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Abstract

We revisit the contour dynamics (CD) simulation method which is
applicable to large deformation of distribution function in the Vlasov-
Poisson plasma with the periodic boundary, where contours of distribution
function are traced without using spatial grids. Novelty of this study
lies in application of CD to the one-dimensional Vlasov-Poisson plasma
with the periodic boundary condition. A major difficulty in application
of the periodic boundary is how to deal with contours when they cross
the boundaries. It has been overcome by virtue of a periodic Green’s
function, which effectively introduces the periodic boundary condition
without cutting nor reallocating the contours. The simulation results
are confirmed by comparing with an analytical solution for the piece-wise
constant distribution function in the linear regime and a linear analysis
of the Landau damping. Also, particle trapping by Langmuir wave is
successfully reproduced in the nonlinear regime.

1 Introduction

Kinetic equations for plasma dynamics describe many interesting physical phe-
nomena, but are generally difficult to be solved analytically or numerically.
For example, a long term nonlinear evolution of the distribution function is
not yet fully understood even in the one-dimensional Vlasov-Poisson system.
Three types of simulation methods for kinetic plasma are widely known, such
as Lagrangian, semi-Lagrangian, and Eulerian methods. The Particle-In-Cell
(Lagrangian) method has a problem of numerical noise, while resolution of the
Vlasov method (Eulerian) is limited by the grid size. Indeed, it is shown that,
in the Vlasov simulation of the nonlinear Landau damping, fine structures of
the distribution function continue to grow in phase space and are stretched
exponentially in time, increasing numerical errors (Ref. [1]).

The water-bag model, which assumes a piece-wise constant distribution func-
tion (f), has been studied for the Vlasov-Poisson plasma (Refs .[2, 3, 4]) since
1960s, and successfully resolved stretching and strong deformation of f in the
phase space (x, v). In 1979, as a generalization of the water-bag model, con-
tour dynamics (CD) method is introduced by Zabusky, Hughes, and Roberts
(Ref. [5]) for solving inviscid and incompressible fluid motions in the two-
dimensional configuration space (x, y). The CD method employs nodes on each
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contour of which motion is given by calculating line integrals of the Green’s func-
tion along contours. Because CD employs no spatial grid but nodes on contours
(Lagrangian), the numerical resolution is not limited by spatial grids, which
makes the CD method tough against large deformation of vorticity (Ref .[6]).

In this paper, we revisit the CD method and apply it to the Vlasov-Poisson
plasma with the periodic boundary condition. Although the basic idea of the
CD method stems from the water-bag model, there has been a few applications
to the Vlasov-Poisson plasma. The CD method differs from the water-bag model
as no spatial grid is used in the former in solving Poisson equation (Ref. [2]).
Although a modern implementation of the water-bag method by Colombi &
Touma (Ref. [7]) did not use spatial grids, the application is limited to a system
with no spatial boundary. Novelty of the present paper lies in application of the
CD method to the Vlasov-Poisson plasma with the periodic boundary, where
we consider time development of contours of the distribution function without
using spatial grids. The simulation results are confirmed by comparing with
an analytical solution for the piece-wise constant distribution function in the
linear regime and a linear analysis of the Landau damping. Furthermore, the
particle trapping by Langmuir waves is successfully reproduced in the nonlinear
regime. Here, it should be remarked that no contour surgery (Ref. [8]) nor node
redistributions (Ref. [9]) is employed in numerical simulations in this paper,
because we focus on validity of our implementation for the periodic boundary
condition.

This article is organized as follows. After a brief introduction to the CD in
Section 2, application to the Vlasov-Poisson system with the periodic boundary
is described in Section 3. Validity of the CD method is confirmed by comparing
the simulation results with the analytical solution for the piece-wise constant
distribution function in Section 4. A bench mark test for the linear Landau
damping is described in Section 5.1. Application to the nonlinear Landau damp-
ing is shown in Section 5.2. Finally, we summarize the results in Section 6.
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2 Contour Dynamics

Zabusky, Hughes, and Roberts have proposed contour dynamics algorithm for
the Euler equation of fluid dynamics in two dimensions (Ref. [5]). The governing
equations are

Dω

Dt
=
∂ω

∂t
+ u

∂ω

∂x
+ v

∂ω

∂y
= 0, (1)

∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω, (2)

u =
∂ψ

∂y
, v = −∂ψ

∂x
,

ω = −∂u
∂y

+
∂v

∂x
, (3)

where ψ is the stream function and ω means the vorticity. Time development
of the vorticity is calculated by tracing motions of contours of the piece-wise
constant vorticity distribution.The flow velocity is given by the line integrals of
the Green’s function on the contours, such that

(u, v) =

(

∂ψ

∂y
,−∂ψ

∂x

)

=
∑

m

(∆ωm)

∮

Cm

G(ξ, η;x, y)dr′m, (4)

where m is a label of contours, Cm is the contour labeled by m, and ∆ωm is a
jump of vorticity when crossing the contour Cm inward. The two-dimensional
Green’s function, G(x, y; ξ, η), is given as

G(x, y; ξ, η) = − 1

2π
log

√

(x − ξ)2 + (y − η)2. (5)

The contours are discretized by nodes with label n, and motion of the contours is
determined by solving the Hamilton equations of the node points (Fig. 1). Each
contour represents a constant vorticity line, and is advected by an incompressible
flow as given in Eq. (1). The incompressibility also guarantees conservation of
volumes surrounded by each contour.

Figure 1: In contour dynamics, Motion of the contours are determined by solving
the Hamilton equations of the node points
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3 Appication to Vlasov-Poisson system

3.1 Basic scheme

Here, we consider application of the CD method to the Vlasov-Poisson system
with the periodic boundary. The normalized Vlasov-Poisson equations are

∂f

∂τ
+ v

∂f

∂x
+ a

∂f

∂v
= 0, (6)

a =
∂φ

∂x
, (7)

−∇2φ = 1−
∫ ∞

−∞

f(x, v)dv =: F (x), (8)

where f is the distribution function of electrons, while stationary background

ions are assumed. The particle density is normalized so that
∫ L/2

−L/2
dx

∫∞

−∞
dvf(x.v) =

L, where L denotes the system length. The periodic boundary conditions at
x = ±L/2 are given by

lim
ǫ→−0

φ

(

L

2
+ ǫ

)

= lim
ǫ′→+0

φ

(

−L
2
+ ǫ′

)

, (9)

lim
ǫ→−0

φ′
(

L

2
+ ǫ

)

= lim
ǫ′→+0

φ′
(

−L
2
+ ǫ′

)

(quasi neutrality), (10)

The Liouville’s theorem and Eq. (6) guarantee the volume conservation and
df
dτ = 0, which are required for contour dynamics method. In order to implement
the CD, we employ the Green’s function, G, that satisfies

∇2G (x; ξ) =
1

L
− δ (x− ξ) , (11)

lim
ǫ→−0

G

(

L

2
+ ǫ

)

= lim
ǫ′→+0

G

(

−L
2
+ ǫ′

)

, (12)

lim
ǫ→−0

G′

(

L

2
+ ǫ

)

= lim
ǫ′→+0

G′

(

−L
2
+ ǫ′

)

. (13)

Solving Eqs. (11), (12), and (13) to obtain G (Ref. [10]), one finds

G (x; ξ) =
1

2L

(

|x− ξ| − L

2

)2

. (14)

Therefore,

φ(x) =

∫ L
2

−L
2

G (ξ;x)F (ξ) dξ + const for x ∈
(

−L
2
,
L

2

)

. (15)

The acceleration of each particle at x is given by the CD representation,

a (x) =

Nm
∑

m

∆fm

∮

cm

G (ξ;x) dv, (16)
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where Nm is the number of contours, Cm is a contour labeled by m and ∆fm
is the jump of distribution function when crossing the contour Cm inward. We
discretize the contours with nodes labeled counterclockwise by n and connect
nodes with straight line segments. Then, Eq. (16) breaks down into

a (x) =
∑

m

∆fm
∑

n

vn+1 − vn
2

(

w2
n(x)

L
+

δ2n
12L

− In(x)

)

, (17)

where

In(x) =

{

|wn(x)| for |wn(x)| ≥ δn
2

w2
n(x)
δn

+ δn
4 for |wn(x)| < δn

2

with wn(x) := x− xn+1 + xn
2

and δn := |xn+1 − xn|.

(18)

Although n is a function of the label of contours (m), we use the notation of n
= n(m) for simplicity. Equation of motion of each node point labeled by i is
given by

d2xi
dτ2

= a (x = xi) =
∑

m

∆fm
∑

n

vn+1 − vn
2

(

w2
n(x)

L
+

δ2n
12L

− In(x)

)

. (19)

For the time integration, we use the leap-frog scheme with the time step size
∆τ = 0.01 in the all simulations shown below.

