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Abstract

Dynamical low-rank (DLR) approximation methods have previously been devel-

oped for time-dependent radiation transport problems. One crucial drawback of

DLR is that it does not conserve important quantities of the calculation, which

limits the applicability of the method. Here we address this conservation issue

by solving a low-order equation with closure terms computed via a high-order

solution calculated with DLR. We observe that the high-order solution well ap-

proximates the closure term, and the low-order solution can be used to correct

the conservation bias in the DLR evolution. We also apply the linear discontinu-

ous Galerkin method for the spatial discretization to obtain the asymptotic limit.

We then demonstrate with the numerical results that this so-called high-order /

low-order (HOLO) algorithm is conservative without sacrificing computational

efficiency and accuracy.
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1. Introduction

The radiation transport equation (RTE) describes the movement of particles

(e.g., photons or neutrons) through a background medium. Solving the RTE is

of great interest across many research areas, namely, nuclear engineering [1], as-

trophysics [2], and optics [3]. It is a challenging problem because the RTE has

seven independent variables, including one in time, three in position, two in di-

rection, and one in energy, which requires an extravagant computational burden

in terms of both memory and operations. Thus, developing a computationally

inexpensive, yet accurate, algorithm is a continuing concern.

There is a long history of methods designed to reduce the complexity and

size of radiation transport calculations. Many of these efforts have focused on

the direction, or angular, variables. The diffusion method, and its flux-limited

variants [4, 5, 6, 7], represent the direction variables with a two-moment repre-

sentation based on Fick’s law. Nevertheless, a two-moment description of the

directional variables is inadequate to describe the behaviour in many problems

[8]. The expansion order can be increased by using spherical harmonics meth-

ods [9, 10], though these methods have limitations, including negative densities

[11], that need to be addressed with either filters [12, 13, 14, 15], or nonlinear

closures that increase in the computational complexity [16, 17, 18, 19, 20]. The

simplified spherical harmonics method [21], is an intermediate approximation

between the diffusion method and spherical harmonics [22], that also has issues

with accurately solving many problems [23]. Recent work on wavelets [24, 25, 26]

and adaptive discrete ordinates methods [27, 28, 29] have shown that it is pos-

sible to reduce complexity by focusing the effort on angular degrees where most

necessary.

Alongside the investigations into angular discretizations, there is a record of

work addressing the other complexities in transport problems. This includes the

so-called second-order forms such as the even-parity, odd-parity [30], self-adjoint

[31], and least-squares [32, 33] forms. The second-order forms in many cases

require the solution of half the number of equations with the additional benefits
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that spatial discretizations of second-operators possess [34, 35]. The second-

order forms do have issues in voids [36, 37, 38] that cause either inaccuracy or loss

of the self-adjoint character of the equations. Adaptivity in space [39, 40, 41, 42]

and space-angle [43], as well as selective reduction of degrees of freedom [44] have

all been explored as well.

In this paper, we continue a more recent trend of applying dynamical low-

rank (DLR) approximation methods to radiation transport problems. These

methods project the RTE onto a reduced basis in space and angle that evolves

dynamically during a calculation. DLR methods were considered for the RTE

in work by the authors [45]. The idea of this method comes from a conven-

tional paradigm in solving the time-dependent Schrödinger equation for multi-

dimensional dynamical systems, known as Multi-Configuration Time-Dependent

Hartree (MCTDH), which gives a rank-1 approximation for a multivariate wave

function [46]. The DLR approximates the time derivative of the objective ma-

trices or tensors by applying tangent space projection [47, 48, 49]. It was shown

to be robust even with small singular values [50] when the time integration is

performed using splitting [51, 52]. The application in other kinetic equations

can be found in [53, 54, 55]. The implementation in radiation transport calcu-

lations produces high-fidelity results obtained from the low-rank scheme with

a fraction of memory usage and computational time. However, this approach

does not preserve the total number of particles (i.e., the methods are not guar-

anteed to be conservative), which may result in a significant error at long times

or in steady-state. There is an attempt to recover the conservation by enforcing

the conservation law to the low-rank scheme, which results in an optimization

problem that needs to be solved [56] that increases the computational cost of

the method.

In this paper, we propose a high-order/low-order (HOLO) algorithm [57, 58]

to solve this conservation issue. In our algorithm, we take the high-order, low-

rank solution to calculate a closure term in the low-order two-moment approx-

imation of the transport equation, in an approach very similar to the quasi-

diffusion method [59, 60]. The low-order system conserves particles independent
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of the closure. This allows us to demonstrate that our HOLO algorithm over-

comes the conservation difficulty while preserving the computational efficiency

and accuracy. Additionally, we demonstrate that this approach can also preserve

the asymptotic diffusion limit [61, 62] of the radiation transport equation.

We begin with a brief review of the low-rank method in Section 2. Then we

present the low-order system with the closure term to preserve the number of

particles. We further introduce the HOLO scheme which couples the low-order

system with the low-rank solutions. To guarantee the consistency between the

two systems, we develop a moment-based correction method to fix the conserva-

tion in the low-rank evolution. After that, we design a numerical scheme for the

2-D RTE with a discontinuous Galerkin discretization in space and a spherical

harmonic (PN ) expansion in angle. In our results section, we demonstrate the ef-

ficacy of our algorithm with numerical results to validate the memory-reduction,

conservation and asymptotic preserving properties.

2. Dynamical low-rank approximation

We consider a time-dependent radiative transfer equation with one energy

group:

1

c

∂ψ(r, Ω̂, t)

∂t
+ Ω̂ · ∇ψ(r, Ω̂, t) + σt(r)ψ(r, Ω̂, t) =

1

4π
σs(r)φ(r, t) +Q(r, t).

(1)

The radiation intensity ψ(r, Ω̂, t) [energy/area/steradian/time] is a function of

position r, time t, and the unit angle vector Ω̂(µ, ϕ), where µ is the cosine of

the polar angle and ϕ is the azimuthal angle. The total and isotropic scattering

macroscopic cross-sections with units of inverse length are denoted as σt(r) and

σs(r), respectively, c is the particle speed, and Q(r, t) is a prescribed source.

We set c = 1 in the following derivations for simplicity. The scalar intensity,

φ(r, t), is the integral of ψ(r, Ω̂, t) over all angles:

φ(r, t) =

∫

4π

ψ(r, Ω̂, t) dΩ̂. (2)
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The low-rank method aims to approximate the solution to Eq. (1) with rank r

using the form

ψ(r, Ω̂, t) ≈
r
∑

i,j=1

Xi(r, t)Sij(t)Wj(Ω̂, t); (3)

where Xi is an orthonormal basis for r and Wj is an orthonormal basis for Ω̂

using the inner products

〈f, g〉r =

∫

D

fg dr, 〈f, g〉Ω̂ =

∫

4π

fg dΩ̂.

