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Abstract

The paper is concerned with an adjoint complement to the Volume-of-Fluid (VoF) method for immiscible two-phase

flows, e.g. air and water, which is widely used in marine engineering due to its computational efficiency. The particular

challenge of the primal and the corresponding adjoint VoF-approach refers to the sharp interface treatment featuring dis-

continuous physical properties. Both the continuous adjoint two-phase system (integration-by-parts) and the corresponding

dual compressive convection schemes (summation-by-parts) are derived for two prominent compressive convection schemes,

namely the High Resolution Interface Capturing Scheme (HRIC) and Compressive Interface Capturing Scheme for Arbi-

trary Meshes (CICSAM). The dual scheme rigorously mirrors the primal Normalized-Variable-Diagram (NVD) stencils.

Attention is restricted to steady state applications. Thus both the primal and the dual procedures are performed in pseudo

time and the backward integration of the dual approach is performed around the (pseudo-temporal) converged primal field.

Therefore, the adjoint system experiences the same time step size restrictions as the primal system, is independent of the

primal time horizon and forms a robust as well as an a priori stable adjoint solution process.

The paper analyses the primal and adjoint equations for an engineering model problem. An analytical solution to the

model problem is initially presented, which displays that the adjoint part does not offer a unique, non-trivial solution. As

a remedy, an additional diffusive concentration term is introduced to the adjoint concentration equation. The imposed

heuristic modification violates the dual consistency but strongly regularizes the solution of the adjoint system. The

modification can be justified by reference to phase-separating diffuse-interface models and inheres a free mobility-parameter.

Numerical results obtained from the modified approach are benchmarked against the analytical solution for the model

problem. Supplementary, the influence of the modification on the sensitivities obtained from simulations for the two-

dimensional flow around a submerged hydrofoil at Froude and Reynolds numbers of practical interest are discussed for a

range of mobility-parameters. The final application refers to a shape-optimization of a generic 3D underwater vehicle and
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underlines a negligible influence of the free mobility parameter, even for an objective functional that directly depends on

the manipulated (dual) field quantity.

Keywords: Adjoint Navier-Stokes, Adjoint Two-Phase Flow, Adjoint Volume-of-Fluid, Dual Consistency, Pseudo Time-

Stepping

1 Introduction

The overall goal of adjoint analysis in the Computational Fluid Dynamics (CFD) context is usually the efficient computation

of derivative information of an integral objective functional with respect to a general control parameter or control function.

In case of Optimal Shape Design (OSD), the latter is defined by parts of the bounded calculation area. Using a steepest

descent approach, the required shape-sensitivities are often preferably obtained by adjoint methods due to the independence

of the computational costs from the number of design variables. When attention is given to CAD-free shape optimization,

the number of design variables is usually large and tends to infinity for physically consistent shape optimization [Peter and

Dwight, 2010]. For this reason, the adjoint method has been used in many scientific [Errico, 1997] and industrial [Jameson,

1995, Papadimitriou and Giannakoglou, 2007, Giannakoglou and Papadimitriou, 2008, Othmer, 2014, Kavvadias et al., 2015,

Papoutsis-Kiachagias and Giannakoglou, 2016, Kapellos et al., 2019] fields of fluid dynamic shape optimization since its first

use by [Pironneau, 1974] and [Jameson, 1988]. Because an adjoint (mathematical) system by definition follows from a primal

(physical) system, the development of adjoint simulation methods lags naturally behind that of classical CFD approaches.

Additionally, the adjoint system is at least partially closed to the underlying physics due to e.g. possibly unintuitive boundary

conditions. One of the challenges posed to the adjoint approach is associated to differentiability issues or singularities of the

underlying primal-flow model. Examples refer to shocks [Ulbrich, 2003, Beckers et al., 2019], singular boundary conditions of

turbulence properties [Zymaris et al., 2009, 2010, Papoutsis-Kiachagias et al., 2015, Papoutsis-Kiachagias and Giannakoglou,

2016, Manservisi and Menghini, 2016a,b] or discontinuities associated to immiscible two-phase flows [Kröger et al., 2018],

which is the scope of this paper.

1.1 Industrial Marine CFD-strategies

Industrial free-surface flow simulations featuring viscous and turbulent effects are nowadays dominated by Finite Volume

(FV) approximations of the Reynolds-Averaged (RANS) or filtered (LES) Navier-Stokes equations for multiple fluid phases

[Lafaurie et al., 1994, Larsson et al., 2003, Queutey and Visonneau, 2007, Rung et al., 2009, Sadat-Hosseini et al., 2013, Schellin

et al., 2011, Shen et al., 2015]. When attention is restricted to non-cavitating flows, such simulations are nowadays usually

performed with Volume-of-Fluid (VoF) procedures proposed by [Hirt and Nichols, 1981] for two immiscible, incompressible

phases i.e. air and water. Virtually all such procedures apply a nonlinear compressive approximation for the convective

mixture fraction transport to keep the discrete air/water-interface sharp [Muzaferija and Peric, 1999, Muzaferija et al., 1999,

Rusche, 2003, So et al., 2011, Ubbink and Issa, 1999, Wac lawczyk and Koronowicz, 2008, Zhang et al., 2014]. Moreover they

often employ a pressure-correction or pressure-projection scheme that is embedded in a segregated solution process [Ferziger

and Peric, 2008]. The inherent conservation of mass, the superior numerical efficiency and the flexibility to capture ruptured

free surfaces explain the dominance of VoF-procedures in industrial marine CFD.
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1.2 Adjoint CFD-strategies

Two options of deriving the discrete adjoint equations are conceivable, i.e. following the continuous or discrete adjoint

approach. The former derives the adjoint PDE system in continuous space and subsequently discretizes them. The latter

exclusively operates in discrete space and formulates the adjoint of the discrete (linearized) primal flow by transposing the

discrete primal operators. A detailed discussion of the merits and drawbacks of the respective baseline approaches is beyond

the scope of the present paper and the interested reader is referred to [Peter and Dwight, 2010] or [Griewank and Walther,

2008]. The continuous adjoint approach is preferred herein since it provides a deeper insight into physical and mathematical

relationships of the underlying problem and its mathematical model [Giles and Pierce, 2000]. This is particularly relevant

in this study, which subsequently utilizes elements of the discrete adjoint approach to discretize the adjoint equations along

a route described in [Stück and Rung, 2013].

Although a few publications on hydrodynamic optimization can be found, a holistic view on adjoint shape optimisation

in free surface-flows is scarce. Ragab [Ragab, 2001, 2003] developed a design framework for the optimisation of surface ships

and submarines operating near a free surface based on potential flow methods. The optimisation is performed for wave

resistance objectives, but also for inverse approaches to reach a prescribed pressure distribution and wave pattern. Söding

[Söding, 2001a,b,c] employed the adjoint complement of a potential flow solver to reduce the resistance of merchant vessels.

Soto and Löhner [Soto and Löhner, 2001] and Soto et al. [Soto et al., 2004] applied an adjoint Euler-flow solver to reduce

the resistance of a container vessel using a frozen free-surface approach. An adjoint Euler-flow method that incorporates an

interface-tracking approach was used by Martinelli et al. [Martinelli and Jameson, 2007] to reduce the wave resistance of an

academic Wigley hull.

The challenges associated with the concentration transport in VoF-schemes have motivated the restriction of the previous

research to either simplified VoF-schemes [Springer and Urban, 2015], level-set based strategies [Palacios et al., 2012, 2013] or

diffusive interface schemes [Garcke et al., 2019, Hinze and Kahle, 2011, Kühl et al., 2020] in interface capturing approaches.

The primal VoF-approach transports the discontinuous flow properties along with the free surface. In previous work related

to shocks, similar differentiability problems were treated with shift differentiability [Ulbrich, 2002, 2003] or the application

of an artificial viscosity, with the purpose of filtering out physical solutions [Giles and Ulbrich, 2010]. Synthetic viscosities

have also been used for error estimation in transient shallow-water flows as reported by Beckers et al [Beckers et al., 2019].

Moreover, the above-mentioned compressive approximations of the primal convective kinematics are based on heuristic,

nonlinear expressions, which are cumbersome to translate into an adjoint context. Palacios et al. [Palacios et al., 2012, 2013]

thus opted for an adjoint level-set Euler-flow solver that is applied to 2D- and 3D obstacles in free-surface channel-flows.

Springer and Urban [Springer and Urban, 2015] developed an adjoint VoF Navier-Stokes solver to identify the floatation

position of ships, but neglect some of the adjoint coupling terms and compromised on the duality of the approximation.

Their main objective referred to the equilibrium of the trim moment at steady state.

The present study pursues the work of [Kröger et al., 2018], who suggested a heuristic approach to fully coupled pri-

mal/adjoint two-phase flow procedures. This approach is dedicated to industrial ship hydrodynamic simulations and will be

further scrutinized in this paper. We aim to demonstrate the necessity of the modification by means of a model problem

with practical relevance, where non-trivial analytical solutions are only available when using the modification. In addition,

it can be shown that the impact on the final sensitivity is negligible in the investigated academic and practical cases. The

remainder of the paper is organised as follows: Section (2) is devoted to the primal VoF-system and the associated objective
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based adjoint equations followed by a detailed derivation of the adjoint representation of compressive interface capturing

schemes as well as implementation details of the adjoint two-phase terms in Section (3). The coupled primal/adjoint-system

is subsequently investigated for a plane Couette-flow in Section (4). The adjoint system is applied to the two-dimensional

flow around a frequently investigated towed hydrofoil as well as the three-dimensional flow around generic underwater vehicle

(6) at Froude and Reynolds of practical interest. Section (7) provides conclusions and outlines future options. Within the

publication, Einstein’s summation convention is used for lower-case Latin subscripts. Vectors and tensors are defined with

reference to Cartesian coordinates and dimensional variables are consistently marked with an asterisk.

2 Mathematical Model

The paper is confined to the flow of two immiscible fluid phases (a, b) featuring constant bulk phase properties, i.e. density

ρ∗a, ρ
∗
b and dynamic viscosity µ∗

a, µ
∗
b. The fluid a is referred to as foreground fluid and fluid b as background fluid. Both

fluids are assumed to share the kinematic field along the route of the VoF-approach. The governing equations refer to the

momentum and continuity equation for the mixture as well as a transport equation for the volume concentration of the

foreground phase. The residual form of the governing primal Navier-Stokes equations, that need to be solved for the pressure

p∗, the velocity v∗i and the volume concentration c read

Ri :ρ∗
∂v∗i
∂t∗

+ ρ∗v∗j
∂v∗i
∂x∗j

+
∂

∂x∗j

[
p∗δij − 2µ∗

eS
∗
ij

]
− ρ∗g∗i = 0, (1)

Q :− ∂v∗i
∂x∗i

= 0, (2)

C :
∂c

∂t∗
+ v∗j

∂c

∂x∗j
= 0. (3)

The unit coordinates and the shear rate tensor are denoted by δij and S∗
ij. The boundary conditions are given in Tab. (1).

The framework supports laminar and Reynolds-averaged (modelled) turbulent flows (RANS). In the latter case, vi and p

correspond to Reynolds-averaged properties and p is additionally augmented by a turbulent kinetic energy (k) term, i.e.

2ρk/3. Along with the Bousinesq hypothesis, the dynamic viscosity µe = µ + µt of turbulent flows consists of a molecular

and a turbulent contribution (µt), and the system is closed using a two-equation turbulence model to determine µt and

k. Details of the turbulence modelling practice are omitted to safe space and can be found in textbooks, e.g. [Wilcox,

1998]. The system of Eqns. (1)-(3) is closed by equations of state (EoS) to determine the local mixture properties from a

concentration-based interpolation. Typically a simple linear interpolation is employed, viz.

