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Abstract

We present a numerical method for two-phase incompressible Navier–Stokes equation with jump discontinuity
in the normal component of the stress tensor and in the material properties. Although the proposed method is only
first-order accurate, it does capture discontinuity sharply, not neglecting nor omitting any component of the jump
condition. Discontinuities in velocity gradient and pressure are expressed using a linear combination of singular
force and tangential derivatives of velocities to handle jump conditions in a fully implicit manner. The linear system
for the divergence of the stress tensor is constructed in the framework of the ghost fluid method, and the resulting
saddle-point system is solved via an iterative procedure. Numerical results support the inference that the proposed
method converges in L∞ norms even when velocities and pressures are not smooth across the interface and can
handle a large density ratio that is likely to appear in a real-world simulation.

Keywords Two-phase flows, Incompressible Navier-Stokes, Finite difference method, Level-set method

1 Introduction
Two-phase incompressible flows are ubiquitous in real life, and thus numerical simulations of these flows are crucial in
applications such as oil–water core annular flow, biofluid dynamics, and analysis of gas bubbles rising in water. One
popular approach to handling the interface between the two fluids involved is to use a body-fitted mesh. However,
in this study, we will narrow our interest to the Cartesian grid method, which is free of mesh generation. The very
early work of Peskin [29], which is also known as the immersed boundary method, is a typical example of a Cartesian
grid method. It uses numerical δ-functions to handle singular forces on the interface between fluid and solid. This
idea was utilized together with the front-tracking method [40, 41] and the level-set method [33, 34] for the numerical
simulation of incompressible two-phase flows. However, such an approach using smoothed δ-functions cannot avoid
numerical diffusion near the interfaces and eventually encounters interfaces with non-zero thicknesses.

To avoid the smearing out of the interfaces involved in these incompressible two-phase flows, sharp capturing
methods have been developed by researchers over the years. For example, the immersed interface method (IIM) [18]
has earned a reputation as a second-order finite difference method for elliptic interface problems. The fundamental
idea of IIM has been applied to the incompressible Stokes equation [19] and Navier–Stokes equation [17, 22], on the
assumption that the viscosities and densities of the two fluids are identical. Later, introducing augmented variables
together with the interfaces, Li et al. [21] used IIM to solve Stokes equations with discontinuous viscosities. However,
instead of the marker-and-cell (MAC) grid, a collocated grid was used, which caused periodic boundary conditions
to be imposed for the pressure. To address this issue, solution methods utilizing the MAC grid have been developed
for the two-phase Stokes equation [4, 38]. For Navier–Stokes equations with discontinuous viscosities, IIM has also
demonstrated its success in capturing non-smooth velocities and pressures [36,37], but relatively less work is done when
the density is discontinuous across the interface. (For more detailed explanations and applications of IIM, see [20].)

Another famous sharp capturing method is the ghost fluid method (GFM), which was first introduced by Fedkiw
et al. [8] for capturing contact discontinuity in compressible flows. Its concept was later employed in solving elliptic
interface problems [23]. For incompressible flows [15], techniques by [23] have been applied in approximating viscous
terms and solving Poisson’s equations of pressure from the projection method [6], resulting in the sharp capture of
the surface tension. Whereas the viscous term was discretized explicitly in GFM, Sussman et al. [35] introduced sharp
capturing methods that involve semi-implicit treatments of the viscous term, allowing for larger time steps. Even
though the details of the implementations by [15] and [35] differ, Lalanne et al. [16] have demonstrated that the two
approaches are actually equivalent.

Two pioneering works on simulating incompressible flows in the framework of the level-set/ghost fluid method [15,35]
used the projection method to solve for fluid velocity. However, it should be noted that when the projection method is
used, the jump conditions of intermediate or predictor velocities differ from those of the original velocities. Nevertheless,
the same jump conditions are applied occasionally to simulate two-phase flows. To impose jump conditions accurately,
approaches that are alternative to the projection method have been created. One example is the virtual node method,
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which was first developed for elliptic interface problems [2, 12] and then extended to incompressible flows [1, 31]. It
directly discretizes the Navier–Stokes equation together with the divergence-free condition to obtain a saddle-point
linear system of velocity and pressure. On the other hand, Saye has used the gauge method to simulate incompressible
flows [30] where the jump conditions were reformulated with auxiliary and gauge variables. Recently, in [39], a modified
projection method was developed for a sharp capturing method that uses the quad/octree grid. The projection step
was repeated until the corrected velocity and pressure satisfied the jump conditions. The researchers also remarked
that many existing numeric methods omit some parts of the jump conditions to simplify implementation.

In this paper, we introduce a new sharp capturing method for two-phase flows, characterized by the accurate and
fully implicit treatment of jump conditions. Different from [30, 39], our method shares similarities with the virtual
node method. That is, instead of introducing an auxiliary variable, our method discretizes the divergence of the stress
tensor directly in the framework of GFM. Expressions for the jump conditions of velocity gradient and pressure using
tangential derivatives of velocities are calculated to develop a ghost fluid method for viscous terms and gradients of
pressure. We note that the proposed method is only first-order accurate but considers jump conditions accurately
and implicitly. We begin in section 2 with equations on two-phase incompressible flows and on the movements of
the interfaces. Section 3 explains the details of the proposed method. Section 4 then follows with descriptions and
accounts of the numerical experiments.

2 Governing Equations
We consider two incompressible, immiscible, and viscous flows on Ω,

ρ±(U + U · ∇U) = µ± 4U−∇p+ f on Ω±,

∇ ·U = 0 on Ω.
(1)

In addition to (1), jump conditions are given at the interface Γ:

[U] = 0,

[σn] = G,
(2)

for stress tensor σ = µ
(
∇U +∇UT

)
− pI. [V] = V+−V− denotes the jump condition along the interface, where the

superscripts "+" and "−" refer to Ω±. Here, n is a normal to the interface, and G is a singular force term across the
interface. We are especially interested in the case where f = −ρg and G = βκn, where g refers to gravity, κ denotes
the mean curvature of the interface, and β is a surface tension coefficient.

In this study, the level-set method [27] is used to capture the interface of two different fluids as a zero level-set of
the continuous function φ. Thus, the interface and two sub-domains at time t can be represented as

Γ = {x ∈ Ω|φ(x, t) = 0},
Ω+ = {x ∈ Ω|φ(x, t) > 0},
Ω− = {x ∈ Ω|φ(x, t) < 0}.

