, which motivates a systematic approach
of identifying the underlying dynamics via model selec-
tion.

We generate the images by varying the magnitude of
the diffusivity while keeping the characteristic time scale
ωmax constant. The iso-ωmax curve is shown in Fig. 4b.
The images used as the training data for each diffusivity
value, ranging from diffusion only to reaction only, are
taken at the same time and shown in Fig. 4a. The chem-
ical potential of the external reservoir adjusts passively
while the total concentration is conserved. Training data
and results are colored consistently based on its diffusiv-
ity in Fig. 4. The initial guess for µh(c) and κ are the



8

same as section III A. The initial guesses for R0(c) and
D(c) are 0.1 and 0.01 respectively for all cases. 10 param-
eters are used to represent each function. The residual
plot Fig. 4c confirms that the truth model is found for
all cases and that the images are sufficient for identifying
the underlying dynamics. When the true D(c) or R0(c)
is zero, the solver converges to a vanishingly small value
for D(c) and R0(c).

Fig. 4d shows the uncertainty in the inferred functions.
The uncertainty in the chemical potential, or free energy,
inferred from reaction-controlled patterns are higher than
diffusion-controlled patterns, which is also reflected in
the uncertainty of the interfacial tension. For the five

cases studied D(c0)[µ′h(c0)]
2
/4κ = 0, 5, 10, 15, 20, the

mean and 2 standard deviation of γ/γtruth is 0.99± 0.12,
1.01±0.079, 1.01±0.066, 1.00±0.057, 1.01±0.059, respec-
tively. The interfacial tension γtruth/

√
2κ is 0.2. At the

late stage of coarsening for Allen-Cahn equation, the in-
terface growth rate is proportional to the local curvature
and independent of the interfacial tension (see Section
2.3 in Ref. [9]), which explains the increasing uncertainty
in the free energy when reaction dominates. Early-stage
snapshots within the miscibility gap are essential for in-
ferring the free energy of an Allen-Cahn system.

When reaction dominates, the diffusivity becomes in-
creasingly uncertain, and when the true diffusivity is
zero, the inferred diffusivity can be anything below a
threshold. Recall that the constant term in lnD(c) has
a degenerate prior; therefore the upper bound of D(c)
is determined by the likelihood only. The same is true
for reaction kinetics – when diffusion dominates, the in-
ferred reaction kinetics becomes uncertain. While the
patterns are not sensitive to the exact form of D(c) and
R0(c) when either reaction or diffusion dominates, their
magnitudes can be identified relatively accurately. Re-
gardless of the magnitude of diffusivity, the uncertainty
in R0(c) becomes increasingly large when c approaches
0 or 1. This effect can be understood from an analy-
sis of the sensitivity of c(x) with respect to R0(c). In
the sensitivity equation Eq. 17, when close to the misci-
bility gap, ∂

∂c

(
∂c
∂t

)
< 0 due to thermodynamic stability,

the sensitivity of the reaction rate δR0(c) · (µres − µ(c))
and hence the sensitivity of c(x) becomes increasingly
small as µ → µres. Similar to Section III A, we ob-
serve a weakly negative correlation between −µ′h(c0) and
D(c0) (or R0(c0)), which can be understood from their
negative correlation when ωmax is constant. The cor-
relation between D(c0) and R0(c0) is weak (see Fig.
S14). The correlation among the three is at its maximum
when −c0D(c0)µ′h(c0) = R0(c0)κ, which is the critical
point where the system transitions from being reaction-
dominated to diffusion-dominated.

FIG. 4. Dynamics of spinodal decomposition driven by vary-
ing degrees of reaction and diffusivity. The five cases studied
are colored consistently in all plots. (a) The training datasets
and their corresponding physical time, scaled reaction kinetic
prefactor and diffusivity. (b) The relationship between scaled
reaction kinetic prefactor and diffusivity with constant insta-
bility growth rate. (c) The residual plot during the training
process for all cases. (d) The uncertainty in chemical poten-
tial, free energy, scaled diffusivity and reaction kinetic prefac-
tor for all cases. The scaling constants µ′h(c0) and κ are the
known truth.
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D. Chemically driven system: the effect of
autocatalysis

We study a system that is chemically driven by an
external chemical reservoir at a constant average reaction
rate, the concentration evolution follows [63]

