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Abstract

In this work we design and analyze new perfectly matched layers (PML) for a
dispersive waves equation : the Klein Gordon equation. We show that because
of the dispersion, classical PMLs do not guarantee the convergence to zero of
the error, which hampers the precision in long time simulation. We propose to
consider a non-local PML for which we can obtain explicit uniform estimates for
the reflected analytical solution in time domain, given by an integral represen-
tation formula. This uniform estimates ensure the convergence of the error to
zero at fixed time t and guarantee the accuracy of the layer. For the implemen-
tation of the new PML, we propose a localization technique that we validate
numerically.

Keywords: Klein-Gordon equation, PML, dispersion, analytical solution,
Green’s function, Bessel’s functions, uniform error, long time stability.
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1. Introduction1

Evolution of gravity waves in the Navier-Stokes, Euler or shallow water equa-2

tions when rotation is taken into account may propagate waves at different3

speeds not proportional to their wavelengths. Such a phenomena is called dis-4

persion and is described by a parameter α in the present work. Dispersion may5

also be seen as the wave number in higher (three dimensions for instance) via6

a Fourier transform w.r.t. the third variable in space which leads in particu-7

lar to common procedures for constructing absorbing boundary conditions for8

wave-like equations. We will present in this work new ideas to deal numerically9

with some problems of wave propagation in an unbounded dispersive medium10

for which we have chosen the Klein-Gordon equation as the standard model of11

the dispersive wave equation. The results presented in this paper are useful for12

authors who are interested in the dynamics of large-scale motions of the oceans13

and atmosphere in geophysical rotating fluid dynamics, cf. eg. [24].14
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Since Bérenger [8, 9], the Perfectly Matched Layer (PML) technique was in-15

troduced as an alternative for the absorbing boundary condition (ABC) method16

(cf. Engquist [17, 18]) to simulate the propagation of waves in unbounded do-17

mains. It consists in truncating the computational domain by an absorbing18

layer with a damping term acting only in the orthogonal direction for outgoing19

waves and having the nice property that the layer is perfectly matched at the20

interface. In computational codes, the most crucial drawback of PML’s imple-21

mentation is a stability property of the associated equations in the layer for long22

time simulation of the total wave field (transmitted plus reflected).23

While existing results mainly concern modal or plane wave analysis for the24

question of stability in time domain analysis (cf. eg. [12, 1, 6]), explicit error25

estimates were discussed in the literature by very few authors. We refer to [16]26

for a detailed presentation in the case of advective acoustics in time domain27

with parallel mean flow. To the authors’ knowledge, no such results exist for28

dispersive waves such as for example Klein-Gordon equation or more generally29

damped waves with dispersion.30

Based on the Cagniard-de Hoop method [13, 10, 14, 25], known for its power31

in the case of stratified media, the authors in [16] have obtained analytical solu-32

tion and explicit error estimates for PMLs for advective acoustics which result33

from the linearized Euler system. Because of the lack of homogeneity of some34

integrand functions in the Fourier-Laplace space, the method does not apply35

(at least straightforwardly) if one considers the dispersion term in designing36

PMLs for wave problems as in rotating shallow water [20, 2, 5], in particu-37

lar for Klein-Gordon wave like equations. In our study, we propose to replace38

the Laplace variable, denoted by s, by a non-local one
√
s2 + α2 specifically39

including Bessel’s functions when returning back to time-domain solutions [3].40

Doing so, one takes into account the dispersion term denoted by α implicitly41

in such a way that the new forms of the equations will correspond exactly to42

a non-dispersive case. Thanks to this new variable, we present in this work an43

integral representation of the Green’s function associated with the Klein Gordon44

equation. This expression can be derived explicitly and therefore the analytical45

solution follows by a convolution in time with the source term. A new non-local46

PML formulation is deduced and can consequently be analyzed in time-domain47

in a very similar way to that of [16]. We refer to [26, 12, 9, 11] (the list is not48

exhaustive) for more details on PMLs in time domain acoustics. Recently, the49

authors in [7] have shown the failure of standard PML change of variable for50

some dispersive cases such as the Drude model in electromagnetics. They have51

proposed a modification of the time frequency ω by ωψ(ω) where ψ(ω) is a suit-52

able rational function of ω that ensures the stability of the absorbing layer. In53

our study, we present a localization technique for a particular dispersive model54

in acoustics (the Klein-Gordon equation) that allows us to build such functions55

in order to ensure both the stability and the precision of the PML for long56

waves adjustment. As a main result, explicit error estimates are obtained for57

the non-local PML’s formulation associated to the Klein-Gordon equation (i.e.,58

dispersive waves), long time stability results still hold but uniform convergence59

result to zero of the error failed when the time goes to infinity. In addition, a60
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new PML based on a localization technique is proposed and shown to be better61

than the classical one for inertial oscillations regime that is specific to dispersive62

waves solutions.63

In the second section, we present the main steps of constructing non-local64

PMLs for dispersive wave like equations in two dimensions. The third section65

is devoted to the computation of fundamental solution in whole (free) space66

(the incident Green’s function) and in a half space with PML of finite width67

(the reflected Green’s function). These fundamental solutions allow us to obtain68

the analytical solution of the PML’s equation as a convolution (in the sense of69

Laplace transform) of the total field (Green’s function) with the source term70

located in space in the physical domain. We present a fundamental lemma that71

permits us to write a representation formula for the fundamental solution via72

Bessel’s functions and the Green’s function of the non-dispersive wave equation.73

This provides a splitting of the solution as a non-dispersive part and a purely74

dispersive one. In the fourth section, error estimates are obtained in a very75

similar way to that of [16] by taking care on the behaviour for long time of an76

oscillating integral appearing in the dispersive part of the solution. As a result,77

the uniform error does not converge to zero in long time because of a term78

proportional to
√
α appearing in the upper bound, explaining therefore the fact79

that long time stability is conserved but the precision can be justified at most80

for small α. In the fifth section, a localization technique at high frequencies is81

presented similarly to the ABC’s methodology [17] and a numerical comparison82

of the zeroth and first order Taylor approximations of the square root
√
∂2
t + α2