(3)

An advantage of the level-set method is that the evolution of the interface Γ with the fluid velocity U can be formulated
as

φt + U · ∇φ = 0. (4)

Furthermore, geometric quantities of the interfaces, such as the normal n and curvature κ in (2), are calculated using
the level-set function:

n =
∇φ
|∇φ|

,

κ = ∇ · n.
(5)

For a more detailed explanation and application of the level-set method, see [10,26].

3 Numerical Methods
We use a staggered MAC grid [11] for spatial discretization. Pressure p and level-set function φ are placed in the cell
centers, whereas the values from U are stored on the cell faces. Figure 1 illustrates the locations of the variables in
2D.

Overall discretization of the proposed method is similar to that of [31]. At the beginning of each time step, φn is
advected to φn+1 via the discretization of (4) with third-order total variation diminishing (TVD) Runge-Kutta [32] in
time and fifth-order weighted essentially non-oscillatory (WENO) scheme [14] in space. To discretize (4), the velocity
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Figure 1: MAC grid

at cell center needs to be defined, which will be done later. After the advection, φn+1 is reinitialized through the
solving of the partial differential equation

φξ + sign(φ)(|∇φ| − 1) = 0 (6)

for pseudo time ξ. Discretization of (6) follows that of [25], which uses second-order essentially non-oscillatory
(ENO) scheme and TVD-RK2 with subcell resolution technique. The φn+1 on the cell faces are evaluated via linear
interpolation of the value defined at the cell center:

φn+1
i+ 1

2 ,j
=
φn+1
i,j + φn+1

i+1,j

2
,

φn+1
i,j+ 1

2

=
φn+1
i,j + φn+1

i,j+1

2
.

These values will determine if the center of a cell face belongs to either Ω+ or Ω−. For the Navier–Stokes equation,
we use semi-Lagrangian with backward difference formula to construct a saddle-point system of U and p:

ρn+1U
n+1 −Un

d

∆t
= (µ4U−∇p+ f)

n+1
,

(∇ ·U)
n+1

= 0.

(7)

Here, Un
d is an approximation of Un at departure point xd traced backward along the characteristic curve dx

dt = U
from time level tn+1. Geometric quantities (5) that appear in the jump condition are approximated with φn+1 using
second-order central differences. Because the Navier–Stokes equation is implicitly discretized, whether the grid point
belongs to Ω+ or Ω− is determined by the sign of φn+1 rather than that of φn.

Discretizing viscous terms and pressure using jump condition (2) is quite a challenging problem. When the viscous
term is treated explicitly, the higher truncation error near the interface does not spread out. Furthermore, as the grid
is refined, a significant restriction is imposed on the time step. On the other hand, if the viscous term is discretized
implicitly using the projection method, the jump condition of U will differ from the jump condition of the intermediate
or predictor velocity. However, this difference is sometimes ignored. Direct discretization of Navier–Stokes equation
(7) enables us to treat the viscous term implicitly with accurate jump conditions.

In the following subsections, we will first derive a jump condition equivalent to (2) without neglecting any com-
ponent. To emphasize the sharp discretization of viscous terms and pressure using the jump condition, a solution
method for two-phase steady-state Stokes equations that involve these jump conditions will be presented. Afterward,
with some modifications, the numerical algorithm for (7) will be completed.
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3.1 Derivation of jump conditions
A jump condition equivalent to (2) is first derived through the replacement of normal derivatives with a linear com-
bination of Cartesian and tangential derivatives, as was done for the elliptic interface problem in [5, 7]. The normal
and tangent vectors of the interface are then defined as n = (nx, ny) and τ = (−ny, nx), respectively.

First, the inner product of (2) and τ is calculated:

G · τ = [µ(τ · ∇U · n + n · ∇U · τ )]

= [µ(−nyun + nxvn + nxuτ + nyvτ )].
(8)

Here, un = ∇u · n, uτ = ∇u · τ , vn = ∇v · n, vτ = ∇v · τ . Because divergence is invariant under rotation,

nxun + nyvn − nyuτ + nxvτ =
∂ (U · n)

∂n
+
∂ (U · τ )

∂τ
= ∇ ·U = 0. (9)

ny is multiplied to (8), and nyvn is substituted for −nxun + nyuτ − nxvτ :

nyG · τ =
[
µ(−un + 2nxnyuτ + (n2

y − n2
x)vτ )

]
.

Similarly, the following equation is obtained:

nxG · τ =
[
µ(vn + 2nxnyvτ + (n2

x − n2
y)uτ )

]
.

The jump conditions of the derivatives in the Cartesian directions can be decomposed into conditions in the normal
and tangential directions:

[µux] = [µun]nx − [µuτ ]ny

= [µun]nx − [µ]uτny

[µuy] = [µun]ny + [µuτ ]nx

= [µun]ny + [µ]uτnx.

The jump condition [u] = [v] = 0 is used, resulting in [µuτ ] = [µ]u−τ + µ+[uτ ] = [µ]uτ . The superscripts "+" and
"−" for uτ are dropped because [uτ ] = 0. When these resulting expressions are combined, the jump condition for the
Cartesian component of [µ∇u] is produced:

[µux] = [µ](2n2
xny − ny)uτ + [µ](nxn

2
y − n3

x)vτ − nxnyG · τ ,
[µuy] = [µ](2nxn

2
y + nx)uτ + [µ](n3

y − n2
xny)vτ − n2

yG · τ .
(10)

Similarly, the formula for [µ∇v] can be derived:

[µvx] = [µ](−2n2
xny − ny)vτ + [µ](nxn

2
y − n3

x)uτ + n2
xG · τ ,

[µvy] = [µ](−2nxn
2
y + nx)vτ + [µ](n3

y − n2
xny)uτ + nxnyG · τ .

(11)

Lastly, the inner product of (2) and n is calculated:

G · n = [2µ(n · ∇U · n)− p].

From (9),

n · ∇U · n = −τ · ∇U · τ = −nyuτ + nxvτ .

Therefore,
[p] = −2[µ](−nyuτ + nxvτ )−G · n. (12)

Through this formula, we express the jump condition [µ∇U] , [p] as a linear combination of the singular force G and
the tangential derivatives of the velocities.

Remark The jump condition formula can be extended to three dimensions with few modifications. After constructing
two tangent vectors with respect to the normal vector, one can derive two jump conditions of velocities, similar to (8),
and obtain a divergence-free condition in the normal and tangent coordinates. With an appropriate linear combination
of these three equations, jump conditions for the velocity gradients can be obtained. For the jump condition of pressure,
we first calculate the inner product of the normal vector and (2). After replacing the normal derivatives of the velocities
with the tangential derivatives of the velocities using divergence-free condition, we obtain a three-dimensional version
of (12).
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3.2 Numerical methods for two-phase steady-state Stokes equation
Ignoring the material derivative with density in (1), we consider the incompressible two-phase steady-state Stokes
equation:

µ± 4U−∇p+ f = 0 on Ω±,

∇ ·U = 0 on Ω,

[σn] = G on Γ.