∂c

∂t
= R0(c)f(µres − µ). (27)

When driven far from equilibrium, f is no longer neces-
sarily a linear function. Here we use f(x) = 2 sinh(x/2),
which is known as symmetric Butler-Volmer kinetics in
electrochemistry [81]. The external chemical potential
µres varies in time, subject to the constraint of the aver-
age reaction rate R,∫

∂c

∂t
dV = R

∫
dV . (28)

The linear stability and pattern formation of such a
chemically driven system have been studied extensively
[63, 80, 82–84]. The dispersion relation of Eq. 27 is
ω = R′0f − R0f

′ · (µ′h − κk2). Depending on the mag-
nitude and direction of the reaction rate R, the state-
dependent R0(c) can alter the linear stability (and hence
the pattern) to deviate from its thermodynamic stability
as determined by µ′h(c).

In Fig. 5, we present an example where R0(c) is asym-
metric about c = 0.5. In the range of c where R′0(c) < 0,
the pattern is stabilized (destabilized) when f > 0
(f < 0). With R0(c) skewed to the left, the pattern
under a positive reaction rate R is more homogeneous
than a negative one of the same magnitude. We start
from a random initial condition and consider two sets of
snapshots where R = 0.08 and −1, respectively.

In Fig. 5, we compare the inversion results based on
image data from a single or both directions. The reser-
voir chemical potential µres(t) is unknown. We find that
the systematic error between MAP and the truth is large
when only images reacting in a single direction are used
as the training data, even though the objective function
S is sufficiently small (root-mean-squared error of frames
2–5 is less than 0.5%). MAP becomes almost identical to
the truth when both directions are used, and the strongly
concentration-dependent reaction kinetics R0(c) can be
captured. This effect is also reflected in the marginal
mean of µh(c) and R0(c) from the MCMC result. The
uncertainty of both functions are significantly reduced
when both datasets are used, highlighting the necessity of
datasets at different operating conditions in order to infer
both thermodynamic and kinetic properties for a chem-
ically driven system whose only observed information is
the concentration field (assuming µres is unknown).

Fig. 5f shows the scatter plots of [lnR0(c0)]
′

and
−µ′h(c0) (c0 = 0.5) from the MCMC sample. Using the
dataset with R > 0 (R < 0), the two quantities are neg-
atively (positively) correlated. When both datasets are
used, their correlation is reduced. The correlation can

be understood from the dispersion relation mentioned
above. Linearizing 27 around a uniform field c(x) = c0,
we obtain [80, 83]

ω(k) =
[
R′0f −R0f

′ ·
(
µ′h + κk2

)]∣∣
c=c0

= R

(
d lnR0

dc
− d ln f

dc
·
(
µ′h + κk2

))∣∣∣∣
c=c0

(29)

That is, if c(x, t = 0) = c0+νeikx, where ν � 1 is a small
perturbation, then c(x, t) = c0 + Rt+ νeω(k)t+ikx. Note
that R → R0(c)f(µres − µh(c0)) as ν → 0. Therefore, in
the limit of t→ 0 and ν → 0, when multiple or a range of
wavenumber k exists, only s/R = (lnR0)

′−(ln f)
′
µ′h and

(ln f)
′

at c0 can be inferred from the pattern. Note that
s, also known as the autocatalytic rate [80], is the key
to determining the heterogeneity of the pattern: when
s > 0, the pattern becomes linearly unstable and vice
versa. Using Butler-Volmer kinetics,

d ln f

dc
=

1

f

√(
f

2

)2

+ 1

=
1

R

√(
R

2

)2

+R2
0.

(30)

Therefore, when R > 0 (R < 0), (lnR0)
′

and −µ′h are
negatively (positively) correlated. To further demon-
strate the correlation between the two important quan-
tities, we perform MCMC using two datasets, each of
which contains two snapshots with an average concen-
tration of 0.6 and 0.8, with R = 0.2 and R = −0.2. In
Fig. 6 with very small observation noise σ2 = 10−8 and
10−10, we show that [lnR0(c0)]

′
and −µ′h(c0) (c0 = 0.7)

are strongly correlated with only one dataset used and
much weaker correlation is observed when both are used.
The solid lines are (lnR0)

′ − (ln f)
′
µ′h = const, where

the constant and (ln f)
′

are determined by the known
truth. The agreement of the uncertainty quantification
with the analytical analysis demonstrates that when only
one dataset obtained under a given reaction rate is avail-
able, reaction kinetics and thermodynamics are strongly
coupled and only autocatalytic rate s can be determined.
To infer both quantities separately (to reduce the cor-
relation of their posterior distribution), datasets under
different reaction rates, preferably in different directions,
are necessary. Fig. S15 confirms that R0 has a small pos-
terior variance and is not correlated with µ′h, since (ln f)

′

can be determined independently.