The expansion is unique with orthonormality 〈Xi, Xj〉r = 〈Wi,Wj〉Ω̂ = δij and

gauge conditions 〈Xi, Ẋj〉r = 0 and 〈Wi, Ẇj〉Ω̂ = 0. The rank r should be

less than the number the degrees of freedom in the either of the bases Xi and

Wj . We then define the orthogonal projectors to the low-rank ansatz spaces

X̄ = {X1, X2, ..., Xr} and W̄ = {W1,W2, ...,Wr} as

PX̄g =

r
∑

i=1

Xi〈Xig〉r, (4)

PW̄ g =

r
∑

j=1

Wj〈Wjg〉Ω̂. (5)

The full solution ψ(r, Ω̂, t) can be projected into the low-rank manifold Mr by

the projector Pg = PW̄ g − PX̄PW̄ g + PX̄g. To make the computation more

robust, we split the process into three steps [51], where we solve each of the

following three equations over a time step:

∂tψ(r, Ω̂, t) = PW̄

(

− Ω̂ ·∇ψ(r, Ω̂, t)− σt(r, t)ψ(r, Ω̂, t)

+
1

4π
σs(r, t)φ(r, t) +Q(r, t)

)

, (6)

∂tψ(r, Ω̂, t) = −PX̄PW̄

(

− Ω̂ ·∇ψ(r, Ω̂, t)− σt(r, t)ψ(r, Ω̂, t)

+
1

4π
σs(r, t)φ(r, t) +Q(r, t)

)

, (7)
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∂tψ(r, Ω̂, t) = PX̄

(

− Ω̂ ·∇ψ(r, Ω̂, t)− σt(r, t)ψ(r, Ω̂, t)

+
1

4π
σs(r, t)φ(r, t) +Q(r, t)

)

. (8)

We then formulate the projections (6) - (8) explicitly from time t0 to t0 +

h where h is the step size. To simplify the notation we define Kj(r, t) =
∑r

i Xi(r, t)Sij(t) and Li =
∑r

j Sij(t)Wj(Ω̂, t). The corresponding projected

equations are

∂tKj = −
r
∑

l=1

∇Kl 〈Ω̂WlWj〉Ω̂ − σtKj +
1

4π
σs

r
∑

l=1

Kl〈Wl〉Ω̂〈Wj〉Ω̂

+Q〈Wj〉Ω̂, (9)

d

dt
Sij =

r
∑

kl

〈∇XkXi〉rSkl〈Ω̂WlWj〉Ω̂ +
r
∑

k

〈σtXkXi〉rSkj

− 1

4π

r
∑

kl

〈σsXkXi〉rSkl〈Wl〉Ω̂〈Wj〉Ω̂ − 〈XiQ〉r〈Wj〉Ω̂, (10)

d

dt
Li = −Ω̂

r
∑

k

〈∇XkXi〉rLk −
r
∑

k

〈σtXkXi〉rLk

+
1

4π

r
∑

k

〈σsXkXi〉r〈Lk〉Ω̂ + 〈QXi〉r. (11)

We summarize the procedures to solve equations (9) - (11) in Algorithm 1.

Importantly, in the algorithm only the low-rank components X , S and W are

stored during the time evolution rather than the full solution ψ. This allows

the low-rank method to save computer memory.

3. HOLO algorithm

In this section we will construct the low-order system that requires closure

terms. We apply the quasi-diffusion method [59] which is also known as the vari-

able Eddington factor method [63], to Eq. (1) to yield a two-angular-moments
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Algorithm 1: Dynamical low-rank approximation

1 Given

2 -initial time t0

3 -time step h

4 -desired rank r

5 -initial condition ψ(0)(r, Ω̂, t0)

6 -initial approximations X
(0)
i (r, t0), S

(0)
ij (t0),W

(0)
j (Ω̂, t0)

7 Repeat:

8 -t1 = t0 + h

9 -Solve equation (9) for K
(1)
j (r, t1) with initial condition

K
(0)
j (r, t0) =

∑r
i X

(0)
i S

(0)
ij and then factor into X

(1)
i (r, t1) and S

(1)
ij (t1)

using a QR decomposition; W
(1)
j =W

(0)
j is preserved in this step.

10 -Solve equation (10) for S
(2)
ij (t1) with initial condition S

(2)
ij (t0) = S

(1)
ij ,

X
(2)
i = X

(1)
i and W

(2)
j =W

(1)
j are preserved in this step.

11 -Solve equation (11) for L
(3)
i (Ω̂, t1) with initial condition

L
(3)
i (Ω̂, t0) =

∑r
j S

(2)
ij W

(2)
j and then factor into S

(3)
ij (t1) and W

(3)
j (Ω̂, t1)

using a QR decomposition; X
(3)
i = X

(2)
i is preserved in this step.

12 -t0 = t1

13 -X
(0)
i = X

(3)
i , S

(0)
ij = S

(3)
ij , W

(0)
j =W

(3)
j

formulation [8]:

1

c

∂φ(r, t)

∂t
+∇ · J(r, t) + σt(r)φ(r, t) = σs(r)φ(r, t) +Q(r, t). (12)

and
1

c

∂J(r, t)

∂t
+∇ · χφ(r, t) + σt(r)J(r, t) = 0. (13)

where

J(r, t) =

∫

4π

Ω̂ψ(r, Ω̂, t) dΩ̂ (14)

is the radiative flux (or current density), and

χ =

∫

4π
Ω̂⊗ Ω̂ψ(r, Ω̂, t) dΩ̂

φ(r, t)
(15)
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is the Eddington tensor and ⊗ denotes the outer product. Note that φ is the

zeroth moment, J is the first moment and χ is the normalized second moment

related to radiation pressure. To close Eqs. (12) and (13) we need to evaluate

the Eddington tensor χ. An approximation χ ≈ 1
3I , used in the diffusion

method, is based on the assumption that ψ is a linear function of angle, where

I is an identity tensor. Such approximations ignore the relation of Eddington

factor to higher order moments, which limits their accuracy.

We propose a closure term γ = ∇·
1
3φ(r, t)−∇·χφ(r, t) added to the right

hand side of Eq. (13) that corrects the χ ≈ 1
3I approximation based on the

solution to the full RTE. The corrected equation that we solve is

1

c

∂J(r, t)

∂t
+

1

3
∇ · φ(r, t) + σt(r)J(r, t) = γ(r, t). (16)

As we will show later, γ is calculated as the difference between the low-rank

equations (9) - (11) and the quasi-diffusion equation (12) - (13). The main idea

of our HOLO algorithm is that the solution to the low-order system (12) and

(16) can be accurate if γ is evaluated through the solution to the high-order

system (9 - 11). Additionally, the solution is conservative in φ regardless of the

value of the closure term because J appears in conservative form in Eq. (12).