(13)

Here, we introduce numerical methods to solve (13) in a sharp manner. The idea of xGFM [7] is extended to jump
conditions where U and p are coupled together. We construct an iterative method that corrects the jump conditions
and solutions together for every iterative step. Details of the algorithms will be presented under the assumption of
two dimensions, whereas extension to three dimensions will be straightforward.

3.2.1 Visiting two-phase steady-state Stokes equation with ghost fluid method

Under the assumption of two dimensions, the following are considered:

µ± 4 u− px = −f1 on Ω±

µ± 4 v − py = −f2 on Ω±

ux + vy = 0 on Ω±
(14)

with the jump conditions
[µ∇u] = c on Γ

[µ∇v] = d on Γ

[p] = a on Γ

(15)

instead of (2). Although (14) with jump conditions (15) result in over-determined partial differential equations, GFM
is a suitable method for solving such a problem. When the methodologies of GFM are followed, (14) with (15) may
be discretized as follows:

(µ4 u)GFM
i+ 1

2 ,j
− pi+1,j − pi,j

∆x
= −f1(xi+ 1

2
, yj) + cu + au

(µ4 v)GFM
i,j+ 1

2
− pi,j+1 − pi,j

∆y
= −f2(xi, yj+ 1

2
) + dv + av

ui+ 1
2 ,j
− ui− 1

2 ,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆y
= 0.

(16)

Here, µ4 u and px at (xi+ 1
2
, yj) are approximated as (µ4 u)GFM

i+ 1
2 ,j
− cu and pi+1,j−pi,j

h + au, respectively. (µ4 u)GFM
i+ 1

2 ,j

denotes the discrete Laplacian that appears in GFM [23], and cu is the correction term added to the right-hand side.
If (xi+ 1

2
, yj) ∈ Ω± is assumed,

(µ4 u)GFM
i+ 1

2 ,j
=
(
µ̂R(ui+ 3

2 ,j
− ui+ 1

2 ,j
) + µ̂L(ui− 1

2 ,j
− ui+ 1

2 ,j
)
)/

∆x2 +(
µ̂T (ui+ 1

2 ,j+1 − ui+ 1
2 ,j

) + µ̂B(ui+ 1
2 ,j−1 − ui+ 1

2 ,j
)
)/

∆y2 ,

cu =cR + cL + cT + cB ,

where

µ̂R =

{
µ± if φi+ 1

2 ,j
φi+ 3

2 ,j
> 0)

µ+µ−

µ±θR+µ∓(1−θR) if φi+ 1
2 ,j
φi+ 3

2 ,j
≤ 0)

and

cR =

{
0 if φi+ 1

2 ,j
φi+ 3

2 ,j
> 0)

±µ̂R (1−θR)[µux]R
µ∓∆x if φi+ 1

2 ,j
φi+ 3

2 ,j
≤ 0)

for θR =
|φ

i+ 1
2
,j
|

|φ
i+ 1

2
,j
|+|φ

i+ 3
2
,j
| . µ̂L, µ̂T , µ̂B and cL, cT , cB are defined similarly. (For a more detailed explanation, see [23].)

In a similar fashion, the correction term for px is determined as

au = aL + aR,
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where

aR =

{
0 if φi+ 1

2 ,j
φi+1,j > 0

∓ [p]R
∆x if φi+ 1

2 ,j
φi+1,j < 0

,

aL =

{
0 if φi+ 1

2 ,j
φi,j > 0

± [p]L
∆x if φi+ 1

2 ,j
φi,j < 0

.

The formulation of (µ4 v)GFM
i,j+ 1

2

, dv, av is similar to that of (µ4 u)GFM
i+ 1

2 ,j
, cu, au. For simplicity, (16) is rewritten as

A(u, v, p) = b(a, c,d, f). (17)

Notably, A is multi-linear with respect to u, v, and p, whereas b is multi-linear with respect to a, c, and d.

Remark Note that linear system (16) is symmetric. A correction term is not added to the divergence-free equation
ux + vy = 0. Furthermore, a O(1) truncation error occurs near the interface. If one uses jump conditions [µux], [µvy]
to discretize a divergence-free equation, the truncation error near the interface becomes O(h) for h = max(∆x,∆y)
but breaks the symmetry of the matrix when µ− and µ+ are different. Because µ4U −∇p + f = 0 are discretized
with O(1) truncation error near the interface, considering the jump condition for a divergence-free equation will not
increase the order of convergence dramatically, but rather, will make the linear system difficult to solve by creating a
non-symmetric linear system.

3.2.2 Velocity extrapolation algorithm and tangential derivative at the interface

Here, the velocity extrapolation algorithm of [7] is revisited. The following pseudo time-dependent partial differential
equation is first considered:

∂û

∂t
+ sign(φ)n · ∇û = 0,

∂v̂

∂t
+ sign(φ)n · ∇v̂ = 0,

û = u, v̂ = v on Γ.

(18)

The steady-state solution of (18) can be viewed as an extrapolation of u, v off the interface and will be used to
approximate tangential derivatives of u, v on the interface. Equation (18) is then discretized using a first-order upwind
scheme. For example, if φi+ 1

2 ,j
> 0 is assumed, it is discretized as

ûl+1
i+ 1

2 ,j
− ûl

i+ 1
2 ,j

∆ti+ 1
2 ,j

+ (n+
xD
−
x û+ n−xD

+
x û) + (n+

y D
−
y û+ n−y D

+
y û) = 0 (19)

for n+
x = max(nx, 0), n−x = min(nx, 0), and similarly defined n±y . The boundary condition of (18) is applied on Γ using

a sub-cell resolution technique:

D−x ûi+ 1
2 ,j

=


ûl

i+ 1
2
,j
−ûl

i− 1
2
,j

∆x if φi+ 1
2 ,j
φi− 1

2 ,j
> 0

ûl

i+ 1
2
,j
−uΓ

θL∆x if φi+ 1
2 ,j
φi− 1

2 ,j
< 0

. (20)

θL =
|φ

i+ 1
2
,j
|

|φ
i+ 1

2
,j
|+|φ

i− 1
2
,j
| is measured to approximate the location of the interface. The interfacial value uΓ is obtained

according to the formula in [23]:

uΓ =
(
µ2θLui+ 1

2 ,j
+ µ1(1− θL)ui− 1

2 ,j
− sign(φi+ 1

2 ,j
) ([µux] (1− θL)θL∆x)

)/
µ̂

for

µ1 =

{
µ+ if φi+ 1

2 ,j
> 0

µ− if φi+ 1
2 ,j

< 0
, µ2 =

{
µ+ if φi− 1

2 ,j
> 0

µ− if φi− 1
2 ,j

< 0
, µ̂ = µ2θL + µ1(1− θL).