ρ∗ = ρ∗a +
ρ∗∆
c∆

(c− ca) , µ∗ = µ∗
a +

µ∗
∆

c∆
(c− ca) (4)

where ρ∗∆ = ρ∗a − ρ∗b, µ∗
∆ = µ∗

a − µ∗
b and c∆ = ca − cb. In this paper we employ ca = 1 and cb = 0, thus the volume

concentration is solved for the foreground fluid a only. Physically, the concentration value is restricted to c = 0 and c = 1.

Intermediate values might occur and denote to the free surface. They are usually suppressed by a compressive convective

approximation to keep the interface sharp.

The present research is concerned with steady state problems, i.e. the solution is advanced in pseudo time and converges

to a steady state. An important example refers to the drag of a vessel in calm-water conditions. The suggested strategies

could, however, also be applied to unsteady problems.
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2.1 Adjoint Volume-of-Fluid Model

The adjoint equations depend on the underlying integral objective functional, viz.

J∗ =

∫
Ω∗

O

j∗Ω dΩ∗ +

∫
Γ∗

O

j∗Γ dΓ∗ (5)

over certain parts of the domain (Ω∗
O ⊆ Ω∗) or its boundary (Γ∗

O ⊆ Γ∗ ). Both integrands in Eqn. (5) can depend on the

field quantities of the primal system (1)-(3). Two exemplary objectives used in this paper read

jΩ =
1

2
[c− ct]2 j∗Γ =

[
p∗δij − 2µ∗S∗

ij

]
njdi, (6)

where the first aims at minimizing the deviation of the concentration from a target distribution ct and the second represents

the fluid flow induced force projected in a spatial direction di.

Generally, the adjoint solution points backward in time and is linearised around the current primal flow solution. However,

although the present primal procedure is unsteady, we are seeking for the steady-state solution, force and wave pattern.

Hence, robust convergence but not time accuracy is required from the intermediate primal and dual flow fields. Therefore,

the adjoint solution can be computed from the converged steady primal flow field and the adjoint equations belonging to the

general functional (5) follow from a Lagrangian formalism

L∗ = J∗ +

∫
t∗

∫
Ω∗

[v̂i
∗R∗

i + p̂∗Q∗ + ĉ∗C∗] dΩ∗ dt∗. (7)

The Lagrange multipliers p̂∗, v̂∗i and ĉ∗ refer to the adjoint pressure, adjoint velocity, and adjoint concentration. The units

of adjoint pressure and adjoint concentration are equal [p̂∗] = [ĉ∗] = [J∗] 1/m3. The unit of the adjoint velocity refers to

[v̂∗i ] = [J∗] 1/(N s). As outlined before, the current work focuses on quasi-steady primal flows. Hence, for the converged primal

solution the unsteady term vanishes and the primal time history is physically meaningless. However, the time-dependent

adjoint terms are initially retained during the derivation and optionally serve to stabilize the adjoint solution process in

terms of a pseudo-time integration. Therefore, all adjoint time steps are linearised around the same converged primal flow

field.

First order optimality conditions demand the derivatives of the objective to disappear in all relevant directions at the

optimal point, which leads to the adjoint system of equations [Heners et al., 2017] and allows the definition of a sensitivity rule

along the design surface. By way of example, we restrict ourselves to those demonstrative contributions to the augmented

objective functional L∗ in Eqn. (7), which do not occur in the classical steady, single-phase system. These terms read

L̃∗ =

∫
t∗

∫
Ω∗
v̂i

∗ρ∗
∂v∗i
∂t∗

+ ĉ∗

[
∂c

∂t∗
+ v∗j

∂c

∂x∗j

]
dΩ∗ dt∗ . (8)

A more detailed derivation can – for example – be found in [Kröger et al., 2018]. The continuity equation remains unaltered

and the changes are confined to a (pseudo-) transient term in the momentum equation and the concentration transport. The

derivative of Eqn. (8) in velocity direction reads

δvL̃
∗ · δv∗i =

[∫
Ω∗
ρ∗v̂i

∗δv∗i dΩ∗
]t∗1
t∗0︸ ︷︷ ︸

=0

+

∫
t∗

∫
Ω∗
δv∗i

[
−ρ∗ ∂v̂i

∗

∂t∗
+ δijĉ

∗ ∂c

∂x∗j

]
dΩ∗ dt∗. (9)

Optionally, the spatial derivative of the concentration can be shifted to its adjoint counterpart in Eqn. (9) via integration

by parts. The derivatives in the directions of the fluid properties are linked to the derivatives in concentration direction via
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the EoS (4) and read

δcρ
∗ · δc = δc

ρ∗∆
c∆

= δc ρ∗∆, δcµ
∗ · δc = δc

µ∗
∆

c∆
= δc µ∗

∆ . (10)

where c∆ is assigned to unity in the present study. The final derivative of L̃∗ in the direction of c takes the following form

δcL̃
∗ · δc =

[∫
Ω∗
δc ĉ∗dΩ∗

]t∗1
t∗0︸ ︷︷ ︸

=0

+

∫
t∗

∫
Γ∗
δc
[
v∗j ĉ

∗nj

]
dΓ∗ +

∫
Ω∗
δc

[
ρ∗∆v̂i

∂v∗i
∂t∗︸︷︷︸
=0

−∂ĉ
∗

∂t∗
− v∗j

∂ĉ∗

∂x∗j

]
dΩ∗ dt∗

=

∫
t∗

∫
Γ∗
δc
[
v∗j ĉ

∗nj

]
dΓ∗ +

∫
Ω∗
δc

[
− ∂ĉ∗

∂t∗
− v∗j

∂ĉ∗

∂x∗j

]
dΩ∗ dt∗ , (11)

where a steady state primal flow is assumed. Eqns. (9) and (11) are supplemented by the standard steady single-phase terms

that were not explicitly mentioned herein. Moreover, three more derivatives in the direction of the concentration occur which

originate from the density inherent to the primal convection and buoyancy term of the momentum equation as well as the

viscosity derivative of the primal shear stress.

The requirement for vanishing derivatives in all respective directions yields the final set of adjoint equations that have to

be solved throughout the domain:

R̂i
∗

:− ρ∗ ∂v̂
∗
i

∂t∗
− ρ∗v∗j

∂v̂∗i
∂x∗j

+ ρ∗v̂∗j
∂v∗j
∂x∗i
− c ∂ĉ

∗

∂x∗i
+

∂

∂x∗j

[
p̂∗δij − 2µ∗Ŝ∗

ij

]
= −∂j

∗
Ω

∂v∗i
, (12)

Q̂∗ :− ∂v̂i

∂x∗i
= −∂j

∗
Ω

∂p∗
, (13)

Ĉ∗ :− ∂ĉ∗

∂t∗
− v∗j

∂ĉ∗

∂x∗j
+ ρ∗∆v̂

∗
i v

∗
j

∂v∗i
∂x∗j

+ 2µ∗
∆S

∗
ij

∂v̂∗i
∂x∗j
− ρ∗∆v̂∗i g∗i = −∂j

∗
Ω

∂c
. (14)

The adjoint equations are similar to the primal equations. However, additional advection and cross-coupling terms occur.

Above all, the adjoint concentration equation contains significantly more terms that scale with the density or viscosity

difference of the two fluids.

The associated boundary conditions result from the boundary integrals of partial integration, which likewise have to

disappear for all variations (cf. Tab. 1). Interestingly, the Dirichlet condition of adjoint concentration switches from the

inlet in primal to the outlet in adjoint mode. With the aid of remaining optimality criteria and a correct approximation of

the primal and dual equations, a sensitivity rule can be determined along the controlled design wall [Kröger, 2016, Stück,

2012, Kühl et al., 2019]

δuJ
∗ = −

∫
Γ∗

O

s∗ dΓ∗
O with s∗ = µ∗ ∂v

∗
i

∂x∗j

∂v̂i

∂x∗k
njnk. (15)

2.2 Non-Dimensional Equations

For a more detailed analysis, the primal (1)-(3) and adjoint (12)-(14) equations are non-dimensionalized. The employed

reference quantities as well as the resulting non-dimensional field quantities are given in Tab. (2). The non-dimensional

primal equations read

Ri :
ρ

St

∂vi

∂t
+ ρvj

∂vi

∂xj
+

∂

∂xj

[
(Eu) pδij −

2µ

Re
Sij

]
− ρ

Fr2 gi = 0, (16)

Q :− ∂vi

∂xi
= 0, (17)

C :
1

St

∂c

∂t
+ vj

∂c

∂xj
= 0. (18)
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boundary type v∗i p∗ c v̂∗i p̂∗ ĉ∗

inlet v∗i = v∗in
∂p∗

∂x∗
n

= 0 c = cin v̂∗i = 0 ∂p̂∗

∂x∗
n

= 0 ∂ĉ∗

∂x∗
n

= 0

outlet
∂v∗i
∂x∗

n
= 0 p∗ = p∗out

∂c
∂x∗

n
= 0 p̂∗ni = ρ∗v̂iv

∗
j nj + µ∗ ∂v̂∗i

∂x∗
n

+ ĉ∗cni ĉ∗ = 1
v∗n
v̂∗i µ

∗
∆
∂v∗n
∂x∗

i

symmetry v∗n = 0 ∂p∗

∂x∗
n

= 0 ∂c
∂x∗

n
= 0 v̂∗i = 0 p̂∗n = 0 ∂ĉ∗

∂x∗
n

= 0

wall Γ∗\Γ∗
O v∗i = 0 ∂p∗

∂x∗
n

= 0 ∂c
∂x∗

n
= 0 v̂∗i = 0 ∂p̂∗

∂n = 0 ∂ĉ∗

∂xn
= 0

wall Γ∗ ⊂ Γ∗
O v∗i = 0 ∂p∗

∂x∗
n

= 0 ∂c
∂x∗

n
= 0 v̂∗i = − ∂j∗Γ

∂p∗
∂p̂∗

∂x∗
n

= 0 ∂ĉ∗

∂x∗
n

= 0

Table 1: Boundary conditions for the primal and dual equations.

An exemplary relationship between a field quantity and reference value reads v∗i = V ∗vi. The employed non-dimensional

flow parameters are defined by

St =
T∗V∗

L∗ (Strouhal), Re =
ρ∗bV∗L∗

µ∗
b

(Reynolds), Eu =
P∗

ρ∗bV∗2 (Euler), Fr =
V∗
√
G∗L∗

(Froude). (19)

The Reynolds- and Froude-number are always formed with the density ρ∗b and the viscosity µ∗
b, unless it is stated otherwise.