3.1. Angular discretization for low-rank equations in 2D

We choose the angular bases Wj(µ, ϕ, t) to be the spherical harmonics ex-

pansion truncated at N :

Wj(µ, ϕ, t) ≈
N
∑

l=0

l
∑

k=0

vjlk(t)Y
k
l (µ, ϕ) (17)

where

Y k
l (µ, ϕ) =

√

2l+ 1

4π

(l − k)!

(l + k)!
P k
l (µ) e

i kϕ,

where P k
l (µ) is the associate Legendre polynomial and N is the expansion order.

Here 0 ≤ k ≤ l ≤ N and the negative k are omitted because of the symmetry

properties of the spherical harmonics [64]. The total number of moments is

n = (N+1)(N+2)
2 .
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We use vectors Vj to collect all the angular elements vjlk inWj and Y for all

the spherical harmonics Y k
l sorted by the index l, e.g., Y = [Y 0

0 , Y
0
1 , Y

1
1 , Y

0
2 , ... Y

N
N ]T .

The integration of Y in angular domain is computed as

∫ 2π

0

∫ 1

−1

Y dµdϕ = 〈Y 〉 = [2
√
π, 0, 0, ...0]

for later use. We then substitute the angular basis Wj = Y TVj into the projec-

tion Eqs. (9) and (10):

∂tKj = −
r
∑

l=1

∂zKlVl
T
AzVj −

r
∑

l=1

∂xKlVl
T
AxVj − σtKj

+
1

4π
σs

r
∑

l=1

KlVl
T 〈Y 〉〈Y 〉T Vj +Q

∫ 2π

0

∫ 1

−1

〈Y 〉T Vj , (18)

d

dt
Sij =

r
∑

kl

〈∂zXkXi〉rSklVl
T
AzVj +

r
∑

kl

〈∂xXkXi〉rSklVl
T
AxVj

+

r
∑

k

〈σtXkXi〉rSkj −
1

4π

r
∑

kl

〈σsXkXi〉rSklVl
T 〈Y 〉〈Y 〉TVj

− 〈XiQ〉r〈Y 〉T Vj , (19)

Note that Ax =
∫ 2π

0

∫ 1

−1

√

1− µ2 cosϕY Y T dµdϕ, andAz =
∫ 2π

0

∫ 1

−1 µY Y T dµdϕ

can be calculated using the recursion property and no quadrature rule is re-

quired.

We multiply Y on both sides of Eq. (11) and integrate over all angles to

remove the angular dependence:

d

dt
Ri = −

r
∑

k

〈∂zXkXi〉rRkAz −
r
∑

k

〈∂xXkXi〉rRkAx +

r
∑

k

〈σtXkXi〉rRk

− 1

4π

r
∑

k

〈σsXkXi〉rRk〈Y 〉〈Y 〉T − 〈XiQ〉r〈Y 〉T (20)

where Ri =
∫ 2π

0

∫ 1

−1
Li(t, µ, ϕ)Y

T dµdϕ. The low-rank PN moments can be

obtained from

ψk
l (x, z, t) =

∫ 2π

0

∫ 1

−1

ψ(x, z, µ, ϕ, t)Y k
l (µ, ϕ) dµdϕ =

r
∑

ij

Xi(x, z, t)Sij(t)vjlk(t).
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3.2. Time evolution and consistency

The quantities in our low-order system are related to the spherical harmonics

moments by

φ(x, z, t) = 2
√
πψ0

0(x, z, t),

J(x, z, t) =





Jz(x, z, t)

Jx(x, z, t)



 =





2
√

π
3ψ

0
1(x, z, t)

−2
√

2π
3 ψ

1
1(x, z, t)



 ,

γ(x, z, t) =





2
√

π
3 γz(x, z, t)

−2
√

2π
3 γx(x, z, t)



 .

(21)

We substitute (21) into the quasi-diffusion approximation (12) and (16) to get

an equivalent P1 system

∂φ00
∂t

+

√

1

3

∂φ01
∂z

−
√

2

3

∂φ11
∂x

= (σs − σt)φ
0
0 +

1

2
√
π
Q.

∂φ01
∂t

+

√

1

3

∂φ00
∂z

= −σtφ00 + γz

∂φ11
∂t

−
√

1

6

∂φ00
∂x

= −σtφ00 + γx

. (22)

In this work, we adopt the forward Euler method for the time integration.

At a time step from tn to tn+1 = tn +∆t, we calculate the closure terms in (22)

through equations

γz
∣

∣

n
=
φ01
∣

∣

HO

n+1
− φ01

∣

∣

HO

n

∆t
+

√

1

3

∂φ00
∣

∣

HO

n

∂z
+ σtφ

0
0

∣

∣

HO

n
,

γx
∣

∣

n
=
φ11
∣

∣

HO

n+1
− φ11

∣

∣

HO

n

∆t
−
√

1

6

∂φ00
∣

∣

HO

n

∂x
+ σtφ

0
0

∣

∣

HO

n
.

(23)

where the three angular moments are solved from the high-order system (18

- 20). Then we use the definitions for γx
∣

∣

n
and γz

∣

∣

n
and solve the following
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low-order system

φ00
∣

∣

LO

n+1
− φ00

∣

∣

LO

n

∆t
+

√

1

3

∂φ01
∣

∣

LO

n

∂z
−
√

2

3

∂φ11
∣

∣

LO

n

∂x
= (σs − σt)φ

0
0

∣

∣

LO

n
+

1

2
√
π
Q
∣

∣

LO

n
,

φ01
∣

∣

LO

n+1
− φ01

∣

∣

LO

n

∆t
+

√

1

3

∂φ00
∣

∣

LO

n

∂z
= −σtφ00

∣

∣

LO

n
+ γz

∣

∣

n
,

φ11
∣

∣

LO

n+1
− φ11

∣

∣

LO

n

∆t
−
√

1

6

∂φ00
∣

∣

LO

n

∂x
= −σtφ00

∣

∣

LO

n
+ γx

∣

∣

n
.

(24)

This formulation is globally conservative.

3.3. Conservation fix

Because the DLR algorithm is not conservative (as has been previously dis-

cussed), the accuracy of the closure term is limited. To overcome this drawback,

we use the low-order results to update the corresponding term within the low-

rank solution in every time step. We update the angular basesWj , as written in

Eq. (17) to make the high-order and low-order solution have the same first two

moments (φ00, φ
0
1 and φ11). This correction can be computed without forming

the full solution, preserving the low-rank representation. The formulation of the

correction is given by

r
∑

j=1

(Knew
j −Kj)











vj00

vj10

vj11











=











φ00
∣

∣

LO

φ01
∣

∣

LO

φ01
∣

∣

LO











−











φ00
∣

∣

HO

φ01
∣

∣

HO

φ11
∣

∣

HO











, (25)

where we keep Wj unchanged and update Xi and Sij with the low-order results.