Other derivatives and interface boundary conditions are computed similarly. To avoid small time-stepping in the
whole domain, the local pseudo time step is set to ∆ti+ 1

2 ,j
= CFL×min(θR∆x, θL∆x, θB∆y, θT∆y), where θL = 1 if

φi+ 1
2 ,j
φi− 1

2 ,j
> 0. The idea of taking a grid-dependent time step and using it in reinitialization can be found in [24].

Equation (18) is solved only on the grid points near the interface, and uext, vext is denoted as the steady-state
solution of (18). Specifically, extrapolations were performed for the points where |φi+ 1

2 ,j
|, |φi,j+ 1

2
| ≤ 5 max(∆x,∆y)
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and uext
i+ 1

2 ,j
= ûl+1

i+ 1
2 ,j

when |ûl+1
i+ 1

2 ,j
− ûl

i+ 1
2 ,j
| < ε for every i, j with tolerance ε. After steady-state solutions uext and

vext are obtained, the followings are defined:

uext
τ = ∇uext · τ , vext

τ = ∇vext · τ (21)

at grid points (xi+ 1
2
, yj) for

∇uext(xi+ 1
2
, yj) =

uext
i+ 3

2
,j
−uext

i− 1
2
,j

2∆x
uext
i,j+1−u

ext
i,j−1

2∆y

 , ∇vext(xi+ 1
2
, yj) =

 vext
i+1,j+ 1

2
+vext

i+1,j− 1
2
−vext

i,j+ 1
2
−vext

i,j− 1
2

2∆x
vext
i+1,j+ 1

2
−vext

i+1,j− 1
2

+vext
i,j+ 1

2
−vext

i,j− 1
2

2∆y

 .

τ i+ 1
2 ,j

= (−ny, nx)i+ 1
2 ,j

is obtained from n = (nx, ny)i+ 1
2 ,j

computed with the level-set function φ. Because the steady-
state solution uext, vext is a reasonable extrapolation of u, v off the interface, uext

τ , vext
τ can be viewed as an extension

of uτ , vτ at Γ to the grid points near the interface. uext
τ , vext

τ at (xi, yj+ 1
2
) can be computed with few modifications.

Note that sign(φ)n does not depend on û, v̂, whereas ûl+1
i+ 1

2 ,j
linearly depends on ûl

i+ 1
2 ,j

and uΓ. Therefore, we may
conclude that uext

τ is a linear combination of [µux] , [µuy], and u.

3.2.3 Iterative procedure

Steady-state Stokes equations (14) with jump condition (2) can be reformulated into equivalent systems of partial
differential equations using (10), (11), and (12) to develop iterative methods:

µ4 u− px = −f1 on Ω±

µ4 v − py = −f2 on Ω±

ux + vy = 0 on Ω±
(22)

with the jump condition

[µ∇u] =

(
[µ](2n2

xny − ny)uτ +[µ](nxn
2
y − n3

x)vτ −nxnyG · τ
[µ](2nxn

2
y + nx)uτ +[µ](n3

y − n2
xny)vτ −n2

yG · τ

)
on Γ

[µ∇v] =

(
[µ](−2n2

xny − ny)vτ +[µ](nxn
2
y − n3

x)uτ +n2
xG · τ

[µ](−2nxn
2
y + nx)vτ +[µ](n3

y − n2
xny)uτ +nxnyG · τ

)
on Γ

[p] = −2[µ](−nyuτ + nxvτ )−G · n on Γ.

(23)

Equation (22) is discretized according to 3.2.1, where jump condition (23) is discretized through the setting of uτ =
uext
τ , vτ = vext

τ obtained from 3.2.2. Although the discretized equation is linear, the solution of (22) depends on the
jump condition, whereas jump condition (23) depends on the solution, which makes the linear system difficult to solve.
Therefore, the solution of the Stokes equation is determined via the following iterative steps.

Given ak, ck,dk, the value of (ũk+1, ṽk+1, p̃k+1) is solved through the discretization of the following systems ac-
cording to 3.2.1 :

µ4 ũk+1 − p̃k+1
x = −f1 on Ω±

µ4 ṽk+1 − p̃k+1
y = −f2 on Ω±

ũk+1
x + ṽk+1

y = 0 on Ω±[
µ∇ũk+1

]
= ck on Γ

[µ∇ṽk+1] = dk on Γ

[p̃k+1] = ak on Γ.

(24)

Afterward, via the velocity extrapolation algorithm of 3.2.2, the steady-state solution ũext, ṽext, with boundary con-
dition given by the interface value of ũk+1 and ṽk+1, is computed. With the use of the relations (10), (11), and (12),
the following equations are defined:

c̃k+1 =

(
[µ](2n2

xny − ny)ũext
τ +[µ](nxn

2
y − n3

x)ṽext
τ −nxnyG · τ

[µ](2nxn
2
y + nx)ũext

τ +[µ](n3
y − n2

xny)ṽext
τ −n2

yG · τ

)
d̃k+1 =

(
[µ](−2n2

xny − ny)ṽext
τ +[µ](nxn

2
y − n3

x)ũext
τ +n2

xG · τ
[µ](−2nxn

2
y + nx)ṽext

τ +[µ](n3
y − n2

xny)ũext
τ +nxnyG · τ

)
ãk+1 =− 2[µ](−nyũext

τ + nxṽ
ext
τ )−G · n.

(25)

c̃k+1 and d̃k+1 are defined at grid points (xi+ 1
2
, yj) and (xi, yj+ 1

2
), respectively.
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The residual vectors are then defined as follows:

r̃k+1 = A(ũk+1, ṽk+1, p̃k+1)− b(ãk+1, c̃k+1, d̃k+1, f),

rk = A(uk, vk, pk)− b(ak, ck,dk, f).