3.2 Implementation of the periodic boundary

A difficulty of implementation arises in the CD method with the periodic bound-
ary, when a node(xn, vn) moves across the boundaries and comes into the sim-
ulation box from the another side. Straightforwardly, we may cut the contour
at the boundary and reallocate a node point (xn, vn) as

xn /∈ (−L/2, L/2)⇒
{

xn 7→ xn − L/2 ; if L/2 < xn

xn 7→ xn + L/2 ; if xn < −L/2
(20)

and make interpolation of points (x̃s, ṽs) and (x̃t, ṽt) on the boundary between
(xn+1, vn+1) /∈

(

−L
2 , L2

)

and (xn, vn) ∈
(

−L
2 , L2

)

,

(x̃s, ṽs) =







(

L
2 ,

vn+1−vn
xn+1−xn

(

L
2 − xn+1

)

+ vn+1

)

; if L/2 ≤ xn+1 · · ·A
(

−L
2 , vn+1−vn

xn+1−xn

(

−L
2 − xn+1

)

+ vn+1

)

; if xn+1 ≤ −L/2 · · ·B
(21)

(x̃t, ṽt) =







(

−L
2 , vn+1−vn

xn+1−xn

(

L
2 − xn+1

)

+ vn+1

)

; if L/2 ≤ xn+1 · · ·A′

(

L
2 ,

vn+1−vn
xn+1−xn

(

−L
2 − xn+1

)

+ vn+1

)

; if xn+1 ≤ −L/2 · · ·B′

(22)

for calculation of the line integrals (see fig. 2). here, we call this method the
reallocation scheme. since we must know the sequence of the nodes for the cd
method, the reallocated nodes complicate the computational algorithm. actu-
ally, we need to count how many times each node moved across the boundaries
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Figure 2: Conventional implementation of the periodic boundary. Contours
which get out of simulation box are cut and reallocated (A,B,A′ and B′ are
defined on Eqs. (21) and (22)).

and to use the counts every time in calculation of vn+1−vn
2

(

w2
n

l +
δ2n
12l − in

)

.

however, it increases numerical costs and makes the code implementation com-
plicated.

In the following, we propose a novel scheme to implement the periodic
boundary in CD, which is named a periodic Green’s function method. Be-
cause we consider the periodic problem; f(a) = f(a + L), φ(a) = φ(a + L),
and φ′(a) = φ′(a + L). Thus, it may be possible to eliminate the boundaries
at x = ±L

2 , while extending the simulation box to (−∞,∞) and imposing the
periodicity to the Green’s function, that is,

∀x ∈ (−∞,∞), a(x) =

Nm
∑

m=1

∆fm

∮

cm

G′ (ξ;x) dv′, (23)

with

G′ (ξ;x) = G (Mod (ξ − (x− L/2) , L) + (x− L/2) ;x) , (24)

where

Mod (a, b) =Min {c (≥ 0) |∃r ∈ Z, a = br + c} . (25)

In this way, we can avoid cutting or reallocation of the contours, but equivalently
the contours feel the periodicity of the system through G′ instead of G (See
Fig. 3). If ∀n, |xn − xn−1| < L

2 is satisfied, then (17) becomes

a(x) =
∑

m

∆fm
∑

n

vn+1 − vn
2

(

w′2
n

L
+

δ2n
12L

− I ′n

)

, (26)
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where

w′
n(x) := x+ r (xn, x)L− xn+1 + xn

2
, (27)

r (xn, x) :=
xn −

(

x− L
2

)

−Mod
(

xn −
(

x− L
2

)

, L
)

L
= ⌊xn −

(

x− L
2

)

L
⌋,

and

δn := |xn+1 − xn|, I ′n(x) =

{

|w′
n(x)| for |w′

n(x)| ≥ δn
2

w′2
n (x)
δn

+ δn
4 for |w′

n(x)| < δ
2

. (28)

Here, the periodicity is introduced not in Cm, but in G′. Therefore we do not
need to count how many times each node moves across the boundaries, which
makes a faster and simpler implementation. Our new implementation with the
periodic Green’s function G′ accelerate the computation speed faster than that
of the reallocation scheme. It owes to no cutting nor reallocation, which makes
the code avoid many ”if” branches.