E. Temporal resolution

The availability of snapshots over the course of spin-
odal decomposition and coarsening determines the uncer-
tainty in the inferred parameters. Fig. 7 shows that with
increasing number of snapshots (2, 3, and 5), the uncer-
tainty decreases. These snapshots are evenly spaced in
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FIG. 5. Learning reaction kinetics and free energy from the
spatial patterns of a system chemically driven at a constant
average reaction rate. (a,b) Training data where R = 0.08 and
R = −1, respectively. (c,d) Training result based on datasets
(a) and (b), respectively. A comparison between the known
truth and MAP, the uncertainty of µh(c) and R0(c), and the
histogram of datasets (a) and (b). (e) Training result and
uncertainty based on both (a) and (b) and histogram of the
both datasets combined. (f) The scatter plots of [lnR0(c0)]′

and −µ′h(c0) from the MCMC sample based on datasets (a),
(b) and both combined, c0 = 0.5.

terms of the L2 norm of the difference from the first snap-
shot. In Fig. 7 we define the distance between patterns
to be |∆| =

∫
(c(t, r)− c(t = 0, r))

2
dr.

At the late stage of coarsening, most pixels in the im-
age are found to be near the miscibility gap c = c1 and
c2 (see histograms in Fig. 7), and the coarsening rate is
most determined by diffusivity near c1 and c2. When-
ever a late-stage snapshot is provided, we observe a local
minimum in the uncertainty of D(c) at c1 and c2, as
highlighted by the vertical dashed lines. If only the early
spinodal stage images are provided, the uncertainty for
both µh(c) and D(c) away from the initial concentration
c0 = 0.5 increases. Without the early-stage snapshots,
the uncertainty of the chemical potential within the mis-
cibility gap is high. While the value of µh(c) at each
c may be uncertain, the mean plus and minus 2 stan-

FIG. 6. The scatter plots of [lnR0(c0)]′ and −µ′h(c0) from
the MCMC sample (c and d, where σ2 = 10−8 and 10−10,
respectively) based on datasets (a), (b) and both combined,
c0 = 0.7. The autocatalytic rate s is constant on the solid
lines (at c0 and the reaction rate R that corresponds to the
dataset used), which analytically predict the correlation ob-
served between [lnR0(c0)]′ and −µ′h(c0).

dard deviation of γ/γtruth is 1.02 ± 0.11, 1.01 ± 0.065,
1.00± 0.056, 1.02± 0.09, 1.03± 0.10, respectively, which
indicates that two late-stage snapshots are as useful as
two early-stage snapshots in providing information about
the interfacial tension.

In fact, it is known in phase field theory that the chem-
ical potential of a sphere of radius R is γ/R (plus some
constant), its growth rate is proportional to its differ-
ence with the exterior chemical potential and the detailed
functional form of µh(c) is not important. Therefore, im-
ages of the dynamics within the miscibility gap are crit-
ical in measuring the free energy of a phase-separating
system.

F. Spatial resolution

To study the effect of spatial resolution, images are
taken from a subset of the field and down-sampled on a
rectangular grid. The PDE is numerically solved on a
finer grid to resolve the fine details. The first snapshot
is linearly interpolated onto the finer simulation grid to
be the initial condition. Since the boundary condition for
the subset is unknown, all images are also interpolated in
space to yield the concentration and its normal gradient
at the boundaries, which are then interpolated in time
and used as the boundary condition. Assuming that the
noise at each pixel and snapshots are independent, the
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FIG. 7. The uncertainty in the chemical potential and diffu-
sivity given snapshots taken at different time over the course
of spinodal decomposition. The left columns show the L2

norm of the difference between a pattern at time t and that
at t = 0 (|∆|). The snapshots included in each row are high-
lighted as dots in the |∆|− t plots whose color corresponds to
that of the image outline in the far right column. From the
top row to the bottom, 2, 3, and 5 snapshots equally spaced
in |∆|, 2 early-stage snapshots, and 2 late-stage snapshots are
taken as the training data, respectively. The insets show the
histograms of combined training data of each case.