This is a linear matrix equation for the Knew
j with a solution that can be found

by least-squares. We can then factorize Knew
j into Xnew

i and Snew
ij by QR

decomposition, which are initial conditions for the next time step. The full-

time evolution algorithm is given in Algorithm 2.

3.4. Reduction of Memory Requirements

The feature of memory saving in the DLR method is maintained in the

HOLO algorithm. We use m to denote the degrees of freedom in the spatial
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discretization. The memory footprint required to store the solution in each time

step is

Memory[bytes] = 8× 2× (mr + r2 + nr + 3m). (26)

The factor of 8 assumes 8 bytes per floating-point number, the factor of two

comes from the fact that the previous and current time step needs to be stored,

and the 3m accounts for the storage of φ and J at the m spatial degrees of

freedom. The memory requirement for the full-rank update requires at least

Memory[bytes] = 8× 2mn. (27)

bytes. When r ≪ m,n the HOLO method can require much less memory

because there no quadratic terms combining m and n.

Algorithm 2: HOLO algorithm

1 Given

2 -initial time t0

3 -time step h

4 -desired rank r

5 -initial condition φ0(x, z, t0), φ1(x, z, t0)

6 -initial approximations Xi(x, z, t0), Sij(t0),Wj(µ, ϕ, t0)

7 Repeat:

8 -t1 = t0 + h

9 -Using low-rank approximation to calculate

ψk
l (x, z, t1) =

∑r
ij Xi(x, z, t1)Sij(t1)vjlk(t1)

10 -Calculate the closure γ with ψk
l (x, z, t1) using Eq. (21)

11 -Solve the LO system Eq. (24) for φLO(x, z, t1) and J
LO(x, z, t1)

12 -Update the low-rank bases Xi(x, z, t1) and Sij(t1) with the LO

φLO(x, z, t1) and J
LO(x, z, t1) using Eq. (25)

13 -t0 = t1

12



4. Spatial discretization

4.1. Low-order system

The linear conservation form of Eq. (24) is

∂u

∂t
+A

LO
z

∂u

∂z
+A

LO
x

∂u

∂x
= Cu+ S (28)

where

u =











φ

Jz

Jx











, A
LO
x

=











0 0 −
√

2
3

0 0 0

−
√

1
3 0 0











, A
LO
z

=











0
√

1
3 0

√

1
3 0 0

0 0 0











,

C =











σs − σt 0 0

0 −σt 0

0 0 −σt











, S =











1
2
√
π
Q

γz

γx











.

We apply the bilinear discontinuous (BLD) Galerkin finite element method

to discretize Eq. (28) on rectangular cells in XZ geometry. The solution vector

u on cell k is expanded with basis functions Bk,i(x, z)

uk(x, z, t) =

4
∑

i

Bk,i(x, z)uk,i(t), (29)

where the basis functions are

Bk,1(x, z) =
xR − x

∆xk

zT − z

∆zk
,

Bk,2(x, z) =
x− xL
∆xk

zT − z

∆zk
,

Bk,3(x, z) =
x− xL
∆xk

z − zB
∆zk

,

Bk,4(x, z) =
xR − x

∆xk

z − zB
∆zk

.

(30)

The weak form of (28) is obtained by multiplying with the basis function and

integrating over cell

d

dt

∫ zT

zB

dz

∫ xR

xL

dxBk,iuk +Ax

∫ zT

zB

dz

∫ xR

xL

dxBk,i
d

dx
uk

+Az

∫ zT

zB

dz

∫ xR

xL

dxBk,i
d

dz
uk =

C

∫ zT

zB

dz

∫ xR

xL

dxBk,iuk +

∫ zT

zB

dz

∫ xR

xL

dxBk,iSk.

(31)
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By integrating by parts, the stream terms can be written as

Ax

∫ zT

zB

dz

∫ xR

xL

dxBk,i
d

dx
uk = Ax

(

∫ zT

zB

dz Bk,iuk −
∫ zT

zB

dz

∫ xR

xL

dx
d

dx
Bk,iuk

)

,

and

Az

∫ zT

zB

dz

∫ xR

xL

dxBk,i
d

dz
uk = Az

(

∫ xR

xL

dxBk,iuk −
∫ zT

zB

dz

∫ xR

xL

dx
d

dz
Bk,iuk

)

.

Then we collect the vector uk = [uk,1, uk,2, uk,3, uk,4]
T , Bk = [Bk,1, Bk,2, Bk,3, Bk,4]

T

and Sk = [Sk,1, Sk,2, Sk,3, Sk,4]
T to get a 4 equation system for cell k

M
duk

dt
+Ax

(

(Luk)
x,surf − Lxuk

)

+Az

(

(Luk)
z,surf − Lzuk

)

= CMuk+MSk,

where

M =

∫ zT

zB

dz

∫ xR

xL

dxBkB
T
k =

∆xk∆zk
36

















4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4

















,

Lx = −
∫ zT

zB

dz

∫ xR

xL

dx
∂Bk

∂x
B

T
k = −∆zk

12

















−2 −2 −1 −1

2 2 1 1

1 1 2 2

−1 −1 −2 −2

















,

Lz = −
∫ zT

zB

dz

∫ xR

xL

dx
∂Bk

∂z
B

T
k = −∆xk

12

















−2 −1 −1 −2

−1 −2 −2 −1

1 2 2 1

2 1 1 2

















,

(Luk)
x,surf =

∫ zT

zB

dzBk(Bku)
T =

∆zk
6

















−2ux−k,1 − 2ux−k,4

2ux+k,2 + ux+k,3

ux+k,2 + 2ux+k,3

−ux−k,1 − 2ux−k,4

















,
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and

(Luk)
z,surf =

∫ xR

xL

dxBk(Bku)
T =

∆xk
6

















−2uz−k,1 − uz−k,2

−uz−k,1 − 2uz−k,2

2uz+k,3 + uz+k,4

uz+k,3 + 2uz+k,4

















.

The superscripts indicate that the value is evaluated in the boundary, e.g., ux−k,1 is

the value in the left edge of support node 1 in cell k. We apply the mass-matrix

lumping, surface lumping and within-cell gradient term lumping techniques via

the formulas:

M lump
ij = δij

4
∑

j′=1

Mij′ ,

(Luk)
ξ,surf,lump
i,j = δij

4
∑

i=1

(Luk)
ξ,surf ,

and

Llump
ξ = δij

4
∑

i=1

Lij .