v

x

x+L/2x-L/2

Figure 3: Implementation of the periodic boundary using G′ = G(Mod(ξ −
(x − L/2), L) + (x − L/2);x). The periodic boundary is effectively introduced
without cutting nor reallocating the contours.
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4 Benchmark Test for Piece-Wise Constant Dis-

tribution Function

In order to check validity of our application, we consider the initial distribution
function given by

f (x, v, τ = 0) =

Nm
∑

m=−Nm

bmU (v − vm(x, 0)) , (29)

U(x) =

{

1 0 < x

0 x ≤ 0
, (30)

where bm = −b−m < 0 and vm(x, 0) = v0m + v1m(x). Also v0m = m∆v and
v1m(x) = αeikx with ∆v ∈ R

+ and kL/2π ∈ N, where α ≪ 1 so that |v1m| ≪ |v0m|.
This function Eq. (29) was also used to study the water-bag model (Ref.[11]).
As shown in Appendix, the linear dispersion relation is derived as

D(ω) = 1 +
∑

m>0

2bmv
0
m

ω2 − (kv0m)
2 = 0. (31)

Solving the initial value problem analytically, the acceleration a(x, τ) is deter-
mined by means of ωl which satisfies D(ωl) = 0 with kv0l < ωl < kv0l+1,

a(x, τ) = Re









∑

j>0

∑

m>0

{

(−bm)αei(kx−
π
2
)Πn( 6=m)>0

(

(ωj)
2 −

(

kv0n
)2
)}

kΠn( 6=j)>0

(

ω2
j − ω2

n

) 2 cosωjτ









.

(32)

We make comparison of a simulation result with Eqs. (31) and (32).
For Nm = 2, b1 = b2 = −1/6, ∆v = 1.0, k = 1.0 and α = 0.01,

Eqs. (31) and (32) lead a(x = −1.4π, τ) = A1 cos(ω1τ) + A2 cos(ω2τ) with
A1 = 0.00226, A2 = 0.00409, ω1 = 1.13 and ω2 = 2.18. The numerical result
of a(x = −1.4π, τ) shown in Fig. 4 agrees well with the analytical prediction,
Eq. (32). It shows validity of our implementation of the CD method for the
Vlasov-Poisson system with the periodic boundary condition.
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a

τ
numerical result predicted behavior

Figure 4: Benchmark test1: Time evolution of a = ∂φ/∂x. Red points are
simulation results and green line is predicted by the Eq. (32). Nm = 2, b1 =
b2 = −1/6, ∆v = 1.0, k = 1.0 and α = 0.01 are given for initial distribution
function (29).
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5 Benchmark test for the Landau Damping

5.1 Linear Landau Damping

We also verify our code for the linear Landau damping. We set the initial
contour distribution as follows. The initial (continuous) distribution function f
is given by

f(x, v, τ = 0) =
1√
2π

exp

(

−v
2

2

)

(1 + α cos(kx)). (33)

By means of a sequence {∆fm}NMax

m=1 : ∆fm ∈ R
+ and

NMax
∑

m=1

∆fm < Max
x,v∈R

{f(x, v, τ = 0)} ,

we define f̃ , a piece-wise constant approximation of f ,

f̃(x, v, τ = 0) :=

Nm
∑

m=1

∆fmI [Σ
m
m′=1∆fm′ < f(x, v, τ = 0)] , (34)

where

I [P (x, v, τ)] =

{

1 if P (x, v, τ) is true

0 otherwise
(35)

with a propositional function P (x, v, τ). However, Eq. (34) does not satisfy
∫

L
2

−L
2

dx
∫∞

−∞
f̃(x, v, t = 0)dv = L because f̃ is a piece-wise constant function

defined by means of contours of f . Therefore instead of f̃ , we use f̃ ′ normalized
by (1 + ǫ),

f̃ ′ = (1 + ǫ)f̃ , where ǫ =
L

∫
L
2

−L
2

dx
∫∞

−∞
f̃(x, v, t = 0)dv

− 1, (36)

and thus ∆f ′
m = (1 + ǫ)∆fm.