objective function is defined as

S(p) =
1

2σ2
p

∑
i,j

(c(ti, rj ; p)− cdata(ti, rj))
2

+ ‖p‖L

(31)
where the pixel-wise variance is σ2

p = 10−2. The like-
lihood function is defined similarly. Fig. 8a shows the
MAP as well as the uncertainty from MCMC with dif-
ferent resolutions. Note that we place no constraint on
µh(c) for finding the MAP but we fix the miscibility gap
for MCMC.

Since the initial condition and boundary conditions
are inaccurate at low temporal and spatial resolutions,
MCMC predicts a systematic error compared to the
truth. We also compare the MAP result when we enforce
the known boundary condition (zero flux and no surface
wetting) in Fig. 8b. In this case, the optimizer fails to
get even close to the truth at low resolution. There-
fore, when the spatial resolution is low, it is preferable
to initialize from the first snapshot and impose bound-

ary conditions from the data itself, despite the fact they
are not accurately known. The inaccuracy in the initial
condition can be partially compensated by the boundary
condition. In fact, comparing the model prediction from
the MAP results at different resolutions, the patterns are
largely preserved. The optimizer fails to find a reason-
able solution at a resolution of 8×8. Therefore, as a rule
of thumb, at least 3 pixels per wavelength of spinodal
pattern are needed.

Without constraining the miscibility gap, the opti-
mizer converges to a µh(c) with smaller miscibility gap
with decreasing spatial resolution. This occurs because
the low sampling rate effectively filters out the high-
frequency components, blurring the high contrast be-
tween the two phases.

G. Image domain size

In cases where the field of view is limited to a subset of
the entire domain, the boundary condition is unknown.
Similar to Section III F, the concentration and its normal
gradient from each snapshots are interpolated in time and
used as the boundary conditions. Fig. 9 shows the train-
ing result for images of different domain sizes. The dis-
crepancy between the truth and the MAP increases with
decreasing domain size, suggesting that with the param-
eters become less identifiable with less information and
local minima of the objective function is likely to be en-
countered. Only lower order polynomials of D(c) can be
inferred when the domain size are too small to contain
large concentration variations. However, the computa-
tional cost for solving the PDE is greatly reduced if only
a smaller subdomain in the training data is used. The
regularization parameter is 10−5 times the domain size.

H. Blurring filter

Imaging systems have a certain point source function
(PSF) that may spread over more than a single pixel.
The images are a convolution of the object and the PSF.
Therefore studying the inversion of these blurred images
is important for practical imaging devices. In the exam-
ple of spinodal decomposition used above, we show that
using blurred images directly will result in systematic
error in the inferred chemical potential and diffusivity.
However, it is possible to invert the characteristic length
scale of the PSF and more accurate physical properties si-
multaneously, effectively leading to a physics-constrained
deconvolution.

In Fig. 10, we generate a sequence of images in (a)
and convolve them with Gaussian (b and d) and box-
averaging PSF (c). The PSF is indicated by the red
region in the upper right corner of the last image in the
sequence. The Gaussian PSF is common and can be used
to approximate an Airy disk, which is the PSF of a cir-
cular aperture. Box-averaging PSF is constant within a
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FIG. 8. The effect of image resolution on inversion and uncer-
tainty. (a) Using images of different resolutions shown on the
right and their interpolated values as the initial and boundary
conditions, inversion is performed using boundary condition
from the data. The MAP is shown as solid curves in the corre-
sponding right panels. The uncertainty is shown in the same
set of plots as the shaded regions. (b) Results of inversion
performed on images of the same resolutions (colored consis-
tently) using the known boundary conditions. (c) The resid-
ual during training with known boundary conditions (known
BC) and boundary condition from the data (data BC).