The fully lumped BLD equation is

duk

dt
+ 2

Ax

∆x

















−ux−k,1
ux+k,2

ux+k,3

−ux−k,4

















+
Ax

∆x

















1 1 0 0

−1 −1 0 0

0 0 −1 −1

0 0 1 1

















u

+ 2
Az

∆z

















−uz−k,1
−uz−k,2
uz+k,3

uz+k,4

















+
Az

∆z

















1 0 0 1

0 1 1 0

0 −1 −1 0

−1 0 0 −1

















u = Cuk + S. (32)

4.2. High-order system

We apply a similar BLD method to construct the spatial basis Xi(x, z, t),

that is,

Xi(x, z, t) =
∑

k

4
∑

q=1

Zk,q(x, z)Uk,q,i(t)

15



where Zk,q(x, z) is the basis function with the support nodes q in cell k. Note

that Xi is orthogonal and Uk,q,iUk′,q′,i′ = δkk′δqq′δii′ is achieved by SVD or QR

decomposition during our low-rank calculations. To impose the constraints to

basis functions Zk,q

∫ zT

zB

dz

∫ xR

xL

dxZk,qZk′,q′ = δkk′δqq′ , (33)

we can use the normalized basis functions 2√
∆xk∆zk

Bk,i in each cell:

Zk,1(x, z) =
2√

∆xk∆zk

xR − x

∆xk

zT − z

∆zk
,

Zk,2(x, z) =
2√

∆xk∆zk

x− xL
∆xk

zT − z

∆zk
,

Zk,3(x, z) =
2√

∆xk∆zk

x− xL
∆xk

z − zB
∆zk

,

Zk,4(x, z) =
2√

∆xk∆zk

xR − x

∆xk

z − zB
∆zk

,

(34)

because
∫ zT

zB
dz
∫ xR

xL

dxBk,iBk,j = 4∆x∆z δij .

Equation (18) can be written in a conservation form

∂u

∂t
+A

HO
z

∂u

∂z
+A

HO
x

∂u

∂x
= S(u) (35)

where u = [K1,K2, ...Kr]
T , V = [V1, V2, ...Vr ], AHO

x = V TAxV , AHO
z =

V TAzV , S(u) = −σtK + 1
4πV

T 〈Y 〉〈Y 〉TV σsK + 1
2
√
π
Q.

There is no need to develop the weak form for Eqs. (19) and (20) but we

still need to calculate spatial integration terms like 〈∂ξXpXq〉r where ξ = x or

z:

〈∂ξXpXq〉r =

∫ zT

zB

dz

∫ xR

xL

dx ∂ξ

(

∑

k

4
∑

i

Zk,iuk,i,p

)

∑

k′

4
∑

i′

Zk′,i′uk′,i′,q

=
∑

k,k′

∑

i,i′

uk,i,puk′,i′,q

∫ zT

zB

dz

∫ xR

xL

dx ∂ξZk,iZk′,i′

= Lξ

















∑

k,k′ uk,p,1uk,q,1
∑

k,k′ uk,p,2uk,q,2
∑

k,k′ uk,p,3uk,q,3
∑

k,k′ uk,p,4uk,q,4

















,

(36)

where Lξ is the lumped matrix from Eq. (32).
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4.3. Slope limiter

Here we briefly describe the slope limiter in our scheme to address artificial

oscillations. First, we define sxk as the slope in x direction and szk in z direction

within each cell. Then we calculate the cell average

ūk =
1

4
(uk,1, uk,2, uk,3, uk,4)

The neighbors of the cell k in the left, right, top and bottom are defined as

ūRk , ū
L
k , ū

T
k , ū

B
k , respectively. The double minmod limiter which preserves the

diffusion limit [65, 66] is

sxk = minmod

(

1

2
(uk,2 + uk,3 − uk,1 − uk,4),minmod(ūRk − ūk, ūk − ūLk )

)

(37)

szk = minmod

(

1

2
(uk,3 + uk,4 − uk,1 − uk,2),minmod(ūTk − ūk, ūk − ūBk )

)

(38)

where the minmod operation is given by

minmod(a, b) =























a |a| < |b| & ab > 0,

b |a| > |b| & ab > 0,

0 ab < 0

. (39)

From the limiter, we change the value of the four support nodes to be

ũk,1 = ūk −
1

2
sxk − 1

2
szk,

ũk,2 = ūk +
1

2
sxk − 1

2
szk,

ũk,3 = ūk +
1

2
sxk +

1

2
szk,

ũk,4 = ūk −
1

2
sxk +

1

2
szk.

(40)

5. Numerical Results

We demonstrate the accuracy and the computational efficiency of our HOLO

algorithm with six benchmark problems. The plane source problem emphasizes

the conservation fix and the modified Reed’s problem highlights the diffusion

17



limit in a heterogeneous problem [67]. Another four 2D problems show the

memory-saving feature and the benefits of high angular resolution. In all simu-

lations the unit of length is cm and the particle speed is set to be 1 cm/s. We

implement the double minmod limiter in the modified Reed’s problem and the

line source problem and the minmod limiter for other problems.

5.1. Plane source problem

The plane source problem [68, 69, 70] has been used to test a variety of

radiation transport methods. It describes an initial pulse of particles emitted

in an infinite medium with no source and absorption, which means the total

number of particles is fixed during the evolution. The main purpose of this test is

to show that our HOLO algorithm is conservative without loss of computational

efficiency. In the problem the initial condition is given by a Dirac-delta function

placed in the center of a purely scattering media, where φ(x, 0) = δ(x), σt =

σs = 1. In all simulations, we fix the spatial resolution to ∆x = 0.02, and

the Courant–Friedrichs–Lewy (CFL) condition CFL = c∆t
∆x to 0.2, where ∆t is

the time step and the particle speed c is set to 1. We compare the numerical

solutions with the analytical benchmark given by Ganapol. Note that in 1D

problems a full rank solution has rF = N + 1 where N is the order of the

spherical harmonics.

The first set of simulations is designed to reveal what order of PN is suffi-

cient by comparing with results calculated by the classical full rank method. The

plane source problem is considered as a difficult test because of the unavoidable

oscillations. As shown in Figure 1a, the magnitude of spikes in the P9 solution

is much higher than P29. These spikes contain uncollided particles moving at

the characteristic speeds of the PN equations. This figure also demonstrates

the requirement of the high PN order in this case because even P29 has extant

oscillations at the early time. From Figure 1b, we can see that the order require-

ment is lower at a later time, and even P9 is sufficient to capture the analytical

solution. That is because there are few uncollided particles remaining at this

late time.
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Figure 2 presents the P29 solutions with the low-rank method. Here the P29

solution with rank 20, which is two-thirds of the full rank, is comparable in

accuracy, as shown in Figure 2a and Figure 2b. We point out that this indicates

a memory reduction of roughly one-third of full rank memory. However, the

conservation loss of the low-rank method is exhibited in Figure 2b. Even though

the solution with rank 10 approximates the shape of the true solution well, the

area below the solution curve is lower than either the analytical or the numerical

solutions with higher ranks due to the loss of conservation.

