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Abstract

The solution of the pressure Poisson equation arising in the numerical solution of incompressible

Navier–Stokes equations (INSE) is by far the most expensive part of the computational procedure,

and often the major restricting factor for parallel implementations. Improvements in iterative linear

solvers, e.g. deploying Krylov-based techniques and multigrid preconditioners, have been successfully

applied for solving the INSE on CPU-based parallel computers. These numerical schemes, however,

do not necessarily perform well on GPUs, mainly due to differences in the hardware architecture.

Our previous work using many P100 GPUs of a flagship supercomputer showed that porting a highly

optimized MPI-parallel CPU-based INSE solver to GPUs, accelerates significantly the underlying

numerical algorithms, while the overall acceleration remains limited (Zolfaghari et al., Comput.

Phys. Commun., 244, 132-142, 2019). The performance loss was mainly due to the Poisson solver,

particularly the V-cycle geometric multigrid preconditioner. We also observed that the pure compute

time for the GPU kernels remained nearly constant as grid size was increased. Motivated by these

observations, we present herein an algebraically simpler, yet more advanced parallel implementation

for the solution of the Poisson problem on large numbers of distributed GPUs. Data parallelism

is achieved by using the classical Jacobi method with successive over-relaxation and an optimized

iterative driver routine. Task parallelism is enhanced via minimizing GPU-GPU data exchanges

as iterations proceed to reduce the communication overhead. The hybrid parallelism results in

nearly 300 times less time-to-solution and thus computational cost (measured in node-hours) for

the Poisson problem, compared to our best-case scenario CPU-based parallel implementation which
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uses a preconditioned BiCGstab method. The Poisson solver is then embedded in a flow solver with

explicit third-order Runge-Kutta scheme for time-integration, which has been previously ported to

GPUs. The flow solver is validated and computationally benchmarked for the transition and decay

of the Taylor-Green Vortex at Re = 1600 and the flow around a solid sphere at ReD = 3700. Good

strong scaling is demonstrated for both benchmarks. Further, nearly 70% lower electrical energy

consumption than the CPU implementation is reported for Taylor-Green vortex case. We finally

deploy the solver for DNS of systolic flow in a bileaflet mechanical heart valve, and present new

insight into the complex laminar-turbulent transition process in this prosthesis.

Keywords: GPU computing, incompressible Navier–Stokes equations, pressure Poisson equation,

high-order accurate methods, transitional and turbulent flows, hybrid supercomputing

1. Introduction

The performance of the numerical solution of the incompressible Navier−Stokes equations (INSE)

is often restricted by the performance of the pressure Poisson solver. In particular, for direct nu-

merical simulations (DNS), high grid resolution results in a large linear system of equations to be

solved at least once per time step. Over the last three decades, there has been notable progress in

optimizing the INSE solvers on massive numbers of distributed CPU cores, mainly using the Mes-

sage Passing Interface (MPI). For CPU-based supercomputing systems, Krylov subspace methods

(such BiCGstab or GMRES) together with a preconditioning scheme (such as geometric multigrid

with Gauss-Seidel or Jacobi relaxation) result in good CPU-based parallel performance [1, 2]. More

recently, general purpose graphics processing units (GPGPUs) have been introduced extensively in

flagship supercomputing facilities such as PizDaint (Swiss National Supercomputing Centre), Titan

and Summit (Oak Ridge National Laboratory). GPUs operate differently from CPUs on a hard-

ware level: instead of sequential (task parallel) instruction of floating point arithmetic operations,

they perform the numerical operations in a data parallel manner. Using the so-called single instruc-

tion multiple data (SIMD) standard, GPUs resort to a shared-memory and dedicated streaming

processors to perform thousands of threads concurrently. Because of such differences, the numeri-

cal methods that have performed favourably on CPU-based parallel computers may not necessarily

perform faster on GPUs. This was reflected in our former work [3], where a highly optimized MPI-

parallel legacy flow solver was ported to GPUs with only minor changes to the underlying numerical

methods. This resulted in performance speedups of factor 20 for isolated numerical routines, for

instance, relaxation operators within the multigrid method, or operations outside of the Poisson
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solver. However, it resulted in a limited overall speedup for the larger routines, such as the V-cycle

multigrid preconditioner. Further, it was shown that for the majority of the GPU routines used

in the INSE solver, the pure compute time did not increase significantly by increasing the number

of grid points. These observations motivated the development of the present solver, which aims at

replacing the existing Poisson solver by numerical routines that are better suited for GPUs.

In [3], we presented the workflow of porting a CPU-based high-order three-dimensional incom-

pressible Navier−Stokes solver to large numbers of NVIDIA P100 GPUs of a Cray XC40/XC50

supercomputer (Piz Daint, Swiss National Supercomputing Centre). The CPU-based legacy solver

was originally developed for geometric domain decomposition, to run optimally on massively parallel

CPU cores within a torus network, using the Message Passing Interface (MPI) [1]. We reprogrammed

the computationally intensive parts of the code using CUDA C for GPUs, while keeping the least

intensive operations of the code running on CPUs. By benchmarking the individual kernels on

NVIDIA P100 GPUs, it was shown that the worst-case scenario double-precision performance (i.e.,

including all memory operations) was on average 20 times faster than their exact CPU counterparts.

The pure compute performance (i.e., without host-device data copies and related host-side memory

operations) of the GPU kernels remained on the order of ten microseconds, even when the grid

resolution was enhanced by up to 512 times (resolutions from 32 × 32 × 32 to 256 × 256 × 256 per

device were examined).

In this work, we replace the preconditioned Krylov-based solver with an iterative solver based on

the Jacobi method with successive-over-relaxation. Although this already results in slightly lower

time to solution than the preconditioned Krylov-based solver, the kernel implementations (in C

language) and MPI communication routines (in FORTRAN90 language) are further enhanced to

create an iterative scheme with only minimal data copies as iterations proceed. Further, we use

the Fourier analysis of the Jacobi iterative scheme to formulate a grid-size-adaptive termination

criterion for the proposed solver, which ensures that total residuals at the termination remain close

to that for the preconditioned Krylov-based solver. After integrating the Poisson solver within an

incompressible Navier-Stokes solver using an explicit third-order Runge-Kutta scheme which was

ported to GPUs as described in [3], the resulting flow solver is validated for two flow problems: the

Taylor-Green vortex transition and decay at Re = 1600, and turbulent flow around a solid sphere

at ReD = 3700. Good agreement with literature data is found for both cases.

Excellent performance speedups are reported for both benchmark cases (up to three orders of

magnitude less time to solution compared to the legacy MPI-parallel CPU-based solver running on
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the same number of compute nodes). When only one CPU core per node is used for seeding the GPU,

it is shown that at least linear strong scaling is achieved, whereas the directly ported GPU-based

flow solver [3] and the legacy CPU-based solver [1] both failed to offer linear strong scaling.

Finally, a highly resolved DNS of systolic laminar-turbulent transition past a bileaflet mechanical

heart valve is performed. Using roughly 340M grid points resulted in, to our knowledge, by far the

best-resolved simulation of heart valve hemodynamics. This grid resolution was required to resolve

flow structures near the leaflets which are linked to the impinging leading edge vortex instability

[4]. Pilot simulations of this case showed that roughly 1.5 years would be required with the legacy

CPU-based solver to simulate 0.2s of the cardiac cycle on 20 compute nodes of the Cray XC40/50

(Piz Daint). This prohibitively high cost is probably the reason why earlier simulations of the

bileaflet mechanical heart valve flow only used up to 10M grid points [5]. With the present GPU-

based solver, this extensive simulation is completed in three days on twenty P100 GPUs (resulting

in an approximate speedup of 150 with respect to the legacy CPU-based solver).

The remainder of this paper is organized as follows. In the Section 2, we briefly introduce the

governing equations and the numerical procedure leading to the pressure Poisson equation. Section 3

describes the novel Poisson solver routine where the hybrid GPU implementation concerning domain

decomposition and data parallelism is emphasized. In Section 4 we validate and assess the parallel

performance the GPU-based solver via the problem of transition to turbulence and decay of the

Taylor-Green vortex at Re = 1600. In Section 5, the proposed solver is validated for the problem of

turbulent flow around a solid sphere at ReD = 3700, where parallel performance is also examined. In

Section 6, we deploy the solver for direct numerical simulation of systolic laminar-turbulent transition

in a bileaflet mechanical heart valve. Finally, we conclude and summarize our major findings and

outlook in Section 7.

2. Numerical procedure

2.1. Governing equations

We solve the dimensionless incompressible Navier–Stokes equations

∂

∂t


u

0


+


−L G

D 0




u

p


 =


N u

0


 , (1)

where u=[ux,uy,uz] and p denote dimensionless velocity and pressure, respectively. Operators G ,

D , L , and N , represent the differential operators ∇, ∇·, Re−1∇2 and −u · ∇, respectively. The
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Reynolds number (Re) is defined as:

Re =
U0L0

ν
, (2)

where U0, L0 and ν are the reference velocity, length scale and kinematic viscosity.