83

is performed. Numerical experiments are thus presented in order to validate the84

effect of α on designing PMLs for dispersive waves, particularly for long waves85

regime which arises after very long periods in time. The last section is devoted86

to conclusions, comments and remarks.87

2. Non-local PML for a family of 2d dispersive wave equations88

Let us consider the two-dimensional family of dispersive wave equations89

1

c2
∂2

∂t2
uα −∆uα + α2uα = f(x, t), x = (x1, x2) ∈ R2, t > 0, (1)

where α ≥ 0 is the so-called dispersion parameter. For simplicity and without90

restriction, we will assume in all what follows that c = 1. If the initial data of91

the problem is compactly supported in the domain of interest R2
− = R− × R,92

then it is natural to reduce computation to this left half-space. There are two93

main classes of methods to do so. The first ones consist in approximating94

the radiation condition at finite distance resulting in the so-called absorbing95

boundary conditions (ABC). The second ones are called perfectly matched layers96

(PML) and consist in adding a fictitious layer that at the same time adapts the97

impedance at the interface and absorbs the outgoing waves, cf. Figure 1. As98

this method is furthermore really easy to implement (specifically in the corners99

of the domain), it has rapidly attracted a lot of people in different fields of100

application.101
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Figure 1: Computational domain and Perfectly Matched Layer

When α = 0, and alternatively to the original idea of Bérenger (1996), PML102

can be implemented by adding a layer of width L in which (1) is modified via103

an absorption term σ ≥ 0 by replacing the x1−spatial derivative ∂
∂x1

in (1) by104

Dσ
x1

=

(
∂

∂t
+ σ(x1)

)−1
∂

∂t

∂

∂x1
. (2)

In the present work, we propose to extend this change of variable in such a105

way that both perfect matching and good stability properties of the layer are106

conserved exactly as in the case α = 0, i.e. without dispersion. In fact, we can107

achieve this at the expense of the local character of the PML as follows: the108

x1−spatial derivative ∂
∂x1

in (1) will be replaced rather by (at least formally)109

Dσ
x1,α =

(√
∂2

∂t2
+ α2 + σ(x1)

)−1√
∂2

∂t2
+ α2

∂

∂x1
, (3)

in such a way that Dσ
x1,0 coincides with the standard Dσ

x1
. The second order110

formulation of the PML (a vertical layer of width L) reads as follows:111 (
∂2

∂t2
+ α2

)
uα−

(
Dσ
x1,α

)2
uα−

∂2

∂x2
2

uα = 0, x = (x1, x2) ∈ (0, L)×R, t > 0. (4)

It is well known that the homogeneous equation associated to (1) supports plane112

wave solutions proportional to ei(ωt−k.x) where ω and k = (k1, k2)t designate the113

time frequency and wave vector respectively. These two parameters are related114

by the so-called dispersion relation −ω2 + k2 + α2 = 0 where k :=
√
k2

1 + k2
2115

denotes the wave number. As shown in Figure 2, dispersive waves have a cut-off116

frequency at ω = α that corresponds to inertial oscillations and appears after117

very long periods in time. The major difference between dispersive and non-118

dispersives waves can be located in the vicinity of this cut-off frequency, while119

for k large there is no significant distinction. It is precisely with the aim of120

correctly taking into account the modes close to inertial oscillations that we are121

led to consider the idea of non-local PMLs.122
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Figure 2: Dispersion relation of the KG equation in the cases α 6= 0 (dispersive waves) and
α = 0 (non-dispersive waves).

We are thus interested in the following transmission problem with a regular123

point source f(t) compactly supported in [0, T ) and located in space at xS =124

(−h, 0) ∈ R∗− × R and an absorption profile σ ≡ σ(x) > 0 if 0 < x < L (L may125

be finite or not) and σ ≡ 0 if x ≤ 0,126 

Find uσ,Lα : (−∞, L)× R× R+ → R, zero for t < 0,(
∂2

∂t2
+ α2

)
uσ,Lα −

(
Dσ
x1,α

)2
uσ,Lα − ∂2uσ,Lα

∂x2
2

= δ (x− xS) f(t),

uσ,Lα
∣∣
x1→0−

= uσ,Lα
∣∣
x1→0+ ,

∂uσ,Lα
∂x1

∣∣∣∣
x1→0−

= Dσ
x1,αu

σ,L
α

∣∣
x1→0+ ,

∂uσ,Lα
∂x1

∣∣∣∣
x1=L

= 0, if L < +∞.

(5)

Of course, the solution is assumed to be a causal and tempered distribution with127

support in (−∞, L)×R×R+. In the third and fourth lines of (5) we recognize128

the perfect matching conditions at the interface x1 = 0 and in the last equation129

we chose a Neumann-type condition at the outer boundary x1 = L. Notice that130

one can choose a condition of Dirichlet-type instead of Neumann with a slight131

change in the principle of the image to determine the analytical solution in the132

cas of a finite layer.133
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3. Integral representation of the Green’s function134

Following results that are presented in [16] in the case of a dispersionless135

media (i.e. α = 0) with full details based on the Cagniard de-Hoop method for136

obtaining analytical solutions, one can deduce fundamental (Green’s function)137

and analytical solutions associated to Problem (5). Fundamental solutions are138

those that correspond to f(t) = δ(t).139

Let us define the two coordinate systems, (r, θ) ∈ R+ × (0, 2π], such that140

x − xS = (r cos θ, r sin θ)
t
, which is relative to the point source xS = (−h, 0)141

and (r∗, θ∗) ∈ R+ × (π/2, 3π/2] such that x− x∗S = (r∗ cos θ∗, r∗ sin θ∗)
t
, which142

is relative to the image point source x∗S = (h+ 2L, 0), symmetrical to xS w.r.t.143

the line x1 = L, as shown in Figure 3. More precisely, one has r∗(x) = r(x∗)144

and θ∗(x) = θ(x∗) where x∗ is the image of x = (x1, x2) by the transformation145

x∗ = (2L − x1, x2). For σ ≡ σ(x1) > 0 if x1 > 0 and σ ≡ 0 if x1 ≤ 0, with the

Figure 3: Coordinate system w.r.t. xS and x∗S .