compact support. We adopt four inversion strategies, de-
noted in Fig. 10 as A) assume the images are not blurred;
B) assume the images are blurred by a Gaussian PSF and
invert its standard deviation d together with µh(c) and
D(c); C) the same as B, except that µh(c) is constrained
to a fixed miscibility gap, which may be measured more
accurately after a long relaxation into two well-separated
phases; D) the same as B, except that the first image is
deconvolved and then used as the initial condition. In
strategies A–C, the first given image (blurred) is used as

FIG. 9. Inversion performed on images of different physical
sizes. Initial and boundary conditions are imposed from data
interpolated in time. The chemical potential and diffusivity
are the MAP results based on training data outlined by the
same color. The residual plot of all cases are shown on the
right.

the initial condition. In all strategies, the regularization
parameter is 10−2, the objective function is a discrete
summation of the squared error on five 50 × 50 images.
The initial guess is d/L = 0.1, α = 0.1 (noise-to-signal
ratio for deconvolution, see below), D(c) = 0.1.

Strategy A (treating blurred images as the truth) un-
derestimates the interfacial tension and the miscibility
gap in all cases. The objective function value that the
optimizer converged to is also significantly higher than
other strategies. This effect becomes more severe when
the length scale of the PSF increases and becomes compa-
rable to the spinodal length scale, l =

√
2κ/µ′h(c0). The

standard deviation of the Gaussian PSF is d = 0.03L =
0.67l and d = 0.06L = 1.34l respectively for Figs. 10b
and d, where L is the image size. For the latter case,
[−3d, 3d] extends to about one wavelength of the spin-
odal pattern 2πl. The side length of the averaging box
in Fig. 10c is 0.1L.

When the PDE solution is convolved with a Gaussian
PSF and d is also optimized (strategy B), the inferred
µh(c) and D(c) are closer to the truth. For the sets of
images blurred by a Gaussian PSF, the correct d is found,
while for Fig. 10c the solver converges to d/L = 0.03 .
For images whose unknown PSF is bounded and decays
to zero, the Gaussian PSF is often a good estimate. Here,
nonzero Fourier components of the images are concen-
trated in a narrow band around l−1; blurring is only sen-
sitive to the characteristic length scale of the PSF and
not its details. Fig. 10c shows that an approximation
with a Gaussian PSF is sufficient. In addition, Gaus-
sian PSF is differentiable with respect to its parameter
d, hence useful for gradient-based optimizers. Given the
physical constraint of miscibility gap, strategy C shows
that the objective function is further decreased.

Strategy D deconvolves the first image to use as the
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initial condition. To reduce the ringing effect of de-
convolution due to discontinuity at the boundary, we
perform a linear interpolation between the given im-
age and the blurred image convolved with the PSF,
weighing the given image more in the interior and the
blurred image more at the boundary (to reduce the
high frequency components near the boundary). We use(

1− e−x2/4d2
)(

1− e−y2/4d2
)

, shifted so that [x, y] =

[0, 0] corresponds to the corner. We use Wiener decon-

volution which in the Fourier space is K∗(K∗K + α)
−1

,
where K is the PSF in Fourier space, α is the noise-to-
signal ratio and included as a variable to be optimized.
The residual plots and plots of µh(c) and D(c) show that
this strategy is close to or sometimes worse than strate-
gies B and C which do not deconvolve the first image,
which shows that, while the initial condition can be pol-
luted by noise and blurring, preprocessing may be unnec-
essary. In fact, the unknown boundary condition may
introduce additional error in the process of deconvolu-
tion. Inversion of a PDE whose solution diverges when
the initial condition is slightly perturbed [85] is beyond
the scope of this work.

The uncertainty using strategies B and C based on
images in Fig. 10c and σ2

p = 0.1 is summarized in Fig.
10e. The scatter plot shows a strong and negative corre-
lation between the inferred Gaussian filter length d and
the width of the miscibility gap when µh(c) does not
have any constraint, further demonstrating the impor-
tance of imposing the physical constraint. When such a
constraint is imposed, the standard deviation of d/d0 is
reduced from 0.07 to 0.035, where d0 is the truth. The
miscibility gap [c1, c2] is defined by Eq. 12 together with
µ′h(c1) > 0, µ′h(c2) > 0 and c1 6= c2.