2.2. Spatial and temporal discretizations

Explicit sixth-order finite-differences are used for the discretization of the spatial operators on

a rectilinear staggered grid. For the time discretization, an explicit low-storage third-order Runge-

Kutta scheme (RK3) [6] is used, which takes the form:


J (cm)∆tG

D 0




u

m

pm


 =


f(um−1, um−2)

0


 , m = 1, 2, 3, (3)

where J is the identity operator with integrated boundary conditions, f is given as

f(um−1, um−2) = um−1 + ∆t[amN um−1 + bmN um−2 + amL um−1 + bmL um−2], (4)

where am, bm and cm (m=1, 2, 3) are coefficients of the Runge-Kutta scheme. The discretized form

of this equation reads


J G

D 0




u

p


 =


 f

0


 . (5)

It is solved via a Schur complement [7, 8], which leads to a discretized Poisson equation for the

pressure:

(DJ−1G)︸ ︷︷ ︸
A

p = DJ−1f︸ ︷︷ ︸
b

. (6)

This equation is solved iteratively three times in each time step. The Schur complement matrix

A has exactly one zero eigenvalue corresponding to the undefined pressure constant, but several

iterative solvers can handle this rank-deficiency and produce a converged solution to this Poisson

equation. More details on addressing the rank deficiency can be found in [1].
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2.3. Solving the pressure Poisson problem

2.3.1. Overview of the CPU-based legacy solver and its GPU-enabled implementations

In the CPU-based MPI-parallel legacy solver [1] and its directly-ported GPU version [3], Eq.

(6) is solved using the Krylov subspace method BiCGstab [9]. Low-frequency errors are removed

by a V-cycle geometric multigrid preconditioner. This choice has been shown to substantially im-

prove the convergence rate of the BiCGstab solver. Yet, we showed through Cray Performance

Measurement and Analysis Toolset (Cray-PAT)1 profiling reports that the relaxation operations of

the preconditioner routine turned out to be the most expensive part of the entire scheme [3].

For accelerating the multigrid preconsitioner, the relaxation operators in this routine were re-

placed in [3] by data parallel types. This resulted in a promising speedup for the relaxation kernel

itself, but the overall speedup for the multigrid routine, comprising up to 15 levels of coarsening,

remained limited. This apparent performance offset is likely to be caused by the special memory hi-

erarchy of the multigrid type operations. The problem was two-fold: first, the MPI communications

between two grid levels required extra data copies to the GPU and back to the CPU, and second,

the operations on the coarser grid levels proved to be memory-bound, and were in fact slower on

GPU than on the CPU. In an ideal scenario, it would be favourable to perform the computationally

intensive operations at once, and to communicate to the other GPUs as rarely as possible. This is

indeed an obstacle for developing efficient multigrid schemes for GPUs, where in general no sensible

speedup has been reported, even using very advanced implementations 2. At the same time, one

has to keep in mind that increasing the performance of the multigrid relaxation routines on GPUs

(e.g., by lowering the levels of the coarsening) must not come at the cost of deteriorating the overall

algebraic efficiency of the preconditioner. Furthermore, the iterative Krylov-based BiCGstab is not a

suitable choice for GPUs either, probably due to reduction-based operations such as inner products

and norm calculations [10].

3. An alternative hybrid task and data parallel Poisson solver

3.1. Overview

We propose a hybrid task and data parallel solution based on Jacobi method with over-relaxation

to replace our best CPU-based scenario, i.e. BiCGstab with multigrid preconditioning. The key idea

1https://pubs.cray.com/content/S-2376/6.4.0/cray-performance-measurement-and-analysis-tools-user-guide-
640/craypat-lite

2https://devblogs.nvidia.com/high-performance-geometric-multi-grid-gpu-acceleration/
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is, that the higher numbers of required solver iterations, due to lower convergence rate of Jacobi,

can be compensated by much faster computations per iteration on GPU. For instance, if the GPU

can perform the computations two orders of magnitude faster than the CPU, then increasing the

number of iterations by one order of magnitude still results in an order of magnitude speedup. As

we will show in the following, this indeed turns out to be the case for solving the pressure Poisson

equation.

3.2. The iterative scheme

The Jacobi method to solve the Eq. (6) can be written as

p(r+1) = (M−1b)︸ ︷︷ ︸
d

+ (−M−1R)︸ ︷︷ ︸
G

p(r)

(7)

where M holds only the diagonal components of A and R = A−M. G is the point-iteration matrix

for the Jacobi method [11]. With a single-level relaxation using parameter ω, the Jacobi iteration

with successive over-relaxation (SOR) is obtained

p(r+1) = ωM−1(b−Rp(r)) + (1− ω)p(r). (8)

Equation (8) can be rearranged as

p(r+1) = ωM−1b︸ ︷︷ ︸
dω

+ ((1− ω)I− ωM−1R)︸ ︷︷ ︸
Gω

p(r).
(9)

where I is the identity matrix with the same size as A, and Gω is the point-iteration matrix for the

iterative Jacobi method with SOR. The error at iteration r with respect to an exact solution p∗ is

e(r) = p∗ − p(r). (10)

It follows from Eq. (9) that

e(r) = Gωe(r−1), (11)

and convergence is achieved if

lim
r→∞

e(r) = lim
r→∞

Gr
ω = 0. (12)
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Hence, the convergence of the Jacobi iterative scheme with SOR is guaranteed if the spectral radius

of Gω is less than unity, i.e., ρ(Gω) < 1.

The point-wise format for a 6s+1 point three-dimensional finite-difference stencil of width 2s+1

takes the form

p
(r+1)
i,j,k =

ω∑3
l=1 Cl,0,i,j,k

(
bi,j,k −

−1∑

q=−s
C1,q,i,j,kp

(r)
i+q,j,k−

s∑

q=1

C1,q,i,j,kp
(r)
i+q,j,k

−
−1∑

q=−s
C2,q,i,j,kp

(r)
i,j+q,k−

s∑

q=1

C2,q,i,j,kp
(r)
i,j+q,k −

−1∑

q=−s
C3,q,i,j,kp

(r)
i,j,k+q

−
s∑

q=1

C3,q,i,j,kp
(r)
i,j,k+q

)
+ (1− ω)p

(r)
i,j,k

(13)

where Cl,−s:s,i,j,k contains the stencil coefficients in direction l, for the rth approximation p
(r)
i,j,k. It

can be directly seen from the right-hand side of Eq. (13) that the Jacobi method can be executed

efficiently in a data-parallel fashion on the GPU, as opposed to the Gauss-Seidel method, which in

its original form without relaxation reads

p
(r+1)
i,j,k =

1∑3
l=1 Cl,0,i,j,k

(bi,j,k −
−1∑

q=−s
C1,q,i,j,kp

(r+1)
i+q,j,k −

s∑

q=1

C1,q,i,j,kp
(r)
i+q,j,k

−
−1∑

q=−s
C2,q,i,j,kp

(r+1)
i,j+q,k −

s∑

q=1

C2,q,i,j,kp
(r)
i,j+q,k −

−1∑

q=−s
C3,q,i,j,kp

(r+1)
i,j,k+q

−
s∑

q=1

C3,q,i,j,kp
(r)
i,j,k+q).

(14)

Even though the Gauss-Seidel method has been preferred over the Jacobi method due to faster

convergence and lower memory requirements, it is not as suited for a SIMD implementation. In

the Gauss-Seidel method, for the computation of p
(r+1)
i0,j0,k0

, all p
(r+1)
i,j,k with i < i0, j < j0 and k < k0

should be already computed. This provides a favourable memory layout, as the matrix entries can

be progressively updated without the need for allocating memory for both (r) and (r + 1) approxi-

mations. However, it does not allow a fully synchronous CUDA kernel to perform all operations of

an iteration concurrently.

Usually, an absolute residual norm ε∞ = ||(Ap−b)||∞ or a relative residual norm ε∗∞ = ||(Ap−
b)||∞/||b||∞ are considered for assessing the convergence of the pressure problem. Typically, a

tolerance value εp is set and the iterations are terminated when ε∞ ≤ εp. The absolute residual
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norm in discrete form is

ε(r)∞ = max
i,j,k

∣∣∣bi,j,k −
s∑

q=−s
C1,q,i,j,kp

(r)
i+q,j,k −

s∑

q=−s
C2,q,i,j,kp

(r)
i,j+q,k

−
s∑

q=−s
C3,q,i,j,kp

(r)
i,j,k+q

∣∣∣
(15)

involving a reduction operation, which is not well suited for the shared-memory operations on the

GPU. Therefore, we compute this norm on the CPU. This requires a full host-device data copy,

which could be more costly than a few extra iterations on the device. Hence, we compute this norm

only every nnorm iterations, where nnorm is typically set to 100. The relation between the error and

the residual depends on the grid resolution and the truncation error Gω, because the error for the

r-th iteration e(r) is related to the residual ε
(r)
∞ by

ε(r)∞ = ||Gωe(r)||∞. (16)

Therefore, care must be taken when choosing the appropriate termination criterion, such that it does

not need to be adjusted ad hoc when the grid resolution is changed. In what follows, we introduce a

practical termination criterion which is suited for larger grid resolutions, in that it is less expensive

than computing the residual or relative residual, and is adaptively adjusted based on the grid size.

3.3. A grid-size-adaptive termination criterion

In the following, we present a grid-size-adaptive termination criterion for the Jacobi iteration

based on the second-order finite-difference discretization that is used for the pressure equation. We

assume a uniform Cartesian grid and periodic boundary conditions in three dimensions. Extension

to non-uniform Cartesian grids is straightforward and given at the end of this section.