146

notation Σ(x1) =
∫ x1

0
σ(x)dx, let us also define the functions147

A(x, t) = |cos θ(x)|Σ(x1)
t

r(x)
, B(x, t) = |sin θ(x)|Σ(x1)

√
t2

r(x)2
− 1.

Then, we have:148

• In the case of an infinite layer (L = +∞) , Gσ,∞i (x, t) = Gσ,∞α=0,i(x, t) the149

fundamental solution of Problem (5) in a dispersionless media (i.e., for150

α = 0) is given by, cf. [16, Theorem 1],151

Gσ,∞i (x, t) =
H (t− r(x))

2π
√
t2 − r(x)2

e−A(x,t) cos [B(x, t)] , x1 ∈ R.

• In the case of a finite layer (L < +∞), the expression of the fundamental152

solution Gσ,L(x, t) of Problem (5) in a dispersionless media is such that153

Gσ,L(x, t) = Gσ,∞i (x, t) +Gσ,∞i (x∗, t), (6)
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where we have extended σ symmetrically w.r.t. the line x1 = L as154

σ(x1) =

{
σ(x1) if −∞ < x1 < L,

σ(2L− x1) if L < x1 < +∞.

The second term in the r.h.s. of (6),

Gσ,∞i (x∗, t) := Gσ,Lr (x, t)

is called the reflected field and admits the following expression, cf. [16,155

Theorem 3],156

Gσ,Lr (x, t) =
H (t− r(x∗))

2π

√
t2 − r (x∗)

2
e−A(x∗,t) cos [B(x∗, t)] , x1 ∈ R.

The above results were obtained mainly in [16] with the help of the so-called157

Cagniard-de Hoop method which gives, handling some complex contours, a di-158

rect inversion formula for the Fourier-Laplace transform of Gσ,∞i in the space159

variable x2 and time t,160

˜̂
Gσ,∞i (x1, k, s) =

e
−
√
k2+s2

∣∣∣x1+h+
Σ(x1)
s

∣∣∣
2
√
k2 + s2

, s > 0. (7)

161

Lemma 1. Let G̃α(s) the Laplace transform of a causal function Gα(t), α ∈162

R+, such that163

G̃α(s) = G̃0(
√
s2 + α2), (8)

then Gα(t) has the following integral representation164

Gα(t) = G0(t)− α
∫ t

0

G0

(√
t2 − z2

)
J1 (αz) dz, (9)

where Jν (ν ∈ Z) denotes the Bessel function of the first kind.165

Proof. Direct consequence of the following inverse Laplace transform formula166

cf. [4, p.p. 248 – (23) ],167

L−1
(
e−hs − e−h

√
s2+α2

)
=
αhJ1

(
α
√
t2 − h2

)
√
t2 − h2

H(t− h),

which yields168

L−1
(
e−h
√
s2+α2

)
= δ(t− h)−

αhJ1

(
α
√
t2 − h2

)
√
t2 − h2

H(t− h),
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δ and H being respectively the Dirac and Heaviside functions. In fact, by169

causality of G0 and linearity of L−1 applied to (8), one obtains170

Gα(t) = L−1

(∫ +∞

0

G0(t′)e−t
′√s2+α2

dt′
)
,

=

∫ +∞

0

G0(t′)L−1
(
e−t

′√s2+α2
)
dt′,

=

∫ +∞

0

G0(t′)δ(t− t′)dt′ −
∫ +∞

0

G0(t′)
αt′J1

(
α
√
t2 − t′2

)
√
t2 − t′2

H(t− t′)dt′,

= G0(t)−
∫ t

0

G0(t′)
αt′J1

(
α
√
t2 − t′2

)
√
t2 − t′2

dt′,

which gives (9), using the change of variable z =
√
t2 − t′2 in the last integral.171

172

Theorem 1. The expression of the fundamental solution Gσ,Lα (x, t) of Problem
(5) for α ≥ 0 is given by

Gσ,Lα (x, t) = Gσ,∞α,i (x, t) +Gσ,Lα,r (x, t), (10)

where Gσ,Lα,r (x, t) = 0 if L = +∞, and173

Gσ,Lα,r (x, t) = Gσ,∞α,i (x∗, t) if L < +∞, (11)

Gσ,Lα,r (x, t) is the reflected field and Gσ,∞α,i (x, t) is the incident field and is related174

to the dispersionless incident field Gσ,∞i (x, t) by the following representation175

formula:176

Gσ,∞α,i (x, t) = Gσ,∞i (x, t)− α
∫ t

0

Gσ,∞i

(
x,
√
t2 − z2

)
J1 (αz) dz. (12)

Proof. Let us start computing a fundamental solution for an infinite layer,177

i.e. L = +∞. We let f(t) = δ(t) and to simplify the notation let us denote Gσ,Lα178

byGα. Taking a Laplace-Fourier transform in time t and space x2, Gα(., x2, t) 7→179

˜̂
Gα(., k, s), in the partial differential equation in Problem (5), the function x1 7→180

˜̂
Gα(x1, k, s) satisfies the following ordinary differential equation with variable181

coefficients:182 (
s2 + α2 + k2

) ˜̂
Gα −

(
D̃σ
x1,α

)2 ˜̂
Gα = δ (x1 + h) , (13)

where183

D̃σ
x1,α =

(√
s2 + α2 + σ(x1)

)−1√
s2 + α2

d

dx1
.

We now use the change of variable184

X1(x1, s) = x1 +
1√

s2 + α2

∫ x1

0

σ(x)dx,
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and we introduce the new unknown Gα such that185

˜̂Gα (X1(x1, s), k, s) =
˜̂
Gα (x1, k, s) .