The momentum Eqn. (16) inheres two source terms which are not related to the velocity and display a well-known pairing in

hydrostatic conditions (Fr→ 0), e.g. p+ρ gj xj. Hence typical choices for the reference pressure are P∗ = ρ∗bV
∗2 (i.e. Eu = 1;

hydrodynamics) or P∗ = ρ∗bG
∗L∗ (i.e. Eu = Fr−2; hydrostatics). The non-dimensional set of adjoint equations belonging to

the general functional (5) reads:

R̂i :− ρ

St

∂v̂i

∂t
− ρvj

∂v̂i

∂xj
+ ρv̂j

∂vj

∂xi
−
(

C∗

V ∗V̂ ∗

)
c
∂ĉ

∂xi
+

∂

∂xj

[(
C∗

V ∗V̂ ∗

)
p̂δij −

2µ

Re
Ŝij

]
= −

(
J∗ρ∗bV̂

∗

L∗

)
∂jΩ
∂vi

(20)

Q̂ :− ∂v̂i

∂xi
= −

(
J∗L∗

V̂ ∗P ∗

)
∂jΩ
∂p

(21)

Ĉ :− 1

St

∂ĉ

∂t
− vj

∂ĉ

∂xj
+

(
V ∗V̂ ∗

C∗

)
ρ∆v̂ivj

∂vi

∂xj
+

(
V ∗V̂ ∗

C∗

)
2µ∆

Re
Sij

∂v̂i

∂xj
−

(
V ∗V̂ ∗

C∗

)
ρ∆

Fr2 v̂igi = −
(

J∗L∗

ρ∗bV
∗C∗

)
∂jΩ
∂c

(22)

One can observe that the adjoint system generally displays a stronger coupling and seems challenging to solve due to the

locally volatile characteristics. Two source terms that do not depend on v̂i occur in the adjoint momentum Eqn. (20), where

the sum p̂+cĉ forms an adjoint hydrostatic pairing. The sum could also be condensed into an effective adjoint pressure along

the route of the frequently employed scrambling of pressure and turbulent kinetic energy for Boussinesq-viscosity turbulence

models. However, this would require a vanishing concentration gradient ∂c/∂xi = 0, which is in general not defined along

the sharp free surface. Obviously, the adjoint concentration Eqn. (22) has a strong similarity to the primal momentum

equation, and contains Froude-, Reynolds-, and Strouhal-number terms. As opposed to the primal and adjoint momentum

equations, the Reynolds number contribution is not linked to the transported property. Hence three terms acting as pure

source terms appear in Eqn. (22): An augmented convection term, a Reynolds- and a Froude-number term. However, the

adjoint concentration equation does not feature a hydrostatic correspondence or paring of variables, since the velocity scaling

differs for all three source terms. The missing links to the transported property and pairing options are the origin of a

non-unique (solution) nature of Eqn. (22). The issue scales with the property differences between the two fluids. As outlined

in Sec. (4) this can be addressed by the introduction of a (self-adjoint) diffusion term which does not depend on a specific

property difference and exposes the preferred negligible influence on the computed sensitivity.
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field quantity x∗i v∗i g∗i p∗ t∗ ρ∗ µ∗ p̂∗ ĉ∗ v̂∗i

reference value L∗ V∗ G∗ P∗ T∗ ρ∗b µ∗
b ρ∗bC

∗ V̂ ∗

Table 2: Quantities for the non-dimensionalisation of the governing equations.

3 Numerical Procedure

The numerical procedure is based upon the Finite-Volume procedure FreSCo+ [Rung et al., 2009]. Analogue to the use of

integration-by-parts in deriving the continuous adjoint equations, summation-by-parts is used to derive the building blocks

of the discrete (dual) adjoint expressions. A detailed derivation of this hybrid adjoint approach can be found in [Stück, 2012,

Stück and Rung, 2013, Kröger, 2016, Kröger et al., 2018] for the single phase system. Implementation details about the multi-

phase approximation are given in the upcoming section. The segregated algorithm uses a cell-centered, collocated storage

arrangement for all transport properties. The implicit numerical approximation is second order accurate and supports

polyhedral cells. Both, the primal and adjoint pressure-velocity coupling is based on a SIMPLE method and possible

parallelization is realized by means of a domain decomposition approach [Yakubov et al., 2013, 2015]. The parallel approach

supports local mesh refinements, over-set techniques [Völkner et al., 2017], or fluid-structure interactions to simulate rigid,

mechanically coupled, floating bodies [Luo-Theilen and Rung, 2017, 2019]. In terms of a CAD-free optimisation approach,

the computational grid can be adjusted using a Laplace-Beltrami [Stück, 2012, Kröger and Rung, 2015] or Steklov-Poincaré

[Schulz and Siebenborn, 2016] type (surface metric) approach.

3.1 Adjoint to Compressive Convection Schemes

In the absence of geometrical reconstruction techniques, one crucial part within a VoF procedure refers to the compressive

approximation of the convective mixture fraction transport to keep the discrete interface sharp. A classical starting point

for the derivation of prominent interface capturing schemes is the Normalised-Variable-Diagram (NVD), first proposed by

Leonard [Leonard, 1991]. In line with Fig. 1, the general challenge reads: How to interpolate the (on cell level) discrete

non-dimensional field value (e.g. cU = 1 and cD = 0) on the face F in between, so that during the numerical simulation (a) the

transported field quantity is bounded and (b) the interface remains sharp. While (a) results in the Convective Boundedness

Criterion (CBC) (e.g. cU ≥ cF ≥ cD), (b) is a matter of the diffusive/compressive character of the underlying numerical

approximation. Thus, we introduce a normalization based on all relevant cell quantities around F, viz.

cn =
c − cUU

cD − cUU
→ cDn = 1, cUU

n = 0 and cDn ≥ cUn ≥ cUU
n (23)

ĉn =
ĉ∗ − ĉ∗DD

ĉ∗U − ĉ∗DD
→ ĉUn = 1, ĉDD

n = 0 and ĉUn ≥ ĉDn ≥ ĉDD
n (24)

where we anticipate a mirrored normalisation of the adjoint face value ĉn around the face F. The general dependence of

cF(cUU, cU, cD) [ĉF(ĉDD, ĉD, ĉU)] reduce to cFn (cUn ) [ĉFn (ĉDn )] in the normalized setting for the primal [adjoint] variable. Explicit

implementations inhere an additional dependence on the face Courant number CoF [Leonard, 1991]. The relation is depicted

in Fig. 2 for three bounded baseline schemes, i.e. Upwind (UD), Central (CD) and Downwind (DD) Differencing Scheme.

The regime between CD and UD (DD) is prone to be diffusive (compressive). Thus, modern interface capturing schemes

try to stay as long as possible in the compressive regime and fall back to UD when the discrete local setting is insufficient.

8
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c

Figure 1: Schematic one dimensional view of the interpolation of primal field quantities φ∗ on the face F from the adjacent

cells located upstream (U) or downstream (D) of F under the flow field V ∗.
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Figure 2: Sketch of the Normalized Variable Diagram (NVD) for two compressive convection schemes: a) Compressive

Interface Capturing Scheme for Arbitrary Meshes (CICSAM) and b) High Resolution Interface Capturing Scheme (HRIC)

as well as their adjoint analogue (red).

Two prominent examples for such compressive approximations refer to (a) the High Resolution Interface Capturing Scheme

(HRIC) of [Muzaferija and Peric, 1999] and (b) the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)

of [Ubbink and Issa, 1999] which are investigated in the upcoming lines. Since both approaches are discrete by nature, the

adjoint derivation and representation is also performed on discrete level. The discussion originates in the steady discrete

analogue to the continuous Lagrangian (last term in Eqn. (8)) for the transported property c, viz.

L̃∗ =

∫
Ω∗
ĉ∗v∗k

∂c

∂x∗k
dΩ∗ discretize→ L̃∗ =

∑
P

ĉ∗P

∫
Ω∗(P)

v∗k
∂c

∂x∗k
dΩ∗ =

∑
P

ĉ∗P
∑
F(P)

(
V̇ ∗c

)F

. (25)

The latter expression employs the continuity equation and a second order accurate midpoint rule to approximate integrals.

Contrary to the continuous relationship of Lagrangian multiplier and convective term, the dual variable is now multiplied

with the discrete representation of the convective operator, expressed by discrete face-based volume fluxes V̇ ∗ = v∗knk∆Γ∗

in a Finite-Volume framework. Thus, the investigated approaches differ in the approximation of cF only.
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HRIC The normalized face value cFn is basically determined in three consecutive steps. In compact notation they read:

cFn =


cF,2n : CoF < CoF

l

cUn +
(
cF,2n − cUn

) CoF
u−CoF

CoF
u−CoF

l

: CoF
l ≤ CoF ≤ CoF

u

cUn : CoF > CoF
u

, cF,2n = γFcF,3n +
(
1− γF

)
cUn , cF,3n =


2cUn : cUn ∈ [0, 0.5]

1 : cUn ∈ [0.5, 1]

cUn : cUn 6∈ [0, 1]

(26)

where three additional quantities enter the approximation: Two ensure a stable coefficient matrix while preserving a positive

main diagonal via the definition of an upper (lower) Courant number CoF
u (CoF

l ). Frequently employed values are CoF
l = 0.3

and CoF
u = 0.7. The third guarantees the flow to free surface alignment γF =

√
|cos(θF)| where θF represents the angle

between the free surface normal and the flow direction. Mind that that also slightly different HRIC formulations exist. e.g.

[Park et al., 2009] and we choose this one exemplary only.

The continuous adjoint system is derived for quasi steady situations over an integration within a pseudo-time. Thus, after

the primal integration until convergence, the discrete Courant number distribution as well as concentration distribution is

known. Based on Eqn. (26) we can clearly decide how the value of each face in Eqn. (25) is approximated. Algorithmically

we need to decide between three situation: 1) pure UD, 2) pure DD as well as 3) an interpolation between both based on

CoF.

Therefore, the derivation of the adjoint HRIC scheme needs to be done for all scenarios in the last case distinction in

Eqn. (26), viz. cF,3n = 2cUn , cF,3n = 1 as well as cF,3n = cUn . Exemplary, we derive the adjoint to cF,3n = 2cUn . Both other

scenarios follow the same approach. Based on Eqn. (23), the expression can be cast to cF,3 = 2cU− cUU and the Lagrangian

Eqn. (25) for the control volumes UU, U, D and DD (cf. Fig. 2) reads:

L̃∗ = ...+ ĉ∗UUV̇ ∗[(2cUU − cUUU
)
−
(
2cUUU − cUUUU

)]
+ ĉ∗U V̇ ∗[(2cU − cUU

)
−
(
2cUU − cUUU

)]
(27)

+ ĉ∗D V̇ ∗[(2cD − cU
)
−
(
2cU − cUU

)]
+ ĉ∗DDV̇ ∗[(2cDD − cD )

−
(
2cD − cU

)]
+ ....

A variation of L̃∗ and a subsequent isolation of all variation terms resembles the summation by parts characteristics. Similar

to the continuous derivation, first order optimality conditions finally yield the adjoint face value, viz.

δcL̃
∗ · δc(·) = ...− δcUU V̇ ∗[(2ĉ∗U − ĉ∗D

)
−
(
2ĉ∗UU − ĉ∗U

)]
− δcU V̇ ∗[(2ĉ∗D − ĉ∗DD

)
−
(
2ĉ∗U − ĉ∗D

)]
(28)

− δcD V̇ ∗[(2ĉ∗DD − ĉ∗DDD
)
−
(
2ĉ∗D − ĉ∗DD

)]
− δcDDV̇ ∗[(2ĉ∗DDD − ĉ∗DDDD

)
−
(
2ĉ∗DD − ĉ∗DDD

)]
+ ...

!
= 0 ∀ δc(·)

Apparently, the adjoint face value interpolation results in mirroring the primal stencil [Stück and Rung, 2013]. For the

unknown face value within the adjoint HRIC scheme in Fig. 2 (first inner bracket in Eqn. (28)), we end up with ĉ∗F =

2ĉ∗D− ĉ∗DD or ĉFn = 2ĉDn after applying the adjoint normalization from Eqn. (24). Finally, the adjoint HRIC scheme to Eqn.
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(26) reads:

ĉFn =


ĉF,2n : CoF < CoF

l

ĉDn +
(
ĉF,2n − ĉDn

) CoF
u−CoF

CoF
u−CoF

l

: CoF
l ≤ CoF ≤ CoF

u

ĉDn : CoF > CoF
u

, ĉF,2n = γFĉF,3n +
(
1− γF

)
ĉDn , ĉF,3n =


2ĉDn : ĉDn ∈ [0, 0.5]

1 : ĉDn ∈ [0.5, 1]

ĉDn : ĉDn 6∈ [0, 1]

(29)

where all upwind approximations are switched to downwind and vice versa.

