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Abstract

A new horizontally explicit/vertically implicit (HEVI) time splitting scheme for atmospheric modelling is introduced,
for which the horizontal divergence terms are applied within the implicit vertical substep. The new HEVI scheme is
implemented in conjunction with a mixed mimetic spectral element spatial discretisation and semi-implicit vertical
time stepping scheme that both preserve the skew-symmetric structure of the non-canonical Hamiltonian form of the
equations of motion. Within this context the new HEVI scheme allows for the exact balance of all energetic exchanges
in space and time. However since the choice of horizontal fluxes for which this balance is satisfied is not consistent
with the horizontal velocity at the end of the time level the scheme still admits a temporal energy conservation error.
Linearised eigenvalue analysis shows that similar to a fully implicit method, the new HEVI scheme is neutrally stable
for all buoyancy modes, and unlike a second order trapezoidal HEVI scheme is stable for all acoustic modes below
a certain horizontal CFL number. The scheme is validated against standard test cases for both planetary and non-
hydrostatic regimes. For the planetary scale baroclinic instability test case, the new formulation exhibits a secondary
oscillation in the potential to kinetic energy power exchanges, with a temporal frequency approximately four times
that exhibited by a horizontally third order, vertically second order trapezoidal scheme. For the non-hydrostatic test
case, the vertical upwinding of the potential temperature diagnostic equation is shown to reduce spurious oscillations
without altering the energetics of the solution, since this upwinding is performed in an energetically consistent manner.
For this test case, which is configured on an affine geometry, the exact balance of energy exchanges allows the model
to run stably without any form of dissipation.

Horizontally explicit/vertically implicit (HEVI) schemes are a popular approach to time stepping in atmospheric
models. This is on account of the importance of removing the CFL limit imposed by the explicit representation of
vertical dynamics, and the desire to avoid the computational expense of a three dimensional implicit solve at each
nonlinear iteration. Numerous HEVI schemes have been implemented [1–5] in previous models. These schemes are
typically motived by a desire to improve upon the stability and dispersion properties of the second order trapezoidal
HEVI scheme through the use of additional sub steps within each time step [6, 7]. The application of additional
substeps qualitatively improves the stepping scheme by ensuring the linear stability of the horizontal buoyancy and
acoustic models below some CFL limit.

In the present article a new HEVI scheme is introduced, motivated by a desire to preserve the exact balance of
energetic exchanges. The scheme is implemented within the context of a mixed mimetic spectral element spatial
discretisation [8] and energy conserving implicit vertical time stepping method [9] that together allow for the exact
balance of all energy exchanges in space and time. This is achieved by evaluating the horizontal mass and temperature
fluxes within the vertically implicit sub-step, after first computing a provisional horizontal velocity from which to
derive a second order temporal representation of the horizontal fluxes. Unlike other HEVI schemes, the new method
is composed of only two horizontal and one vertical substep. In contrast to the standard second order trapezoidal
splitting scheme, linear analysis shows the new method to be unconditionally stable for all acoustic modes below
some horizontal CFL number, and all buoyancy modes independent of CFL number. While the energetic exchanges
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are all exactly balanced, since the provisional horizontal velocity does not exactly match the final horizontal velocity
at the end of the time step, the scheme admits a horizontal energy conservation error, as is the case for explicit schemes
used to solve compressible flow problems.

In section 1 the continuous 3D compressible Euler equations for atmospheric flows are introduced in variational
form. The discrete analogue of these equations and a discussion of the energy conserving time stepping are then
presented in section 2, and the new HEVI splitting scheme is described in section 3. Section 4 describes the energet-
ically consistent stabilisation of spurious oscillations in potential temperature via the upwinding of the corresponding
test space. The reproduction of standard test cases is described in section 5. Finally the conclusions are discussed in
section 6.

1. Skew-symmetric variational structure of the compressible Euler equations

The compressible Euler equations for atmospheric flows may be expressed in skew-symmetric form for the evo-
lution of the velocity, u, density, ρ, and density weighted potential temperature, Θ, as:

∂u
∂t

= −q × U − ∇Φ − θ∇Π (1a)

∂ρ

∂t
= −∇ · U (1b)

∂Θ

∂t
= −∇ · (θU) (1c)

where q := (∇ × u + f )/ρ is the potential vorticity (and f = f ez is the Coriolis term), U := ρu is the mass flux,
Φ := 1

2 u · u + ρgz is the Bernoulli function (with g the gravitational acceleration and z the height), θ := Θ/ρ is the
potential temperature, and Π := cp (RΘ/p0)

R
cv is the Exner pressure (where cv and cp are the specific heats at constant

volume and temperature respectively, R is the ideal gas constant and p0 is the reference pressure). The corresponding
Hamiltonian (total energy) is given as:

H =

∫
Ω

K︷  ︸︸  ︷
1
2
ρu · u +

P︷︸︸︷
ρgz +

I︷ ︸︸ ︷
cv

cp
ΘΠ dΩ, (2)

where K is the kinetic energy, P is the potential energy, and I is the internal energy. In this work the domain, Ω is
configured as either the volume on the surface of a sphere in physical units, or a high resolution Cartesian geometry
which is periodic in the two horizontal dimensions. The variational derivatives of the Hamiltonian with respect to the
dependent variables (u, ρ, Θ) are

δH
δu

= ρu =: U, (3a)

δH
δρ

=
1
2

u · u + gz =: Φ, (3b)

δH
δΘ

= cp

(
RΘ

p0

) R
cv

=: Π, (3c)

which give the mass flux, U, the Bernoulli function, Φ and the Exner pressure, Π respectively.
The weak form of (1) is given for u,U ∈ H(div,Ω) and ρ,Θ,Φ,Π ∈ L2(Ω) as:〈

β,
∂u
∂t

〉
= −〈β, q × U〉 + 〈∇ · β,Φ〉 + 〈∇ · Pdiv [

θβ
]
,Π〉, ∀β ∈ H(div,Ω) (4a)〈

γ,
∂ρ

∂t

〉
= −〈γ,∇ · U〉, ∀γ ∈ L2(Ω) (4b)〈

σ,
∂Θ

∂t

〉
= −〈σ,∇ · Pdiv [θU]〉, ∀σ ∈ L2(Ω) (4c)
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where we have invoked inner product notation as 〈a, b〉 =
∫

Ω
abdΩ, the integration-by-parts relation 〈β,∇α〉 = −〈∇ ·

β, α〉 (assuming periodic or homogeneous boundary conditions) in (4), and introduced the L2 projection to H(div,Ω)

Pdiv :
[
L2(Ω)

]3
→ H(div,Ω) . (5)

Specifically for v ∈
[
L2(Ω)

]3
, the projection Pdiv [v] ∈ H(div,Ω) is given by

〈β,Pdiv [v]〉 = 〈β, v〉 , ∀β ∈ H(div,Ω) . (6)

Energy conservation is assured for the choice of β = U, γ = Φ, σ = Π by summing all equations in (4), such that〈
δH
δu

,
∂u
∂t

〉
+

〈
δH
δρ

,
∂ρ

∂t

〉
+

〈
δH
δΘ

,
∂Θ

∂t

〉
=

dH
dt

= 0. (7)

where the key ingredient for energy conservation is the skew-symmetry of (4).

2. Discrete formulation

In this section the mixed mimetic spectral element spatial discretisation used in the model is introduced, as well
as an analysis of the geometric properties of the energy conserving time integration scheme.