The value of ηk that minimizes the 2-norm of

rk+1 = (1− ηk)rk + ηkr̃
k+1

is computed, resulting in

ηk =
rk · (rk − r̃k+1)

‖r̃k+1 − rk‖22
. (26)

The (k+ 1)-th iterative solution is defined to be a linear combination of the solutions with weights 1− ηk and ηk. For
example,

uk+1 = (1− ηk)uk + ηkũ
k+1.

vk+1, pk+1, ak+1, ck+1, and dk+1 are computed similarly. Because of the multi-linear property of (17), the following
equation is obtained:

rk+1 = A(uk+1, vk+1, pk+1)− b(ak+1, ck+1,dk+1, f). (27)

The iterative procedure is stopped if
∥∥rk+1

∥∥
2
or
∥∥(uk+1, vk+1, pk+1)− (uk, vk, pk)

∥∥
∞ goes under the threshold.

Remark The minimum residual method (MINRES) [28] is used to solve linear system (24) for each iterative step.
Because A has both positive and negative eigenvalues, incomplete Cholesky decomposition is not available. For
example, given the matrix

M =

−(µ4)GFM 0 0
0 −(µ4)GFM 0
0 0 αI

 (28)

for positive value α, M is positive-definite, and thus we set the preconditioner of A for the MINRES method as an
incomplete Cholesky decomposition of M .

3.3 Numerical methods for two-phase incompressible Navier–Stokes equation
We now introduce a new method of discretizing incompressible Navier–Stokes equations using the idea described in
3.2. As mentioned earlier, the basic framework is a semi-Lagrangian with a backward difference formula. For the
Navier–Stokes equation, we assume f = −ρg and G = βκn.

ρn+1
i+ 1

2 ,j

un+1
i+ 1

2 ,j
− und

∆t

 = (µ4 u− px)
n+1

,

ρn+1
i,j+ 1

2

vn+1
i,j+ 1

2

− vnd
∆t

 = (µ4 v − py)
n+1 − ρn+1

i,j+ 1
2

g,

un+1
i+ 1

2 ,j
− un+1

i− 1
2 ,j

∆x
+
vn+1
i,j+ 1

2

− vn+1
i,j− 1

2

∆y
= 0.

(29)

One time-step procedure of the proposed Navier–Stokes (NS) solver is:

1. Compute the departure point and interpolate und , v
n
d .

2. Choose appropriate ρn+1
i+ 1

2 ,j
, ρn+1
i,j+ 1

2

, and construct saddle-point system corresponding to (29) under the condition
that [µ∇U]n+1 is given.

3. Apply iterative procedure to solve for Un+1.

3.3.1 Discretization of convection term

The material derivative du
dt = ut+U·∇u is discretized using a semi-Lagrangian method. To approximate the departure

point of (xi+ 1
2
, yj), first-order backward integration with linearized velocity is used:

(xd, yd) = (xi+ 1
2
, yj)−∆t

(
uni+ 1

2 ,j
, vni+ 1

2 ,j

)
.

8



Figure 2: Visualization of the grid points near the interface when approximating p−x .

vn
i+ 1

2 ,j
is evaluated through a computation of the average v from the nearby four grid points:

vni+ 1
2 ,j

=
vn
i,j+ 1

2

+ vn
i+1,j− 1

2

+ vn
i,j− 1

2

+ vn
i+1,j− 1

2

4
.

und , which is an approximation of un at (xd, yd), is calculated using the quadratic interpolation defined in [25]. The
approximation of vnd does not differ much from that of und .

3.3.2 Construction of linear system before iterative procedure

Based on the notation used in 3.2, the following values are assigned:

a = [p], c = [µ∇u] , d = [µ∇v] .

Furthermore, linear operator A and external force with correction term b(a, c,d, f) are defined to be the same as those
described in 3.2. Under the assumption that the jump condition an+1, cn+1,dn+1 is known, (29) can be discretized asρI 0 0

0 ρI 0
0 0 0

un+1

vn+1

pn+1

−
ρundρvnd

0

 = ∆t

A

un+1

vn+1

pn+1

− b(an+1, cn+1,dn+1,−ρg)

 . (30)

The saddle-point system is obtained when this discretization is organized as follows:ρI −∆t(µ4)GFM 0 ∆t∇hx
0 ρI −∆t(µ4)GFM ∆t∇hy

−∆t∇hx −∆t∇hy 0

un+1

vn+1

pn+1

 =

ρundρvnd
0

−∆tb(an+1, cn+1,dn+1,−ρg). (31)

One natural way of setting ρ is to determine its value based on whether the grid points belong to either Ω+ or Ω−:

ρi+ 1
2 ,j

=

{
ρ− if φn+1

i+ 1
2 ,j

< 0

ρ+ if φn+1
i+ 1

2 ,j
≥ 0

.

However, our choice of ρ near the interface differs from the ρ obtained via the aforementioned method. First, the local
truncation error of px near the interface is considered. The following assumptions are then made: φn+1

i,j < 0, φn+1
i+1,j > 0,

and φn+1
i+ 1

2 ,j
< 0. Let

θ =
|φn+1
i,j |

|φn+1
i,j |+ |φ

n+1
i+1,j |

,

such that xΓ = (xi + θ∆x, yj) approximates the location of the interface. Figure 2 shows a visualization of these grid
points and interface. p−x at (xi+ 1

2
, yj) is approximated as

p−x ≈
pi+1,j − [p]Γ − pi,j

∆x
.

9



The value p±R = p± (xi + θ∆x, yj) is then assigned. Thus,

pi+1,j − [p]Γ − pi,j
∆x

− p−x =
p+
R + (1− θ)p+

x ∆x+− [p]Γ − pi,j
∆x

− p−x +O(∆x)

=
p−R − pi,j

∆x
+ (1− θ)p+

x − p−x +O(∆x)

= θ
p−R − pi,j
θ∆x

+ (1− θ)p+
x − p−x +O(∆x)

= θp−x + (1− θ)p+
x − p−x + o(∆x) = (1− θ)[px] +O(∆x).

If the jump conditions on the Navier–Stokes equation are considered,[
ρ
dU

dt

]
= [µ4U−∇p− ρg]

is determined. Afterward, when the material derivative being continuous across the interface
[
dU
dt

]
= 0 is considered,

[∇p] = − [ρ]

(
dU

dt
+ g

)
+ [µ4U]

is obtained. In real-world simulations, [ρ] dominates [µ4U], and thus ρn+1
i+ 1

2 ,j
is selected to reduce the truncation error

of px:
ρn+1
i+ 1

2 ,j
= θρ− + (1− θ)ρ+.