We get for x1 > 0,186

d
˜̂Gα

dX1
= D̃σ

x1,α
˜̂
Gα,

in such a way that the o.d.e (13) becomes187

(
s2 + α2 + k2

) ˜̂Gα −
d2 ˜̂Gα
dX2

1

= δ (X1 + h) , (14)

which leads to the following expression of
˜̂Gα, for all s > 0,188

˜̂Gα (X1, k, s) =
e−
√
k2+s2+α2|X1+h|

2
√
k2 + s2 + α2

,

or equivalently for
˜̂
Gα,189

˜̂
Gα (x1, k, s) =

e
−
√
k2+s2+α2

∣∣∣∣x1+h+
Σ(x1)√
s2+α2

∣∣∣∣
2
√
k2 + s2 + α2

.

It is now enough to observe that190

˜̂
Gα (x1, k, s) =

˜̂
G0,i

(
x1, k,

√
s2 + α2

)
. (15)

However,
˜̂
G0,i (x1, k, s) is nothing but the Fourier-Laplace transform of Gσ,∞i191

in space x2 and time t, given in (7), which corresponds to the incident field in192

the dispersionless media (i.e. for α = 0). Henceforth, the relation (12) of the193

theorem follows by Lemma 1 and injectivity of the Fourier transform. Finaly,194

relations (10) and (11) follow directly by the image principle similarly as in [16]195

namely that the field reflected by the outer boundary of the PML is equivalent196

to the incident field of the image problem according to a Neumann boundary197

condition. The proof of the theorem is finished.198

Remark 1. Observe that the perfect matching property of an infinite layer at199

x1 = 0 can be seen directly in the expression of the total field Gσ,∞α (x, t) =200

Gσ,∞α,i (x, t), for all x1 ∈ R, which means that no reflection holds at x1 = 0 when201

the layer is infinite.202

Remark 2. Actually, Gσ,∞α,i coincides on the left half-space x1 < 0 with G0,∞
α,i203

which corresponds to the Green’s function associated to the KG equation in the204

whole space R2 with a source located in space at xS. Its expression is well known205

in the literature cf. [23], and is given by206

G0,∞
α,i (x1, x2, t) =

H(t− r(x))

2π
√
t2 − r(x)2

cos
(
α
√
t2 − r(x)2

)
. (16)

In fact, one can also get it from the non-dispersive solution G0,∞
0,i by applying207

Lemma 1.208
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4. Error estimates and stability result209

We consider the solution uσ,Lα of Problem (5) as an approximation of the210

solution uα(= u0,∞
α ) of the dispersive wave equation in the whole space:211 

Find uα : R2 × R+ → R, null for t < 0,(
∂2

∂t2
+ α2

)
uα −

∂2uα
∂x2

1

− ∂2uα
∂x2

2

= δ (x− xS) f(t),
(17)

Notice that u0,∞
α is nothing but the restriction of uσ,∞α to the left half-space

R2
− = R− × R. We will give thus a time-domain analysis of the error

eσ,Lα = uσ,Lα − uα

w.r.t. to the parameters σ, L, h and α.212

Remark 3. The result (12) in Theorem 1 also applies for the total field, i.e.,213

one has for Gσ,Lα the same representation formula214

Gσ,Lα (x, t) = Gσ,L(x, t)− α
∫ t

0

Gσ,L
(
x,
√
t2 − z2

)
J1 (αz) dz, (18)

which actually means that the field can be decomposed into two parts: the first215

one Gσ,L(x, t) that is specific to a purely non-dispersive wave and the second216

one that is proportional to α and carries the dispersion when α 6= 0.217

We deduce that analytical solution of Problem (5) can be obtained (for218

a regular source term f(t)) by a convolution in time in the sense of Laplace219

transform as follows:220

uσ,Lα (x, t) =

∫ +∞

0

Gσ,Lα (x, τ) f (t− τ) dτ.

Following Remark 3 and using the representation formula (18), it follows that221

the analytical solution uσ,Lα (x, t) admits also a similar representation, i.e.,222

uσ,Lα (x, t) = uσ,L(x, t)− α
∫ t

0

uσ,L
(
x,
√
t2 − z2

)
J1 (αz) dz, (19)

which implies also that the same happens for the error function eσ,Lα (x, t), i.e.223

eσ,Lα (x, t) = eσ,L(x, t)− α
∫ t

0

eσ,L
(
x,
√
t2 − z2

)
J1 (αz) dz. (20)

Here, eσ,L(x, t) is the error (or reflected field) without dispersion that has been224

fully studied in [16, Theorem 4]. After having redefined the time function Φ(t),225
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null for t < 2L+ h, by:226

Φ(t) =



0 if t ≤ 2L+ h,

ln

 t+

√
t2 − (2L+ h)

2

2L+ h

 if 2L+ h < t ≤ 2L+ h+ T,

ln

 t+

√
t2 − (t− T )

2

(t− T )

 if t > 2L+ h+ T,

(21)

we recall that this error is bounded by227 ∥∥eσ,L(., t)
∥∥
L∞(R2

−) ≤
1

2
e−2Σ(L) 2L+h

t Φ(t) ‖f‖L∞ , (22)

in such a way that for T < ∞, Φ(t) behaves for large t as O(
√

2T/t) and228

eσ,L(., t) converges uniformly to 0 as t tends to +∞, for all σ, L and h.229

One can show that Φ is a positive and continuous function increasing for 2L+h <230

t < 2L+h+T and decreasing for t > 2L+h+T , hence Φ(t) reaches its maximum231

at t = 2L+ h+ T , i.e.232

max
t≥0

Φ(t) = Φmax = Φ (2L+ h+ T ) (23)

The following Lemma gives uniform bound of an oscillating integral useful for233

the error estimate in the dispersive case, i.e. when α is non zero.234

Lemma 2. Let Φ(t) given by (21), then235

α

∫ t

0

Φ
(√

t2 − z2
)
|J1 (αz)| dz ≤M(t)

√
2α,

where236

M(t) =


0 if t ≤ 2L+ h,

T0Φmax if 2L+ h < t ≤ 2L+ h+ 2T,

T0Φmax + 12
√
T

(
1 + 2

√
T

t

)
if t > 2L+ h+ 2T,

Φmax is given by (23) and T0 > 0 is defined by237

T0 = 2
(
(2L+ h+ 2T )2 − (2L+ h)2

) 1
4 .