This issue is solved with the HOLO algorithm. As we can see from Figure

3b, the P29 solution with rank 16 is no longer lower than the analytical solution,

and it is also a good approximation compared to the full rank P29 solution.

Figure 3a shows that a solution with rank 20 matches the analytical solution

well. In this case the memory usage calculated by (26) is 0.185 MB while the

full rank memory is 0.230 MB by (27), corresponding to a 20% memory savings.

Though this is a modest reduction in memory, as we will see, as the number of

spatial dimensions increases, the memory reduction will increase.

-1 -0.5 0 0.5 1
x (cm)

0

0.2

0.4

0.6

0.8 P9
P15
P19
P29
Analytic solution

(a) t = 1, Nx = 120

-6 -4 -2 0 2 4 6
x (cm)

0

0.05

0.1

0.15

0.2

P9
P15
P19
P29
Analytic solution

(b) t = 5, Nx = 600

Figure 1: The scalar flux φ of the plane source problem calculated with P7, P19 and P29

expansions are compared to the benchmark solution. No rank reduction is performed here.

5.2. Modified Reed’s problem

The second test is a multi-material problem that aims to verify that our

numerical scheme preserves the diffusion limit. The material layout is detailed

in Figure 4. Note that there are highly scattering regions, where the mean-free-

path in these regions is 0.1 (σt = 10, σs = 9.9). A high-resolution and high-order
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Analytic solution

(a) t = 1, Nx = 120

-6 -4 -2 0 2 4 6
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0

0.05

0.1

0.15

0.2

rank 10, P29
rank 16, P29
rank 20, P29
Analytic solution

(b) t = 5, Nx = 600

Figure 2: The scalar flux φ of the plane source problem calculated with P29 expansion and

the standard, non-conservative DLR with ranks 16, 20 and 24 are compared to the benchmark

solution.

-1 -0.5 0 0.5 1
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0.1

0.2

0.3

0.4

0.5

0.6

0.7 rank 10, P29
rank 16, P29
rank 20, P29
Analytic solution

(a) t = 1, Nx = 120

-6 -4 -2 0 2 4 6
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0

0.05

0.1

0.15

0.2

rank 10, P29
rank 16, P29
rank 20, P29
Analytic solution

(b) t = 5, Nx = 600

Figure 3: The scalar flux φ of the plane source problem calculated by HOLO with a P29

expansion and ranks 16, 20 and 24 compared to the benchmark solution.

full rank solution with ∆x = 0.01, P99, CFL= 0.05 is used as a benchmark. We

then compare our HOLO solutions with different spatial resolutions and rank

to the benchmark at t = 100, which is very near steady-state. One important

finding from Figure 5 is that the solutions are not sensitive to the grid size. In

strong scattering regions, all solutions match the benchmark well even with the

gird size larger than the mean-free-path. We also notice that the full rank and

low-rank solution with the same spatial resolution are identical on the scale of

the figure.

5.3. Line source problem

The line source problem is a two-dimensional pulsed source problem. Similar

to its 1D version, the initial condition is given by ψ(x, z, 0) = δ(x)δ(z), and

the total and scattering cross-section are set to 1. We compute the HOLO
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Figure 4: The material layout in Reed’s problem where the blank zones are vacuum.

0 2 4 6 8 10 12 14 16
z (cm)

0

1

2

3

4

5
P29, rank 4, dz = 0.2
P29, rank 30, dz = 0.2
P29, rank 4, dz = 0.1
P29, rank 30, dz = 0.1
P99, dz = 0.01

Figure 5: The scalar flux φ of the modified Reed’s problem calculated by HOLO with different

rank and spatial resolutions are compared to the high fidelity benchmark.

solution to t = 1 in the computational domain 2.4× 2.4 with spatial resolution

∆x = ∆z = 0.02 and CFL condition 0.2. Note that the total number of spatial

degrees of freedom is fixed to be m = 4 NxNz = 57600, which is far larger

than the number of angular bases. Thus the total memory usage is nearly

independent of the order of the PN expansion and is a stronger function of the

rank, e.g, Memory (bytes) = 8× 2× (mr + nr + r2 + 3m) ≈ 16(r + 3)m.

We compare the solutions with rank 300 (corresponding to the full rank P23)

and varying PN orders in the following simulations. We expect the solution can

be refined by keeping the rank fixed and increasing the PN order. That is, we

could have better results with a small amount of extra memory cost. Figure 6b

shows the remarkable ring structure in the full rank P23 solution. As we increase

21



the PN order with the HOLO algorithm, the first noticeable change is that the

solution range begins to match that of the analytical solution. Furthermore,

the ring structure is no longer significant in Figures 6c, 6d, and 6e. Figure 6f

presents a more straightforward comparison, where the oscillations are reduced

by using more angular basis functions.

Figure 7 gives quantitative comparison, where we compare the root mean

squares between the numerical solutions for the scalar flux and the analytic

solution. It is apparent from the figure that the low-rank solution is more

accurate than the full-rank solution with the same rank, which enables the choice

to save memory or increase the accuracy. For example, the memory usage in

full rank P23 and P39 with rank 300 are almost the same, as shown in the green

line, but the accuracy is very different, as shown in Figure 6f. Additionally, the

rightmost dot of the dark blue line indicates that we can achieve an error of 0.06

with memory 140 MB; this accuracy cannot be obtained with less than 280 MB

in a full rank calculation, as shown in the large green dot. To demonstrate that

the formulation in Eqs. (27) and (26) are correct representations of the required

memory in practice, we measure the running memory in MATLAB with the

“memory” function, as shown in Figure 8. From this figure, we observe that our

estimates are valid.

The computational cost of the HOLO algorithm is presented in Figure 9. We

notice that the running time and the memory of the HOLO solutions are much

lower than the full rank P59 and P99 solutions. For example, the HOLO solution

with P99 and rank 300 requires 200 MB memory and 7s running time each time

step, while the full rank P99 solution needs 5000 MB and 65s, respectively. Note

that our results have the error decrease stagnate because we have reduced the

angular error in the solution to be smaller than the spatial discretization error,

as shown in Figure 7. We also observe that the HOLO solution requires a

longer running time than the classical full rank solution with the same rank due

to the fact that the low-rank method has more arithmetic operations [45]. This

indicates that to get the most benefit from a low-rank, HOLO approach, one

should run the highest order in angle solution possible.
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(f) The scalar flux on the cut along x = 0.