For the Jacobi method with SOR and assuming second-order finite-difference discretization,

the eigenvalue of Gω associated to a certain error mode e(r) = ê(k)eik·x with the wave number

k = (kx, ky, kz) (also known as amplification factor, denoted here by Gω) can be obtained as

Gω(k) =
||e(r+1)||
||e(r)|| = 1− 2ω

3
(sin2(kxhx/2) + sin2(kyhy/2) + sin2(kzhz/2)), (17)

where hx, hy and hz denote the grid spacing in the x, y and z directions. It follows that convergence

(regardless of its rate) is guaranteed when 0 < ω ≤ 1. Furthermore, it follows from Eq. (17) that
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largest wave numbers k present the highest damping rates which explains the faster total convergence

rates for the first iterations. The small wave number errors are the slowest to be damped because

lim
kx,ky,kz→0

Gω = 1. (18)

Note that this is the case for periodic boundary conditions, which allow exact zero wave numbers.

However, it is possible to terminate the iterations when Gω is below this limit by a small offset.

This is inspired by the multigrid method, which may produce valid flow field data even though

the coarsest grid level is often not of size 1 × 1 × 1 (i.e., Nc,min = 1 is the grid dimension in all

directions). For instance, the multigrid routine in the CPU-based solver allows the coarsest grid level

size of Nc,min = 4 in all directions, due to MPI ghost cell layers for the sixth-order discretization (this

follows the global discretization of the flow solver rather than the local second-order discretization

in the Poisson solver). Given this offset, the CPU-based multigrid preconditioner still produces

valid DNS data [1]. We proceed to find a suitable offset limit related to Nc,min = 4 for the Jacobi

iteration. It is expected that at large enough numbers of iterations (denoted by∞c), Gω reaches the

low wave numbers (denoted by 0c) associated to Nc,min = 4 in all directions. Additionally, the lowest

modal convergence rate corresponding to this offset, which comes into effect at advanced iteration

numbers, decreases for higher grid resolutions. If we assume a uniform mesh of size Mx ×My ×Mz

on a domain of size [0, Lx]× [0, Ly]× [0, Lz], it can be written that

lim
kx,ky,kz→0c

Gω ' 1− 2ω

3
(
4π2

M2
x

+
4π2

M2
y

+
4π2

M2
z

)

︸ ︷︷ ︸
ε(M)

≤ 1− 8ωπ2

max{Mx,My,Mz}2
' 1−O(M−2), (19)

where M = max{Mx,My,Mz}. Therefore the error ratio between two subsequent iterations ap-

proaches unity when iterations progress, but depending on grid resolution, it remains below unity

by an offset of order O(M−2) for all the wave numbers above 0c limit. This ratio could also be

obtained through power iteration in terms of the eigenvalues and eigenvectors of Gω, where it ap-

proaches the largest eigenvalue of Gω (for the 0c wave number limit) indicated by λ1. The above

analysis follows the concept of Von Neumann stability analysis [12].

We proceed to use the equivalence of the error ratio and pressure increment ratio between two

subsequent iterations, where the pressure increment is E(r) = p(r) − p(r−1). Following [11], this

ratio could also be realized as
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||E(r+1)||
||E(r)|| =

||p(r+1) − p(r)||
||p(r) − p(r−1)|| =

||e(r+1)||
||e(r)||

r →∞c======= λ1, (20)

and we refer to it as κω, hereinafter. Meanwhile, λ1 can be estimated from Eq. (19), and thus it

can be written that

lim
r→∞c

κω = 1− ε(M). (21)

where ε(M) = 2ω/3(4π2/M2
x + 4π2/M2

y + 4π2/M2
z ). We use this result, besides the residual ε∞, as

a termination criterion for the presented solver. We terminate the iterative procedure as soon as κω

has approached its maximum value, which is close to unity.

It is more convenient to formulate this termination criterion in terms of a new “error” and

“tolerance”. It can be written that

lnκω ≤ ln(1− ε(M)), (22)

and given that |ε(M)| � 1, Taylor expansion of the right-hand side of Eq. (22) gives

lnκω ≤ −
∞∑

n=1

ε(M)n

n
= −ε(M) +O(ε(M)2), (23)

neglecting the higher order terms and taking the absolute value of the inequality, we have

| lnκω| ≥ ε(M), (24)

that is, to terminate the iteration when the “error” | lnκω| reduces to its “tolerance” value ε(M).

We will show in Section 5 that, even though ε(M) is the lower limit for | lnκω| (for the 0c wave

number limit), in practice, ε(M) can fall below | lnκω| for a few iterations and then return back

above it, exhibiting oscillations. This is due to limited arithmetic precision: E may drop below

machine precision and therefore is not evaluated correctly. However, these oscillations do not lead

to numerical divergence, as a growing |κω| will be fully representable with machine’s arithmetic, and

therefore, it will be damped again.

The convergence criterion given in Eq. (21) is only valid when E is computed for two subsequent

iterations. The convergence criterion can be generalized for nnorm > 1. Supposing that nnorm =

11



m0 > 1, a corresponding parameter κω,m0 can be defined, which approaches to λm0
1 as iterations

progress to infinity:

κω,m0 =
||E(r+m0)

m0 ||
||E(r)

m0 ||
=
||p(r+m0) − p(r)||
||p(r) − p(r−m0)|| =

||e(r+m0) − e(r)||
||e(r) − e(r−m0)|| =

||Gm0
ω (e(r) − e(r−m0))||
||e(r) − e(r−m0)||

r →∞c======= λm0
1 .

(25)

Considering this limit value and resorting to the Eqs. (19), (20) and (21), it can be written that

κω,m0
≤ (1− ε(M))m0 =

m0∑

q=0

(
m0

q

)
(−ε(M))q = 1−m0ε(M) +O(m2

0ε(M)2). (26)

For a practical value of nnorm = 100, and for calculations on up to O(1010) degrees of freedom,

|m0ε(M)| � 1. Thus, cancelling the second order terms of Eq. (26) and taking the logarithm gives

lnκω,m0
≤ −

∞∑

n=1

mn
0 ε(M)n

n
= −m0ε(M) +O(m2

0ε(M)2), (27)

or

| lnκω,m0
| ≥ m0ε(M). (28)

Thus it is sufficient to terminate the iterations when | lnκω,m0
| reduces to m0ε(M).

We finally show that the κω termination criterion is also valid for stretched Cartesian grids.

Because ε(M) is derived in the low wave number limit (this is equivalent to coarsest grid level

allowed for the multigrid method), it is helpful to obtain an effective wave number for this level for

a stretched grid. This wave number can be obtained based on a mean value for error wave lengths

on this level, as the resulting wave here may not be monochromatic. For example, for the case of

symmetric stretching (i.e., where grid spacings are symmetric with respect to the planes of symmetry

x = Lx/2, y = Ly/2, z = Lz/2) the mean wave number can be calculated as λ̄ = (λc,1 + λc,2)/2,

where λc,1 = αL and λc,2 = (1 − α)L and α is a stretching parameter (Fig. 1). It follows that

λ̄ = L/2 which is independent of the stretching parameter α. It can be shown that this is valid for

asymmetric stretched grids as well (up to four wave lengths maybe be involved, but the mean wave

length remains the same), which shows that Eq. (19) holds also for these grids. We will verify this

result by showing that using κω termination criterion reduces ε∞ by the same order of magnitude
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Figure 1: Schematic showing the two wave lengths involved in representing the error mode (solid blue line) at the low

wave number limit (Nc,min = 4, k → 0c) for a symmetric stretched grid. The dash-dotted line shows the centerline.

L is the domain length in the given direction x1 = (1 − α)L/2, x2 = L/2 and x3 = (1 + α)L/2 are the grid points

used for discretization with the stretching parameter α. Two wave lengths λc,1 (sections filled with orange) and λc,2

(sections filled with yellow) are involved. The dashed lines show the extension of each section to the full interval [0,L],

which shows neither wave length could be considered to construct ε(M) due to periodic boundary conditions.

as the CPU-based preconditioned BiCGstab method.

3.4. Data decomposition and parallelism

Before introducing our parallel methodology for the solution of pressure Poisson equation (cf.

Eq. (6)), we briefly describe the overall parallel organization of the entire flow solver. The global

computational domain is decomposed into blocks which are distributed to different MPI threads (see

Level I in [3]). The number of MPI threads is normally equal to the number of GPUs (nGPU). If

the CUDA multiprocess service (MPS) is used, the number of MPI processes nprocess will be

nprocess = nGPU × nseed (29)

where nseed is the number of CPU cores on each node which communicate with the existing GPU

on that node.

The computational operations arising from the iterative solution of pressure Poisson equation

and other intensive operations of the explicit scheme, such as those for computing the nonlinear term

Nu, are offloaded to GPUs using CUDA kernels (see Level II in [3]). The GPU kernel structures

for the parts of the flow solver other than the Poisson solver can be found in [3]. The host or driver

routines, however, have been optimized for all GPU operations by moving memory instructions

outside of the time-integration loop as much as possible.
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Figure 2: The MPI domain decomposition and the specific layout of boundary cells for minimal data exchanges.

The iterative part of the scheme (cf. Eq. (13)), which is also the computationally most expensive

part, can be implemented on a massive number of CPU cores in a relatively straightforward manner:

i) update the pressure based on Eq. (13); ii) compute the residual norm; iii) exchange the ghost cell

data via MPI; iv) terminate if a predefined tolerance is satisfied; repeat. On GPUs, more instructions

are needed in the iteration loop due to separation of the GPU memory accessible to the threads

and the node memory (see Algorithm 1). To achieve a higher degree of data parallelism within the

iterative solver, we split the computational block on one GPU into a central part and the boundary

parts (Fig. 2). To minimize the memory overhead, we copy the entire pressure grid data to the

CPU only every nnorm iterations to calculate the residual norm. At any other iteration, only the

boundary data are copied to the CPU for the MPI communication. Because all three-dimensional

arrays are copied to GPU memory as unfolded one-dimensional arrays, it is not straightforward to

fetch specific strides of data from these arrays in the C environment embedded in the FORTRAN

code. Therefore, we used an extra kernel (indicated as GetBoundaryCells in Algorithm 1) to fetch

boundary data from GPU and copy them to the CPU for MPI communications. On the GPU side,

this results in modifying the iterative kernel cuJORx to incorporate the boundary data for threads

which are operating on cells next to the GPU grid boundaries.