IV. CONCLUSION AND OUTLOOK

In summary, using the approach of PDE-constrained
optimization and Bayesian inference, we performed a
systematic analysis of the inversion and the uncertainty
quantification of the constitutive relations based on im-
ages of pattern formation. We showed that the optimiza-
tion is robust with the use of estimated Hessian, and
that the MCMC sampling is efficient in a high dimen-
sional parameter space. For a phase-separating system,
the posterior distributions of free energy (or the corre-
sponding interfacial energy) and diffusivity based on the
image data are uncorrelated, which is also corroborated
by scaling analysis. The uncertainty in the inferred quan-
tities depend strongly on the average composition and
the relative contribution of reaction and diffusion. For
a chemically reactive system that is driven out of equi-
librium, a linear stability analysis confirms the MCMC
result that the reaction kinetics and free energy can be
inferred separately only when images generated at mul-
tiple reaction rates or directions are available. We show
that images taken at earlier stages of spinodal decomposi-

FIG. 10. Inversion performed on blurred images. (a) original
images; (b,c,d) Inversion of µh(c) and D(c) based on blurred
images whos PSFs are shown in red; (e) Uncertainty quan-
tification based on images in (c). Letters A–D correspond
to inversion strategies described in the main text. µh(c) are
plotted in blue and D(c) are plotted in orange. Solid lines
are the MAP solutions in (b)–(d) and marginal mean in (e).
Dashed lines are the known truth. “Rel. res.” stands for rel-
ative residual. The scatter plot shows the MCMC sample of
the Gaussian filter length d and the miscibility gap c1 and c2.

tion can be used to infer the functional form of nonlinear
free energy and diffusivity more accurately than those
from the coarsening process, while the latter can also in-
form the interfacial tension sufficiently accurately. When
the spatial resolution of the images is low, the image do-
main is smaller than the physical domain, or when the
boundary condition is unknown, the inversion remains
robust by imposing the data at the image boundary as
the boundary condition in the simulation, while the un-
certainty increases with decreasing spatial resolution and
domain size. When the images are blurred, the inversion
algorithm can extract the constitutive relation as well
as the characteristic size of the blurring kernel using the
first frame as the initial condition without deblurring, yet
there exists a correlation between the inferred miscibility
gap and the kernel size. Including the prior knowledge of
the miscibility gap as a constraint further reduces the un-
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certainty of the inferred quantities. The examples show
that when the imaging quality is limited by the instru-
ment, such a PDE-constrained inversion effectively be-
comes a physics-informed superresolution imaging tech-
nique.

The methods and applications discussed here serve
as a first step toward quantitative frame-by-frame and
pixel-by-pixel matching between experiments and theo-
retical models, as excellent agreement has already been
observed in many complex systems [86–89]. Despite the
lack of microscopic information, the macroscopic pattern-
formation dynamics can be described parsimoniously by
PDEs with relatively few parameters. The inversion of
the PDE means that, from the images, these macroscopic
physical properties can be measured that would other-
wise be inaccessible especially for systems far from equi-
librium such as active matter and biology, where free en-
ergy is ill-defined, and nonequilibrium thermodynamics
is poorly understood. The uncertainty quantification can
be applied to optimal design of experiments to carefully
probe regions of higher uncertainty as informed by prior
experimental data.

The inversion also enables a physically interpretable
parametrization of complex systems, which may help in
establishing a mapping between the macroscopic and mi-
croscopic parameters, and eventually engineering or con-
trolling patterns by tuning physical properties of the con-
stituents, as reported recently in the biological engineer-
ing of Turing patterns [90] and the design of PDEs to cre-
ate desired patterns [91]. Our computational approach
can be integrated into the loop to accelerate the search
in a high dimensional parameter space by identifying the
most important engineering handles.

While phase field (Cahn-Hilliard and Allen-Cahn mod-
els) and phase field crystal models were selected as the
model systems in this article, the approach can be read-
ily extended to other systems, such as for fluid dynamics
and multi-component reaction-diffusion equations, where
more complicated patterns may arise [1, 3, 92], and the
sensitivity of patterns and bifurcation dynamics with re-
spect to constitutive relations in a high-dimensional pa-
rameter space awaits exploration. For complex systems,
further study is needed to quantify the range of phe-
nomenon that a model can describe. Techniques in in-
verse problems, dynamical systems, and identifiability
analysis should be employed when discrepancy between
experiments and models arise due to nonidealities such
as spatial heterogeneity as well as unknown hidden vari-
ables.