If the truncation error of the material derivative at (xi+ 1
2
, yj) is then computed,

ρn+1
i+ 1

2 ,j

un+1
i+ 1

2 ,j
− und

∆t

− ρ− du
dt

= (ρn+1
i+ 1

2 ,j
− ρ−)

du

dt
+O(∆x+ ∆y)

= (1− θ)[ρ]
du

dt
+O(∆x+ ∆y)

is obtained, which cancels the local truncation error of px with the [ρ] term. Generally, ρn+1
i+ 1

2 ,j
is defined as

ρn+1
i+ 1

2 ,j
= θρ1 + (1− θ)ρ2

for

ρ1 =

{
ρ− if φn+1

i,j < 0

ρ+ if φn+1
i,j ≥ 0

, ρ2 =

{
ρ− if φn+1

i+1,j < 0

ρ+ if φn+1
i+1,j ≥ 0

and

θ =
|φn+1
i,j |

|φn+1
i,j |+ |φ

n+1
i+1,j |

.

ρn+1
i,j+ 1

2

is defined similarly with few modifications.

3.3.3 Iterative method

Given that linear system (31) has been established, the iterative method from 3.2.3 can be applied. Let

Â (u, v, p) =

ρI −∆t(µ4)GFM 0 ∆t∇hx
0 ρI −∆t(µ4)GFM ∆t∇hy

−∆t∇hx −∆t∇hy 0

uv
p


and

b̂(a, c,d, ρg) =

ρundρvnd
0

−∆tb(a, c,d,−ρg).

To sum up, the velocity and pressure at time-level tn+1 are computed via the solution for un+1, vn+1, pn+1 of the linear
system

Â
(
un+1, vn+1, pn+1

)
= b̂(an+1, cn+1,dn+1,−ρg), (32)
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where

cn+1 =

(
[µ](2n2

xny − ny)uext
τ +[µ](nxn

2
y − n3

x)vext
τ

[µ](2nxn
2
y + nx)uext

τ +[µ](n3
y − n2

xny)vext
τ

)
dn+1 =

(
[µ](−2n2

xny − ny)vext
τ +[µ](nxn

2
y − n3

x)uext
τ

[µ](−2nxn
2
y + nx)vext

τ +[µ](n3
y − n2

xny)uext
τ

)
an+1 = −2[µ](−nyuext

τ + nxv
ext
τ )− βκ.

(33)

uext
τ , vext

τ are computed according to (20) with the steady-state solution of (18), where the boundary condition is given
by uΓ = un+1, vΓ = vn+1. Because the right-hand side of (32) also involves a linear combination of un+1, vn+1, an
iterative method is used to solve the given linear system. For the iterative method, the time-level subscript n + 1 is
dropped for the sake of simplicity. k denotes the number of iterative procedures.

1. For ak, ck, and dk, solve for ũk+1, ṽk+1, p̃k+1 in

Â
(
ũk+1, ṽk+1, p̃k+1

)
= b̂(ak, ck,dk,−ρg).

At the beginning of the iterative method, set c0 = 0,d0 = 0, and a0 = −βκ.

2. Get ũext, ṽext as a steady-state solution of velocity extrapolation 3.2.2, with boundary condition uΓ = ũk+1, vΓ =
ṽk+1. Compute the jump condition ãk+1, c̃k+1, d̃k+1 using (23), where uτ , vτ are substituted with ũext, ṽext.

3. For the two residual vectors of (32),

rk = b̂(ak, ck,dk,−ρg)− Â
(
uk, vk, pk

)
,

r̃k+1 = b̂(ãk+1, c̃k+1, d̃k,−ρg)− Â
(
ũk+1, ṽk+1, p̃k+1

)
,

and with respect to
(
uk, vk, pk

)
and

(
ũk+1, ṽk+1, p̃k+1

)
, find ηk that minimizes

∥∥(1− ηk)rk + ηkr̃
k+1
∥∥

2
, which

is given by (26). The (k + 1)-th iterative solutions uk+1, vk+1, pk+1, and jump conditions ak+1, ck+1,dk+1 are
computed as described in 3.2.3, as a linear combination with weights 1− ηk and ηk.

The aforementioned three steps are repeated until convergence occurs. Because Â is symmetric, we use the minimal
residual (MINRES) method to solve the linear system in step 1 of the iterative method. An initial guess for the
iterative method is given by the velocity and pressure at time level tn. As a by-product of the iterative method,
uext, vext at time level tn+1 is obtained. These values are used to advect the level-set from tn+1 to tn+2, via the

definitions un+1
i,j =

uext
i+ 1

2
,j

+uext
i− 1

2
,j

2 , vn+1
i,j =

vext
i,j+ 1

2
+vext

i,j− 1
2

2 .

3.3.4 Time-step restriction

In [15], time-step restrictions were computed for each convection, viscous term, gravity, and surface tension. The
classical time-step restriction of [3] was not violated, but the effects of external forces and convection were summed
up to produce a small time step ∆t. On the other hand, our time-step restriction is based on [39], which extended
the time-step restriction created by [9], which, in turn, is valid for two-phase flows involving the same densities and
viscosities.

Ccfl = c0
1

‖U‖∞
∆x

and

Scfl =
c1µmin

β
∆x+

√(
c1
µmin

β
∆x

)2

+ c2
(ρ− + ρ+) ∆x3

4πβ

are then defined as the time-step restrictions for convection and surface tension, respectively. The researchers in [39]
proposed to set time-step

∆t = min(Ccfl, Scfl)

with c1, c2 < 1 and c0 < 1. Because our method advects the level-set with the Eulerian method, c0 < 0.5 must be
imposed. We use c0 = 0.45, c1 = 0.9, and c2 = 0.9 in our numerical simulations.

4 Numerical Experiments
In this section, we present our numerical experiments on two-phase incompressible flows. First, we deal with ana-
lytical solutions, and then singular source and external force terms are given according to the solutions. Practical
numerical examples with surface tension and gravity are then considered. All computations are performed in C++
and implemented on a personal computer with 3.40 GHz CPU and 32.0 GB memory without parallelization.
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Table 1: Convergence of Example 4.1

(a) µ+ = 0.1, µ− = 0.01

resolution L∞ error of U order L∞ error of p order L2 error of U order L2 error of p order

322 9.56.E-02 9.19.E-02 1.83.E-01 8.08.E-02
642 4.67.E-02 1.03 5.42.E-02 0.76 7.04.E-02 1.37 3.12.E-02 1.37
1282 1.68.E-02 1.48 2.41.E-02 1.17 2.03.E-02 1.79 1.02.E-02 1.61
2562 7.46.E-03 1.17 1.59.E-02 0.59 9.34.E-03 1.12 4.55.E-03 1.17

(b) µ+ = 0.01, µ− = 0.1

resolution L∞ error of U order L∞ error of p order L2 error of U order L2 error of p order