Double-precision data parallel routines are implemented as external CUDA C kernels. The

iso C binding library is used for memory allocation on the graphics card, for data transfer between

host and device, for defining CUDA C data and event types in FORTRAN, for passing FORTRAN

host variables by C pointers to the device memory, and for launching the GPU kernels. Further

details on the C-FORTRAN interoperability standards used in our implementation can be found in

14



Algorithm 1: Driver for GPU-based Poisson Solver

Data: DJ−1Gp = DJ−1(−N + f + Re−1L)u
Result: p
build the C-FORTRAN interface;
initialize FORTRAN and CUDA C pointers;
if first time-step then

allocate GPU memory for p;
allocate GPU memory for ghost and boundary cells;
allocate GPU memory for diagonals (band) of A = DJ−1G;

allocate GPU memory for b = DJ−1(−N + f + Re−1L)u;
copy non-zero entries of A to GPU;

end
while ε∞ ≥ εp do

iteration=iteration+1;
if iteration=1 then

copy b to GPU;
copy p to GPU;

end
exchange ghost-cell data with other GPUs via MPI and CUDA;
if mod (iteration, nnorm)=1 then

copy p from GPU to the host CPU;
compute the residual norm (e.g. ε∞ = ||(Ap− b)||∞);
get the maximum of residual from all the GPUs;

end
configure the GPU grid;
setup kernel arguments for cuJORx kernel;
launch the cuJORx kernel;
setup kernel arguments for GetBoundaryCells kernel;
launch GetBoundaryCells kernel;
copy the boundary cells to host for MPI exchange;

end
if last time step then

free the locally allocated GPU memory;
end

[3].

For performance monitoring, we compare the elapsed MPI wall clock time of our GPU imple-

mentation with that of the original MPI-parallel implementation. For the CPU case, we deploy our

best-case scenario Poisson solver which yields the lowest time to solution for the MPI implementation

(a geometric multigrid preconditioner and BiCGstab). The timings are measured by placing MPI

barriers within the time integration loop, so the MPI wall clock times are measured. The elapsed

time within the legacy CPU-based solver was reported as TPc , and the averaged elapsed time for the
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GPU-based solver was reported as TPp . It follows that an effective acceleration factor can be defined

as

Seff =
⌈TPc
TPp

⌉
, (30)

where
⌈
·
⌉

denotes a ceiling function. This effective acceleration factor is labeled as effective because it

reflects the overall reduction in time-to-solution for the pressure problem, when using the GPU-based

solver instead of the CPU-based legacy solver. It is important to note that our best-case scenario

implementation for CPUs has been used to collect the CPU-based data. If a CPU-based solver with

the exact same numerical scheme (e.g. Jacobi iteration) was used, the resulting acceleration factor

would be significantly larger than reported here, although an optimized CPU-based solver would

probably not use such a numerical method.

4. Benchmark problem I: Taylor-Green vortex transition to turbulence and decay at

Re = 1600

4.1. Overview

The transition to turbulence and decay of the Taylor-Green vortex (TGV) is used to validate the

GPU-based flow solver. Initial conditions for the vortices in a cube with an edge length of 2π are

given as

ux(x, y, x, t = 0) = +
2√
3

sin(β +
2π

3
) sin(x) cos(y) cos(z)

uy(x, y, z, t = 0) = − 2√
3

sin(β − 2π

3
) cos(x) sin(y) cos(z)

uz(x, y, z, t = 0) = +
2√
3

sin(β) cos(x) cos(y) sin(z),

(31)

with periodic boundary conditions on the domain −π ≤ x, y, z ≤ π. β is a free parameter and

is set to zero here. The Reynolds number based on the vortex length is set to Re = 1600. For

the GPU-based solver, the relaxation parameter ω is set to 0.8 and the number of iterations for

calculating the norm nnorm is set to 30.
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4.2. Results

Figure 3 shows the transition and decay of the TGV from t=0 to 20. Temporal evolution of the

total kinetic energy Ek,Ω and its dissipation rate defined as

−dEk,Ω
dt

=
−d
dt

∫

Ω

1

2
u · udΩ (32)

are computed and analysed in the following. A series of hybrid simulations on up to 64 GPUs have

been performed (Tab. 1).

The solution to Poisson equation for the TGV simulation usually converges with few iterations

due to the lack of external forcing. Therefore, we do not use the termination criterion developed

in section 3.3, instead we examine the absolute residual ε∞ for termination. First, we investigate

the sensitivity of the Ek,Ω(t) and −dEk,Ω/dt to the termination tolerance εp (Fig. 4), for different

tolerance values εp = 10−2 (case T1), εp = 10−4(case T2) and εp = 10−6 (case T3). It is clearly

seen that the sensitivity to εp is small at the given resolution. On the left panel of Fig. 4, a small

overestimation for the dissipation rate of Ek,Ω can be observed for T1 at t ≈ 13, whereas curves

for T2 and T3 are nearly indistinguishable. Therefore, we proceed to use the termination tolerance

εp = 10−4 for all other cases.

Next, we examined the spatial order of convergence of our implementation. To this end, we

performed the cases G2, G3b and G4 (cf. Tab. 1), where the resolution was increased in all three

directions by factors of 2, 4 and 8, respectively. A total of 64 GPUs were used for the cases G3b

and G4, while only 8 GPUs were deployed for G2. The dissipation rate of Ek,Ω for T2, G2, G3b and

G4 up to t = 10 is shown on the left panel of Fig. 5. Note that, we acquired data for case G4 only

until t ≈ 8.6 because of the high computational costs of this case with approximately 1.7 billion grid

points. Additionally, we compared the results to the spectral direct numerical simulations of Van

Rees et al. [13], who used 5123 grid points. For t < 8, the case T2 underestimates the dissipation

rate, while for t > 8, it provides a good agreement with the spectral DNS. The cases G2, G3b and

G4 are in good agreement with the spectral DNS data, although G2 and G3b slightly over-estimated

the dissipation rate for t > 9. The absolute error |εt| is plotted against the normalized grid spacing

h̃ on the right panel of Fig. 5. This error at time t was calculated as

|εt| =
∣∣∣∣−

d

dt
Ek,Ω(t) +

d

dt
E∗k,Ω(t)

∣∣∣∣ (33)

where E∗k,Ω(t) was the total kinetic energy at time t for the reference case G4, which used the
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highest resolution. It is observed that for the smaller grid spacings h̃, an approximate fourth order

of convergence was recovered, which falls between the sixth order of convergence which is used

for all computations outside the pressure solver, and the second order stencil which is used in the

GPU-based pressure solver.

zy
x

Figure 3: Transition to turbulence and decay of the Taylor-Green Vortex at Re = 1600. Iso-surfaces of λ2 = −0.2

[14] are coloured by the z-component of the velocity field (denoted by w) are shown together with volume renderings

of positive part of the y-component of velocity (denoted by v). The snapshots are taken at times t = 0, 4, 8, 12, 16, 20

from top left to the bottom right.

We also provide the computational performance data for the data parallel Poission solver for

all the cases listed in Tab. 1, where timings for the Poisson solver are compared to the original

CPU-based solver for corresponding compute node configurations and problem sizes. We enabled

the NVIDIA multiprocess service (MPS) for all GPU runs, such that four MPI processes shared

the work on the available GPU on each node (instead of only one driver MPI process per node,

which is the single process standard). Simulation run C0 was performed using only the CPU-based

solver for a short physical time t = 0.015 with 16 MPI processes allocated per node, in order to

acquire the electrical energy consumption Et of the simulation runs when the CPU code utilized all
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Figure 4: Temporal evolution of the total kinetic energy Ek,Ω (left) and its dissipation rate (right) using three different

values for cases T1, T2 and T3. Simulations where performed on 1283 grid points.
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Figure 5: (Left) effect of spatial resolution on the temporal evolution of the dissipation rate of the total kinetic energy

Ek,Ω for the Taylor-Green Vortex simulation. Simulations using four different grid resolutions 1283 (T2), 2563 (G2),

5123 (G3b) and 10243 (G4) are performed and compared against the spectral DNS results of Van Rees et al. [13]. The

termination tolerance in the Poisson solver was set to εp = 10−4. (Right) The absolute error |εt| is plotted against

the normalized grid spacing h̃ (= h/2π, where 2π is the domain’s length). εt is presented for T2, G2, and G3b at

three different times t = 4, 6, 8 (dashed lines on the left panel), with respect to the reference case G4. Dashed black

line indicates fourth (O(h̃4)) order of convergence.
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12 cores available on each node with an extra 4 processes using hyperthreading (number of MPI

processes are set to result the lowest elapsed time for each case). The energy data are collected from

dedicated monitoring tools CrayPAT. The total consumed energy is reported using this toolset, thus

the energy consumption for the GPU cases includes the consumption by the CPU cores as well.