Appendix A: Comparison of optimization and
uncertainty quantification algorithms

Similar to the generation of Fig. 1, we generate 100 re-
alizations of spinodal decomposition snapshots and per-
form the optimization using either all five snapshots or
the first and last snapshots, starting from the same ini-

tial guess as described in the main text. The termination
criteria is 10−6 for optimality, function, and step toler-
ance. The objective function values that the optimizer
converges to for different realizations, if at the global min-
imum, are very close and much smaller than values at lo-
cal minima, hence can be easily classified. Table. S1 lists
the percentage of successful convergence to the global
minimum, the number of iterations, and computational
time for successful cases using FSA (trust-region algo-
rithm) and ASA (gradient descent with BFGS). We can
see the ASA performs poorly on every metric considered,
although it improves when initial guess is brought closer
to the truth. Note that, using the ASA method, each
iteration involves a line search, which usually involves
multiple function and gradient evaluation, as shown by
its longer average computational time per iteration than
that of FSA. In FSA, each iteration requires one function,
gradient and Hessian evaluation.

Fig. S11 shows the results of an adaptive MCMC
applied to the same problem in Fig. 2. The covari-
ance of the proposal distribution at step n is Cn =
sdCov(X0, . . . Xn−1) + sdεI. We choose ε = 0.001. Both
Fig. S11 and Fig. 2 generate 20,000 samples. The un-
certainty computed in Fig. S11 discards the first 5000
samples as the burn-in and is sufficiently close to Fig. 2.
The autocorrelation is stronger.

Appendix B: Correlation between thermodynamic
and kinetic properties

Fig. S12 shows the matrix of correlation coeffi-
cients between parameters for µh(c) (a1, a2, . . . , a10) and
D(c) (b0, b1, . . . , b9) inferred from spinodal decomposi-
tion snapshots (same as used by Fig. 2) and σ2 =
10−4. The correlation coefficient between ai and aj is

Cov(ai, aj)/
√

Var(ai)Var(aj), where Cov and Var stand
for the covariance and variance, respectively.

Using the same set of images, Fig. S13 shows the scat-
ter plot of −µ′h(c0) versus D(c0) from the MCMC chain,

as well as γ/
√

2κ versus D(c0), where c0 = 0.5 is the av-
erage fraction. ρ is the correlation coefficient between the
two parameters as defined above. The initial rate of de-

composition is c0D(c0)[µ′h(c0)]
2
/4κ, which explains the

negative correlation between −µ′h(c0) and D(c0). The
contours are the 90% confidence region.

In a system where both reaction and diffusion are
present, we study the pairwise correlation among ther-
modynamics, reaction kinetics, and diffusivity by show-
ing the scatter plots of −µ′h(c0), D(c0), and R0(c0) in
Fig. S14. The samples are drawn based on images in
Fig. 4.

Using the chemically driven concentration fields stud-
ied in Fig. 6a and b, Fig. S15 shows the scatter plots of
R0(c0) and µ′h(c0) where c0 = 0.7 and confirms that they
are uncorrelated and R0(c0) can be determined with high
accuracy.
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TABLE S1. A comparison of the performance of FSA and ASA. # of snapshots: number of snapshots used as the training
data. Success ratio: for 100 different datasets, the percentage of optimizations that converge to the global minimum. Iterations
to success: the number of iterations (10% - median - 90% percentile) taken by the optimizer to converge to the global minimum
(cases that converge to a local minima are not considered). Relative time to success: the median computational time relative
to the first row for cases that converge to the global minimum.

Method and # of snapshots Success ratio Iterations to success Relative time to success

FSA, 5 75% 21-31-43 1

FSA, 2 81% 19-25-34 0.7

ASA, 5 5% 33-65-93 4.6

ASA, 2 47% 66-80-100 13.0

FIG. S11. Uncertainty quantification of the chemical poten-
tial and diffusivity from 5 snapshots of spinodal decomposi-
tion as shown in Fig. 1. The measurement noise is σ2 = 10−4.
The shaded regions are the 95% confidence interval of the
functions at each c. The solid lines are the marginal mean of
the functions at each c. The dashed lines are truth. The two
panels on the right are the Markov chain trajectory of a1 and
the autocorrelation of all 20 parameters, respectively.
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[66] H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I.
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