Proof. With the help of the change of variable z =
√
t2 − x2,238

α

∫ t

0

Φ
(√

t2 − z2
)
|J1 (αz)| dz = α

∫ t

0

Φ (x)
x√

t2 − x2

∣∣∣J1

(
α
√
t2 − x2

)∣∣∣ dx,
11



and by the following Bessel’s function property, cf. [22]: the fact that for α > 0239

and for all z > 0,240

|J1 (αz)| ≤
√

2

αz
, (24)

one obtains the inequality241

α

∫ t

0

Φ (x)
x√

t2 − x2

∣∣∣J1

(
α
√
t2 − x2

)∣∣∣ dx ≤ √2α

∫ t

0

Φ (x)
x

(t2 − x2)
3
4

dx. (25)

Henceforth, if t ≤ 2L + h then by definition Φ(x) = 0 for all x ∈ (0, t) and the
r.h.s. of (25) is zero. Moreover, if 2L+ h < t ≤ 2L+ h+ 2T then one has

r.h.s.(25) =
√

2α

∫ t

2L+h

Φ (x)
x

(t2 − x2)
3
4

dx,

≤
√

2αmax
x

Φ(x)

∫ 2L+h+2T

2L+h

x

(t2 − x2)
3
4

dx =
√

2αΦmaxT0.

Furthermore, if t > 2L+ h+ 2T then with the help of the standard inequality :
logZ ≤ Z − 1 which holds for all Z ≥ 1, one can write

Φ(x) = ln

x+

√
x2 − (x− T )

2

(x− T )

 ≤ T +
√
T (2x− T )

x− T

≤
T +

√
T (2x− 2T + T )

x− T

≤ 2T

x− T
+

√
2T

x− T
.

Hence, if x > 2L+h+2T then x > 2T which yields x−T > x/2 and consequently242

the following estimate holds:243

Φ(x) ≤ 4T

x
+

√
4T

x
, ∀x ∈ (2L+ h+ 2T, t) .

One concludes that∫ t

2L+h+2T

Φ (x)
x

(t2 − x2)
3
4

dx ≤
∫ t

0

4T + 2
√
Tx

(t2 − x2)
3
4

dx. (26)

On the other hand, using a change of variable x = t
√
z, one has using the244

definition of the Euler integral of the first kind245

β(u, v) =

∫ 1

0

zu−1 (1− z)v−1
dz,

12



which is defined for <e(u) > 0 and <e(v) > 0,∫ t

0

xλ
(
t2 − x2

)µ
dx = tλ+2µ+1

∫ 1

0

z
λ−1

2 (1− z)µ dz

= tλ+2µ+1β

(
λ+ 1

2
, µ+ 1

)
,

which in turn exists for <e(λ) > −1 and <e(µ) > −1. Henceforth, the r.h.s. of
(26) can be calculated, with the help of the previous identity, as follows:∫ t

0

4T + 2
√
Tx

(t2 − x2)
3
4

dx =

∫ t

0

4T

(t2 − x2)
3
4

dx+

∫ t

0

2
√
Tx

(t2 − x2)
3
4

dx,

= 4T

∫ t

0

x0
(
t2 − x2

)− 3
4 dx+ 2

√
T

∫ t

0

x
1
2

(
t2 − x2

)− 3
4 dx,

= 4Tt−
1
2 β

(
1

2
,

1

4

)
+ 2
√
Tt0β

(
3

4
,

1

4

)
,

≤ 12
√
T

(
2

√
T

t
+ 1

)
,

since one has246

β

(
3

4
,

1

4

)
< β

(
1

2
,

1

4

)
< 6.

Thus, if t > 2L+ h+ 2T then by the decomposition247 ∫ t

0

=

∫ 2L+h

0

+

∫ 2L+h+2T

2L+h

+

∫ t

2L+h+2T

,

one concludes that

α

∫ t

0

Φ
(√

t2 − z2
)
|J1 (αz)| dz ≤

(
T0Φmax + 12

√
T

(
1 + 2

√
T

t

))
√

2α,

(27)

which ends the proof of the Lemma.248

Theorem 2. For a regular source term f(t) compactly supported in [0, T ), T <249

+∞, the error eσ,Lα (., t) = uσ,Lα (., t)− uα(., t) is null for t < 2L+ h, and for all250

t ≥ 2L+ h the following estimate holds:251 ∥∥eσ,Lα (., t)
∥∥
L∞(R2

−) ≤
1

2
e−2Σ(L) 2L+h

t ‖f‖L∞
(

Φ(t) +M(t)
√

2α
)
, (28)

where M(t) is defined in Lemma 2.252
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Proof. Thanks to Inequality (22) it will be enough to estimate the second term
in the r.h.s. in the representation formula (20). So, one has again by Inequality
(22):

∥∥eσ,Lα (., t)− eσ,L(., t)
∥∥
L∞(R2

−) = sup
x∈R2

−

∣∣∣∣α ∫ t

0

eσ,L
(
x,
√
t2 − z2

)
J1 (αz) dz

∣∣∣∣
≤ α

2
‖f‖L∞

∫ t

0

e
−2Σ(L) 2L+h√

t2−z2 Φ
(√

t2 − z2
)
|J1 (αz)| dz.

(29)

With the help of the triangular inequality, one has253 ∥∥eσ,Lα (., t)
∥∥
L∞(R2

−) ≤
∥∥eσ,Lα (., t)− eσ,L(., t)

∥∥
L∞(R2

−) +
∥∥eσ,L(., t)

∥∥
L∞(R2

−) .