CICSAM The normalized face value cFn within the CICSAM procedure is determined via a blending between the Hyper-

C (HC) und the ULTIMATE-QUICKEST (UQ) scheme. The latter is inspired by a QUICK (Quadratic Interpolation of

Convective Kinematics) approach for the face value. A compact notation reads:

cFn = γFcF,HC
n + (1− γF)cF,UQ

n with (30)

cF,HC
n =

min
(

1,
cUn

CoF

)
: 0 ≤ cUn ≤ 1

cUn : cUn 6∈ [0, 1]

and cF,UQ
n =


min

(
cF,HC
n ,

8CoFcUn +(1−CoF)(6cUn +3)
8

)
: 0 ≤ cUn ≤ 1

cUn : cUn 6∈ [0, 1]

.

Again, a blending factor is introduced that accounts for the free surface to flow alignment, viz. γF = min((1+cos(2 θF))/2, 1)

where θF represents the relation between interface normal and the vector connecting adjacent cells [Ubbink and Issa, 1999].

Again, we would like to point out that this is only one of many formulations. Whether HC or UQ is used, CICSAM falls back

to pure UD for inadequate situations, which in turn switches to DD in adjoint mode. If HC is active, its first case switches

between DD (cF,HC
n = 1) and UD (cF,HC

n = cUn /CoF). Thus, the adjoint to HC reads (ĉF,HC
n = 1) or (ĉF,HC

n = ĉDn /CoF).

The delicate term is the first QUICK like case within the UQ scenario. A denormalization offers cF = [CoF + 3] cU/4 +

[CoF − 1] cUU/8 + [1 − CoF] 3cD/8 or cF = 3/8 cD + 3/4 cU − 1/8 cUU for CoF → 0 and cF = cU for CoF → 1. Again, the

discrete Lagrangian (25) is constructed for the control volumes UU, U, D and DD (cf. Fig. 2):

L̃∗ = ...+ ĉ∗UUV̇ ∗[(r cUU + s cUUU + t cU
)
−
(
r cUUU + s cUUUU + t cUU

)]
+ ĉ∗U V̇ ∗[(r cU + s cUU + t cD

)
−
(
r cUU + s cUUU + t cU

)]
(31)

+ ĉ∗D V̇ ∗[(r cD + s cU + t cDD
)
−
(
r cU + s cUU + t cD

)]
+ ĉ∗DDV̇ ∗[(r cDD + s cD + t cDDD

)
−
(
r cD + s cU + t cDD

)]
+ ....

where the coefficients r = [CoF + 3]/4, s = [CoF − 1]/8 and t = 3[1 − CoF]/8 are defined to shorten the notation. In line

with the adjoint HRIC derivation, a variation of L̃∗ and a subsequent isolation of all variations yields:

δc∗L̃
∗ · δc(·) = ...− δcUUV̇ ∗[(r ĉ∗U + s ĉ∗D + t ĉ∗UU

)
−
(
r ĉ∗UU + s ĉ∗U + t ĉ∗UUU

)]
− δcU V̇ ∗[(r ĉ∗D + s ĉ∗DD + t ĉ∗U

)
−
(
r ĉ∗U + s ĉ∗D + t ĉ∗UU

)]
(32)

− δcD V̇ ∗[(r ĉ∗DD + s ĉ∗DDD + t ĉ∗D
)
−
(
r ĉ∗D + s ĉ∗DD + t ĉ∗U

)]
− δcDDV̇ ∗[(r ĉ∗DDD + s ĉ∗DDDD + t ĉ∗DD

)
−
(
r ĉ∗DD + s ĉ∗DDD + t ĉ∗D

)]
+ ...

!
= 0 ∀ δc(·).

For the unknown face value in Fig. 2 within the adjoint CICSAM scheme (first inner bracket in Eqn. (32)), we end up with

ĉ∗F = r ĉ∗D + s ĉ∗DD + t ĉ∗U or ĉFn = 8CoFĉDn + (1− CoF)(6ĉDn + 3) after applying the adjoint normalization from Eqn. (24)
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where we used r + s+ t = 1. The adjoint CICSAM scheme to Eqn. (30) reads:

ĉFn = γFĉF,HC
n + (1− γF)ĉF,UQ

n with (33)

ĉF,HC
n =

min
(

1,
ĉDn

CoF

)
: 0 ≤ ĉDn ≤ 1

ĉDn : ĉDn 6∈ [0, 1]

and ĉF,UQ
n =


min

(
ĉF,HC
n ,

8CoFĉDn +(1−CoF)(6ĉDn +3)
8

)
: 0 ≤ ĉDn ≤ 1

ĉDn : ĉDn 6∈ [0, 1]

.

Again, downwind and upwind are rigorously exchanged.

A Note on Additional Variational Contributions Eqn. (26) as well as (30) inhere several implicit dependencies on

the flow field, e.g. via the local Courant number or the free surface orientation. These NVD dependencies are kept frozen

during the derivation of the adjoint HRIC / CICSAM scheme. A strategy also used for the adjoint to limited convection

schemes, e.g. Total Variation Diminishing (TVD) schemes [Stück and Rung, 2013].

3.1.1 Approximation of Adjoint Two-Phase Terms

Terms within the adjoint system Eqns. (20) - (22) originating from the variable fluid properties are approximated in line with

the concept of hybrid adjoint, e.g. swapping derivation and discretization (cf. [Stück and Rung, 2013]). Hence, analogue to

Eqn. (25) the Lagrangian is investigated on discrete level. The discussion refers to the symbolic finite-volume approximation

of a variable φ̂∗ located in the center of a control volume P with size ∆Ω∗P. Relations with adjacent control volumes NB

yield one line within the discrete system, i.e. A∗Pφ̂∗P −ΣNBA
∗NBφ̂∗NB = S∗

φ̂∗∆Ω∗P. For the three source/sink terms on the

left-hand side of the adjoint concentration Equ. 22 we end up with:

L̃∗ =

∫
Ω∗
v̂∗i ρ

∗g∗i dΩ∗ discretize→ L̃∗ =
∑

P

[v̂∗i ρ
∗g∗i ∆Ω∗]

P derive→ δcL̃
∗ · δc =

∑
P

δcP
[
ρ∗∆v̂

∗
i g

∗
i︸ ︷︷ ︸

S∗
ĉ∗

∆Ω∗]P

L̃∗ =

∫
Ω∗
v̂∗i ρ

∗v∗k
∂v∗i
∂x∗k

dΩ∗ discretize→ L̃∗ =
∑

P

v̂∗P
i

[
ρ∗v∗k

∂v∗i
∂x∗k

∆Ω∗
]P

derive→ δcL̃
∗ · δc =

∑
P

δcP
[
ρ∗∆v̂

∗
i v

∗
k

∂v∗i
∂x∗k︸ ︷︷ ︸

S∗
ĉ∗

∆Ω∗
]P

L̃∗ =

∫
Ω∗
v̂∗i
∂2µ∗S∗

ik

∂x∗k
dΩ∗ discretize→ L̃∗ =

∑
P

v̂∗P
i

∑
F(P)

[
2µ∗S∗

ik∆Γ∗
k

]F derive→ δcL̃
∗ · δc = −

∑
P

δcP
∑
F(P)

2µ∗
∆

[
S∗

ik

∂v̂∗i
∂x∗k

]F

︸ ︷︷ ︸
S∗

ĉ∗∆Ω∗

.

The product between primal and adjoint concentration equation introduces the multi-phase information to the adjoint velocity

field, which in turn enters the sensitivity derivative Eqn. (15). A robust and consistent approximation of this term is crucial,

since a neglect resembles a frozen VoF approach. The interpolation of fluid data from the concentration distribution does not

follow from a physical conservation equation but rather represents a basic modeling assumption. Thus, it is possible to shift

the active region of the adjoint concentration within the adjoint momentum equation via a formal re-definition of ca → ca−α

and cb → cb +α. Reasonable values refer to α = 0 (α = 1) to activate the term in the foreground (background) phase a (b).

To obtain a consistent dual formulation, the three source/sink terms on the right side of the adjoint concentration equation

experience a sign change also, since c∆ = ca − cb = 1 → −1 = ca − cb − 2α = c∆ (cf. Eqn. (10)). In line with the hybrid

adjoint strategy we end up with the following approximation

L̃∗ =

∫
Ω∗
ĉ∗v∗k

∂c

∂x∗k
dΩ∗ discr.→ L̃∗ =

∑
P

ĉ∗P

[
v∗k

∂c

∂x∗k
∆Ω∗

]P
deri.→ δv∗

i
L̃∗ · δv∗i = −

∑
P

δv∗P
i

[
(c− α)

∂ĉ∗

∂x∗i︸ ︷︷ ︸
S∗

v̂∗
i

∆Ω∗
]P

.
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Interpretation of Primal vs. Dual Time Horizon Originating from integration by parts, the adjoint time integration

is inverted, e.g. declining with respect to the physical time. The latter is the reason why the complete primal solution has

to be stored during the (forward) integration to be available to the adjoint solver for its subsequent (backward) integration.

Several memory-reduced methods such as one-shot (piggy-bag) methods [Gherman and Schulz, 2005, Kuruvila et al., 1994,

Özkaya and Gauger, 2009] for pseudo time stepping simulations or check-pointing approaches [Giering and Kaminski, 1998,

Griewank and Walther, 2000, Hinze and Sternberg, 2005, Hinze et al., 2006] were suggested. They reduce the memory

requirements at the expense of enhanced (partially rerunning) computing efforts [Kapellos et al., 2019] The formulation

of the present adjoint problem is pseudo-time dependent. Although the primal flow problem is formerly unsteady, we are

seeking for the steady-state wave field at t → ∞ (∆t → ∞). Thus, time accuracy is not required from the intermediate

temporary solutions of the primal/dual flow fields which in turn greatly simplifies the approach: Also necessary on the primal

side, time stepping can be interpreted as a relaxation during the numerical integration and is solely used to ensure/improve

the stability of the segregated algorithm, as discussed in the upcoming section. Thus, formally no consistency demands arise

w.r.t. (with respect to) discretization and evaluation of the primal/dual unsteady terms, e.g. different time step stencils and

sizes are valid. Algorithmically, however, the adjoint solver should know the primal Courant number distribution in order to

consistently invert the primary NVD board, e.g. switch from UD to DD and vice versa.

Stability and Time-Step Requirements During the approximation of the primal VoF equation, its main diagonal

coefficient of the system matrix is affected if the approximation of the convective term switches locally from UD to DD.

Using a first order time implicit Euler discretization of Dc/Dt = 0 yields the following main diagonal entry for upwind and

downwind interpolation of cF, viz.