322 1.35.E-01 7.61.E-02 2.78.E-01 5.48.E-02
642 5.72.E-02 1.24 4.06.E-02 0.91 9.82.E-02 1.50 1.59.E-02 1.78
1282 1.95.E-02 1.55 2.49.E-02 0.70 2.94.E-02 1.74 9.35.E-03 0.77
2562 8.38.E-03 1.22 1.43.E-02 0.81 1.40.E-02 1.07 3.83.E-03 1.29

Table 2: Cumulative number of MINRES iterations

resolution µ+ = 0.1, µ− = 0.01 µ+ = 0.01, µ− = 0.1
322 1419 1495
642 2638 3191
1282 5084 6299
2562 10038 10670

4.1 Steady-state Stokes equation
We first consider the two-phase steady-state Stokes equation µ 4 U − ∇p = f on Ω = [−2, 2]

2. The interface Γ is
defined by the zero level-set of φ =

√
x2 + y2 − 1, and the exact solution U = (u, v) and p are

u =

{
y
4 if φ(x, y) < 0
y
4

(
x2 + y2

)
if φ(x, y) ≥ 0

, v =

{
−x4 (1− x2) if φ(x, y) < 0

−x4 y
2 if φ(x, y) ≥ 0

, p =

{
cos(πx) cos(πy) + 10 if φ(x, y) < 0

x2 + y2 if φ(x, y) ≥ 0
.

Figure 3 shows the solution profile on a 64 × 64 grid. The external force term f = (f1, f2) and the jump condition[
µ
(
∇U +∇UT

)
n− pn

]
= G = (G1, G2) are obtained according to the exact solution:

f1 =

{
π sin(πx) cos(πy) if φ(x, y) < 0

2µ+y − 2x if φ(x, y) ≥ 0
, f2 =

{
3µ−x

2 + π cos(πx) sin(πy) if φ(x, y) < 0

−µ
+x
2 − 2y if φ(x, y) ≥ 0

G1 = x
(
cos(πx) cos(πy)− x2 − y2 + 10 + µ+ x y

)
+ y

(
µ+

(
x2

4
+
y2

2

)
− 3µ− x2

4

)
,

G2 = y
(
cos(πx) cos(πy)− x2 − y2 + 10− µ+ x y

)
+ x

(
µ+

(
x2

4
+
y2

2

)
− 3µ− x2

4

)
.

Numerical experiments are conducted with viscosities µ+ = 0.1, µ− = 0.01 or µ+ = 0.01, µ− = 0.1. The results of
convergence for the L∞ and L2 norms are presented in Table 1. The estimated order of convergence for pressure in the
L∞ norms is around 0.8, but first-order convergence is observed for pressure in the L2 norms and for velocities in both
the L∞ and L2 norms. In Table 2, we present the cumulative numbers of MINRES iterations when preconditioners
are chosen as incomplete Cholesky decompositions of M , with α = 1

∆x2 defined as in (28). We also observe that the
growth rate of the total iteration is linear to the grid size.

4.2 Analytical solution of Navier–Stokes equation with stationary interface
As a second example, a two-phase incompressible Navier–Stokes equation with stationary interface Γ = {(x, y) ∈
R2|
√
x2 + y2 = 1} is considered on the computational domain Ω = [−2, 2]2. The exact solutions for velocity and

12



(a) u (b) v (c) p

Figure 3: Visualization of solution U = (u, v) and p for 4.1.

Table 3: Convergence of Example 4.2.

resolution L∞ error of U order L∞ error of p order L2 error of U order L2 error of p order

322 1.54.E-01 3.20.E-02 1.35.E-01 3.48.E-02
642 8.62.E-02 0.84 1.85.E-02 0.79 7.20.E-02 0.91 1.35.E-02 1.36
1282 3.62.E-02 1.25 9.47.E-03 0.97 2.91.E-02 1.31 6.53.E-03 1.05
2562 1.75.E-02 1.05 4.93.E-03 0.94 1.35.E-02 1.11 3.11.E-03 1.07

pressure are determined to be

u =

{
y(x2 + y2 − 1) cos(t) if φ(x, y) < 0(
y
r − y

)
cos(t) if φ(x, y) ≥ 0

, v =

{
−x(x2 + y2 − 1) cos(t) if φ(x, y) < 0(
−xr + x

)
cos(t) if φ(x, y) ≥ 0

,

p =

{
cos(x) cos(y) cos(t) if φ(x, y) < 0

0 if φ(x, y) ≥ 0

where r =
√
x2 + y2. The density and viscosity are chosen to be ρ+

ρ− = µ+

µ− = 100 for ρ+ = 1 and µ+ = 0.01. As
in 4.1, the values of f and G are determined according to the analytical solution. Furthermore, U = 0 on Γ, and
therefore the interface does not change over time. To check the accuracies of solution methods for the Navier–Stokes
equation, we do not advect level-set in this example. Numerical simulations are performed up to t = π, and the profile
of the solution is shown in Figure 4. First-order convergence for velocity and pressure both in L∞ and L2 norms
are observed in Table 3. The results demonstrate that our method can manage the non-smoothness of solutions to
two-phase Navier–Stokes equations.

(a) u (b) v (c) p

Figure 4: Visualization of solution for Example 4.2 at t = π.
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Table 4: Convergence of Example 4.3.

resolution L∞ error of U order L∞ error of p order L∞ error of φ order

32× 32 1.22.E-01 9.81.E-02 3.58.E-02
64× 64 7.03.E-02 0.80 5.22.E-02 0.91 1.66.E-02 1.10
128× 128 3.96.E-02 0.83 3.67.E-02 0.51 8.32.E-03 1.00
256× 256 2.10.E-02 0.91 1.51.E-02 1.28 4.20.E-03 0.98

(a) u (b) v (c) p

Figure 5: Visualization of solution for Example 4.3 at t = 1.

4.3 Analytical solution of Navier–Stokes equation with moving interface
We now consider moving interface Γt = {(x, y) ∈ R2|

√
(x− t+ 0.5)2 + (y − t+ 0.5)2 = 1} on the computational

domain Ω = [−2, 2]2. The exact solutions are chosen to have a constant velocity on the interface

u =

{
(y − t+ 0.5)(r2 − 1) + 1 if φ(x, y, t) < 0

1 if φ(x, y, t) ≥ 0
, v =

{
−(x− t+ 0.5)(r2 − 1) + 1 if φ(x, y, t) < 0

1 if φ(x, y, t) ≥ 0
,

p =

{
2− r2 if φ(x, y, t) < 0

0 if φ(x, y, t) ≥ 0

for r =
√

(x− t+ 0.5)2 + (y − t+ 0.5)2. The profile of the solution is shown in Figure 5. The process of checking
U = (1, 1) on Γt is easy, and therefore, movement of the interface Γt is easily found to agree with the velocity
U. Numerical simulations are conducted from t = 0 to t = 1, with material quantities µ− = 0.01, µ+ = 0.1 and
ρ− = 0.1, ρ+ = 1. The convergence order estimates for the velocity, pressure, and interface location are observed in
Table 4, where the error of the interface location is measured based on the error of the level-set function on the grid
points of |φi,j | < 3∆x. Because of the movement of the interface, the convergences of velocity and pressure are not
exactly first-order. Nonetheless, we obtain first-order accuracy for the interface position.