Moreover,254

sup
z∈(0,t)

e
−2Σ(L) 2L+h√

t2−z2 = e−2Σ(L) 2L+h
t ,

then (22) implies that the r.h.s of (29) is bounded from above by255

αe−2Σ(L) 2L+h
t ‖f‖L∞

2

∫ t

0

Φ
(√

t2 − z2
)
|J1 (αz)| dz. (30)

Henceforth, the proof of the theorem follows by Lemma 2 and Inequality (22).256

In particular, the error is zero for t < 2L + h since Φ(t) = M(t) = 0 for all257

t < 2L+ h.258

It should be pointed that the presence of the function M(t) in the r.h.s. of the259

estimate (28) can be interpreted as a result of stability only. More precisely, we260

can see that for t large, M(t) does not have the same asymptotic behavior as261

Φ(t). Indeed, M(t) =
√
αO(1) while Φ(t) = O

(
t−1/2

)
.262

5. Localization and numerical application263

The operator Dσ
x1,α that appears in the PML change of variable (3) is non-264

local. Therefore, we propose a localization technique at high frequencies simi-265

larly to the ABC’s methodology [17]. As an example, comparisons (numerical266

and plane waves analysis) of the zeroth and first order Taylor approximations of267

the square root
√
∂2
t + α2 are feasible and will be sufficient to put in evidence268

the effect of the dispersion parameter α.269

5.1. Localization270

The expression of the PML equation obtained in Section 2 is non-local since271

a square root appears in the change of variable (3), which is far from being272

practical in a numerical application. A standard zeroth-order approximation at273

high frequencies can be used, just as usually done by the authors when dealing274

with dispersive wave equation by taking (for example) simply α = 0 in (3) to275

14



obtain the standard form of Dσ
x1

as given by (2), (cf. eg. [2, 5, 27]). Instead276

of that, we propose here a new family of PML’s operators by a localization277

technique that can be based on a Taylor or any other asymptotic expansion278

(such as Padé’s approximation) of the square root
√
s2 + α2 at high frequencies279

(of a specific order). It is similar to those used in designing absorbing boundary280

conditions ([17, 18, 20, 15, 27]). At high frequencies α� s, one can write281 √
s2 + α2 = s+

1

2
α2s−1 +O

(α
s

)4

. (31)

The computation of ξ = Dσ
x1,αφ can be done by inverting the operator corre-282

sponding to the symbol
√
s2 + α2 + σ in the equation, i.e.,283 (√

s2 + α2 + σ
)
ξ =

√
s2 + α2

d

dx1
φ, (32)

and at high frequencies α � s, the square root
√
s2 + α2 may be replaced by284

dropping the highest order terms in the expansion (31) in such a way that (32)285

can be approximated by the equation286 (
s+

1

2
α2s−1 + σ

)
ξ =

(
s+

1

2
α2s−1

)
d

dx1
φ,

and, which up to a multiplication by s, gives287 (
s2 +

1

2
α2 + σs

)
ξ =

(
s2 +

1

2
α2

)
d

dx1
φ.

Hence, the localization of Dσ
x1,α (by a Taylor approximation) can be done by288

solving a Cauchy problem as follows:289 
(
∂2

∂t2
+

1

2
α2 + σ

∂

∂t

)
ξ (x, t) =

(
∂2

∂t2
+

1

2
α2

)
∂

∂x1
φ (x, t) , x1 > 0,

∂

∂t
ξ (x, t)

∣∣∣∣
t=0

= 0,

(33)

together with the perfect matching condition290

ξ (x, t)|x1=0+ =
∂

∂x1
φ (x, t)

∣∣∣∣
x1=0−

and the fact that the auxiliary variable ξ lives only in the PML layer x1 > 0,291

i.e.,292

ξ (x, t) = 0, x1 < 0.

We will call the Taylor approximation given by the PML equation in the form293

(33) the α−PML in the numerical results thereafter. Notice that in the case294

of infinite layers, both the standard PML and α− PML are by construction295
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perfectly matched at the interface x1 = 0. In fact, to each one corresponds the296

following complex change of variable:297

X1(x1, s) = x1 +
1

s

∫ x1

0

σ(x)dx, (34)

for the standard, and298

X1(x1, s) = x1 +
1

s+ 1
2α

2s−1

∫ x1

0

σ(x)dx,

for the α−PML. Note also that when a finite layer of width L is used one has299

to add for example a homogeneous Neumann boundary condition on ξ in order300

to close the equations. Let us point out that a standard PML formulation will301

correspond to a zeroth order approximation in (32), i.e., by taking α = 0 in302

(33).303

5.2. Plane waves analysis304

The homogeneous non-dispersive wave equation (α = 0) admits outgoing305

plane wave solutions in the direction of increasing x1 of the following form306

U = eiωt−ik1x1+ik2x2 ,
k1

ω
> 0, (35)

where the time and space frequencies are related by the dispersion relation307

ω2 − k2
1 − k2

2 = 0.308

It is well known that, when considering a finite layer(corresponding th the
standard PML change of variable (34) with s = iω) of width L with homoge-
neous Neumann boundary condition at x1 = L, then the image principle allows
one to obtain through simple reflection a plane wave solution of the form

u(X, t) = U(X, t) + U(X∗, t),

= ei(ωt−k1X1+k2x2) + ei(ωt−k1(2L−X1)+k2x2),

= ei(ωt−k1X1+k2x2) + ei(ωt−k1(2L−X1)+k2x2),

= ei(ωt−k1x1+k2x2)e−
k1
ω

∫ x1
0 σ(ξ)dξ + ei(ωt−k1(2L−x1)+k2x2)e−

k1
ω

∫ 2L−x1
0 σ(ξ)dξ,

so that in the region x < 0 the solution becomes309

u(x, t) = ei(ωt−k1x1+k2x2) +Rσe
i(ωt+k1x1+k2x2),

where310

Rσ = e−
k1
ω

∫ 2L−x1
0 σ(ξ)dξe−2ik1L.