The simplest way of giving {∆fm} is ∆fm =constant. However, contour
dynamics method does not require constant ∆fm, and non-uniform contour
intervals have an advantage over the constant ∆fm in approximation of f . In
case with ∆fm = constant, the contours are densely distributed where the
velocity space gradient of f is steep around v ∼ ±vth (vth means the thermal
velocity), while no contour is found for |v| > 3vth when we use 40 contours. It
means that there is no particle in |v| > 3vth, while the super thermal particles
can be included in the case of ∆fm 6= constant. From the linear theory, real and
imaginary parts of the eigenfrequency for k = 0.5 are evaluated as ωr = 1.4156
and γ = −0.1533. Thus, the phase velocity is ωr/k ∼ 2.8vth. This is the reason
why the high speed particle should be included in this application. Otherwise,
many contours are necessary in the constant ∆fm case in order to introduce
contributions of the super thermal particles. Thus, we employ the non-uniform
contour intervals of ∆fm which is defined as

∆fm :=

{

f(x = x0, v = Vm) m = 1

f(x = x0, v = Vm)− f(x = x0, v = Vm−1) 2 ≤ m ≤ NMax

, (37)
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with dv ∈ R
+, NMax ∈ N and Vm := (NMax + 1 − m)dv. Since Eq. (33) has

the maximum at x = 0, we set x0 = 0. In this application, we used 40 contours
with dv = 0.1, where the contour spacing in v is nearly constant covering the
velocity space of |v| < 4vth.

A simulation result for the linear Landau damping is presented in Fig. 5,
where the initial distribution function is given by Eq. (37) with α = 0.01 and
k = 0.5. The simulation box size is L = 4π. We also used 2000 nodes/contour.
One clearly finds the linear damping rate of γ = −0.153 successfully reproduced
by the present CD method.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30

∫φ
2 d

x

τ

∝ exp(-2γτ)

.

Figure 5: Time history of the quadratic integral of the electrostatic potential φ
obtained from the simulation of the linear Landau damping. The damping rate
γ = -0.153 is successfully confirmed by the contour dynamics method.
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5.2 Nonlinear Landau damping

Next, we consider a benchmark test for the nonlinear Landau damping (Ref. [1])
with the initial distribution function in Eq. (33) where α = 0.5 and k = 0.5. We
employ 40 contours and 8000 nodes/contour. It is noteworthy that intersections
of contour lines are not observed till τ = 30 in the present simulation. It is,
thus, appropriate not to use the node redistribution nor the contour surgery in
the current test case. Fig. 6 shows a snapshot of contour distribution in the
phase space at τ = 30, where the particle trapping by the Langmuir wave is
successfully reproduced by the CD method.

-6

-4

-2

 0

 2

 4

 6

-6 -4 -2  0  2  4  6

v

x

tau = 30.000000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Figure 6: Phase space structure of nonlinear Landau damping at τ = 30. Par-
ticles trapped by waves are reproduced. The color bar represent the magnitude
of f .

Soundness of our implementation is also confirmed by conservation of energy,
as shown in Figs (7) and (8). Total energy, Et =

1
2

∫∫

v2fdxdv + 1
2

∫

|∂φ∂x |2dx,
is conserved with an error, ǫE(τ) = |Et(τ) − Et(0)|/E(0), less than 2.5 × 10−5

for τ ≤ 30.
Figure 9 shows an error found in the particle (or area) conservation, ǫN :=

|N(τ) − N(0)|/N(0), for the case with 8000 nodes/contour, where N(τ) is a
total integral of the particle density defined as

N(τ) :=

∫∫

f̃ ′(x, v, τ)dxdv, (38)

where

f̃ ′(x, v, τ) :=

Nm
∑

m=1

∆f ′
mI[(x, v) ∈ Sm(τ)] (39)

with Sm(τ) denoting the closed polygonal region determined by nodes on the
mth contour. Errors in the particle conservation, ǫN , is less than 10−4 while
increasing in time. Generally speaking, the CD method tends to fail in following
the strong deformation of contours with large curvature, because the contours
consist of finite straight segments connected by nodes.
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Figure 7: Conservation of energy. Blue line represents energy of electric field,
Eφ = 1

2

∫

|∂φ∂x |2dx , Green kinetic energy, Ek = 1
2

∫∫

v2fdxdv, and Red Total
energy, Et = Eφ + Ek.