[
cP,t − cP,t−1

∆t∗

]
∆Ω∗ +

∑
F(P)

V̇ ∗F,tcF,t = 0 → A∗P,t =
∆Ω∗

∆t∗
+
∑
F(P)

max
(
V̇ ∗F,t, 0

)
: UD

min
(
V̇ ∗F,t, 0

)
: DD

. (34)

In order to preserve diagonal dominance and avoid a zero crossing introduced by DD, the time step ∆t must be chosen

carefully to comply with ∆t V̇ ∗F/∆ΩP = Co < 1/2, or even lower in 3D flows (e.g. Co ≤ 0.3). Since this time step

dependency originates from the concentration equation only, sub-cycling strategies can be employed to increase the efficiency

of the temporal integration (cf. [Ubbink and Issa, 1999, Manzke et al., 2012]). Basically, sub-cycling retards the simulation

within admissible Courant number bounds and subdivides the temporal integration based on an invalid (too large) time

step into several valid (smaller) sub time steps as exemplary sketched in Alg. (1). Special attention should be paid on

(un)synchronization as well as in-between gradient computation and we refer to Manzke [Manzke, 2018] for a detailed

discussion. In adjoint mode, the compressive convection schemes switch from DD to UD along the critical inter-facial

region. A closer look at the main diagonal coefficient of −Dĉ∗ /Dt = 0 reveals a similar observation compared to the primal

discretization

−
[
ĉ∗P,t+1 − ĉ∗P,t

∆t∗

]
∆Ω∗ −

∑
F(P)

V̇ ∗F,tĉ∗F,t = 0 → A∗P,t =
∆Ω∗

∆t∗
−
∑
F(P)

min
(
V̇ ∗F,t, 0

)
: DD

max
(
V̇ ∗F,t, 0

)
: UD

. (35)

Mind that the right-hand side of Eqn. (22) is not zero and inheres several source/sink terms which are independent of

ĉ∗. In contrast to downwinding during the primal integration, now an upwind interpolation of the adjoint face value ĉ∗F

counteracts a positive main diagonal. Thus, the adjoint (backward) integration facilitates a sub-cycling procedure for the
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dual concentration equation also, as schematically coded in Alg. (1). Basically, the primal/dual time step sizes as well as

the number sub-cycles do not have to match. Nevertheless, coincidence of time-step size and sub-cycles yield an adjoint

simulation that is always UD-stable at cells and faces that are primal DD-stable.

Algorithm 1: (Pseudo) temporal integration of the primal and adjoint two-phase system based on a sub-cycling

approach for the computation of the shape derivative Eqn. (15). The adaptive time step estimation employs a relaxation

which is typically assigned to γ = 0.3.

define ∆t, Cotar and N

while nTimeSteps ≤ maxTimeSteps do

while (nOuterIter ≤ maxOuterIter) or (residual ≤ maxResidual) do
evaluate state equation

solve linearized momentum equations

solve pressure correction equation

solve turbulence equations

∆t = ∆t/N

for sub-cycle=1,N do
solve concentration equation

∆t = ∆tN

∆t = γ Cotar/Comax + (1− γ)∆t

while nAdTimeSteps ≤ maxAdTimeSteps do

while (nAdOuterIter ≤ maxAdOuterIter) or (adResidual ≤ maxAdResidual) do
solve adjoint momentum equations

solve adjoint pressure correction equation

∆t = ∆t/N

for adSub-cycle=1,N do
solve adjoint concentration equation

∆t = ∆tN

compute shape derivative Eqn. (15)
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Figure 3: Plane Couette flow case (Reh = 100, Fn = 5): (a) Sketch of the investigated Couette flow where both fluids

are immiscible and share a sharp interface that introduces discontinuous fluid properties. (b) Computational grid for the

verification study in Sec. (4.2).

4 Plane Couette Flow

In this section, the two-phase model is scrutinized for a plane Couette flow. The wall-bounded, homogeneous shear flow is

an important paradigm of fluids engineering. The access to available analytical solutions for the primal (16)-(18) as well as

the dual (20)-(22) problem makes this case particularly interesting. Moreover, the case illustrates two important aspects:

(a) the non-unique solution behaviour of the adjoint concentration equation and (b) a remedy with negligible impact on the

computed sensitivities.

Fig. 3 illustrates the two-phase flow example and the employed computational grid. The laminar flow is considered to be

steady and in a fully developed state. The interface normal between the to immiscible fluids is directed orthogonal to the wall

boundaries and a body-force with variable angle of attack acts on the flow (g∗1 = sin (ϕ) g∗, g∗2 = −cos (ϕ) g∗). In accordance

with the VoF-approach we assume that the fluid properties change abruptly across the interface from the foreground to the

background fluid. A no-slip condition is imposed on the upper and lower wall. The mixture fraction displays a jump at the

interface and the non-dimensional primal momentum Eqn. (16) shrinks as follows:

R1 : − 1

Re

∂

∂x2

[
µ
∂v1

∂x2

]
− 1

Fr2 ρg1 = 0 , (36)

R2 : Eu
∂p

∂x2
− 1

Fr2 ρg2 = 0 (37)

Using L∗ = h∗, V ∗ = v∗top, P ∗ = ρ∗bV
∗2 as well as G∗ = g∗. The analytical solution to the primal flow is integrated to

0 ≤ x2 <
1

2
:


c = 0

v1 = 1
µb

(
1
2Tbx2

2 + C1bx2 + C2b

)
p = Kbx2 + C3b

(38)

1

2
< x2 ≤ 1 :


c = 1

v1 = 1
µa

(
1
2Tax2

2 + C1ax2 + C2a

)
p = Kax2 + C3a ,

(39)
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with the following integration constants

C1a =
µa

[
1
4Tb − 1

2Ta + 2
]
− 3

4Ta

1 + µa
, C2a = µa −

1

2
Ta − C1a, C3a = −Ka (40)

C1b =
1

2
(Ta − Tb) + C1a, C2b = 0 C3b = −1

2
(Ka +Kb) (41)

and abbreviations

Ta = − Re

Fr2 ρag1, Ka =
1

Fr2Eu
ρag2 (42)

Tb = − Re

Fr2 ρbg1, Kb =
1

Fr2Eu
ρbg2. (43)

The adjoint Eqn. (20) and (22) belonging to a force functional Eqn. (5) can also be simplified under the assumptions made

for the primal flow and Eqn. (38)-(39), viz.

R̂1 :
∂

∂x2

[
µ
∂v̂1

∂x2

]
= 0 , (44)

R̂2 :

(
C

V

)
∂p̂

∂x2
−
(
C

V

)
c
∂ĉ

∂x2
+ ρv̂1

∂v1

∂x2
= 0 , (45)

Ĉ :
µ∆

Re

∂v1

∂x2

∂v̂1

∂x2
− ρ∆

Fr2 v̂1g1 = 0 . (46)

where the product between primal and adjoint concentration is active in the upper fluid, α = 0 (see Eqn. (34)). As

opposed to the primal system, additional coupling terms occur in the transverse momentum (R̂2) and the concentration

balance (Ĉ). Similar to the primal problem, the adjoint velocity and pressure could be determined from the two momentum

equations provided that the adjoint concentration is known. However, the adjoint concentration equation does not support

the determination of ĉ, but restricts the adjoint velocity further towards a constant. Moreover the product between the

normal gradients of the adjoint and the primal velocities refers to the sensitivity which curiously vanishes according to Eqn.

(22). Mind, that the adjoint equations and their solution depend on the underlying objective functional. However, a general

objective Eqn. (5) does not inhere the adjoint concentration and would not meaningful improve the right side towards an

accessible solution. Using a force objective, the boundary values of the adjoint velocity are assigned to unity in the negative

direction of the minimized force along the objective boundaries and zero in all other cases. This would indeed allow for a

solution of the adjoint velocity and formally also p̂, but does still not provide a solution for the adjoint concentration, which

in turn might impair the solution for the pressure. The problem is admittedly motivated by the chosen uni-directional shear

flow example, which however is fairly relevant in practical situations.

4.1 Heuristic modification

The non-unique (solution) nature of the problem is related to the grossly simplified inter-phase physics of the VoF-procedure.

Related problems are inhibited by subtracting an additional adjoint diffusion term Dĉ on the left-hand side of the adjoint

concentration Eqn. (14), viz.

Dĉ = νĉ
∂2ĉ

∂x2
k

, (47)

where νĉ = ν∗ĉ ρ
∗
b/µ

∗
b . The heuristic approach needs further justification and involves an artificial kinematic viscosity ν∗ĉ of

dimension [m2/s] which remains a free parameter. The suggested modification essentially borrows an element of diffuse-

interface models, e.g. the Cahn-Hilliard (CH) model as described by [Kühl et al., 2020]. The CH-model describes the desired
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phase separation by the use of a nonlinear viscosity. As opposed to the VoF-scheme, the admissible values are not restricted

to c = 0 and c = 1 and can vary between c ∈ [−ε, 1 + ε] where ε depends on the underlying chemical potential [Garcke et al.,

2019, Hinze and Kahle, 2011]. Accordingly, the immiscibility condition Dc/Dt = 0 experiences a non-zero right-hand side.

In the limit of a vanishing interface thickness, the CH-equation of the primal mixture fraction reads

Dc

Dt∗
− ∂

∂x∗k

(
ν∗c

∂c

∂x∗k

)
= 0 , with ν∗c = 4M∗ (6c2 − 6c+ 1) . (48)

Here M∗ is a spatially constant mobility factor of dimension [m2/s], which is often assigned to an empirically chosen or

numerically measured value (cf. [Kühl et al., 2020]). The gradient diffusion displays a nonlinear normalised diffusivity

ν∗c /M
∗ = 2(6c2 − 6c + 1), which is part of a potential and exposed to sign changes. It is zero at c = 0.5 ±

√
1/12, positive

in outer regime and negative in between the zeros. The sign change promotes the desired phase separation. This avoids the

need for compressive, downwind-biased approximations of convective kinematics to separate the two fluids, which is inherent

to VoF. Mind that downwinding also refers to the introduction of negative diffusion. The related CH-solution for the mixture

fraction should closely resemble the VoF-solution, which is strictly speaking confined to zero or unity values.

Corresponding to the diffusion term of the primal CH-type model Eqn. (48), an additional adjoint term ν∗ĉ ∂
2ĉ∗/∂x∗2

k

occurs, that employs an adjoint diffusivity, i.e. ν∗ĉ = 4M∗(6c2 − 6c + 1). Although the sign of ν∗ĉ formally changes, it is

inherently positive in the region of small or large mixture fraction values, i.e. for the two valid VoF-states. Moreover the

magnitude is afflicted with the empiricism inherent to the (positive) mobility value M∗. This motivates the introduction of

Dĉ to the adjoint concentration equation. In the limit of immiscible fluids the linearised diffusivity ν∗ĉ obtained from a frozen

concentration field ansatz of a CH-model would be positive and identical for the two limit states of c. The modified adjoint

concentration equation for the simplified Couette flow takes the following dimensionless residual form

Ĉ :
µ∆

Re

∂v1

∂x2

∂v̂1

∂x2
− ρ∆

Fr2 v̂1g1 −
(

C∗

V∗

)
νĉ
Re

∂2ĉ

∂x2
2

= 0. (49)

The introduction of the additional diffusion term supports an analytical description of the adjoint concentration field: Due to

the viscosity jump along the phase boundary, four integration constants have to be determined. Since the synthetic viscosity

is constant, it is possible to achieve a smooth solution in the entire field by means of zero and first order coupling conditions

along the phase transition regime. The third unknown is computed based on a Neumann condition on the upper channel

side. However, the break of dual consistency in the domain has to be continued also at the boundary: The introduction of the

diffusive term in Eqn. (49) requires at least one Dirichlet boundary condition to determine all integration constants. This is

contrary to the demand of adjoint analysis, which requires the invariable use of Neumann boundary conditions at walls (see

Tab. (1)). For this reason, a Dirichlet value is prescribed on the bottom of the channel for the adjoint concentration, which

does not change the qualitative curve, but forces a quantitative fixation. Mind that this is also the case for the primal and

adjoint pressure. It is justifiable since the adjoint concentration enters the adjoint momentum balance based on its gradient.