Case nDOF GPUs(N) MPS(n) εp TPp TPc Seff te Et(MJ)

T1 1283 yes(8) yes(4) 10−2 0.005 0.16 32 22 14.04
T2 1283 yes(8) yes(4) 10−4 0.005 0.16 32 22 14.57
T3 1283 yes(8) yes(4) 10−6 0.006 0.16 27 22 24.04
G2 2563 yes(8) yes(4) 10−4 0.04 0.65 16 22 73.41
G3a 5123 yes(8) yes(4) 10−4 0.32 4.35 14 9.11 198.43
G3b 5123 yes(64) yes(4) 10−4 0.038 1.93 51 13.9 409.31
G4 10243 yes(64) yes(4) 10−4 0.32 14.45 48 8.59 1562.22
C0 5123 no(64) no(16) 10−4 - 1.47 - 0.015 1.85

Table 1: The first set of Taylor-Green vortex simulations performed on Cray XC40/50 GPU nodes (Intel® Xeon®

E5-2690 v3 @ 2.60GHz (12 cores, 64GB RAM) and NVIDIA® Tesla® P100 16GB). This set includes cases performed

for validation and assessing the energy consumption of the solver. The total number of grid points is given as nDOF.

N and n are the number of GPUs (or nodes) and the number of MPI processes per node, respectively. All runs

(except C0) deployed GPUs and used the multiprocess service (MPS) for streaming the computations from more than

one CPU core to the existing GPU on a node. εp is the termination tolerance for the GPU-based pressure solver.

The elapsed time for the GPU-based and CPU-based pressure solvers as well as the effective acceleration factor are

given as TP
p , TP

c and Seff , respectively. te denotes the physical time at which the simulation run was terminated

and Et(MJ) is the total energy required for each case.

The effective acceleration factor Seff for T1, T2 and T3 in Tab. 1 show that changing the

termination tolerance εp does not significantly influence the GPU acceleration. Comparing Seff

for T2, G2 and G3a shows that the acceleration factor decreases when the number of grid points

per GPU is increased. This is in contrast to our findings in [3], where it was shown that the GPU

performance generally improves for larger grid resolutions. This discrepancy may be caused by

the cost of calculating the residual norm or by communicating the ghost cell data communication

between the GPUs, which both become significant when the number of degrees of freedom per

node is increased. This overhead is also due to elevated number of iterations in the Jacobi solver

for larger grid sizes.This can also be observed by comparing cases G3a and G3b, where increasing

the number of GPUs resulted in a three times higher acceleration factor. Apart from speeding up

the calculations, which lowers the cost in terms of node hours on a supercomputer, GPUs are also

reputed for lowering the energy consumption and thus reducing electric power cost. To compare the
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Figure 6: Energy consumption per grid point per unit of physical time for all cases listed in Tab. 1 for the Taylor-Green

vortex simulation.

energy consumption for the runs in Tab. 1, we define a normalized measure as

P̃g =
Et

te × nDOF
, (34)

which is the total energy per unit of simulated flow-related time per grid point. Since we use

flow-related time te here for normalization, not the elapsed wall time, the presented measure is not

illustrating power, and P̃g has the unit of Joule, because te is dimensionless. It can be seen from Fig.

6 that the normalized energy consumption P̃g remains around 0.3J for all GPU-enabled cases with

εp = 10−4, whereas it reaches 0.91 J for the CPU-only case C0. This indicates that the GPU-enabled

solver cuts the energy consumption by approximately 70%.

In the remainder of this section, we present a second set of simulation runs for which we put

more focus on the parallel performance of the proposed solver, in particular, on the strong scal-

ing capabilities. To this end, we performed a total of 87 simulation runs on the Cray XC40/50

(Piz Daint), where the total number of degrees of freedom was kept constant at 5123 (cf. Tab. 2).

Starting from one node, we doubled the number of nodes (or GPUs, because there is one GPU per

node) up to to 512 nodes (each row in Tab. 2 corresponds to a fixed number of nodes), and for

each node configuration, we utilized n = 1, 2, 4, 8, 16 processes per node. We performed simulations

with the CPU-based Poisson solver (g = 0) and the GPU-based Poisson solver (g = 1 in Tab. 2).

Accordingly, the timings in columns of Tab. 2 with g = 0 correspond to TPc , and those in columns

with g = 1 correspond to TPp for constant n and number of nodes.
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Case n=1
g=0

n=1
g=1

n=2
g=0

n=2
g=1

n=4
g=0

n=4
g=1

n=8
g=0

n=8
g=1

n=16
g=0

n=16
g=1

S1-n-g 80.5 - 46.31 - 30.1 - 24.8 - 23.64 -
S2-n-g 40.34 4.09 23.17 2.14 15.47 1.24 12.52 - 12.29 -
S4-n-g 20.52 2.05 11.96 1.09 8.07 0.64 6.29 0.37 6.20 0.31
S8-n-g 10.57 1.03 6.12 0.54 4.30 0.32 3.29 0.16 6.07 0.17
S16-n-g 5.39 0.52 3.22 0.28 2.28 0.14 4.14 0.085 3.55 0.082
S32-n-g 2.78 0.26 1.73 0.12 3.65 0.07 2.26 0.043 2.05 0.042
S64-n-g 1.42 0.12 3.21 0.065 1.93 0.036 1.22 0.022 1.51 0.024
S128-n-g 3.03 0.064 1.66 0.032 1.03 0.020 0.80 0.013 0.92 0.015
S256-n-g 1.60 0.035 0.90 0.021 0.61 0.010 0.44 0.009 0.25 0.022
S512-n-g 0.88 0.018 0.51 0.012 0.36 0.009 0.17 0.011 0.11 0.012

Table 2: Second set of the Taylor-Green vortex simulations, performed on GPU nodes of a Cray XC40/50 (Intel®

Xeon® E5-2690 v3 @ 2.60GHz (12 cores, 64GB RAM) and NVIDIA® Tesla® P100 16GB). The cases in this set

are performed to examine the computational performance. Cases are tagged as ”SN-n-g”, where N is the number of

nodes (or GPUs), n denotes the number of MPI processes per node, and g indicates if the GPU solver (g = 1) or the

CPU-based MPI-parallel solver (g = 0) is used. Timings are given in seconds [s].

Figure 7 shows the effective acceleration factor Seff for different node configurations. It can be

seen that acceleration factors up to 60 are achieved, and the effective acceleration factor never drops

below Seff ≈ 10. For lower numbers of nodes (or GPUs), increasing the number of MPI processes

on a node results usually in a higher GPU-acceleration, while for large numbers of nodes (N ≥ 16),

this is not always the case.

4.3. Strong scaling

The data in Tab. 2 is then used to examine the strong scalability of the proposed Poisson solver.

For every fixed number of MPI threads per node (or GPU), we plotted in Fig. 8. the elapsed time

for 2, 4,· · · , 512 nodes (or GPUs). The problem size was fixed at 5123 grid points. Because the data

associated with such a problem size does not fit into the memory of a single P100 GPU, the elapsed

times for one GPU (N = 1) are not presented in Tab. 2. Also missing are the data for N = 2

when n ≥ 8 due to thread memory overhead in the CUDA multi-process service. For the tested grid

size, the CPU-based MPI-parallel solver diverges from an ideal scaling when the number of threads

exceeds 64. This result is independent of number of MPI processes per node. For instance, cases

SN-1-0 diverge from ideal scaling when N = 64, while cases SN-4-0, diverge from ideal scaling when

N = 16. The deviation from ideal strong scaling in the CPU-based solver is likely to be caused

by an interplay between the MPI regrouping operations and the memory layout in the multigrid

preconditioner.
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Figure 7: Effective acceleration factor (Seff ) obtained using the GPU-based solver, compared to the legacy CPU-

based solver, are reported for the Taylor-Green Vortex simulation at Re = 1600. n shows the number of MPI processes

on each node. At a fixed number of GPUs, n is varied, and the acceleration is then measured with respect to the

elapsed time in the Poisson solver for the CPU-based and GPU-based solvers.

The GPU-based solver exhibits ideal strong scaling when one MPI thread per node is used (cases

SN-1-1, when N=2, 4,· · · , 512). When the number of MPI processes per node is increased, we

observed that the GPU-solver achieved slightly better performance than it would be expected for

the linear scaling at certain numbers of nodes N (e.g., cases S32-2-1, S16-4-1 and S8-8-1). Such an

improvement in scaling was not observed when 16 MPI threads were used per node. Nonetheless,

this configuration also presented ideal scaling up to N = 64. Increasing the number of MPI processes

beyond 12 does not seem to aid the GPU solver with better data streaming between host and device.

This observation could be related to the fact that there are only 12 cores per node. The lowest time-

to-solution is achieved for case S256-8-1 (TPp = 0.009s), which results in a total speedup factor of

8978 (compared to the serial case S1-1-0 which converged in 80.8s). The results for the multigrid

preconditioned GPU-based solver [3] are also shown in Fig. 8 without multi-process service (n = 1).

It is observed that this implementation is only slightly advantageous to CPU-based solution for large

N.

4.4. Efficacy of the κω termination criterion at larger grid sizes

The efficacy of κω criterion in terms of dropping the residual ε∞ is investigated for increasing

grid sizes. To this end, the pressure problem is solved for four grid sizes 1283, 2563, 5123 and 10243

using N = 1, 8, 64 and 512 nodes (or GPUs), respectively. The ratio of residual ε∞ after termination

to the residual when iterations start is defined as
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Figure 8: Time-to-solution obtained with the GPU solver (g = 1, orange), compared to the CPU-based solver (g = 0,

black) for the Taylor-Green Vortex simulation at Re = 1600. n shows the number of MPI-processes on each node and

N denotes the number of GPUs (or nodes). Dashed blue line shows ideal scaling. The red line shows the results for

the multigrid preconditioned GPU-based solver [3] with n = 1.