4.4 Parasitic currents
As a fourth example, we consider a Navier–Stokes equation that accounts for surface tension in the absence of gravity.
The initial interface is given as a circle, resulting in an exact solution that has zero velocity, and piece-wise constant
pressure, depending on the radius of the circle and surface tension coefficient. This example is also called a parasitic
current, which has been tested in [31, 35, 39]. We perform simulations up to t = 0.5, where the initial interface is
given as φ =

√
x2 + y2− 1 on the computational domain Ω = [−2, 2]2. The following values for density, viscosity, and

surface tension coefficient,
ρ+ = 0.1, ρ− = 1, µ+ = 0.01, µ− = 0.1, β = 50,

are chosen. L∞ errors of velocity, pressure, and interface location are presented in Table 5, showing first-order
convergence.

4.5 Rising bubble
Lastly, we simulate rising-bubbles problems involving strong surface tension. For each numerical simulation, we
measure the rising velocity, circularity, and relative area loss of the bubble. Each of these quantities are calculated as

14



Table 5: Convergence of Example 4.4.

resolution L∞ error of U order L∞ error of p order L∞ error of φ order

32× 32 8.77.E-02 4.72.E-01 3.67.E-03
64× 64 4.00.E-02 1.13 2.54.E-01 0.89 2.10.E-03 0.81
128× 128 1.81.E-02 1.14 1.53.E-01 0.73 6.62.E-04 1.66
256× 256 1.06.E-02 0.78 7.87.E-02 0.96 2.54.E-04 1.38
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(a) t = 0.02
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(b) t = 0.035

-6 -4 -2 0 2 4 6

10
-3

-6

-4

-2

0

2

4

6

8

10

12
10

-3

(c) t = 0.05

Figure 6: Visualization of solution for example 4.5.1.

follows:

rising velocity =

∫
Ω

(1−H(φ))Udx

πr2
0

, circularity =
2πr0∫

Ω
δ(φ)dx

, relative area loss =
πr2

0 −
∫

Ω
1−H(φ)dx

πr2
0

r0 is the initial radius of the bubble, and H, δ are the numerical Heaviside and delta functions, which are defined as

H(φ) =


0 φ < −ε
1
2 + φ

2ε + 1
2π sin(πφε ) −ε ≤ φ ≤ ε

1 ε < φ

, δ(φ) =


0 φ < −ε
1
2ε + 1

2ε cos(πφε ) −ε ≤ φ ≤ ε
0 ε < φ

.

In our numerical experiments, we set ε = 1.5∆x.

4.5.1 Small-air-bubble rising

First, we simulate an air bubble rising in a tank filled with water, which has been tested in [15]. Density, viscosity,
surface tension coefficient, and gravity are set realistically, with the values

ρ+ = 1000, ρ− = 1.226, µ+ = 1.137× 10−3, µ− = 1.78× 10−5, β = 0.0728, g = (0,−9.8) .

The interface is initialized with level-set function φ(x, y, 0) =
√
x2 + y2 − 1

300 on the computational domain Ω =
[−0.01, 0.01]×[−0.01, 0.02] with a no-slip boundary condition for the velocities. Calculations are performed in Cartesian
grids of sizes 40×60, 80×120, 160×240, and 320×480. Visualizations of the air bubble at t = 0.02, 0.035, and 0.05 are
shown in Figure 6, verifying the convergence of the interface position. Rising velocity, circularity, and relative area loss
are presented in Figure 7. Relative area losses on the four different grids at t = 0.05 are 1.36, 0.34, 0.11, and 0.03%,
respectively. Compared to the results for GFM [15], which were 17.23, 5.76, 1.54, and 0.0036%, the results of our
air-bubble-rising experiment demonstrate a significant improvement in terms of area preservation at a low resolution.
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Figure 7: Rising velocity, circularity, and relative area loss for small air bubble in 4.5.1.

4.5.2 Two-dimensional bubble-rising benchmark test by Hysing et al. [13]

We consider case 1 of the benchmark problem proposed in [13]. Material quantities are then assigned the values

ρ+ = 1000, ρ− = 100, µ+ = 10, µ− = 1, β = 24.5, g = (0,−0.98) .

On the computational domain Ω = [0, 1]× [0, 2], the bubble is initialized as a circle centered at (0.5, 1) with radius r0 =
0.25. A no-slip boundary condition is imposed on the horizontal wall, whereas free-slip boundary condition is imposed
on the vertical wall. This example is experimented on uniform Cartesian grids with sizes 40× 80, 80× 160, 160× 320,
and 320× 640, up to t = 3. Visualizations of the bubble at t = 1.5 and 3 are shown in Figure 8. In contrast to 4.5.1,
little difference exists between the shapes of the bubble as the grid is refined. Nonetheless, one can see the convergence
of interface position by zooming in the results. Rising velocity, circularity, and relative area loss are shown in Figure
9. The graphs of rising velocity and circularity agree with the results in [13]. Convergence of the quantities is also
verified.

5 Conclusion
In this paper, we presented a sharp capturing method for two-phase incompressible Navier–Stokes equations. We
derived jump condition formulas for pressure and velocity gradients to apply with the ghost fluid method. Together
with a divergence-free condition, saddle-point systems for velocity and pressure are constructed, allowing the jump
condition to be applied on the viscous term and pressure implicitly. The saddle-point system is solved via an iterative
method, where each iterative step consists of solving symmetric linear systems and extrapolating interfacial velocities
to nearby grid points to correct the jump conditions. The numerical experiment supports the idea that our method is
first-order accurate for velocity, pressure, and interface position for analytical solution, and can be applied to practical
problems.

Although we proposed a preconditioner for the saddle-point problem, the construction of a more effective precon-
ditioner for the saddle-point problem, and its detailed analysis, remain as prospects for future work. Furthermore, we
will consider second-order extension of the proposed method, by applying the jump condition to the convection term
and considering jump conditions for gradients of pressure.
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