2.1. Spatial discretisation
For the purposes of this article the salient feature of the mixed mimetic spectral element method is that it allows

for the preservation of the skew-symmetric structure of the compressible Euler equations, and thus the conservation of
energy and energetic exchanges in the discrete form. For a more detailed discussion the reader is referred to previous
work on the use of this method for geophysical flow modelling [8, 10, 11], as well as more foundational works on
the subject [12–15]. In order to begin this discussion we introduce the finite dimensional subspaces Ph ⊂ H1(Ω),
Wh ⊂ H(curl,Ω),Uh ⊂ H(div,Ω) and Q ⊂ L2(Ω). These subspaces are spanned by basis functions

span{ψ1, . . . , ψdP } = Ph , span{α1, . . . ,αdW } =Wh , span{β1, . . . ,βdU } = Uh , and span{γ1, . . . , γdQ } = Qh ,
(8)

with dP, dW, dU , and dQ, the number of degrees of freedom of the spaces Ph, Wh, Uh, and Qh, respectively. The
basis functions themselves are constructed by tensor product combinations of nodal and edge polynomials [12, 16].
As usual, elements of these spaces can be represented as a linear combination of the basis functions, for example, for
ph ∈ Ph, wh ∈ Wh, uh ∈ Uh, and ch ∈ Qh we have that

ph =

dP∑
i=1

p̂iψi , wh =

dW∑
i=1

ŵiαi , uh =

dU∑
i=1

ûiβi , and ch =

dQ∑
i=1

ĉiγi . (9)

We now introduce an equivalent, but more compact, notation for the expansion of a function as a linear combination
of the basis functions

ph = ψh p̂h , wh = αhŵh , uh = βhûh , and ch = γhĉh , (10)

where p̂h := [ p̂1, . . . , p̂dP ]>, ŵh := [ŵ1, . . . , ŵdW ]>, ûh := [û1, . . . , ûdU ]>, and ĉh := [ĉ1, . . . , ĉdQ ]> are the column
vectors containing the coefficients of the discrete representation of the associated functions, and ψh := [ψ1, . . . , ψdP ],
αh := [α1, . . . ,αdW ], βh := [β1, . . . ,βdU ], and γh := [γ1, . . . , γdQ ] are the row vectors containing the basis functions.

Remark 1. Throughout this work we will extensively use the basis functions ψh, αh, βh, and γh. For clarity in the
notation, these symbols will be solely used to refer to the basis functions:

ψh := [ψ1, . . . , ψdP ] such that span{ψ1, . . . , ψdP } = Ph

αh := [α1, . . . ,αdW ] such that span{α1, . . . ,αdW } =Wh

βh := [β1, . . . ,βdU ] such that span{β1, . . . ,βdU } = Uh

γh := [γ1, . . . , γdQ ] such that span{γ1, . . . , γdQ } = Qh .

(11)
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These discrete function spaces satisfy a compatibility relation that is expressed as a discrete de Rham complex of
the form

R −→ Ph
∇
−→Wh

∇×
−→ Uh

∇·
−→ Qh −→ 0. (12)

The differential operators ∇, ∇×, and ∇· are concisely represented at the discrete level by incidence matrices, E1,0,
E2,1, E3,2, such that for ph ∈ Ph, wh ∈ Wh, and uh ∈ Uh we have that

∇ph = αhE1,0 p̂h, ∇ × wh = βhE2,1ŵh, and ∇ · uh = γhE3,2ûh . (13)

In a similar way, we may apply the differential operators to the basis functions ψh, αh, βh, and γh yielding

∇ψh = αhE1,0, ∇ × αh = βhE2,1, and ∇ · βh = γhE3,2 . (14)

These incidence matrices satisfy the identities

E2,1E1,0 = 02,0, and E3,2E2,1 = 03,1 , (15)

where 02,0 is the dU × dP zero matrix and 03,1 is the dQ × dW zero matrix. Note that these two identities are directly
related to the well known vector calculus identities ∇ × ∇ = 0 and ∇ · ∇× = 0. For a more detailed discussion of the
incidence matrices and their properties the reader is directed to [14].

Additionally, these compatible function spaces satisfy an integration-by-parts property, such that the reverse map-
pings (∇̃·, ∇̃×, ∇̃), satisfy

0←− Ph
∇̃·
←−Wh

∇̃×
←− Uh

∇̃
←− Qh ←− R. (16)

and are represented by weak form adjoint relations. Assuming periodic or homogeneous boundary conditions we have
that for wh ∈ Wh, uh ∈ Uh, and ch ∈ Qh

〈βh, ∇̃ch〉 = −〈∇ · βh, ch〉,

〈αh, ∇̃ × uh〉 = 〈∇ × αh,uh〉,

〈ψh, ∇̃ · wh〉 = −〈∇ψh,wh〉 .

(17)

Remark 2. In (17) we have used an implicit matrix notation. As an example, consider the expression 〈βh,βh〉. This
expression corresponds to

〈βh,βh〉 :=
∫

Ω

β>h βh dΩ , (18)

which is a matrix of dimensions dU × dU with element (i, j), 〈βh,βh〉i, j, given by

〈βh,βh〉i, j = 〈βi,β j〉 .

As a more complex example, consider the expression 〈∇ψh,wh〉, with wh ∈ Wh. In a similar way, this expression
corresponds to

〈∇ψh,wh〉 =

∫
Ω

∇ψ>h wh dΩ ,

which is a column vector of dW elements with element j, 〈∇ψh,wh〉 j, given by [17]

〈∇ψh,wh〉 j
(18)
=

(∫
Ω

∇ψ>h wh

)
j

(14)
=

(∫
Ω

(
E1,0

)>
α>h wh

)
j
=

((
E1,0

)>
〈αh,wh〉

)
j
=

dW∑
k=1

E1,0
k, j 〈αk,wh〉 .

This leads to the following discrete representations of the dual operators applied to wh ∈ Ph, uh ∈ Uh, and ch ∈ Qh

∇̃ch = −βh 〈βh,βh〉
−1

(
E3,2

)>
〈γh, γh〉 ĉh ,

∇̃ × uh = αh 〈αh,αh〉
−1

(
E2,1

)>
〈βh,βh〉 ûh ,

∇̃ · wh = −ψh 〈ψh, ψh〉
−1

(
E1,0

)>
〈αh,αh〉 ŵh .

(19)
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The discrete form of the variational 3D compressible Euler equations (4) may then be expressed as: Given uh|t=0 ∈

U, ρ|t=0 , Θ|t=0 ∈ Q, find uh ∈ U, ρ,Θ ∈ Q such that〈
βh,

∂uh

∂t

〉
= −〈βh, qh × Uh〉 + 〈∇ · βh,Φh〉 + 〈∇ · Pdiv [

θhβh
]
,Πh〉 , (20a)〈

γh,
∂ρh

∂t

〉
= −〈γh,∇ · Uh〉 , (20b)〈

γh,
∂Θh

∂t

〉
= −〈γh,∇ · Pdiv [θhUh]〉 , (20c)

and Uh ∈ U, Φh,Πh ∈ Q such that

〈βh,
δHh

δuh
〉 = 〈βh,Uh〉 = 〈βh, ρhuh〉 , (21a)

〈γh,
δHh

δρh
〉 = 〈γh,Φh〉 = 〈γh,

1
2

uh · uh + gz〉 , (21b)

〈γh,
δHh

δΘh
〉 = 〈γh,Πh〉 = 〈γh, cp

(
RΘh

p0

) R
cv

〉. (21c)

The system of equations (20), obtained after spatial discretisation, constitutes a system of ordinary differential
equations. We now wish to devise a discrete time integration formulation that preserves the energy conservation
properties of the spatial discretisation in (20). To introduce the energy conserving time integration scheme employed
in this work, we recall the total energy H, (2),