Γ+
c,∞ =

ε
+(K)
∞

ε
+(0)
∞

, (35)

where K is the number of iterations when the termination is signalled. The “+” sign indicates that

the residual is obtained by summation over the three Runge-Kutta substeps (because the pressure

problem is solved once per substep). This four problem sizes are tested once using the GPU-based

solver with κω,m0
criterion with m0 = 100. and once using the CPU-based preconditioned BiCGstab

solver. The CPU-based solver uses a termination criterion based on the BiCGstab method [1]. Figure

9 shows that the κω,100 termination criterion drops the residual ε∞ by similar orders of magnitudes

as the preconditioned BiCGstab method.

5. Benchmark problem II: turbulent flow in the wake of a solid sphere at ReD = 3700

5.1. Overview

In this section, we present an implicit large eddy simulation (ILES) of the flow around a solid

sphere at ReD = 3700, where the Reynolds number is defined as
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Figure 9: Effect of grid size on Γ+
c,∞ when κω,m0 termination criterion is used in the GPU-based solver. The

CPU-based solution is used as reference which deploys the preconditioned BiCGstab method.

ReD =
U∞D
ν

, (36)

where U∞, D and ν are the free stream velocity, sphere diameter and kinematic viscosity, respectively.

This flow configuration has been studied using numerical simulations [15, 16] and experiments [17].

Here, we briefly report turbulent flow statistics in the wake of the sphere to validate the present

solver. The periodic computational domain is shown in Fig. 10. The origin of the coordinate

system is located on the downstream end of the sphere with respect to the bulk flow direction z. In

contrast to the Taylor-Green vortex transition and decay, the current case uses localized forcing to

represent the sphere with an Immersed Boundary technique. Such discrete forcing usually results

in a considerable increase in the number of iterations in the Poisson solver. This effect has to be

evaluated for the present solver, as the speedup achieved by data parallelism may be offset through

a larger number of iterations.

According to a posteriori calculations of [15], the near wake flow structures (z/D < 3) have been

associated to a Kolmogorov length scale of ηkol/D = 0.0134. Their simulation used an average grid

spacing of h̄/D = 0.008 in the wake region, with a second-order body-fitted mesh flow solver. In

our former work [3], we used Nx ×Ny ×Nz = 256 × 256 × 768 ≈ 50.3M grid points together with

appropriate grid stretching to accommodate a similar grid spacing in the near wake region, which

ensured sufficient resolution for scale-resolving simulation of near-wake flow (h/D ≈ 0.008 < ηkol).
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We chose here to reduce the grid resolution by a factor of two in all the three directions, hoping

to recover the time-averaged flow fields by taking advantage of higher-order discretization schemes

than [15]. Accordingly, we compute the turbulent flow past the sphere using Nx × Ny × Nz =

128 × 128 × 384 ≈ 25.2M grid points, which results in the near-wake grid spacing of h/D ≈ 0.016.

Because the grid resolution used here is slightly higher than ηkol, the simulations are considered

ILES or under-resolved DNS. We use 24 GPUs (24 nodes). Boundary conditions, fringe forcing for

×7
D

7D

21D

DD

U∞

z
y

x

Figure 10: Periodic computational box dimensions for the simulation of the turbulent wake behind the sphere at

ReD = 3700 illustrated together with size and position of the immersed sphere.

driving the bulk flow, and the immersed boundary forcing on the sphere surface are imposed as

described in [3, 18, 19].

5.2. Results

The simulation is performed for a total time of t ≈ 80D/U∞ on 24 GPUs. The transition to

turbulence in the wake was triggered by placing the sphere off the channel center by 0.035D in

the x direction. Transient structures were washed out of the domain’s outlet at approximately

t = 30D/U∞. From this time onward, the simulation was continued for approximately 11 shedding

cycles (St = fsD/U∞ = 0.215 [15], where fs is the frequency of the principal vortex shedding).

The instantaneous streamwise velocity field behind the sphere at time t = 49D/U∞ (Fig. 11)

shows complex flow structures due to interaction of boundary layer and wake instabilities up to

approximately z = 3D. Reverse flow is observed roughly until z = 2D, which is in agreement with
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Figure 11: Streamwise velocity for the ILES of flow around sphere at Re = 3700 in the x-z plane at t = 49D/U∞.

The snapshot shows strong reverse flow up to z = 2D.

[15].

Vortical structures in the wake, indicated by iso-surfaces of λ2 = −0.2 [14], together with volume

renderings of the pressure field are illustrated in Fig. 12. Adverse pressure gradient downstream of

the sphere is apparent roughly up to z = 2D.

Figure 12: Iso-surfaces of λ2 = −0.2 to illustrate the vortex structures in the wake of the sphere at t = 63D/U∞.

Iso-surfaces are coloured by the non-dimensional streamwise velocity. The volume renderings show the pressure field

behind, around, and past the sphere.

We compare the time-averaged streamwise velocity profiles w for different cross-sections down-
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stream of the sphere and in the near-wake region. For calculating the mean quantities, we statistically

average the simulation data over ten principal shedding cycles after the initial transient effects were

washed out of the simulation domain. Fig. 13 shows the mean streamwise flow profiles in the y

direction up to y/D = 2 from the centerline for two locations z = 1.6D and z = 2D. Results agree

reasonably well to those of [15] who averaged over much longer times.
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Figure 13: Time-averaged streamwise velocity uz at (left) z = 1.6D and (right) z = 2D. Solid lines indicate present

numerical simulations, and symbols are obtained from DNS data of Rodriguez et al. [15].

Further, we briefly investigate the frequency spectra for the oscillations in the streamwise velocity

w at a fixed location within the recirculation zone. To this end, we record the time history of the

streamwise velocity fluctuations w′ for 8 shedding cycles, between the times t1 = 42D/U∞ and

t2 = t1 + 8/St:

w′(x0, y0, z0, t) = w(x0, y0, z0, t)− w(x0, y0, z0), (37)

where w is the time-averaged streamwise velocity over the interval [t1,t2]. w′ is collected at a probe

located 3D downstream of the sphere’s leading point. The power spectrum (Fig. 14) indicates the

-5/3 scaling law. It is also observed that the maximum frequency peak (marked by a solid red circle)

corresponds to St = 0.24 which is close to reference DNS data of Rodriguez et al. [15] (St = 0.215)

and experimental measurements of Kim and Durbin [17](St = 0.225).

5.3. Strong scaling

Next, we compare the strong scaling performance of the present implementation to the scaling of

the legacy CPU-based solver. Similar to the data in Tab. 2 for the Taylor-Green vortex simulation,
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Figure 14: Power spectrum at z = 3.5D. The frequency peak associated with the highest fluctuation energy at the

onset of inertial range is marked by the red symbol, and corresponds to St = 0.24. Reference scaling slopes of -1

(injection range ) and -5/3 (inertial range) are shown.

we report the pressure solver’s performance data for different number of nodes in Tab. 3, where for

every number of nodes, we vary the number of processes that have access to the GPU. Simulations

are performed on a grid size of 512 × 512 × 1536 = 402,653,184, which is eight times higher than

in our previous DNS reported in [3]. We deliberately set higher number of grid points to study the

impact of excessive number of iterations which may occur at higher grid resolutions. The number

of nodes (or GPUs) is varied from 8 to 256. We use the termination criterion given in Eq. (24)

were we evaluate κω to terminate the iterations. nnorm is set to 1 (that is, κω is calculated in every

iteration). Fig. 15, shows that for the present case, the GPU-based solver performs nearly two

orders of magnitudes faster than the legacy CPU-based solver. Increasing the number of processes

per node in the multiprocess mode increases the effective acceleration for the GPU-based solver for

N ≤ 32. For a constant number of GPUs, Seff might decrease slightly for lower amounts of data per

MPI thread. It can be also observed that the lowest elapsed time for the CPU-based implementation

was 10.63s for nprocess = 256 × 12 = 3072 MPI threads. Note that the smallest GPU-based case,

using only 8 GPUs which are seeded by 3 CPU cores on each node (case S8-3-1), converges in 5.7s

and thus still outperforms the largest CPU-based configuration S256-12-0 by a factor of two.

In Fig. 16, we plot the timings for fixed numbers of MPI threads per node, when the number of

nodes (or GPUs) is varied, to obtain a clearer view of the strong scaling efficiency of the presented

GPU-based solver, and to compare it to the legacy CPU-based solver. It is observed, that even

though the elapsed time for the GPU-solver is on average two orders of magnitude lower, the strong
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Case n=3
g=0

n=3
g=1

n=6
g=0

n=6
g=1

n=12
g=0

n=12
g=1

S8-n-g 206.1 5.7 135.8 2.11 126.2 1.04

S16-n-g 98.4 1.6 80.9 0.68 119.37 0.69

S32-n-g 48.7 0.5 111 0.45 71 0.25

S64-n-g 98.1 0.35 52.6 0.16 30.1 0.11

S128-n-g 45.7 0.25 30.2 0.11 20.1 0.08

S256n-g 23.7 0.1 14.0 0.06 10.63 0.065

Table 3: Summary of a series of performance simulations for the benchmark case of flow around sphere at ReD = 3700.