Moreover, one has for x1 < 0,∫ 2L−x1

0

σ(ξ)dξ = 2

∫ L

0

σ(ξ)dξ

16



since σ was extended symmetrically w.r.t. the line x1 = L. We thus find the311

reflection coefficient at the interface x1 = 0:312

Rσ = e−2
k1
ω

∫ L
0
σ(ξ)dξ × e−2ik1L, (36)

where the first term in the r.h.s. of (36) is associated with absorption and the313

second represents a phase shift.314

Similarly to the change of Laplace variable s by
√
s2 + α2 that we used in

Section 3, we propose to analyze the reflectivity of the non-local PML for the
KG equation as follows. The frequency change of variable ω by

√
ω2 − α2 in

(35) transforms the plane wave solution of the non-dispersive wave equation to
a plane wave solution of the KG equation of the form

Uα = ei
√
ω2−α2t−ik1x1+ik2x2 ,

in such a way that the expression of the reflection coefficient of the finite width315

non-local PML at the interface x1 = 0 writes as316

Rσ,α = e
−2

k1√
ω2−α2

∫ L
0
σ(ξ)dξ

× e−2ik1L. (37)

Henceforth, a Taylor series of the square root
√
ω2 − α2 at high frequencies317

(α� ω) will give the following approximations of Rσ,α, at increasing orders:318

R(0)
σ,α = e−2

k1
ω

∫ L
0
σ(ξ)dξ × e−2ik1L,

319

R(1)
σ,α = e

−2
k1

ω−α2
2ω

∫ L
0
σ(ξ)dξ

× e−2ik1L, ...

These coefficients correspond exactly and respectively to the coefficients of re-320

flection at x1 = 0 of the standard (0−PML) and the α−PML,..., associated321

with the KG equation. As a result, we have for all α > 0 and k1, ω such that322

ω ≥ α and k1/ω > 0,323 ∣∣∣R(1)
σ,α

∣∣∣ < ∣∣∣R(0)
σ,α

∣∣∣ ,
which means that the α−PML improves the standard PML. Better yet, the324

improvement is optimal at long waves which have frequencies close to α. Indeed,325

one has the ratio326 ∣∣∣∣∣R(1)
σ,α

R
(0)
σ,α

∣∣∣∣∣ = e
−2

k1
ω

α2

2ω2−α2

∫ L
0
σ(ξ)dξ

(38)

that is increasing w.r.t. ω ∈ [α,+∞[ and henceforth is minimal at ω = α. We327

conclude this by remarking that, at least for plane waves, α−PML performs328

better than the standard one and better still for long waves, i.e., in the vicinity329

of the cut-off frequency α. Otherwise, the two methods (standard and α−PMLs)330

are virtually identical for short waves (high frequencies ω � α) or in general for331

weakly dispersive waves (α ' 0).332
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Remark 4. The localization process in this section is based on the high fre-333

quency/short wave (s >> α) assumption, and yet the new formulation is aimed334

to deal with the long waves (s close to α). In fact, the localization is expected to335

be less accurate for the more dispersive waves if one uses only few terms in the336

Taylor expansion. Other asymptotic expansion such as Padé’s approximation of337

the square root
√
s2 + α2 at high frequencies may actually performs better with338

a slightly higher cost resulting from the quasi-localization by rational fractions.339

340

Remark 5. Currently there is no reason to believe in the long-time stability of341

either 0-PML or α− PML in terms of analytical solutions. Nevertheless, a plane342

wave analysis with an infinite layer based on the slowness curves can be carried343

out without difficulty in order to show their stability at least for exponential344

modes as in [5, 6, 7].345

5.3. Numerical examples346

In what follows, we will present results for both the standard (0−PML)347

and the α−PML in order to discuss the effect of taking or not α into account348

for the precision of computations. The numerical solutions are obtained by a

Figure 4: Configuration of the computational and physical domains and the vertical layer of
width L. The source lies in the physical media outside the interface.

349

finite difference time-domain code (FDTD) based on a standard central finite350

difference scheme of leap-frog type, second order accurate in space and time,351

where the source function is a truncated first derivative of a Gaussian :352

f(t) =
d

dt

{
e−2πf0(t−t0)2

}
H(2t0 − t), f0 = 10, t0 =

1

f0
.

It produces for c = 1 a wavelength λ = c/f0 = 0.1. The space step size ∆x is353

chosen equal in both direction x1 and x2, such that ∆x = λ/16, i.e., 16 points354

per wavelength, with a CFL condition such that c∆t/∆x = 0.5.355

Let us point out that a layer in the x2 direction (the horizontal layer) can be356

constructed straightforwardly by symmetry from the x1 direction (the vertical357
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layer). The corner layers are constructed side by side of the vertical and hori-358

zontal ones without any special care as is commonly used in PML techniques for359

the wave equation. We used natural transmission conditions and the numerical360

results show no reflection at the interfaces separating the two layers. In order361

to perform a long time simulation, we consider a rectangular physical domain362

[−60∆x, 0] × [−30∆x, 30∆x] completely surrounded by vertical and horizontal363

layers of same width L = 20∆x and the point source is assumed located at364

XS = (−30∆x, 0). Our interest is focused only on the behaviour of the right365

vertical layer 0 < x1 < L (cf. Figure 4) since it will be adequate to conclude366

later. The damping function σ(x1) = σmaxx
2
1/L is chosen quadratic with an367

empirical maximum value σmax = 48. An observation point xR (the receiver)368

at normal incidence is chosen on the x1−axis at left two-points away from the369

interface between physical domain and PML layer.370

- Comparison of FDTD and convolution analytical solutions371

Dispersion appears at very long periods in time, which results in an ad-372

justment of long waves towards the inertial oscillations of frequencies α. We373

have thus computed the analytical solution uα (xR, t) via the Maple software374

by calculating oscillating convolution integrals involving a cosine function (cf.375

Eq.(16)) to match with the finite difference reference solution. Figures 5 and376

6 show the long waves adjustment of the analytical solution computed by the377

software Maple with α = 0.1f0 (weak dispersion) and with α = 0.9f0 (strong378

dispersion) respectively. We have also computed the analytical (or reference)379

solution by the finite difference code on a much larger computational domain380

[−500∆x, 0]× [−250∆x, 250∆x] by setting σ = 0 and where the simulation time381

TR = 900∆t is chosen so that the reflected wave will not have reached the outer382

boundary yet. Figures 7 and 8 show comparisons for short waves adjustment of383

the analytical solution computed by the software Maple and the FDTD code,384

where we have set α = 0.1f0 for weak dispersion and α = 0.9f0 for strong dis-385

persion respectively. The two solutions (convolution and FDTD) are in good386

agreement in each case. Figures 9 and 10 show relative error incurred by the387

FDTD code w.r.t. the convolution integral formula to obtain analytical solution388

respectively for weak dispersion (α = 0.1f0) and strong dispersion (α = 0.9f0).389