Hh =

∫
Ω

Kh︷      ︸︸      ︷
1
2
ρhuh · uh +

Ph︷︸︸︷
ρhgz +

Ih︷   ︸︸   ︷
cv

cp
ΘhΠh dΩ, (22)

and its time derivative, (7),〈
δHh

δuh
,
∂uh

∂t

〉
+

〈
δHh

δρh
,
∂ρh

∂t

〉
+

〈
δHh

δΘh
,
∂Θh

∂t

〉
=

〈
Uh,

∂uh

∂t

〉
+

〈
Φh,

∂ρh

∂t

〉
+

〈
Πh,

∂Θh

∂t

〉
=

dHh

dt
= 0. (23)

We now note that (20) can be written in matrix form as

〈βh,βh〉
dûh

dt

〈γh, γh〉
dρ̂h

dt

〈γh, γh〉
dΘ̂h

dt


=



−〈βh, qh × βh〉 〈∇ · βh, γh〉 〈∇ · Pdiv [
θhβh

]
, γh〉

−〈γh,∇ · βh〉 0 0

−〈γh,∇ · Pdiv [
θhβh

]
〉 0 0





Ûh

Φ̂h

Π̂h


. (24)

2.2. Temporal discretisation

Equation (24) is essentially a system of ordinary differential equations (ODEs) with the general form

M
dŷ(t)

dt
= S(ŷ(t)) x̂(t), (25)

where

ŷ(t) :=

 ûh

ρ̂h

Θ̂h

 , x̂(t) :=

 Ûh

Φ̂h

Π̂h

 , (26)
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S(ŷ(t)) is a time dependent skew-symmetric matrix and M is a constant in time symmetric positive definite matrix.
The variable ŷ (26) is a column vector containing the coefficients of the discrete representation of the fields uh, ρh,
and Θh, as introduced in (9) and (10). In this way we have that

ŷi = ûi, for i = 1, . . . , dU , ŷi+dU = ρ̂i, for i = 1, . . . , dQ, and ŷi+dU+dQ = Θ̂i, for i = 1, . . . , dQ . (27)

These coefficients ŷ are time dependent and their evolution is governed by the system of ODEs (25).
To solve this system of ODEs in time, we follow a similar approach to that for the spatial discretisation. We

approximate the time dependent coefficients ŷ(t) on the time step interval [tn, tn+1] with a temporal discrete polynomial
function space of degree s, T 0

h ([tn, tn+1]) := span{l0, . . . , ls} where li(t), i = 0, . . . s, are the (s + 1) nodal polynomials
of degree s, as mentioned before for the spatial discretisation. In this way the polynomial temporal expansion of the
spatial coefficients ŷh

i is

ŷh
i = lh ˆ̂yh

i :=
s∑

j=0

l j(t)ˆ̂y j
i , t ∈ ([tn, tn+1]) , (28)

where, as in (9) and (10), ˆ̂yh
i := [ˆ̂y1

i , . . .
ˆ̂ys+1

i ]. The double hat notation ˆ̂yh
i in (28) highlights the double discretization

taking place (spatial and temporal). The terms ŷh
i with i = 1, . . . , dU + 2dQ correspond to the time dependent polyno-

mial expansion of the i-th coefficient of the spatial polynomial expansion ŷ := [ûh, ρ̂h, Θ̂h]>. The terms ˆ̂y j
i correspond

to the j-th coefficient of the temporal polynomial expansion associated to the i-th coefficient of the spatial polynomial
expansion.

The time dependent coefficients x̂(t) are approximated with a temporal discrete polynomial function space of
degree (s − 1), T 1

h ([tn, tn+1]) := span{e1, . . . , es} where ei(t), i = 1, . . . s, are the s edge polynomials of degree (s − 1),
as mentioned before for the spatial discretisation. In this way

x̂h
i = eh ˆ̂xh

i :=
s∑

j=1

e j(t) ˆ̂x j
i , t ∈ ([tn, tn+1]) . (29)

As before, these two function spaces constitute a discrete de Rham complex

R −→ T 0
h ([tn, tn+1])

d
dt
−→ T 1

h ([tn, tn+1]) −→ 0 , (30)

and we have that
dŷh

i

dt
= ehE1,0

t
ˆ̂yh

i , and
dlh
dt

= ehE1,0
t . (31)

Remark 3. Note that here we added the subscript t to the incidence matrix, E1,0
t , to distinguish it from the spatial

ones. Also, as mentioned before, the double hat highlights the fact that we have performed both discretisation in
space and time and these coefficients are associated to this double discretisation. When an explicit reference to the
temporal indices is required they are presented as superscript, as in (28).

Remark 4. The discrete de Rham complex (30) is associated to a single time step (for simplicity of exposition and
computational efficiency). Naturally, as for the spatial discretisation, considering multiple time steps is a straightfor-
ward extension. In this work we perform the discretisation in a per step fashion.

The temporal discretisation then follows a similar mixed Galerkin approach as presented for the spatial discreti-
sation: Given x̂h

i ∈ T
1
h ([tn, tn+1]), with i = 1, . . . , (dU + 2dQ), find ŷh

i ∈ T
0
h ([tn, tn+1]), with i = 1, . . . , (dU + 2dQ), such

that
M 〈eh,

dŷh(t)
dt
〉[tn,tn+1] = 〈eh,S(ŷh(t)) x̂h(t)〉[tn,tn+1] . (32)

Remark 5. The time-related inner products follow the same rules outlined before, namely

〈eh,
dŷh(t)

dt
〉[tn,tn+1] :=

∫ tn+1

tn
e>h

dŷh(t)
dt

dt . (33)

6



Therefore, (32) is

M
∫ tn+1

tn
e>h

dŷh(t)
dt

dt =

∫ tn+1

tn
e>h S(ŷh(t)) x̂h(t) dt . (34)

Note that we implicitly separate the spatial from the temporal coefficients, for simplicity of the notation, i.e., the
constant in time matrix M and the time dependent matrix S(ŷh(t)) apply at the spatial level also.

This choice of time integration is notable because it is energy conserving. To prove this, we recall the expression
for the time variation of the energy of this system of equations (the Hamiltonian, Hh) (23)∫ tn+1

tn

dHh

dt
dt = Hh(yh(tn+1)) − Hh(yh(tn)) =

∫ tn+1

tn

〈
δHh

δyh
,
∂yh

∂t

〉
dt. (35)

We may now use (21) to rewrite (35) as∫ tn+1

tn

dHh

dt
dt = Hh(yh(tn+1)) − Hh(yh(tn)) =

∫ tn+1

tn

〈
xh,

∂yh

∂t

〉
dt =

∫ tn+1

tn
x̂>h M

dŷh

dt
dt = ˆ̂x>h M

∫ tn+1

tn
e>h

dŷh

dt
dt. (36)

Finally, using the proposed time integration scheme, (34), we obtain energy conservation

Hh(yh(tn+1))−Hh(yh(tn)) = ˆ̂x>h M
∫ tn+1

tn
e>h eh dt(ˆ̂yn+1

h −
ˆ̂yn

h) = ˆ̂x>h

∫ tn+1

tn
e>h S(ŷh(t)) x̂h(t) dt = ˆ̂x>h

∫ tn+1

tn
e>h S(ŷh(t)) eh dt

 ˆ̂xh.

(37)
Since the term inside the parenthesis on the right hand side is skew-symmetric, the quadratic term cancels and we
obtain energy conservation at the discrete level

Hh(yh(tn+1)) − Hh(yh(tn)) = 0. (38)

Remark 6. In equation (37), the term
∫ tn+1

tn e>h eh dt is a temporal mass matrix.