All the cases are performed on the GPU nodes of a Cray XC40/50 (Intel® Xeon® E5-2690 v3 @ 2.60GHz (12 cores,

64GB RAM) and NVIDIA® Tesla® P100 16GB). Cases are tagged as ”SN-n-g”, where N is the number of nodes

(or GPUs), n denotes the number of MPI processes per node, and g shows if the the GPU solver (g = 1) or the

CPU-based MPI-parallel solver (g = 0) is used. Timings are given in seconds [s].

scalability is not preserved for the full range of number of nodes, as it was already observed for

the Taylor-Green vortex simulation (cf. Fig. 8). Despite the lack of full linear scaling, the solver

still presents a larger reduction in time to solution than the CPU-based legacy solver for N < 32

and n < 12 (i.e., without hyperthreading). The results for the multigrid preconditioned GPU-

based solver [3] are also shown in Fig. 16 for n = 3. It is observed that this implementation is

approximately twice as fast as the CPU-based solver. The strong scaling efficiency is linear but not

ideal for this case.

5.4. Effect of grid size on iteration behaviour using κω termination criterion

Figure 17 shows the evolution of ||E||, i.e. the norm of the difference between two subsequent

pressure approximations, and κω for the iterative Jacobi solver with SOR. The left panel of this

figure shows that ||E|| decreases rapidly towards values below 10−8, and then it plateaus for all of

the grid resolutions that have been analysed here. We expected this from the Fourier analysis (cf.

Section 3.3), as Gω takes values far below unity during initial iterations, which correspond to larger

wave number modes. As iterations progress, Gω approaches unity, which indicates slower decay of

the error ||e|| and increment ||E||. The effect of grid resolution on the asymptotic behaviour of Gω

and ||E||, that is given in Eq. (19), is also shown: ||E|| approaches to zero faster for the coarsest

grid resolution 〈G0〉 (32 × 32 × 96 grid points) than for the larger grid resolutions. Note that the

grid resolution is increased uniformly in all three dimensions. The behaviour of κω throughout the

iterations is plotted on the right panel of Fig. 17. κω approaches unity for the initial iterations and

30



3 6 12
0

100

200

300

400

n

S
e
f
f

8GPUs

16GPUs

32GPUs

64GPUs

128GPUs

256GPUs
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reported for the DNS of turbulent flow around a sphere at ReD = 3700. n shows the number of MPI-processes on

each node. At a fixed number of GPUs (or equivalently nodes), the number of active MPI threads on each node (n)

is varied, and the acceleration is then measured in terms of the elapsed time in the Poisson solver for the CPU-based
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Figure 16: (Left) elapsed times for various node configurations (N denotes the number of nodes, or GPUs) are plotted

where the number of MPS processes seeding the GPU per node (n) is varied (g = 1: the GPU-based solver, g = 0:

the CPU-based legacy solver). Dashed blue line shows ideal scaling. The red line shows the results for the multigrid

preconditioned GPU-based solver [3] with n = 3. (Right) relative speedups are shown for all configurations. Speedups

are computed as T0/T , where T is the elapsed time for a given configuration and T0 is the elapsed time for the case

S-8-3-0, that corresponds to the smallest configuration used for the CPU-based solver.
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then eventually plateaus. Based on the Fourier analysis, we expect a smaller ε(M) for κω at larger

grid sizes, that is, a smaller distance from unity at the low wave number limit (k→ 0c). A smaller

distance is also observed before this limit is reached, which is verified by the results shown in the

inset of the right panel of Fig. 17. An oscillatory behaviour is observed for the grid of size 64〈G0〉:
κω grows beyond unity instead of remaining below it. We conjectured in Section 3.3 that this is due

to misrepresentation of κω due to limited the arithmetic precision, and will not lead to divergence.
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Figure 17: (Left) Progression of the grid-averaged l1 norm of the increment between two subsequent iterations r and

r + 1 is plotted for 50 iterations. 〈G0〉 denotes the smallest grid size (32× 32× 96), and grid resolution in increased

by the same factor in all three directions. (Right) Progression of κω towards unity as iterations advance is illustrated

for four grid sizes. The coarsest grid 〈G0〉 contains 32 × 32 × 96 grid points, which corresponds to an average grid

spacing of h̄ = 1/32. The inset shows that coarser grids are associated with lower values of κω (larger distance from

unity) for larger numbers of iterations. The visual flattening of κω values is not in general a sign of convergence and

this has to be checked using the ε(M) value.

6. Direct numerical simulation of systolic transition in flow past a bileaflet mechanical

heart valve

6.1. Overview

In this section, we deploy the GPU-based solver for DNS of systolic flow past a model of a

bileaflet mechanical heart valve (BMHV). It was recently shown using fully resolved 2D simulations

that the laminar-turbulent transition process and the intensity of turbulent blood flow past the

valve is largely influenced by the impinging leading-edge vortex instability near the leading edge of

the leaflets [4]. This mechanism has slipped previous 3D simulations of this flow probably due to

32



LeafletsLeading edge

Valve frame 0 50 100 150 200
0

0.0002

0.0004

0.0006

103 tU0

L0
[ms]

Q
3
D
[m

3
/s
]

Uin = 2U0

2

4

6

8

10

10
−
3
R
e

(a) (b)

Figure 18: (a) Leading edge view of a Regent mechanical valve (https://www.structuralheartsolutions.com). The

valve leaflets are hinged in a metal frame housing, which is sutured to the aortic root. (b) the flow rate waveform

that has been used for systolic acceleration and the associated Reynolds number.

insufficient grid resolution. Thanks to the enhanced computational performance of the GPU-based

solver, we investigate here the existence of this instability in a simplified 3D model of a BMHV.

We use the reference quantities U0 = 0.75m/s, L0 = 3 × rr = 36mm and ν = 2.7 × 10−6m2/s.

The velocity scale is one half of the inflow velocity at peak flow rate.

6.2. 3D model and boundary conditions

6.2.1. 3D aortic root and BMHV model

The 3D model is an extension of the 2D model used in [4]. Similar to [20] we fix the two leaflets

of the heart valve in the fully open position (black in Fig. 19a). The angle of attack at this position

is fixed at 90− θ = 5◦. The sinuses of Valsalva are modelled as three spherical cavities with a radius

rs = rr
√

3/2 (Fig. 19b, bottom). The centers of these spheres are located on the x = 0 plane,

and on the sides of the equilateral triangle, to which the aortic root’s cross section is circumscribed.

Leaflets are modelled as blunt plates with triangular leading, and trailing edges(Fig. 19a). The

spanwise profile of the leaflets is given on the top panel of Fig. 19b.

6.2.2. Flow forcing

The flow is smoothly accelerated from zero to the mean velocity Uin = 2U0 at t = 200ms (Fig.

18b). No-slip boundary conditions are imposed on the rigid valve leaflets and aortic root boundaries.
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Figure 19: (a) 3D model of the BHMV in the aortic root. The 2D cross-sections of leaflets in their plane of symmetry

are shown in (1) open (dark gray) and (2) closed (light gray) positions. All geometrical parameters are given in Tab.

4. (b, bottom) Cross-section of the geometry at x = 0. The centers of the spherical cavities representing the sinuses

of the Valsalva (three gray solid points) are placed on the middle of the sides of the equilateral triangle, to which the

aortic root cross section is circumscribed (rs = rr
√

3/2). (b, top) geometry of the leaflet in the spanwise direction:

the elliptical leading edge of the leaflet is modelled as a semicircle whose center is located on the axis of symmetry

and on the leading edge (gray cross mark) and its radius is equal to ll.

Parameter Notation Value

root radius rr 12mm
sinus radius rs 0.86rr
leaflet length ll 1.15rr
leaflet leading edge width wl 1.963rr
leaflet thickness δl 0.09rr
hinge longitudinal position xh -1.062rr
hinge radial position yh -0.19rr

Table 4: Geometrical parameters of the three-dimensional model.
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Periodic boundary conditions are used in the flow direction, and the systolic waveform is forced using

a fringe region technique [21] upstream of the valve:

f̃ = λ(x )(ũ− ũ0(t)), (38)

where λ(x) is the fringe function which vanishes beyond the fringe region and ũ0(t) is a uniform

flow profile. The amplitude of ũ0(t) and the amplitude of the fringe function λ(x) are tuned ad hoc

to yield the desired systolic acceleration (Fig. 18b). The fringe forcing enforces the given inflow

profile, while it simultaneously damps out the outflow disturbances reentering the domain at the

inflow, due to the periodic boundary conditions.

6.2.3. Configuration of the numerical experiment

We present a highly resolved numerical simulation using 337,644,801 grid points in a cuboid

domain of size 3rr×3rr×15rr, which allows accurate representation of the non-conforming geometry

of the leaflets, and also resolves the spatio-temporal instability waves and their interactions. This

resolution is roughly 30 times higher than the resolution used for the fine mesh BMHV simulations

of [5]. Grid stretching is applied in all three directions to place more grid points near the leaflets,

so that a similar grid resolution to that reported in [3] is achieved near the leaflets. Accordingly, 31

grid points are placed along the leaflet thickness δl in the y direction, providing a grid spacing of

h̃y = 35µm. Same resolution is utilized for the streamwise direction x, while half this resolution is

used in the z direction (that is, a grid spacing of h̃z = 70µm). Less resolution is set in the spanwise

direction z because the leaflet leading-edge geometry is uniform in this direction. To the best of our

knowledge, this is the highest resolution that has ever been used for three-dimensional numerical

simulation of heart valve hemodynamics.