390

From now on, and since very long time simulation is needed later for long391

waves, we will use the convolution solution as the reference analytical solution392

for the error analysis of both the standard and α−PML.393

- Short waves analysis of PMLs394

We will first make a comparison between the standard PML and the α−PML395

during the passage of the short wave, say for t ∈ [0, 900∆t], by computing the396

relative error produced by each method w.r.t. the analytical solution. Denoting397

by uα(xR, t) the PML (standard or α−) solution, the relative error is defined398

by399

Eσ,Lα (xR, t) =
|uα (xR, t)− uref (xR, t)|

max0≤t≤900∆t |uref (xR, t)|
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Figure 5: Weak dispersion: Zoom close to inertial oscillations adjustment of the analytical
solution computed by Maple with α = 0.1f0.

Figure 6: Strong dispersion: Zoom close to inertial oscillations adjustment of the analytical
solution computed by Maple with α = 0.9f0.

and it is calculated for α = 0.1f0 (weak dispersion) and α = 0.9f0 (strong400

dispersion) respectively. In the two cases we have tested the standard PML and401

the α−PML. Results for short waves are shown in Figures 11 and 12 respectively.402

According to the tolerance obtained in Figures 9 and 10 between the Convolution403

and FDTD analytical solutions, both standard PML and α−PML performs404

with the same precision. One can conclude that, at least for short waves, one405

can continue using the standard PML without having recourse to the second406

method (α−PML), as it is done in the literature for dispersive problems (cf. eg.407

[2, 5, 27]).408

- Long waves analysis of PMLs409

In order to highlight the positive contribution of α−PML w.r.t. the standard,410

we will focus on the long time periods (for example t ≥ 900∆t) during which411

long waves adjustment occurs (in particular the case of a strong dispersion412
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Figure 7: Weak dispersion α = 0.1f0: Convolution vs FDTD

Figure 8: Strong dispersion α = 0.9f0: Convolution vs FDTD
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Figure 9: Relative error for short waves for α = 0.1f0: FDTD vs Convolution solution.

Figure 10: Relative error for short waves for α = 0.9f0: FDTD vs Convolution solution.
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Figure 11: Weak dispersion, α = 0.1f0: relative error of standard PML and α−PML w.r.t.
analytical solution.

Figure 12: Strong dispersion, α = 0.9f0: relative error of standard PML and α−PML w.r.t.
analytical solution.
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Figure 13: Comparison of standard and α− PMLs for long waves.

Figure 14: Relative error of standard and α−PMLs for long waves.

α = 0.9f0). The relative error produced by each method w.r.t. the analytical413

solution is defined now by414

Eσ,Lα (xR, t) =
|uα (xR, t)− uref (xR, t)|

max900∆t≤t≤9000∆t |uref (xR, t)|
,

where uα(xR, t) denotes now the PML (standard or α−) solution. We have415

tested two cases of the width of the PML layer, L = 20∆x and L = 30∆x for416

each method respectively. Figure 14 shows, for a last sample of time interval417

t ≥ 800∆t, a comparison of long waves adjustment obtained by the standard418

and α−PML vs the analytical solution, top picture with L = 20∆x and bottom419

with L = 30∆x. We observe remarkably good agreement of the α−PML solution420

with the analytical one while the one given by the standard PML remains visibly421

far from this adjustment. Even more precisely, in Figure 14 we observe that422

the relative error incurred by the α−PML is much less significant than that423

produced by the standard for L = 20∆x at top picture. Better yet at bottom, it424
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is even decreasing in time for L = 30∆x, whereas that produced by the standard425

remains just bounded and above all relatively significant by comparison with426

the α−PML. This is also in good agreement with the behaviour for ω close to427

α of the ratio of reflection coefficients given by (38) in the plane wave analysis428

above.429

6. Conclusion430

• As a principal consequence of Theorem 2, the error is not affected by the431

dispersion term α at a fixed time t > 0. Therefore, the design of PML432

for dispersive waves may be the same as for the non-dispersive case for433

short time simulation and particularly for short waves. More precisely,434

at fixed time t this error is affected only by the average absorption rate435

σ̄ = Σ(L)/L, the width of the layer L and the location of the source436

h while it converges spectrally in the L∞ norm to 0 when one of these437

parameters increases.438

• Specifically, we do not observe the same behaviour in long time, that is to439

say, for fixed T <∞ the error behaves for large t as440 √
2T

t
+O

(√
α
)

and does not necessarily converge uniformly to 0 as t tends to +∞ for all441

σ̄, L and h. This is the main difference (or loss in precision) w.r.t. the442

non-dispersive case (α = 0). However and fortunately, the property of443

long time stability is conserved since the error remains bounded as t goes444

to +∞.445

• This technique can in particular be used to study the shallow water equa-446

tions with rotation in order to take into account the effect of the Coriolis447

force on the behaviour of the absorbing layers.448

• Advective Klein-Gordon equation with a parallel mean flow can be ana-449

lyzed in a very similar way in comparison with the time domain analysis450

presented for advective acoustics in [16], the same changes of variables can451

be used as in [21, 5] in order to get rid of the moving referential. However,452

this sill be not yet obvious at an oblique mean flow.453

• The idea of localization proposed in Section 5 is very standard but it opens454

a wide variety of possibilities in designing absorbing boundary conditions455

combined with PMLs using other techniques of approximating the square456

root
√
s2 + α2 appearing in Dσ

x1,α.457
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[19] S. Fauqueux. Eléments finis mixtes spectraux et couches absorbantes par-502

faitement adaptées pour la propagation d’ ondes élastiques en régime tran-503
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