Remark 7. Two key ingredients need to be highlighted. The first is the construction of a system of equations of
the form (24) and (25) where S is skew-symmetric. This was only possible to obtain by a judicious choice of discrete
function spaces and an equally careful selection of physical field quantities to employ in the construction of the system
of equations. The second key ingredient is the construction of the time integration scheme also based on a sequence
of polynomial spaces together with a Galerkin projection employing exact integration. Exact temporal integration is
fundamental to guarantee the equality needed to perform the last step, equation (37).

This temporal discretisation is very closely related to the works by Hairer et al. [18, 19]. For the lowest order case
(discussed below) this approach results in time stepping scheme identical to [19].

In this formulation any polynomial degree s may be employed to approximate the solution in time. In this work
we choose s = 1 since this choice will greatly simplify the temporal discretisation. If this choice is made we will have

l0(t) =
tn+1 − t

∆t
, l1(t) =

t − tn

∆t
, and e1(t) =

1
∆t
. (39)

where ∆t := tn+1 − tn. In this case, since eh = e1(t) = 1
∆t , the coefficients of the temporal polynomial expansion of

x̂h(t) become
ˆ̂xh(t) = [ ˆ̂U1

1 , . . . ,
ˆ̂U1

dU ,
ˆ̂Φ1

1, . . . ,
ˆ̂Φ1

dQ ,
ˆ̂Π1

1, . . . ,
ˆ̂Π1

dQ ]> e1(t) . (40)

We recall now the properties of the edge polynomials, [12, 16], and its associated coefficients. Just as the nodal
polynomial expansion interpolates a function, the edge polynomial expansion histopolates (interpolates the integral
of) a function. While the coefficients of the nodal polynomial expansion correspond to pointwise sampling of a
function, the coefficients of the edge polynomial expansion correspond to sampling of the integral of the function over
intervals [12, 16]. Note that in the temporal discretization considered here there is only one polynomial basis in the
edge polynomial expansion and therefore the temporal expansion of each spatial coefficient has only one coefficient.
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Given the integral interpolation properties of the edge basis functions, the single coefficient of this expansion is the
temporal integral

ˆ̂x1
i = ˆ̂U1

i =

∫ tn+1

tn
Ûh

i (t) dt, ˆ̂x1
j+dU = ˆ̂Φ1

j =

∫ tn+1

tn
Φ̂h

j (t) dt, ˆ̂x1
k+dU+dQ = ˆ̂Π1

k =

∫ tn+1

tn
Π̂h

k(t) dt , (41)

with i = 1, . . . , dU , and j, k = 1, . . . , dQ. We now introduce

ˆ̂xh
i :=

ˆ̂x1
i

∆t
=

∫ tn+1

tn
ˆ̂xh

i dt

∆t
, (42)

the exact time integral of the temporal approximation between time levels n and n + 1. Following the notation
introduced before, (9), we will use

ˆ̂xh := [ ˆ̂xh
1, . . . ,

ˆ̂xh
dU+2dQ ]>

(40)+(41)+(42)
=

1
∆t

[ ˆ̂U1
1 , . . . ,

ˆ̂U1
dU ,

ˆ̂Φ1
1, . . . ,

ˆ̂Φ1
dQ ,

ˆ̂Φ1
1, . . . ,

ˆ̂Π1
dQ ]> . (43)

If we substitute this into (34) we obtain

M
(
ˆ̂yn+1

h − ˆ̂yn
h

)
=

∫ tn+1

tn
S(ŷh(t)) dt

 ˆ̂xh

∆t
(42)
=

∫ tn+1

tn
S(ŷh(t)) dt

 ˆ̂xh . (44)

Since S(ŷh(t)) depends only linearly on time, we may use lowest order Gauss integration (midpoint rule) to exactly
integrate the term involving S(ŷh(t)), yielding

M
(
ˆ̂yn+1

h − ˆ̂yn
h

)
= ∆t S

 ˆ̂yn+1
h + ˆ̂yn

h

2

 ˆ̂xh . (45)

Therefore this system of equations may be cast in a fully discrete form as: 〈βh,βh〉 ûn+1
h

〈γh, γh〉 ρ̂
n+1
h

〈γh, γh〉 Θ̂
n+1
h

 =

 〈βh,βh〉 ûn
h

〈γh, γh〉 ρ̂
n
h

〈γh, γh〉 Θ̂
n
h

−
∆t


〈βh, q

n+ 1
2

h × βh〉 −
(
E3,2

)>
〈γh, γh〉 −〈βh, θ

n+ 1
2

h βh〉〈βh,βh〉
−1

(
E3,2

)
〈γh, γh〉

〈γh, γh〉E3,2 0 0

〈γh, γh〉E3,2
〈βh,βh〉

−1〈βh, θ
n+ 1

2
h βh〉 0 0




Ûh

Φ̂h

Π̂h

 . (46)

As mentioned before, Ûh, Φ̂h, and Π̂h are the exact time integrals of the temporal polynomial reconstruction of Ûh,
Φ̂h, and Π̂h. An important point to note is the following. Since Ûh, Φ̂h, and Π̂h are functions of û, ρ̂, and Θ̂, (3),
we employ discrete piecewise linear approximations between time levels n and n + 1 to be described in the following

section, and θn+ 1
2

h = (θn
h + θn+1

h )/2, qn+ 1
2

h = (qn
h + qn+1

h )/2 are the time centered potential temperature and potential
vorticity.

3. HEVI splitting

The above system (46) may be dimensionally split into an implicit solve for the vertical dynamics (incorporating
the horizontal divergence terms) and explicit momentum advection by defining the horizontal and vertical velocity
components respectively as vh ∈ U

‖

h, wh ∈ U
⊥
h , such that uh = vh + wh ∈ Uh [8]. Similarly the discrete vorticity

vector, qh ∈ Wh may be partitioned into its respective vertical and horizontal components (in global coordinates),
q⊥h = qh · ez, q‖h = (−qh · eφ, q · eλ), where eλ, eφ, ez are unit vectors in the zonal, meridional and vertical global
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coordinates. The discrete strong form divergence operator, as given by the incidence matrix E3,2, may itself be
decomposed into its horizontal, E3,2

‖
and vertical E3,2

⊥ components, such that

∇ · uh
(13)
= γhE3,2ûh =: γh

(
E3,2
‖

v̂h + E3,2
⊥ ŵh

)
. (47)

The second order HEVI splitting is then given as:

Step 1: Explicit horizontal momentum solve

〈β‖h,β
‖

h〉v̂
′
h = 〈β‖h,β

‖

h〉v̂
n−1
h − 2∆t〈β‖h, q

⊥,n
h × β‖h〉V̂

n
h + 2∆t〈β‖h · q

‖,n
h , β⊥h 〉Ŵ

n
h +

2∆t
(
E3,2
‖

)>
〈γh, γh〉Φ̂

n
h + 2∆t〈β‖h, θ

n
hβ
‖

h〉〈β
‖

h,β
‖

h〉
−1

(
E3,2
‖

)>
〈γh, γh〉Π̂

n
h (48)