Figure 6: The scalar flux to the line source problem calculated by HOLO with rank 300 are

compared to the analytic benchmark.

5.4. Hohlraum problem

We consider a modified Hohlraum problem [71] detailed in Figure 10a. There

is an isotopic source of Q = 1 in the leftmost zone that is turned on at t = 0.

The blank areas are dense materials with σt = 100 cm−1 and σs = 1 cm−1,

the blank area are purely scattering materials with σs = σt = 0.1 cm−1. The

high-fidelity P141 solution is given in Figure 10b. The spatial grid is set to be
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Figure 7: The comparison of errors for the line source problem with different memory usage

are shown. The solid dot represents the error of the full rank solution. Each dotted line

denotes the error with a fixed rank that varies the number of angular basis functions N .
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Figure 8: The relationship between the memory calculated by (26) or (27) and the run-

ning memory in MATLAB for the simulations shown in Figure 7. The coefficients of

determination(R2) for the linear are close to one, which indicates a strong linear relation-

ship between the theoretical and actual memory.

130× 130 for the computational domain [0, 1.3]× [0, 1.3]. The simulation time

is 2.6s and the CFL number is chosen to be 0.2.

In this test, we compare the P39 HOLO solutions to the full rank solutions
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Figure 9: The comparison of memory and computational time for the line source problem

with HOLO or full rank is shown. The blue solid dot represents the full rank solution with

P15, P19, P23, P27, P39, P59 and P99. Each dotted line denotes the error with a fixed rank

that varies the number of angular basis functions N . Note that the full rank P15 has rank

136, P19 has rank 210, P23 has rank 300, P27 has rank 406.

with the same rank. From Figure 10b, we can see that the shape of particle

distribution behind the first dense wall should be a triangle. But none of the

full rank solutions can capture it, as shown in Figure 11a, 11c, 11e and 11g. In

contrast, the HOLO solution with only rank 3 can preserve this feature, while

the rank 36 is nearly identical to the benchmark except for the area behind the

second obstacle. Note that rank 36 is considered a small rank for this problem:

for the full rank P39 corresponds to n = r = 820 and P141 has n = r = 10153. In

such a low-rank solution we cannot guarantee that the symmetries we expect in

this problem (e.g., top/bottom symmetry) will be preserved by the projections.

This is especially obvious on the logarithmic scale of Figure 11.

Figure 12 shows the deviation of the HOLO solutions of P39 and the full

rank solutions ranging from P1 to P15 to the full rank P39. We observe that

the HOLO solution is more accurate than the full rank solution with the same

memory usage and converges to the high-order full rank solution faster.
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Figure 10: The layout of the Hohlraum test and the high-order benchmark solution.

5.5. Lattice problem

Next, we solve a 7 cm× 7 cm checkerboard problem as shown in Figure 13.

The spatial grid is 210×210. We run the simulations to t = 3.2s with CFL = 0.2.

Figure 14 shows the P39 solutions with different rank. From Figure 14e, we can

see that the rank 210 solution is nearly identical to the full-rank solutions (a

26



reduction of nearly a factor of 4). There are noticeable negative scalar flux

regions in solutions with small rank, which is plotted in grey, as can be seen

from Figure 14a, 14b and 14c. Specifically, the correct propagation speed is lost

in the solution with rank 36, which is also shown in Figure 15. Therefore, we

conclude that rank 36 is not sufficient for this problem.

5.6. Double Chevron problem

We use an asymmetric double chevron problem detailed in Figure 16 as our

final benchmark. Numerical solutions at t = 0.9 s are computed using a 90× 90

spatial grid with a CFL number of 0.2. This problem was originally designed

so that m ≈ n to get the largest possible benefit of the dynamic low-rank

method. In this test, we compare the HOLO solutions of P99 to the rank 5050,

full rank P99 solution. From Figure 17, we can see that the solution with rank

300 is close to the full rank solution over a range of 6 orders of magnitude in

this problem, while the rank 36 and 78 solutions cannot capture the particle

distribution behind the second chevron. By calculating the memory using (26)

and (27), we find that 93% of the memory can be saved by applying the HOLO

algorithm with rank 300.

6. Conclusions

We have presented a HOLO algorithm to overcome the conservation issues

in the dynamical low-rank method for radiative transfer. The key idea is to

use the low-rank results to calculate the closure term of a two-moment system.

When combined with a discontinuous Galerkin scheme we obtain a method that

preserves the diffusion limit. These two improvements go a long way to making

the method robust enough for a variety of physics applications.

Our methods use explicit time integration techniques to advance the solution

in time. Future work should incorporate implicit time discretization techniques,

perhaps similar to those recently developed to remove the backwards-in-time

substep of the DLR method [72]. Additionally, other transport models (e.g.,

27



discrete ordinates) and energy-dependent problems should be fruitful areas of

future research.
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Figure 11: The scalar flux to the Hohlraum problem calculated by HOLO with P39 are

compared to solutions without rank reduction. The color scale is logarithmic and negative

regions are shaded gray.
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are shown. The red dot line represents the error of the full rank solution that varies the

number of angular basis functions N . The blue dot line represents the error of the HOLO

solutions with P39 that varies the rank.

Figure 13: The material layout of the Lattice problem is shown. The blue zones are purely

scattering region with σs = σt = 1 cm−1, the black are absorbing region with σs = 0,

σt = 10 cm−1 and the yellow is the scattering region with an isotropic source Q = 1 which is

turned on at t = 0. The checkerboard is surrounded by vacuum.
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Figure 14: The scalar flux to the lattice problem calculated by HOLO with P39 and different

rank are compared to the full rank P39 solution. The color scale is logarithmic and negative

regions are shaded gray.
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Figure 15: The logarithm of the scalar flux along x = 3.5.

Figure 16: The material layout of the double chevron problem [45] is shown. The blue area are

highly absorbing walls with σt = 100 cm−1 and σs = 0.01 cm−1, the blank is the scattering

region with σs = σt = 0.01 cm−1. There is an incoming isotropic source Q = 1 at bottom

which is turned on at t = 0 and other sides are surrounded by vacuum.
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Figure 17: Solutions to the double chevron problem at t = 0.9s with P99 and different rank.

The color scale is logarithmic and negative regions are shaded gray.
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[43] J. Kópházi, D. Lathouwers, A space–angle DGFEM approach for the Boltz-

mann radiation transport equation with local angular refinement, Journal

of Computational Physics 297 (2015) 637–668.

[44] Z. Sun, C. D. Hauck, Low-memory, discrete ordinates, discontinuous

Galerkin methods for radiative transport (2019). arXiv:1907.01027.