The solution of the adjusted adjoint system can be constructed as follows: The force functional (5) enters the adjoint

system via the optimisation direction that is defined in main flow direction di = δi1. Thus, the boundary condition for the

adjoint velocity reads v̂bottom,1 = −1 on the lower and v̂top,1 = 0 on the upper channel side. Likewise, adjoint pressure

and adjoint concentration are prescribed on the lower channel wall, whereas Neumann conditions are imposed on top of the
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channel. An integration provides the following analytical solution of the entire system:

0 ≤ x2 <
1

2
:


ĉ = Lb

[
µ∆

µb

(
1
6Tbx2

3 + 1
2C1bx2

2
)

+ ρ∆

ρb
Tb

(
1
6x2

3 − 1
2Pb

x2
2
)]

+ C4bx2 + C5b

v̂1 = Pbx2 − 1

p̂ = −VC
[

1
3PbTbx2

3 + 1
2 (PbC1b − Tb)x2

2 − C1bx2

]
+ C6b

(50)

1

2
< x2 ≤ 1 :


ĉ = La

[
µ∆

µa

(
1
6Tax2

3 + 1
2C1ax2

2
)

+ ρ∆

ρb
Tb

(
1
6x2

3 − 1
2x2

2
)]

+ C4ax2 + C5a

v̂1 = Pa (x2 − 1)

p̂ = ĉ− V
C
ρa

µa
Pa

[
1
3Tax2

3 + 1
2 (C1a − Ta)x2

2 − C1ax2

]
+ C6a

(51)

with the following integration constants:

C4a = −La

[
µ∆

µa

(
1

2
Ta + C1a

)
− 1

2
Tbρ∆

]
, C5b = 0 , C6b = 0 , (52)

C4b = −La

[
µ∆

µa

(
3

8
Ta +

1

2
C1a

)
− 1

8
Tbρ∆

]
− Lb

[
µ∆

µb

(
1

8
Tb +

1

2
C1b

)
+ Tbρ∆

(
1

8
− 1

2Pb

)]
, (53)

C5a = La

[
µ∆

µa

(
1

24
Ta +

1

8
C1a

)
− 1

12
Tbρ∆

]
− Lb

[
µ∆

µb

(
1

24
Tb +

1

8
C1b

)
− Tbρ

∗
∆

(
1

24
− 1

8Pb

)]
, (54)

C6a = −V∗

C∗

[
1

24
PbTb +

1

8
(PbC1b − Tb)− 1

2
C1a −

ρa

µa
Pa

[
1

24
Ta +

1

8
(C1a − Ta)− 1

2
C1a

]]
− ĉ
∣∣∣∣
x2= 1

2

(55)

as well as the upcoming abbreviations:

Pa =
2µb

µa + µb
, La =

1

νĉ

V∗

C∗Pa (56)

Pb =
2µa

µa + µb
, Lb =

1

νĉ

V∗

C∗Pb. (57)

Interestingly, the solution of the adjoint velocity and therefore also the sensitivity does not depend on La or Lb and is by far

less tedious compared to the solution of adjoint concentration and adjoint pressure. Thus the mobility parameter that scales

the heuristic diffusivity νĉ only governs the adjoint hydrostatic field. In the limit of vanishing diffusivity νĉ we would impose

a very large sink term while approaching to the wall, which would challenge the numerical solution of the adjoint pressure

and the adjoint concentration in the upper fluid regime, where adjoint pressure sees the adjoint concentration abruptly. Mind

that we can shift the active region of ĉ in accordance to Eqn. (34). The disappearance of the constants Ta and Tb for g1 → 0

(or v̂igi → 0), which strongly simplifies the solutions of adjoint concentration and adjoint pressure due to the cancellation of

all cubic terms in the analytic solutions, supports the regularization characteristics of the synthetic viscosity.

From now on, the complete modified adjoint concentration equation takes the following non dimensional form

Ĉ : − 1

St

∂ĉ

∂t
− vj

∂ĉ

∂xj
+

(
V∗V̂∗

C∗

)
ρ∆v̂ivj

∂vi

∂xj
+

(
V∗V̂∗

C∗

)
2µ∆

Re
Sij

∂v̂i

∂xj
−

(
V∗V̂∗

C∗

)
ρ∆

Fr2 v̂igi −
νĉ
Re

∂2ĉ

∂xj
2

= 0. (58)

The additional last term is implicitly treated within the segregated FV-framework, resulting in a positive impact on the main

diagonal of the system matrix and supports the balance for vanishing Reynolds/Froude numbers or under extreme strain

rates when different fluid properties occur. The associated break of dual consistency provides a strongly regularized adjoint

system.
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Figure 4: Plane Couette flow case (Reh = 100, Fn = 5): Primal results of the concentration (left), velocity (centre) and

pressure (right) for the planar Couette flow for Froude and Reynolds number of Reh = 100 and Fr = 5 as well as density

(viscosity) ratios of ρa = ρ∗a/ρ
∗
b = 1/4 (µa = µ∗

a/µ
∗
b = 1/4), ρa = 1 (µa = 1) and ρa = 4 (µa = 4) under a gravity angle of

ϕ = 10◦.

4.2 Verification

In this section the implementation of the primal and adjoint system is verified. The planar two-phase Couette flow illustrated

by Fig. 3 is solved with periodic boundary conditions for Reynolds and Froude numbers of Re = 100 and Fr = 5. The

dimensionless analysis employs the following characteristic quantities: L∗ = h∗, V∗ = C∗ = v∗top, P = ρ∗bV
∗2 (Eu = 1) and

G∗ = g∗. Background fluid properties ρ∗b and µ∗
b are again used as reference data. The corresponding numerical grid is

depicted on the right side of Fig. 3 and the required non-dimensional density (viscosity) ratios are assigned to exemplary

values of ρa = ρ∗a/ρ
∗
b = 1/4 (µa = µ∗

a/µ
∗
b = 1/4), ρa = 1 (µa = 1) as well as ρa = 4 (µa = 4) and therefore range from a

lighter and less viscous to a heavier and more viscous upper fluid. Convective primal momentum fluxes are discretized using

a first-order upwind differencing schemes whereas diffusion employs central differences. The approximation of convective

concentration transport is realized with the HRIC approach. A comparison of the analytical primal solutions (38, 39) with

the numerical results for a gravity angle of ϕ = 10◦ is displayed in Fig. 4. The numerical implementation resolves the ideally

sharp interface between both fluid phases within 2-4 cells, which is a common observation for VoF-procedures that employ

compressive approximations for the convective term.

In adjoint mode, the solution is computed for an exemplary heuristic viscosity of νĉ = 10−3. Again, periodic boundary

conditions are used in longitudinal direction. In contrast to the primal problem, adjoint field quantities are specified on the

lower channel side, where the adjoint velocity is assigned to v̂bottom,1 = −δ1,1 = −1. Dirichlet values for adjoint pressure and

concentration are set to zero at the bottom wall. The adjoint momentum equation utilizes a first-order downwind differencing

scheme and the adjoint concentration employs the adjoint HRIC scheme (29) to approximate convective fluxes. Due to its

self adjoint nature, diffusive fluxes are discretized with central differences again. Fig. 5 verifies the implementation of the

adjoint system against the analytical solutions (50, 51). The resulting adjoint concentration is smooth in the entire domain,

whereas the adjoint pressure buckles along the free surface region. This can be attributed to the abrupt introduction of

the adjoint concentration to the upper fluid domain in accordance with α = 0 However, introducing a (heuristic) viscosity

attenuates the adjoint concentration magnitude, thus a larger value of νĉ smoothens the solution of the adjoint pressure. In
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Figure 5: Plane Couette flow case (Reh = 100, Fn = 5): Adjoint results of the planar Couette flow for a synthetic viscosity of

νĉ = 10−3 for Froude and Reynolds number of Reh = 100 and Fr = 5 as well as density (viscosity) ratios of ρa = ρ∗a/ρ
∗
b = 1/4

(µa = µ∗
a/µ

∗
b = 1/4), ρa = 1 (µa = 1) and ρa = 4 (µa = 4) under a gravity angle of ϕ = 10◦.

Fig. 6, the synthetic viscosity is increased step by step to underline its regularizing characteristics with respect the adjoint

pressure. This is especially relevant for real-world flows, in which adjoint pressure-velocity coupling is a critical aspect of the

numerical stability. This is the motivation for the following section.
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νĉ = 1

Comp.

(b)

Figure 6: Plane Couette flow case (Reh = 100, Fn = 5): Numerical and analytical results of a) adjoint concentration and

b) adjoint pressure of the planar Couette flow for different (synthetic) viscosity magnitudes that indicates the regularization

characteristics of the heuristic modification.

5 Validation

Following a successfully verification of the implementation in the previous chapter, this section is devoted to a validation the

adjoint VoF approach. For this reason a cylindrical shape is placed twice its diameter D∗ below the initial free surface, cf.

Fig. 7 (a). The study is performed for a laminar flow at ReD∗ = v∗1D
∗/ν∗b = 20 and Fn = v∗1/

√
G∗2D∗ = 0.75, based on

the gravitational acceleration G∗, the inflow velocity v∗1 and the kinematic viscosity of the water ν∗b. The two-dimensional

domain has a length and height of 60D∗ and 30D∗, where the inlet and bottom boundaries are located 20 diameters away

from the origin. A dimensionless wave length of λ = λ∗/D∗ = 2π Fn2 = 3.534 is expected. To ensure the independence

of the objective functional with respect to spatial discretization, a grid study was first conducted. The utilized structured

numerical grid is displayed in Fig. 7 (b) and consists of approximately 215 000 control volumes and the controlled cylinder

shape is discretized with 500 surface patches along the circumference. At the inlet, velocity and concentration values are

prescribed, slip walls are used along the top and bottom boundaries and a hydrostatic pressure boundary is employed along

the outlet. The convective term for momentum is approximated using the QUICK scheme. A compressive HRIC scheme

was used to approximate the convective fluxes of the concentration equation. The wall normal distance of the first grid layer

reads y+ ≈ 0.01 and the free surface refinement employs approximately δx∗1/λ
∗ = 1/100 = δx∗2/λ

∗ cells in the longitudinal

as well as in the normal direction. According to Alg. (1) the integration in pseudo time applies an adaptive time step size

based on Cotar = 0.2 which is embedded in five sub-cycles.

The aim of the investigation is to compare the continuously adjoint sensitivity from Eqn. (15) against locally evaluated,

second order finite difference formulae, viz. δu∗=ũ∗J∗ = [J(ũ∗i + ε∗ni) − J(ũ∗i − ε∗ni)]/(2 ε
∗) at several positions ũ∗i of the

control u∗i , cf. Fig. 7 (a). Only the upper half of the cylinder is investigated for different magnitudes of the perturbation

ε∗/D∗ ∈ [10−4, 10−5, 10−6]. The local boundary perturbations are transported based on a Laplacian mesh deformation

approach into the (normal) interior domain as well as based on a Gaussian filter with a width of 4 times the discrete surface
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(a) (b)

Figure 7: Submerged cylinder case (ReD = 20, Fn = 0.75): (a) Schematic drawing of the initial configuration around the

controlled cylinder shape u∗i (red) and (b) structured numerical grid around the cylinder and the free surface.

element width into the (tangential) neighbourhood, [Kröger and Rung, 2015, Kühl et al., 2019].