Step 2: Implicit vertical solve (including horizontal divergence)〈β
⊥
h , β

⊥
h 〉ŵ

n+1
h

〈γh, γh〉ρ̂
n+1
h

〈γh, γh〉Θ̂
n+1
h

 =

〈β
⊥
h , β

⊥
h 〉ŵ

n
h

〈γh, γh〉ρ̂
n
h

〈γh, γh〉Θ̂
n
h

−
∆t


0 −

(
E3,2
⊥

)>
〈γh, γh〉 −〈β

⊥
h , θ

n+1/2
h β⊥h 〉〈β

⊥
h , β

⊥
h 〉
−1

(
E3,2
⊥

)>
〈γh, γh〉

〈γh, γh〉E
3,2
⊥ 0 0

〈γh, γh〉E
3,2
⊥ 〈β

⊥
h , β

⊥
h 〉
−1〈β⊥h , θ

n+1/2
h β⊥h 〉 0 0



Ŵh

Φ̂h

Π̂h

−

∆t


〈β⊥h , q

‖,n+1/2
h · β‖h〉V̂h

〈γh, γh〉E
3,2
‖

V̂h

〈γh, γh〉E
3,2
‖
〈β‖h,β

‖

h〉
−1〈β‖h, θ

n+1/2
h β‖h〉V̂h

 (49)

Step 3: Explicit horizontal momentum solve

〈β‖h,β
‖

h〉v̂
n+1
h = 〈β‖h,β

‖

h〉v̂
n
h − ∆t〈β‖h, q

⊥,n+1/2
h × β‖h〉V̂h + ∆t〈β‖h · q

‖,n+1/2
h , β⊥h 〉Ŵh+

∆t
(
E3,2
‖

)>
〈γh, γh〉Φ̂h + ∆t〈β‖h, θ

n+1/2
h β‖h〉〈β

‖

h,β
‖

h〉
−1

(
E3,2
‖

)>
〈γh, γh〉Π̂h (50)

Left multiplication of (49) by [Ŵ
>

h Φ̂
>

h Π̂
>

h ] and (50) by V̂
>

h leads to the cancellation of all forcing terms in both
equations, resulting in the expression

V̂h〈β
‖

h,β
‖

h〉(v̂
n+1
h − v̂n

h) + Ŵh〈β
‖

h,β
‖

h〉(ŵ
n+1
h − ŵn

h) + Φ̂h〈γh, γh〉(ρ̂n+1
h − ρ̂n

h) + Π̂h〈γh, γh〉(Θ̂n+1
h − Θ̂n

h) , 0 (51)

Note that since vh
′ and vh

n+1 differ, energy is not strictly conserved in the temporal discretisation of the horizontal
momentum equation. There is a conservation error of magnitude V̂h〈β

‖

h,β
‖

h〉(v̂
′
h − v̂n+1

h ), such that (51) is not strictly a
discrete analogue of the continuous expression (

δH
δy

)>
·
∂y
∂t

= 0. (52)

The above formulation is similar to the “u-forward, pressure-backward” formulation [6], by which the horizontal
divergence term is treated implicitly (using the most recent horizontal velocity update), and the horizontal pressure
gradient term is treated explicitly. However in the present case the horizontal pressure gradient term at the final step
is evaluated at the same time level as the (implicit) horizontal divergence term.
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The exact, second order time integrals of the variational derivatives are then given as:

〈β‖h,β
‖

h〉V̂h =
1
3
〈β‖h, ρ

n
hβ
‖

h〉v̂
n
h +

1
6
〈β‖h, ρ

n+1
h β

‖

h〉v̂
n
h +

1
6
〈β‖h, ρ

n
hβ
‖

h〉v̂
′
h +

1
3
〈β‖h, ρ

n+1
h β

‖

h〉v̂
′
h (53a)

〈β⊥h , β
⊥
h 〉Ŵh =

1
3
〈β⊥h , ρ

n
hβ
⊥
h 〉ŵ

n
h +

1
6
〈β⊥h , ρ

n+1
h β⊥h 〉ŵ

n
h +

1
6
〈β⊥h , ρ

n
hβ
⊥
h 〉ŵ

n+1
h +

1
3
〈β⊥h , ρ

n+1
h β⊥h 〉ŵ

n+1
h (53b)

〈γh, γh〉Φ̂h =
1
6
〈γh, vn

h · β
‖

h〉v̂
n
h +

1
6
〈γh, v′h · β

‖

h〉v̂
n
h +

1
6
〈γh, v′h · β

‖

h〉v̂
′
h+

1
6
〈γh,wn

hβ
⊥
h 〉ŵ

n
h +

1
6
〈γh,wn+1

h β⊥h 〉ŵ
n
h +

1
6
〈γh,wn+1

h β⊥h 〉ŵ
n+1
h + g〈γh, γh〉ẑh (53c)

〈γh, γh〉Π̂h =
1
2
〈γh, γh〉Π̂

n
h +

1
2
〈γh, γh〉Π̂

n+1
h (53d)

Note that while a second order “leap-frog” method has been used to determine the provisional velocity, v̂′h in (48),
a first order, forward Euler step is probably also acceptable, since in either case the resulting mass flux (53a) will be
second order in time.

We have not as yet made mention of the spaces used to represent the quantities found within the operator in (49):
qh, θh. Conservation of energy is satisfied for any representation these quantities, provided that the skew-symmetry
of this operator is preserved. We choose to represent qh ∈ Wh, such that this may be derived from uh and ρh via a
weak curl operator [8], while θh is represented in the vertical component of the H(div,Ω) space,U⊥h (such that it is C0

continuous in the vertical direction only). Previous work has shown that this representation of θh yields an improved
representation of the dispersion relation for linearised buoyancy modes [20].

The implicit vertical system in (49) is solved in serial using a direct LU method, while the projections onto the
horizontalU‖h space in (48), (50), as well as to derive the horizontal pressure gradients and temperature fluxes in (49)
and the horizontal mass flux in (53a) are solved in parallel using the conjugate gradient method. These are both done
using the PETSc library [21–23].

3.1. Stability analysis
In order to study the stability of the HEVI splitting scheme described above this is applied to the two dimensional

linearised compressible Boussinesq equations [24], which are given as:

∂u
∂t

+
∂p
∂x

= 0 (54a)

∂w
∂t

+
∂p
∂z
− b = 0 (54b)

∂p
∂t

+ c2
(
∂u
∂x

+
∂w
∂z

)
= 0 (54c)

∂b
∂t

+ N2w = 0 (54d)

where u and w are the horizontal and vertical velocities, p is the pressure, b is the buoyancy, c is the speed of sound
and N is the Brunt-Väisälä frequency. Using the splitting scheme detailed above (but with a first order forward Euler
step for the initial provisional velocity, u′) and assuming periodic solutions of the form (u,w, p, b)(t)eikx+ilz these may
be time-stepped as:

u′ = un − ∆t ikpn (55a)

wn+1 +
∆t il

2
pn+1 −

∆t
2

bn+1 = wn −
∆t il

2
pn +

∆t
2

bn (55b)

pn+1 +
∆t ilc2

2
wn+1 = pn −

∆t ilc2

2
wn −

∆t ikc2

2
un −

∆t ikc2

2
u′ (55c)

bn+1 +
∆t N2

2
wn+1 = bn −

∆t N2

2
wn (55d)

un+1 +
∆t ik

2
pn+1 = un −

∆t ik
2

pn (55e)

10



Note that a temporal description of the HEVI scheme that omits the spatial discretisation is provided in Appendix A.
Substituting the expression for u′ into that for pn+1 and expressing in matrix form gives

1 0 ∆t ik
2 0

0 1 ∆t il
2 −∆t

2
0 ∆t ilc2

2 1 0
0 ∆t N2

2 0 1



un+1

wn+1

pn+1

bn+1

 =


1 0 −∆t ik

2 0
0 1 −∆t il

2
∆t
2

−∆t ikc2 −∆t ilc2

2 1 − ∆t2k2c2

2 0
0 −∆t N2

2 0 1



un

wn

pn

bn

 . (56)

In order to analyse the stability of the splitting scheme we inspect the eigenvalues of the operator

A =


1 0 ∆t ik

2 0
0 1 ∆t il

2 −∆t
2

0 ∆t ilc2

2 1 0
0 ∆t N2

2 0 1


−1 

1 0 −∆t ik
2 0

0 1 −∆t il
2

∆t
2

−∆t ikc2 −∆t ilc2

2 1 − ∆t2k2c2

2 0
0 −∆t N2

2 0 1

 (57)

For a given eigenvalue, λi, this will be unstable if λiλ
∗
i > 1. The four eigenvalues correspond to two acoustic modes,

which differ in the sign of their imaginary component only, and two gravity (buoyancy) modes which similarly differ
only in the sign of the imaginary term.