The simulations were completed in only three days using the novel GPU-based solver on 20

GPUs. A small pilot run revealed that the GPU implementation is approximately 150 times faster

than the legacy CPU-based flow solver on the same node configuration (20 nodes of Cray XC40/50,

Piz Daint), therefore, it can be said that the equivalent simulation on equivalent number of CPU

cores (20 × 16 = 320 cores with hyper-threading) would have taken approximately 1.5 years to

complete.

As a result of the large grid resolution, the size of each data output of the velocity field amounted

in size to 8.1GBs. Nearly 750 instantaneous flow field datasets (velocity field, pressure, and λ2 val-

ues), was generated resulting in a total of 9.2TB of data for the physical time of 0.2s (approximately
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20% of heartbeat). The large amount of generated data required the use of parallel visualization

techniques, for which up to 4 nodes of the Cray XC40/50 supercomputer were used.

6.3. 3D ILEV structures in the valve model

Figure 20 shows an snapshot of the streamwise velocity of the turbulent flow field past the

3D BMHV model after the turbulent breakdown in the wake had taken place. The instantaneous

streamwise velocity is shown for the centre-plane parallel to the valve leaflets (y = 0). Moreover,

cross-sectional views are given for four different streamwise locations denoted by x1,2,3,4. Cross-

section x1 provides a view of the 3D instability of the ILEV structures between the leaflets. Cross-

section x2 which cuts through the elliptical part of the trailing edge of the leaflets, indicates a

larger area of oscillatory flow compared to cross-section x1, which is in agreement with findings of

2D simulations [4]. Signatures of the small-scale flow structures in the bulk flow and close to the

centerline indicate the influence of the vorticity waves (generated by the ILEV instability mechanism

on the wake flow). This is also reflected in Fig. 21 where the evolution of the vortex structures

around the valve leaflets shows the significant production of small-scale structures in the wake upon

interaction with ILEV-induced flow oscillations. This figure also shows that the wake flow consists

of relatively large-scale laminar vortex structures prior to interaction with disturbances coming from

the ILEV zone, e.g at time t = 0.5 (24ms in dimensional form).

6.4. Effect of the grid resolution on resolving the ILEV zone

It was shown in [4] that high resolutions are required to resolve the ILEV velocity profiles in 2D.

This is shown here for the 3D model, although no finer grid than that used for the presented DNS

(referred to as case M1) is analysed due to prohibitively high computational cost. We performed

three coarser simulations where we coarsened the grid by a factor 2 in all directions (case M2), by

a factor 4 in x direction and a factor 2 in y and z directions (case M3), and by a factor 4 in x

and y directions and a factor 2 in z direction (case M4). Velocity profiles in the y direction and

within the central orifice area (i.e., the area between the leaflets) for these cases are shown in Fig.

22. Profiles were taken 2.08mm downstream of the leading edge at two spanwise locations z = 0

(center of the leaflet span) and z = −9.1mm (closer to the hinge area). Location z = 9.1mm (not

shown here) is equivalent to z = −9.1mm due to symmetry. The streamwise location was selected

within the laminar part of the ILEV. All profiles were taken at tL0/U0 = 72ms, after ILEV zone

was sufficiently developed. Little difference can be seen between case M1 and M2. Case M4 which

has the lowest resolution in the y direction shows almost no reverse flow, which emphasizes the
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Figure 20: Fully resolved turbulent flow past an open BMHV. (Top) streamwise velocity field on a plane passing

through the central orifice on the valve model on the axis of symmetry without cutting through the leaflets. (Bottom)

cross-sections of the streamwise velocity are shown at x1 = −0.75rr, x2 = −0.45rr, x3 = −0.15rr and x4 = 0.15rr.

Signature of ILEV instability is seen between the valve leaflets for the cross-sections x1 and x2. Influence of ILEV

instabilities on the wake flow can be observed in cross-sections x3 and x4.

t = 0.5L0/U0

Laminar wake structures

ILEV instabilities

ILEV structures interact with the wake

t = 1.0L0/U0 t = 1.5L0/U0

Wake breakdown

Figure 21: ILEV instabilities trigger the transition to turbulence in the wake of the BMHV. Evolution of Lagrangian

coherent structures (iso-surfaces of λ2 = −0.1) are represented around one valve leaflet (gray solid structure) for times

t = 0.5L0/U0 (before wake breakdown), t = 1.0L0/U0 (onset of wake breakdown) and t = 1.5L0/U0 (after the wake

breakdown). Light red and blue show maximum positive and minimum negative streamwise velocities, respectively.
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significance of the resolution in this direction. Comparing the cases M2 and M3 shows that the

streamwise resolution is also important in resolving the reverse flow profiles in the ILEV zone.
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Figure 22: Effect of grid resolution on streamwise velocity profiles in the y direction within the laminar part of the

ILEV zone at time tL0/U0 = 72ms. Four grid resolutions, including the reported DNS case M1 are shown 2.08mm

downstream of the leading edge at (left) z = 0 and (right) z = −9.1mm spanwise locations.

6.5. Effect of κω and κω,m0
termination criteria on weak scaling

We use the current case to study the effect of the termination criterion using κω (Eq. (24))

and κω,m0
(Eq. (28)) at elevated resolutions. This check is motivated by the suspicion that larger

grid resolutions may result in significantly smaller ε(M), thus render the convergence more difficult

to achieve and reduce the computational performance. To this end, we increase the grid size and

simultaneously the compute node resources (weak scaling). The largest problem that we address

here comprises 21.5B grid points (10240 × 2048 × 1024), which was benchmarked on 1280 P100

GPUs seeded by 8 CPU cores per node. We conducted performance benchmarking simulations for

both CPU-based legacy and GPU-based solvers. We collected the residual data for both cases and

reported the ratio of the sum of the residuals that are obtained from solving the pressure equation

in each substep of the RK3 time integration scheme. The ratio of the residual obtained for the

GPU-based solver (ε+∞,1) over that for the CPU-based preconditioned Krylov-based solver (ε+∞,0) is

plotted on the left panel of Fig. 23. The ratio remains near unity, and for largest grid sizes, a lower

termination residual is obtained for the GPU-based solver than for CPU-solver. For the largest grid

adopted here, the GPU-based pressure solver converged on average in 350 iterations which is nearly

four times that of the lowest grid resolution. The elevated number of iterations reveals that the κω
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Figure 23: (Left) ratio of the total residuals ε∞ when the GPU solver (ε+∞,1) is terminated with the κω criterion versus

that for the CPU-based solver (ε+∞,0 , which terminates the iterations based on the error within the preconditioned

BiCGstab method). N denotes the number of nodes or GPUs. The + superscript shows that the residual is sum of

the three substeps of the Runge-Kutta scheme. (Right) weak scalability of the present solver when nnorm = 100, i.e.

when the termination criterion is checked every 100 iterations (κω,100), compared against the scalability when the

norm is checked every iteration (κω).

termination criterion can harm the performance for larger grid sizes. The timings are then measured

when κω,100 termination criterion was used. Right panel of Fig. 23 shows the elapsed times for κω

and κω,100 termination criteria, together with the timings for the legacy CPU-based solver. It shows

that nnorm = 100 exhibits better effective acceleration and overall weak scaling than nnorm = 1.

This observation emphasizes the fact that, as the iteration count increases, weak scaling efficiency

deteriorates due to more intensive host to device data copies for larger grid sizes. However, if the

termination criterion is checked once in every 100 iterations, the weak scaling is preserved. Even

at the smallest grid sizes studied here, for which the number of iterations in the pressure solver is

usually less than 100, using nnorm = 100 nearly doubles the performance, even though, the number

of iterations may increase two-fold. As a result the final residual after termination drops to values

even lower than those reported on the left panel of Fig. 23, which is favourable for the accuracy of

the flow solver.

7. Conclusion

A novel high-throughput Poisson solver is developed through combining task and data paral-

lelism for scale-resolving solutions of the incompressible Navier-Stokes equations. The solver resorts
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to geometric domain decomposition techniques for task parallelism, while it uses CUDA for data

parallelism. The classical Jacobi method with successive over-relaxation is used in combination

with a scheme to minimize data copies arising from task parallelism. The hybrid implementation

yields excellent computational performance and was shown to outperform a legacy CPU-based MPI-

parallel solver using preconditioned Krylov-based methods by factors exceeding 300. Moreover, the

electrical energy consumption of hardware infrastructure was decreased by approximately 70%. The

Poisson solver was integrated in a high-order time-integration scheme for incompressible Navier-

Stokes equations, which was formerly ported to GPUs.

The flow solver was tested for physical validity and computational performance using two flow

benchmarks: Taylor-Green vortex transition to turbulence and decay at Re = 1600 and turbulent

flow past a rigid sphere at ReD = 3700. The flow statistics obtained from both benchmarks agreed

well with corresponding data in the literature. For the first benchmark, the solver showed linear

strong scaling when each GPU was seeded by only one CPU core. The second benchmark showed

larger reductions in time to solution compared to the first, but the strong scaling was not linear.

Finally, the solver was deployed for a scale-resolving simulation of systolic laminar-turbulent

transition in a 3D model of of a bileaflet mechanical heart valve. The results illustrated the systolic

laminar-turbulent transition process involving impinging leading edge vortex instabilities [4]. This

simulation, using 337,644,801 grid points, was completed in three days using 20 GPUs of Cray

XC40/50 system. The same simulation using an optimized CPU-based solver would have taken an

estimated 1.5 years to complete on 20 nodes of the same system.

The present study shows the suitability of GPUs for significantly faster simulations of fluid flows

including elliptic governing equations, which has been shown previously for fluid flows governed by

hyperbolic equations.
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