Fig. 8 depicts the results of one adjoint sensitivity evaluation for two exemplary objective: A boundary based force

(left) objective into the direction di = [
√

(2),
√

2]T/2 as well as a volumetric target concentration (center) objective with

a habitat along Ω∗
O = [−5D∗, D∗] × [25D∗, 5D∗]. For each objective, two adjoint system are constructed, employing either

no (νĉ = 0) or a moderate non-zero (νĉ = 10−4) synthetic viscosity. Additionally, the results for several FD-studies are

marked at 21 discrete positions obtained from 42 additional (forward) simulations using the intermediate perturbation size

ε∗/D∗ = 10−5. The consistent adjoint sensitivities agree almost perfectly with the discrete FD results. However, a break

of dual consistency due to a non-zero synthetic viscosity νĉ causes the sensitivity results to deviate for the concentration-

based objective, especially in regions of high sensitivity. Since the volume functional depends exclusively on the primal

concentration distribution, a manipulation of the dual concentration field is much more critical compared to the boundary

based force objective. This is an important finding for practical marine engineering applications, which often refer to the

minimization of boundary based force objectives. Mind that the linearity of the FD-analysis has been verified using a the

sequence of three perturbation magnitudes for both functionals. An exemplary documentation of the systems linear answer is

displayed in the right graph of Figure 8, which refers to an exemplary surface position x∗1/D
∗ = 1/4 for the force functional.

22



0 0.2 0.4 0.6 0.8 1

-6

-4

-2

0

2

4

x∗1/D
∗ [-]

(δ
u
j∗ Γ

)/
R

e D
·1

00
0

[-
]
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νĉ = 10−4

FD.

0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

x∗1/D
∗ [-]

(δ
u
j∗ Ω

)/
R

e D
·1

0
[-

]
-10 -1 1 10

-5

-3

-1

1

3

5

ε∗/D∗ · 10−5 [-]

(δ
u
j∗ Γ

)/
R

e D
·1

0
−

6
[-

]

ε∗/D∗ = 10−4

ε∗/D∗ = 10−5

ε∗/D∗ = 10−6

Figure 8: Submerged cylinder case (Fn=0.75): Continuous as well as discrete finite-difference (FD) based sensitivity derivative

along the upper cylinder side for left) a drift functional (di = [
√

(2),
√

2]T/2), middle) the target concentration objective

(Ω∗
O = [−5D∗, D∗]× [25D∗, 5D∗]) as well as right) three exemplary finite (force functional) system answers at x∗1/D

∗ = 1/4.

6 Application

6.1 Submerged Hydrofoil

This section examines the introduced adjoint two-phase system on a submerged NACA0012 hydrofoil at 5◦ incidence and aims

at a deeper insight on the influence of the modified adjoint concentration equation, both on local and integral level. Figure

9 (a) provides a sketch of the experiment reported by Duncan [Duncan, 1981, 1983]. The chord length to submergence ratio

at the leading edge of the foil reads L∗
c/L

∗ = 7/9. The study is performed for a turbulent flow at Re = v∗1L
∗
c/ν

∗
b = 144 855

and Fn = v∗1/
√
G∗L∗ = 0.567, based on the gravitational acceleration G∗, the inflow velocity v∗1 and the kinematic viscosity

of the water ν∗b. The two-dimensional domain has a length and height of 75L∗
c and 25L∗

c , where the inlet and bottom

boundaries are located 10 chord-lengths away from the origin. A dimensionless wave length of λ = λ∗/L∗ = 2π Fn2 = 2.0193

is expected.

The utilized unstructured numerical grid is displayed in Fig. 9 (b) and consists of approximately 150 000 control volumes.

The fully turbulent simulations employ a wall-function based k − ω SST model [Menter et al., 2003] and convective terms

for momentum and turbulence are approximated using the QUICK scheme. At the inlet, velocity and concentration values

are prescribed, slip walls are used along the top and bottom boundaries and a hydrostatic pressure boundary is employed

along the outlet. The wall normal distance of the first grid layer reads y+ ≈ 0.1 and the free surface refinement employs

approximately δx∗1/λ
∗ = 1/100 cells in the longitudinal as well as δx∗2/λ

∗ = 1/100 cells in the normal direction. According to

Alg. (1) the integration in pseudo time applies an adaptive time step size based on Cotar = 0.4 embedded in five sub-cycles.

We aim at a systematic investigation of the influence of the approximation of the adjoint concentration equation on the shape

sensitivity (15). Fig. 10 (a) displays the wave elevation predicted by the HRIC and the CICSAM approach in comparison

with experimental data. Minor predictive differences are observed, with the CICSAM method being slightly closer to the

experimental results for the employed computational set up. An improved predictive accuracy can be obtained from local

mesh refinement, as for example shown by Manzke [Manzke, 2018] and Wackers et al. [Wackers et al., 2011] for adaptive free

surface refinement procedures.
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(a) (b)

Figure 9: Submerged hydrofoil case (ReD = 144 855, Fn = 0.567): (a) Schematic drawing of the initial configuration and (b)

unstructured numerical grid around the foil and the free surface.
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=
1
0
−

1
0
)

[-
]

ρ∆ = µ∆ = 0

frozen C

Figure 10: Submerged hydrofoil case (ReL = 144 855, Fn = 0.567): (Left) Comparison of predicted wave elevation as well as

normalised shape gradients (ε∗/L∗
c = 1/30) along the complete (middle) and front half (right) suction side for various adjoint

systems ranging from identical fluid properties (ρ∆ = 0 = µ∆) over a frozen concentration approach (α = c) to variable

synthetic viscosity’s.

24



The adjoint system is solved for a force and inverse concentration criterion considering a steady primal solution. The

adjoint concentration equation is supplemented by the heuristic diffusive term, cf. Eqn. (58), and the related influence in the

predicted sensitivities is investigated for the considered hydrofoil flow. Note that the test barely converges for νĉ → 0, hence

the adjoint time step size ∆tadj is significantly reduced by a factor ∆tadj/∆tpri = 100 compared to the primal time step size

∆tpri. During the simulations we noticed that the numerical stability is mainly affected by the Froude term in Eqn. (58)

which in turn is particularly relevant for a consistent sensitivity as shown by Kroger et al. [Kröger et al., 2018] by means of

several finite-difference studies.

As indicated in Fig. 9, the foil is investigated for its optimisation potential w.r.t a drift functional, i.e. 50% drag, 50% lift

or di =
√

2/2 in (5). According to Tab. (1), the adjoint velocity is prescribed to v̂i = −di along the foil. Thus, the adjoint

velocity sees the gravitational vector v̂i gi 6= 0 in the foil vicinity and we therefore force the Froude term to be active in the

sensitive region. Moreover, the noisy shape derivative (sensitivity) is explicitly transformed into the shape gradient based

on the Laplace-Beltrami metric [Kröger and Rung, 2015, Schulz and Siebenborn, 2016]. The latter exclusively operates

in the tangent plane, viz. g∗ − ε∗2∆∗
Γg

∗ = s∗ where g∗ = ∂j∗Γ/∂u
∗, s∗ = δuj

∗
Γ and ∆∗

Γ = ∂2/∂x∗2
k − ∂2/∂n∗2 represent

the shape gradient, sensitivity derivative as well as the Laplace-Beltrami operator respectively. Dimensional consistency is

ensured by ε∗, interpret-able as the filter width of a Gaussian [Stück and Rung, 2011]. We employ ε∗/L∗
c = 1/30. Various

adjoint systems are constructed for the HRIC solution: Starting from a consistent (νĉ = 0) system, the synthetic viscosity

νc̃ is carefully increased. Finally, simulations are performed for a frozen concentration approach and an approach based

on identical fluid properties (∆ρ = 0 = ∆µ) to better understand and assess the results. The resulting normalized shape

gradients are depicted by Fig. 10 (center) along the suction side of the foil. Only small qualitative differences are recognized

and no changes in sign are observed. The latter would be disadvantageous in conjunction with a steepest descent approach.

Only a neglect of the multi phase information within the adjoint momentum equation (α = c) results in significant distortions

of the shape gradient. Although there is still no sign change, such a frozen C approach now resembles the shape derivative of

a single-phase flow or a two-phase flow with the identical material properties. The latter is obtained based on a new primal

flow for ∆ρ = 0 = ∆µ. From theses results, we conclude that the impact of the synthetic viscosity is negligible for force

objectives as formerly noted in [Kröger, 2016, Kröger et al., 2018].

A possibly more crucial objective w.r.t consistency might be the inverse concentration objective (6). In this case, Equ.

(5) speaks through the adjoint concentration only and enters the adjoint system on the right-hand side of Ĉ which makes

the frozen C approach obsolete. The habitat of j∗Ω reads Ω∗
O = [−L∗

c , L
∗
c ] × [20L∗

c , 2L
∗
c ], where the 2D coordinate system

originates in the leading edge as depicted in Fig. 9. Again, various adjoint systems are constructed, which differ only in

the amplitude of the synthetic viscosity and result in the normalised shape gradients depicted on the left (center) part in

Fig. 11 along the complete (front half) suction side. Analogous to the force functional, the increase in synthetic viscosity

only leads to a damping of the gradient, which in turn could be treated by an appropriate step-size within a gradient based

optimization procedure.

When attention is directed to practical marine engineering applications, the computational effort associated with time

stepping compressive primal approximations is substantial. As outlined above, the related efforts increase for an adjoint

system. Means to reduce this effort whilst still retaining reliable sensitivity information are appreciated. To address this

aspect, simulations were repeated using simple DD approximations of the convective transport in the adjoint concentration

equation, instead of swapping from DD to UD along the interface region in line with the adjoint HRIC approach. This

25



0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

x∗1/L
∗
c [-]

g
∗ /

m
ax

(g
∗ ν ĉ
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νĉ = 10−7
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Figure 11: Submerged hydrofoil case (ReL = 144 855, Fn = 0.567): Normalised shape gradients (ε∗/L∗
c = 1/30) along the

complete (left) and front half (middle) suction side as well as the error (right) between a consistent adjoint HRIC and a pure

DD approximation of the adjoint convection of ĉ based on the maximum norm (εDD,adHRIC = max(|(g∗DD−g∗adHRIC)/g∗adHRIC|))

for various magnitudes of the synthetic viscosity.

approach was formerly suggested by Kröger et al. [Kröger et al., 2018] and circumvents the time-step size dependency of

the adjoint system (35), which would basically allow steady adjoint simulations. However, for the current investigation the

integration within the pseudo time remains unchanged in order to support the comparison of results. The resulting shape

gradients again only differ quantitatively. Hence, their deviation w.r.t a consistent adjoint HRIC approximation is estimated

in terms of the maximum norm εDD,adHRIC = max(||(g∗DD − g∗adHRIC)/g∗adHRIC||) and plotted in Fig. 11 (right) over the

employed synthetic viscosity. The deviation is large for a small synthetic viscosity νĉ and drops significantly for larger values

of νĉ. Its evolution is located in a corridor limited by O(−1/νĉ) and O(−4/νĉ), which results from νĉ exceeding the numerical

viscosity inherent to any dual (primal) downwind (upwind) biased interpolation method. The diffusive influence of synthetic

viscosity on the adjoint concentration field is plotted in Fig. 12 (a) for different magnitudes of the synthetic viscosity.

Increasing values smear the initially parabolic into an elliptical field. Furthermore, Fig. 12 (b) confirms the observations

of the 1D Couette model from Sec. (4), according to which increased synthetic viscosity suppresses the jump of adjoint

pressure along the free surface and thus stabilizes the numerical procedure. Information of the adjoint concentration within

the adjoint momentum equation is active in the background fluid (α = 1).
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Figure 12: Submerged hydrofoil case (ReL = 144 855, Fn = 0.567): Normalised left) adjoint concentration and right) adjoint

pressure distribution for the inverse concentration objective around the foil for synthetic viscosity increasing from νĉ = 10−4

(top) over νĉ = 1 (middle) to νĉ = 104 (bottom). The adjoint concentration within the adjoint momentum equation is shifted

towards to background fluid (α = 1).