The results for the new HEVI scheme are compared to the standard second order trapezoidal HEVI scheme, for
which the vertical terms are all treated implicitly, and the horizontal terms explicitly. This scheme may be written as:

1 0 0 0
0 1 ∆t il

2 −∆t
2

0 ∆t ilc2

2 1 0
0 ∆t N2

2 0 1



u′

w′

p′

b′

 =


1 0 −∆t ik 0
0 1 −∆t il

2
∆t
2

−∆t ikc2 −∆t ilc2

2 1 0
0 ∆t N2

2 0 1



un

wn

pn

bn

 (58)


un+1

wn+1

pn+1

bn+1

 =


1 0 −∆t ik

2 0
0 1 −∆t il

2
∆t
2

−∆t ikc2

2 −∆t ilc2

2 1 0
0 −∆t N2

2 0 1



un

wn

pn

bn

 +


0 0 −∆t ik

2 0
0 0 −∆t il

2
∆t
2

−∆t ikc2

2 −∆t ilc2

2 0 0
0 −∆t N2

2 0 0



u′

w′

p′

b′

 (59)

Combining the above expressions gives a linear operator by which the solution at time level n + 1 may be determined
from the solution at time level n, from which the corresponding eigenvalues may be derived.

For completeness we also compare against the Crank-Nicolson scheme, which is semi-implicit in both horizontal
and vertical dimensions, and neutrally stable for all vertical and horizontal wave numbers for both buoyancy and
acoustic modes. The amplification factors for the Crank-Nicolson scheme are given as:

A =


1 0 ∆t ik

2 0
0 1 ∆t il

2 −∆t
2

∆t ikc2

2
∆t ilc2

2 1 0
0 ∆t N2

2 0 1


−1 

1 0 −∆t ik
2 0

0 1 −∆t il
2

∆t
2

−∆t ikc2

2 −∆t ilc2

2 1 0
0 −∆t N2

2 0 1

 (60)

The amplification factors for the acoustic and gravity modes for the three different time splitting schemes are
given in figs. 1 and 2 respectively for a periodic domain of size 1000.0m in both dimensions, with c = 340.0ms−1,
N = 0.01s−1. While the Crank-Nicolson scheme is neutrally stable, |λ| = 1 for both modes, and the trapezoidal HEVI
scheme is unstable, |λ| > 1 for both modes (albeit with a very small amplification factor for the gravity modes), the
energetically balanced splitting scheme is neutrally stable for all acoustic modes below some horizontal wave number,
and unconditionally stable for all gravity modes. This represents a qualitative improvement on the standard second
order HEVI splitting.
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Figure 1: Amplification factor for the acoustic waves using the Crank-Nicolson (left), new (center) and trapezoidal HEVI (right) splitting. The
black line on the center plot indicates an amplification factor of 1.0 + 10−12, indicating the onset of unstable modes. The Crank-Nicolson scheme is
neutrally stable for all modes, the new scheme is neutrally stable for all modes below a finite horizontal wave number and the trapezoidal scheme
is unstable for all modes.
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Figure 2: Amplification factor for the gravity waves using the Crank-Nicolson (left), new (center) and trapezoidal HEVI (right) splitting. The
Crank-Nicolson scheme and the new scheme are both neutrally stable for all modes, while the trapezoidal scheme is unstable for all modes.
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4. Potential temperature upwinding

This section describes the suppression of spurious oscillations in potential temperature via upwinding of the poten-
tial temperature diagnostic equation in an energetically consistent manner. Since the potential vorticity and potential
temperature are represented within the skew-symmetric operator for the discrete variational form of the compressible
Euler equations (46), these quantities may be upwinded so as to suppress oscillations without breaking energy conser-
vation (so long as skew-symmetry is preserved). This strategy has been used previously to suppress oscillations for
the shallow water equations by upwinding potential vorticity so as to dissipate potential enstrophy [25–27], and for
the compressible Euler equations by upwinding potential temperature so as to generate entropy [28]. In the present
context the upwinding of potential temperature is applied not to the material form advection equation, but rather to
the diagnostic equation by which the potential temperature is derived from the prognostic variables of density (1b)
and density-weighted potential temperature (1c).

While this is typically achieved for variational methods by augmenting the test space with a linear correction
which allows for dissipation in the direction of the flow [29], in the present case this is achieved by integrating the
test functions backwards along velocity characteristics [27]. Here the upwinding is applied in the vertical direction
only. Since the discrete potential temperature is represented as θh ∈ U

⊥
h [8], for which the vertical component of the

tensor product basis is represented by piecewise linear polynomials, for this case the upwinded bases are effectively
equivalent to the SUPG method [28, 29]. However in the present case this upwinding is applied to the diagnostic
equation (the discrete form of the relation θ := Θ/ρ, (62)), and not the material form of the advection equation,
∂θ/∂t + u · ∇θ = 0, as is customary in the SUPG method. Since C0 continuity for theU⊥h space is enforced only in the
vertical direction, upwinding of θh in the horizontal directions will have no effect.

The upwinded trial functions, β⊥,uh ∈ U⊥h are computed by evaluating the quadrature points at vertically downwind
locations, ζd, which are computed to first order as [27]:

ζd = ζ + 0.5∆t
∑

i

ŵiβ
⊥
i (ξ, η, ζ), (61)

where ξ, η and ζ are the local element coordinates. Note that in the above expression the velocity is interpolated to
its local element value, and not its global physical value. Note also that the choice to integrate the vertical quadrature
points downwind for a time of 0.5∆t is arbitrary, and may be tuned to optimise the balance between reduced oscillation
and less diffusive solutions. The upwinded trial functions are then evaluated as β⊥,uh = β⊥h (ξ, η, ζd). The upwinded
potential temperature is then diagnosed as:

〈β⊥,uh , ρhβ
⊥
h 〉θ̂h = 〈β⊥,uh , γh〉Θ̂h. (62)

Note that in the above expression only the test functions for the potential temperature diagnostic equation are evaluated
at upstream locations, while the trial functions remain static. Moreover since continuity is enforced only in the vertical
direction for the trial space of the potential temperature,U⊥h , it is only in this direction that upwinding has any material
effect.

While the variational form of the compressible Euler equations (4) conserve entropy, s = cp log(θ) + s0 (see Ap-
pendix B), this is not true in the discrete form, since transcendental functions such as logarithms cannot be integrated
exactly in the discrete form. As such, while the upwinding of the test functions as described above will generate
additional entropy, there are already additional entropy sources at the discrete level.