 1e-10

 1e-09
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ε E
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τ
Figure 8: The error found in total energy, ǫE(τ) = |Et(τ) − Et(0)|/E(0), is
plotted. Total energy is conserved with the error, ǫE(τ) < 2.5 × 10−5 until
τ = 30.
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Figure 9: Time evolutions of an error found in the particle conservation, |N(τ)−
N(0)|/N(0). 8000 nodes/contour are employed, where N(τ) means the integral
of the particle density defined in Eq. (38)
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6 Summary and Conclusion

We have newly implemented contour dynamics method for the Vlasov-Poisson
system with the periodic boundary. The major difficulty in application of the
periodic boundary is how to deal with contours when they cross the boundaries.
It has been overcome by introducing periodic Green’s function defined on the
infinite phase space, instead of the Green’s function derived for the bounded
system with the periodic boundary condition. The new scheme enables imple-
mentation without cutting nor reallocating the contours and node points, and
accelerates the computational speed.

Validity of the CD method for the Vlasov-Poisson system with the periodic
boundary is confirmed by comparing the simulation results with the analytical
solution for the piece-wise constant distribution function in the linear regime,
and by the bench mark test for the linear Landau damping. Nonlinear Landau
damping simulation using the CD method successfully reproduces the electron
trapping by the Langmuir wave. Soundness of our method is also demonstrated
by the energy and particle conservation with errors less than 2.5 × 10−5 and
10−4, respectively. Improvement of the CD method to reduce the conservation
errors remains for future works.

Because this paper focused on the verification of our basic CD scheme for
the periodic system, detailed analyses of the physics problem by means of the
CD method are remained for future studies. Application of the CD method to
a variety of issues in kinetic plasma physics is currently in progress, and will be
reported elsewhere.
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Appendix

Here, we calculate the analytical solution of a(x, τ) = ∂φ/∂x for the initial
distribution function in Eqs (29) and (30). For a node with the index m, vm
satisfies the equation

a(x, τ) =
dvm
dτ

=
∂vm
∂τ

+ vm
∂vm
∂x

. (40)

Eqs. (8) and (29) lead to

− ∂a

∂x
= 1−

Nm
∑

−Nm

(−bm) vm. (41)

For the zeroth order, the electron density is assumed to be the same as that

of the uniform background ions,

Nm
∑

−Nm

(−bm) v0m = 1 (namely, we choose ∆v to

satisfy this relation). Therefore, Eq.(40) is linearized as

a =
∂v1m
∂τ

+ v0m
∂v1m
∂x

, (42)

and Eq. (41) reads

∂a

∂x
=

Nm
∑

−Nm

(−bm) v1m. (43)

Assuming a, v1m ∝ eikx, The Laplace transform of Eqs (42) and (43) give

L(a) = −v1m(0) + sL
(

v1m
)

+ v0mikL
(

v1m
)

, (44)

− ikL(a) =

Nm
∑

−Nm

bmL
(

v1m
)

, (45)

where L (f (τ)) :=
∫∞

0 f(τ)e−sτdτ . Thus,

L(a) =
1

D(is)

Nm
∑

−Nm

{

(−bm) v1m(0)Πl 6=m

(

is− kv0l
)}

, (46)

with

D(is) = kΠNm

m=−Nm

(

is− kv0m
)

+

Nm
∑

m=−Nm

{

bmΠl 6=m

(

is− kv0l
)}

. (47)

It is known that for a choice of bn < 0 (∀n ≥ 1), the solutions of D(is) = 0 are
purely real (see Refs. [11] and [12]). We define ω := is and ωm : D(ωm) = 0
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with kv0m < ωm < kv0m+1 so that D(ωm) is written as D = kΠNm

m=−Nm
(ω−ωm).

The inverse Laplace transform of Eq. (46) is

a =

Nm
∑

j=−Nm

Res
(

L (a) (s) est,−iωj

)

(48)

=

Nm
∑

j=−Nm

lim
s→−iωj

(s+ iωj)
1

k

Nm
∑

−Nm

{

(−bm) v1m(0)Πl 6=m

(

is− kv0l
)}

ΠNm

m=−Nm
(is− ωm)

est

(49)

Since ωm = −ω−m, bm = −b−m and v0m = −v0−m, one finds

a(x, τ) = Re









∑

j>0

∑

m>0

{

(−bm)αei(kx−
π
2
)Πn( 6=m)>0

(

(ωj)
2 −

(

kv0n
)2
)}

kΠn( 6=j)>0

(

ω2
j − ω2

n

) 2 cosωjτ









,

(50)

where ωj satisfies the dispersion relation of

1 +
∑

m>0

2bmv
0
m

ω2 − (kv0m)
2 = 0. (51)
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