6.2 Underwater Vehicle

This final section investigates the influence of the synthetic viscosity on a submerged generic DARPA (Defense Advanced

Research Projects Agency) SUBOFF geometry as described in [Groves et al., 1989] without appendages. The DARPA

SUBOFF case is commonly used during studies that focus on e.g. the propulsion and manoeuvring of submarines deeply

submerged or in the vicinity of the free surface [Wang et al., 2020, Daum et al., 2017, Chase and Carrica, 2013]. When

operating close to the free surface, the wave field induced by the interaction of the dynamic pressure field with the free surface

is unfavourable in terms of wave resistance as well as the signature of the submarine. The generic hull basically consists

of three components: a bow (0 ≤ x∗1 ≤ 2D∗), middle body (2D∗ ≤ x∗1 ≤ 0.745L∗
s ) as well as an after body including cap

(0.745L∗
s ≤ x∗1 ≤ L∗

s ), measured from the front tip where the coordinate system originates, cf. Fig. (13) a). D∗ represents the

maximum body diameter along the middle body and its ratio w.r.t. submergence reads L∗/D∗ = 1.1. The study is performed

for a turbulent flow at ReL = v∗1L
∗
s/ν

∗
b = 8 542 550 and Fn = v∗1/

√
G∗L∗

s = 0.3, based on the gravitational acceleration G∗,

the inflow velocity v∗1 and the kinematic viscosity of the water ν∗b. The three-dimensional domain has a length, height and

width of 20L∗
s , 10L∗

s as well as 5L∗
s , where the inlet, bottom and outer boundaries are located 5 geometry-lengths away from

the origin. A dimensionless wave length of λ = λ∗/L∗ = 2π Fn2 = 4.4 is expected and the wave elevation w.r.t still water

should be minimized, viz. Ω∗
O = [−L∗

s , L
∗
s/10, 0]× [5L∗

s , 1.5L
∗
s , 5L

∗
s ], by modifying only the middle body of the underwater

vehicle while conserving its displacement.

The utilized unstructured numerical grid is displayed in Fig. 13 (b) and consists of approximately 4 000 000 control

volumes. Due to symmetry, only half of the ship is modelled in the lateral direction. The fully turbulent simulations
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(a) (b)

Figure 13: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): (a) Schematic drawing of the initial configuration

and (b) unstructured numerical grid around the generic underwater vehicle and the free surface.

Figure 14: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): Numerical grid in the still water plane

employ a wall-function based k − ω SST model [Menter et al., 2003] and convective terms for momentum and turbulence

are approximated using the QUICK scheme. The CICSAM scheme is used for the compressive concentration transport.

At the inlet, velocity and concentration values are prescribed, slip walls are used along the top, bottom as well as outer

boundaries and a hydrostatic pressure boundary is employed along the outlet. Along the midships plane a symmetry

condition is declared. The wall normal distance of the first grid layer reads y+ ≈ 30 and the free surface refinement employs

approximately δx∗1/λ
∗ = δx∗3/λ

∗ = 1/50 cells in the longitudinal as well as lateral and δx∗2/λ
∗ = 1/10 cells in the normal

direction. The tangential resolution of the free-surface region is refined within a Kelvin-wedge to capture the wave field

generated by the submerged geometry, cf. Fig. 14. According to Alg. (1) the integration in pseudo time applies an adaptive

time step size based on Cotar = 0.4 embedded in five sub-cycles.

Once the shape derivative (15) is computed, a step into the direction of steepest descent is performed. The necessary
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shape gradient is evaluated based on the Steklov-Poincare metric [Schulz and Siebenborn, 2016, Haubner et al., 2020]

∂2g∗i
∂x∗2

k

= 0 : Ω∗ (59)

∂g∗i
∂x∗k

nk = s∗ ni : Γ∗
D (60)

∂g∗i
∂x∗k

nk = 0 : Γ 6⊂ Γ∗
D (61)

g∗i = 0 : Γ∗
in,Γ

∗
out,Γ

∗
slip,Γ

∗
symm, (62)

where a deformation along the symmetry plane is suppressed to fix the mid ship plane. Since the purely physical minimum

is represented by a disappearing geometry, an additional geometric constraint is introduced to preserve the displacement:∫
Γ∗ g

∗
i nidΓ∗ = 0. The latter enters the gradient-based approach based on a sub-optimization problem, that finally leads to

a second set of equations that need to be solved, viz.

∂2ĝ∗i
∂x∗2

k

= 0 : Ω∗ (63)

∂ĝ∗i
∂x∗k

nk = ni : Γ∗
D (64)

∂ĝ∗i
∂x∗k

nk = 0 : Γ 6⊂ Γ∗
D (65)

ĝ∗i = 0 : Γ∗
in,Γ

∗
out,Γ

∗
slip,Γ

∗
symm. (66)

Combining (59) and (63) yields the displacement conserving field deformation f∗i = g∗i − α∗ĝ∗i where the constant α∗ =∫
Γ∗ g

∗
i nidΓ∗/

∫
Γ∗ ĝ

∗
i nidΓ∗ results from a conceptually Newton-step when minimizing [

∫
Γ∗ g

∗
i nidΓ∗]2. Equ. (63) represent the

adjoint equations of (59) for this minimization problem. Only the middle body of the geometry is considered as design

surface. The employed steepest descent approach uses a step size based on a prescribed maximum deformation for the initial

design, viz. f∗i → (f∗i /f
∗,max
i )L∗

s/1000, where we take one per mil of the reference length as maximum deformation. The

step size is kept constant over the optimization, leading to a smooth convergence of the objective functional.

Five optimisations are carried out: Four of them carefully increase the adjoint apparent viscosity from νĉρ
∗
b/µ

∗
b = 1

to νĉρ
∗
b/µ

∗
b = 1000. The fifth optimization employs the smallest synthetic viscsosity but neglects all three source terms

scaling with the density and viscosity difference within the dual concentration equation and thus resembles a frozen material

property approach. These source/sink terms are one of the main reasons for the introduction of apparent viscosity, as they

drastically increase the coupling of the adjoint system of equations and by that decrease the numerical stability.

The relative decrease of the cost functional is depicted over the number of the gradient steps (number of the computed

geometries) in Fig. (15). The optimizations were terminated, as soon as the new value of the objective does not fall below the

old one by less than 0.1%. Except for the optimization with frozen material property treatment, all optimizations achieve a

similar order of magnitude in the minimization of the cost function. The adjoint coupling terms resulting from the derivation

of the fluid properties seem to have a much stronger influence on the shape derivation than the adjoint apparent viscosity

proposed for stabilization. An increase of the latter results only in a deviating convergence behavior and a somewhat smaller

complete reduction of the cost functional. Interestingly, the optimization with the highest synthetic viscosity converges the

fastest.

The apparently lower influence of the adjoint diffusion compared to the coupling terms resulting from differentiation of the

material properties is also shown in the wave patterns in Fig. (16) at three three different lateral positions, viz. x∗3/D
∗ = 0
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Figure 15: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): Inverse concentration objective decrease over

the number of performed shape updates during a steepest descent procedure. Four optimizations differ in the amplitude of

the apparent viscosity and one optimization neglects all adjoint coupling terms that originate from the derivative of material

properties.

(left), x∗3/D
∗ = 2 (middle) and x∗3/D

∗ = 4 (right) as indicated in Fig. (17).

This impression is underlined by the resulting hull geometries. Fig. (18) [19] shows the water lines [buttocks] of the

initial and the optimized geometry with νĉ = 1 against the optimization with frozen material properties (top) and the final

shape resulting from νĉ = 1000 (bottom).
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νĉ = 1000

−1 0 1 2 3
-1

0

1

x∗1/L
∗
s [-]

x
∗ F

S
,2
/L

∗ s
·1

00
[-

]
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Figure 16: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): Wave elevation for the initial es well as for three

optimized shapes with νĉ = 1 (with and without adjoint two phase coupling terms) as well as νĉ = 1000 along the main flow

direction (x∗1) at three different lateral positions, viz. left) x∗3/D
∗ = 0, middle) x∗3/D

∗ = 2 and right) x∗3/D
∗ = 4.
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Figure 17: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): Normalized wave elevation for top) the initial

geometry and bottom) the optimized hull resulting from an optimization with νĉ = 1
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νĉ = 1
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νĉ = 1 optimised geometry (orange) as well as the resulting slices for an optimization that employs νĉ = 1 with a frozen

material property approach (purple) and νĉ = 1000 (blue).
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Figure 19: Submerged DARPA SUBOFF case (ReL = 8 542 550, Fn = 0.3): Buttocks for the initial (black) and with νĉ = 1

optimised geometry (orange) as well as the resulting slices for an optimization that employs νĉ = 1 with a frozen material

property approach (purple) and νĉ = 1000 (blue).
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7 Discussion and Outlook

The paper has derived and analysed the adjoint complement to an incompressible Volume-of-Fluid (VoF) solver based on the

hybrid adjoint method. The latter combines the first-derive-then-discretize as well as first-discretize-then-derive approaches

and derives the continuous adjoint equations (integration by parts) as well as the corresponding discretization schemes

(summation by parts) resulting in a fully consistent numerical Finite-Volume framework. The deep insight into adjoint

relationships associated with this approach allows the use of a pseudo-transient adjoint process for the strongly coupled

adjoint system as well as the definition of a model problem for which an analytic primal solution is available. It turns out

that the adjoint system cannot be uniquely solved, which is why an additional diffusive term is introduced to the adjoint

VoF equation. This term breaks the dual consistency but provides a strongly regularized adjoint system. The lack of adjoint

diffusion follows from the underrepresented interface physics inherent to the primal VoF system.

The discrete (compressive) approximation of the discontinuous primal concentration transport based on a generalized

Normalised-Variable-Diagram (NVD) was successfully inverted for two prominent convection schemes, namely the High

Resolution Interface Capturing Scheme (HRIC) and the Compressive Interface Capturing Scheme for Arbitrary Meshes

(CICSAM). Their dual scheme rigorously mirrors the primal NVD stencils. Since attention is restricted to steady state

applications, both the primal as well as the dual procedures are performed in pseudo-time and the backward integration

of the dual approach is performed around the (pseudo-temporal) converged primal field. Therefore, the adjoint system

experiences the same time step size restrictions as the primal system, is independent of the primal time horizon and forms

a robust as well as an a priori stable adjoint solution process.

Numerical results obtained from the modified approach are verified against the analytical solution for the model problem.

Subsequently, the consistency of the adjoint system was successfully validated against finite differences for a 2D shape

optimization problem. The influence of the modification on the shape sensitivities obtained from simulations for the two-

dimensional flow around a submerged hydrofoil at Froude and Reynolds numbers of practical interest are discussed for a

range of mobility-parameters. We noted that the influence of the proposed synthetic viscosity varies depending on the cost

function, but generally has a more quantitative influence while maintaining the quality, e.g. with respect to zero crossings.

The final 3D application evaluates the proposed approach on integral level via a minimization of the wave elevation

above a submerged generic underwater vehicle. Hence, several complete shape optimizations are conducted that vary the

apparent viscosity as well as the level of consistency. We found that a comparative small break of the dual consistency

introduced through the proposed adjoint diffusion is more acceptable compared to a full neglect of various adjoint coupling

terms. The latter provide a strong coupling of the adjoint equations and are therefore the major reason for the introduction

of an apparent viscosity.

The advantages of the proposed dual concentration diffusion indicate the general use of diffuse interface models, even on

primal side. Therefore, future work might already address the problem of a non-differentiable free surface by e.g. a Cahn-

Hilliard Navier-Stokes approach. Furthermore, the integral influence of adjoint coupling terms should also be investigated

term-wise in more detail for other geometries of practical relevance.
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