5. Results

5.1. Baroclinic instability
In order to verify the energetically balanced HEVI scheme, this is applied to the solution of a standard test case

for baroclinic instability on the sphere [30]. This test involves a small perturbation to an otherwise hydrostatically and
geostrophically balanced atmosphere, which over several days generates a baroclinic wave. The model is stabilised
using a biharmonic viscosity term on both the horizontal potential temperature equation and momentum equation
(which does not conserve energy due to the explicit time stepping), and a Rayleigh friction term in the top layers
of the atmosphere in the vertical (which is not strictly necessary however helps to accelerate the initial hydrostatic
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adjustment process) [8]. Figures 3, 4 and 5 show the surface level Exner pressure, as well as the vertical vorticity
component and potential temperature at a height of z = 1.57km at days 8 and 10 respectively. As an initial validation
exercise these compare well against previously published results [9, 30], however they do not allow us to draw any
particular conclusion as to the superiority of any particular scheme. The signature of the baroclinic instability is also
observed in the perturbation to the steady hydrostatic pressure profile, for which a vertical cross section at 50◦N is
shown at days 8 and 10 in fig 6.
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Figure 3: Baroclinic instability test case: Bottom level Exner pressure, days 8 and 10.
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Figure 4: Baroclinic instability test case: Vertical vorticity component at z = 1.57km, days 8 and 10.

5.1.1. Comparison to TRAP(2,3,2)
The energetically balanced HEVI scheme is compared to the horizontally third order, vertically second order

trapezoidal scheme, TRAP(2,3,2) [6, 7]. In most respects the energetics of the two schemes are similar, despite the
fact that the TRAP(2,3,2) scheme is not energetically balanced, but is higher order in the horizontal (also a time step
of ∆t = 60s is used for the energetically balanced scheme, while the TRAP(2,3,2) simulation was run with a time step
of ∆t = 120s). While the TRAP(2,3,2) scheme is stable for longer time steps than the energetically balanced scheme,
it also involves an additional substep in both the vertical and horizontal directions. Both schemes are stabilised using
biharmonic viscosity in the horizontal and Rayleigh friction in the top layers in the vertical [8, 9].
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Figure 6: Baroclinic instability test case: Zonal-vertical pressure slice at 50◦N, days 8 and 10.

15



The one respect in which the two schemes differ markedly is the potential to kinetic power exchanges, the transition
of potential to kinetic energy over time. This is computed (assuming homogeneous Dirichlet boundary conditions for
the vertical velocity) as the discrete equivalent of the term −∂P/∂t = g

∫
z∂(ρw)/∂zdΩ as −∂Ph/∂t = gẑh〈γh, γh〉E

3,2
⊥ Ŵh

[8]. For the potential to kinetic power exchange the energetically balanced scheme exhibits a higher frequency
oscillation not present in the TRAP(2,3,2) scheme, as shown in fig. 7. Fourier analysis of these power exchanges,
taken between days 6 and 10, shows that while the amplitudes of the low-frequency modes (k < 10) match each other
closely, both solutions exhibit a secondary peak, which for the TRAP(2,3,2) scheme occurs at k = 33 (2.91 hours),
while for the energetically balanced scheme this peak occurs at k = 131 (0.73 hours). Curiously, the secondary
peak for the energetically balanced scheme is almost exactly four times the frequency observed for the TRAP(2,3,2)
scheme. Since the secondary peak for the TRAP(2,3,2) scheme is closer in frequency to the low frequency modes,
which exhibit very similar behaviour for both schemes, there is a possibility that this may alias onto the low frequency
time scales of the baroclinic motions.
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Figure 7: Baroclinic instability test case: Comparison of potential to kinetic energy power exchanges for the energetically balanced and
TRAP(2,3,2) HEVI schemes; left: real space representation from day 9 to 10, right: amplitude of the corresponding Fourier modes from days 6
to 10.

5.2. 3D Rising bubble

In order to verify the scheme for non-hydrostatic dynamics this is applied to a standard test case for a 3D rising
bubble, which is initialised as a small perturbation in potential temperature against a constant background value, with
the Exner pressure specified so as to satisfy hydrostatic balance [2, 31, 32]. The domain is configured as a horizontally
periodic box of size 1000m × 1000m × 1500m with a flat bottom and top with homogeneous boundary conditions,
and discretised using 24 × 24 elements of degree p = 3 in the horizontal and 150 vertical levels, with a time step of
∆t = 0.01s. No dissipation of any kind is applied in the vertical, or to the potential temperature advection equation.
However the energy conserving upwinding is applied to the potential temperature diagnostic equation (62) in order to
suppress the development of oscillations associated with non-hydrostatic motions. This is not applied to the baroclinic
instability test case, which evolves in a predominantly hydrostatic regime.

Since the implicit vertical time stepping scheme conserves energy [9], and the energetic exchanges are exactly
balanced in the horizontal, no stabilisation is required of the energetically balanced HEVI scheme, provided that
the horizontal CFL condition is satisfied. This is in contrast to the TRAP(2,3,2) scheme, which requires a hori-
zontal biharminic viscosity in order suppress the onset of numerical instability. In order to directly compare to the
TRAP(2,3,2) scheme, simulations of the energetically balanced HEVI scheme have been run both with and without
horizontal biharmonic viscosity on the momentum equation [11], with a coefficient of 624.78m4s−1.

While the results qualitatively match those previously published in terms of both the position and deformation of
the bubble [31, 32], in the absence of potential temperature upwinding a secondary oscillation develops in the wake of
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Figure 8: 3D rising bubble: Potential temperature cross section at y = 0 at times 200s (left) and 400s (right).

the bubble as it steepens, as shown in fig. 8. This oscillation is also observed for the TRAP (2,3,2) scheme [9]. The
evolution of the energy and power exchanges (computed as in [8]) are shown in fig 9 , and clearly show the signature
of the high frequency internal gravity wave, as well as the increase in vertical kinetic energy and decrease in potential
energy which represent the ascension of the bubble.

0 50 100 150 200 250 300 350 400
time (s)

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

E-
E(

t=
0)

1e8

K (horiz.)
K (vert.)
P
I
Total

0 50 100 150 200 250 300 350 400
time (s)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

po
we

r (
kg

m
2 s

3 )

1e8

P to K
I to K (horiz)
I to K (vert)

Figure 9: 3D rising bubble: Difference in energy from initial value (left), and power exchanges associated with the changes in potential to kinetic
and internal to kinetic energy with time (right). The power exchanges are computed as the discrete analogues of the relations g

∫
z∂(ρw)/∂zdΩ and∫

∇ · (ρuθ)ΠdΩ respectively.

5.2.1. Upwinding of potential temperature
In order to suppress the spurious potential temperature oscillations observed in fig. 8 in an energetically consistent

manner, the upwinding formulation presented in section 4 is applied to the rising bubble test case. As observed in fig.
10, this upwinding formulation effectively clears up the spurious overshoots and oscillations. Since the upwinding is
performed within the skew-symmetric operator, as detailed in (46), the energy conservation errors are almost identical
to those for the original formulation, as shown in fig. 11.

Fig. 11 also shows the energy conservation errors for the TRAP(2,3,2) scheme (with biharmonic viscosity) and
the energetically balanced scheme in the absence of viscosity. While horizontal biharmonic viscosity is necessary
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to stabilise the TRAP(2,3,2) scheme, the energetically balanced scheme may be run entirely without dissipation.
As observed, the difference in the energy conservation error of the energetically balanced scheme with and without
biharmonic viscosity is small compared to the overall energy conservation error, indicating that most of the energy
conservation error arises from the explicit time stepping of the horizontal velocity, and not the dissipation term. In all
cases the total energy of the system decreases with time.

This figure also shows the power exchanges for the TRAP(2,3,2) scheme. These are almost identical to those for
the energetically balanced scheme shown in fig. 9, such that the difference in the time scale of the internal gravity
mode observed for the baroclinic test case is not observed for the high resolution rising bubble test case, for which the
ratio of the horizontal and vertical resolutions is closer to unity, and the vertical time scales are effectively resolved by
the time step.
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Figure 10: 3D rising bubble: Upwinded potential temperature cross section at y = 0 at times 200s (left) and 400s (right).
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Figure 11: 3D rising bubble: Comparison of energy conservation errors for the original and upwinded potential temperature formulations, as well
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6. Conclusions

A new horizontally explicit/vertically implicit time splitting scheme for non-hydrostatic atmospheric dynamics
is introduced. The scheme allows for the exact balance of energetic exchanges when coupled with a spatial and
vertical time integration scheme that preserve the skew-symmetric property of the Hamiltonian formulation of the
equations of motion. However since the choice of horizontal velocity for which exchanges balance differs from
the horizontal velocity at the end of the time step, the scheme still permits an energy conservation error. Linear
eigenvalue analysis shows that the second order scheme improves upon the existing second order trapezoidal HEVI
splitting by ensuring the neutral stability of all buoyancy modes, and all acoustic modes below a certain horizontal
CFL number. Comparison to a horizontally third order, vertically second order trapezoidal splitting for the full 3D
compressible Euler equations on the sphere shows that both schemes exhibit a secondary oscillation in the potential to
kinetic power exchanges, associated with an internal gravity mode, however this oscillation has a temporal frequency
approximately four times faster for the new energetically balances scheme, such that the time scales of the oscillation
for the trapezoidal scheme are closer to those of the baroclinic motions.

An energetically consistent formulation for potential temperature upwinding is also presented, by which the test
functions are evaluated at vertically downstream locations. This ensures that spurious oscillations in potential tem-
perature can be removed for vertical motions at non-hydrostatic regimes. This upwinding is applied within the skew-
symmetric formulation, so as to suppress oscillations associated with vertical motions without altering the energetic
properties of the model, for which the exchanges remain balanced.

Notably, for the rising bubble test case, which is run on an affine geometry, the energetically balanced HEVI
scheme may be run stably without dissipation of any kind. For the baroclinic instability test case on the sphere
however, horizontal biharmonic viscosity is still required in order to stabilise the simulation. Since the model uses
inexact integration, and the sphere is represented as a non-affine geometry, it is possible that aliasing errors may
provide an additional source of instability. As part of future work exact integration will be employed in order to
determine if the scheme can be run entirely without dissipation for the baroclinic instability test case on the sphere
also.

The code used in this article is publicly available at: https://github.com/davelee2804/MiMSEM.

Appendix A: Temporal discreisation of the energetically balanced HEVI scheme

For the benefit of readers who are not familiar with compatible finite element methods, in this appendix we
present a formulation of the energetically balanced HEVI scheme that is discretised in the temporal dimension only.
Note that in order to preserve energetic balance a spatial discretisation that respects the skew-symmetric structure of
the equations of motion must also be employed. The temporal scheme is expressed as follows:

Step 1: Explicit horizontal momentum solve

v′ = vn − ∆t qn
⊥ × Vn + ∆t qn

‖
Wn − ∆t ∇hΦn − ∆t θn∇hΠn (63)

Step 2: Implicit vertical solve (including horizontal divergence)

wn+1 = wn − ∆t ∂zΦ − ∆t θn+1/2∂zΠ − ∆t qn+1/2
‖

· V (64a)

ρn+1 = ρn − ∆t ∂zW − ∆t ∇h · V (64b)

Θn+1 = ρn − ∆t ∂z(θn+1/2W) − ∆t ∇h · (θn+1/2V) (64c)
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with

V =
1
6

(
2ρnvn + ρn+1vn + ρnv′ + 2ρn+1v′

)
(65a)

W =
1
6

(
2ρnwn + ρn+1wn + ρnwn+1 + 2ρn+1wn+1

)
(65b)

Φ =
1
6

(
vnvn + vnv′ + v′v′ + wnwn + wnwn+1 + wn+1wn+1

)
+ gz (65c)

Π =
1
2

(
Πn + Πn+1

)
(65d)

Step 3: Explicit horizontal momentum solve

vn+1 = vn − ∆t qn+1/2
⊥ × V + ∆t qn

‖
W − ∆t ∇hΦ − ∆t θn+1/2∇hΠ (66)

where ∇h is the horizontal gradient operator.
Note that if energetic balance is not of concern, a standard time centered construction of the mass flux terms, V,

W and Bernoulli function, Φ at n + 1/2 should also preserve second order accuracy. Also note that a simple first
order Euler integration is used here in step 1, which is sufficient to construct a second order mass flux and Bernoulli
function.

Appendix B: Entropy conservation for the variational form of the compressible Euler equations

The time derivative of the internal energy is derived by multiplying the density-weighted potential temperature
advection equation,

∂ρθ

∂t
+ ∇ · (ρuθ) = 0, (67)

by the Exner pressure,
δI
δΘ

= Π = cp

(
Rρθ
p0

)R/cv

, (68)

such that the internal energy, I evolves as

∂I
∂t

=

〈
δI
δΘ

,
∂Θ

∂t

〉
=

〈
Π,

∂ρθ

∂t

〉
=

cv

cp

∂

∂t

∫
ρθΠdΩ = −〈Π,∇ · (uρθ)〉, (69)

since R = cp − cv and Θ = ρθ. This expression may then be expanded as:

cv

cp

∂

∂t

∫
ρθΠdΩ = −〈Π, θ∇ · (ρu) + ρu · ∇θ〉 (70a)

= −

〈
ρθΠ,

1
ρ
∇ · (ρu) +

u
θ
· ∇θ

〉
(70b)

=

〈
ρθΠ,

∂ log(ρ)
∂t

− u · ∇ log(θ)
〉

(70c)

The left hand side of this expression may be re-arranged as:

cv

cp

∫
∂ρθΠ

∂t
dΩ =

cv

cp

〈
ρθΠ

ρθΠ
,
∂ρθΠ

∂t

〉
=

cv

cp

〈
ρθΠ,

∂ log(ρθΠ)
∂t

〉
=

〈
ρθΠ,

∂ log(ρ)
∂t

− u · ∇ log(θ)
〉

(71)

For ρθΠ ∈ L2(Ω), cancellation of this factor from both sides yields the variational expression

cv

cp

〈
γ,
∂ log(ρθΠ)

∂t

〉
=

〈
γ,
∂ log(ρ)
∂t

− u · ∇ log(θ)
〉

∀γ ∈ L2(Ω) (72)
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Recalling the equation of state gives

ρθΠ = cp

(
R
p0

)R/cv

(ρθ)cp/cv , (73)

〈
γ,
∂ log(ρθ)

∂t

〉
=

〈
γ,
∂ log(ρ)
∂t

− u · ∇ log(θ)
〉

∀γ ∈ L2(Ω) (74)

which is further simplified as: 〈
γ,
∂ log(θ)
∂t

+ u · ∇ log(θ)
〉

= 0 ∀γ ∈ L2(Ω) (75)

Recalling the original definition of the entropy then gives〈
γ,
∂s
∂t

+ u · ∇s
〉

= 0 ∀γ ∈ L2(Ω) (76)

such that entropy is materially conserved. Setting the test function as the density γ = ρ in the above expression, and
multiplying the continuity equation by the entropy, we have〈

ρ,
∂s
∂t

+ u · ∇s
〉

= 0 (77a)〈
s,
∂ρ

∂t
+ ∇ · uρ

〉
= 0. (77b)

Adding this to the continuity equation, and recalling that U := ρu gives∫
∂ρs
∂t

+ ∇ · (uρs)dΩ = 0, (78)

which yields an additional conservation law for the entropy function-entropy flux pair ρs,uρs [33].
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