[45] Z. Peng, R. G. McClarren, M. Frank, A low-rank method

for two-dimensional time-dependent radiation transport calcu-

lations, Journal of Computational Physics 421 (2020) 109735.

doi:https://doi.org/10.1016/j.jcp.2020.109735.

[46] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced Mod-

els and Numerical Analysis (Zurich Lectures in Advanced Mathematics),

European Mathematical Society, 2008.

[47] O. Koch, C. Lubich, Dynamical Low-Rank Approximation, SIAM Journal

on Matrix Analysis and Applications 29 (2) (2007) 434–454.

38

http://arxiv.org/abs/1907.01027
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2020.109735


[48] A. Nonnenmacher, C. Lubich, Dynamical low-rank approximation: appli-

cations and numerical experiments, Mathematics and Computers in Simu-

lation 79 (4) (2008) 1346–1357. doi:10.1016/j.matcom.2008.03.007.

[49] O. Koch, C. Lubich, Dynamical Tensor Approximation, SIAM Journal on

Matrix Analysis and Applications 31 (5) (2010) 2360–2375.

[50] E. Kieri, C. Lubich, H. Walach, Discretized dynamical low-rank approxima-

tion in the presence of small singular values, SIAM Journal on Numerical

Analysis 54 (2) (2016) 1020–1038.

[51] C. Lubich, I. V. Oseledets, A projector-splitting integrator for dynamical

low-rank approximation, BIT Numerical Mathematics 54 (1) (2014) 171–

188. doi:10.1007/s10543-013-0454-0.

[52] C. Lubich, B. Vandereycken, H. Walach, Time integration of rank-

constrained tucker tensors, SIAM Journal on Numerical Analysis 56 (3)

(2018) 1273–1290. doi:10.1137/17M1146889.

[53] L. Einkemmer, C. Lubich, A Low-Rank Projector-Splitting Integrator for

the Vlasov–Poisson Equation, SIAM Journal on Scientific Computing 40 (5)

(2018) B1330–B1360.

[54] L. Einkemmer, A low-rank algorithm for weakly compressible flow, SIAM

Journal on Scientific Computing 41 (5) (2019) A2795–A2814.

[55] L. Einkemmer, A. Ostermann, C. Piazzola, A low-rank projector-splitting

integrator for the vlasov–maxwell equations with divergence correction,

Journal of Computational Physics 403 (2020) 109063.

[56] L. Einkemmer, C. Lubich, A low-rank projector-splitting integrator for

the vlasov–poisson equation, SIAM Journal on Scientific Computing 40 (5)

(2018) B1330–B1360.

[57] L. Chacon, G. Chen, D. A. Knoll, C. Newman, H. Park, W. Taitano,

J. A. Willert, G. Womeldorff, Multiscale high-order/low-order (HOLO) al-

39

http://dx.doi.org/10.1016/j.matcom.2008.03.007
http://dx.doi.org/10.1007/s10543-013-0454-0
http://dx.doi.org/10.1137/17M1146889


gorithms and applications, Journal of Computational Physics 330 (2017)

21–45.

[58] S. R. Bolding, A High-Order Low-Order Algorithm With Exponentially-

Convergent Monte Carlo For Thermal Radiative Transfer Problems, Ph.D.

thesis, Texas A&M University (2017).

[59] V. Y. Gol’din, A quasi-diffusion method of solving the kinetic equation,

USSR Computational Mathematics and Mathematical Physics 4 (6) (1964)

136–149. doi:10.1016/0041-5553(64)90085-0.

[60] D. Y. Anistratov, Consistent spatial approximation of the low-order quasi-

diffusion equations on coarse grids, Nuclear science and engineering 149 (2)

(2005) 138–161.

[61] E. W. Larsen, J. E. Morel, W. F. Miller Jr, Asymptotic solutions of nu-

merical transport problems in optically thick, diffusive regimes, Journal of

Computational Physics 69 (2) (1987) 283–324.

[62] E. Larsen, J. Morel, Asymptotic solutions of numerical transport problems

in optically thick, diffusive regimes ii, Journal of Computational Physics

83 (1) (1989) 212–236.

[63] D. Mihalas, Stellar Atmospheres, W.H. Freeman & Co, 1978.

[64] P. N. Brown, D. E. Shumaker, C. S. Woodward, Fully implicit solution of

large-scale non-equilibrium radiation diffusion with high order time integra-

tion, Journal of Computational Physics 204 (2) (2005) 760–783.

[65] R. G. McClarren, R. B. Lowrie, The effects of slope limiting on asymptotic-

preserving numerical methods for hyperbolic conservation laws, Journal of

Computational Physics 227 (23) (2008) 9711–9726.

[66] R. P. Smedley-Stevenson, R. G. McClarren, Asymptotic diffusion limit

of cell temperature discretisation schemes for thermal radiation transport,

Journal of Computational Physics 286 (2015) 214–235.

40

http://dx.doi.org/10.1016/0041-5553(64)90085-0


[67] R. McClarren, J. P. Holloway, T. A. Brunner, Establishing an Asymptotic

Diffusion Limit for Riemann Solvers on the Time-Dependent Equations,

in: International Topical Meeting on Mathematics and Computation, Su-

percomputing, Reactor Physics and Nuclear and Biological Applications,

American Nuclear Society, Avignon, France, 2005.

[68] B. D. Ganapol, P. McKenty, K. Peddicord, The generation of time-

dependent neutron transport solutions in infinite media, Nuclear Science

and Engineering 64 (2) (1977) 317–331.

[69] B. Ganapol, R. S. Baker, J. A. Dahl, R. E. Alcouffe, Homogeneous infi-

nite media time-dependent analytical benchmarks, Tech. rep., Los Alamos

National Laboratory (2001).

[70] B. D. Ganapol, Analytical Benchmarks for Nuclear Engineering Applica-

tions, Organisation for Economic Co-Operation and Development, 2008.

[71] C. D. Hauck, R. G. McClarren, A Collision-Based Hybrid Method for Time-

Dependent, Linear, Kinetic Transport Equations, Multiscale Modeling and

Simulation 11 (4) (2013) 1197–1227.

[72] G. Ceruti, C. Lubich, An unconventional robust integrator for dynamical

low-rank approximation (2020). arXiv:2010.02022.

41

http://arxiv.org/abs/2010.02022

	1 Introduction
	2 Dynamical low-rank approximation
	3 HOLO algorithm
	3.1 Angular discretization for low-rank equations in 2D
	3.2 Time evolution and consistency
	3.3 Conservation fix
	3.4 Reduction of Memory Requirements

	4 Spatial discretization
	4.1 Low-order system
	4.2 High-order system
	4.3 Slope limiter

	5 Numerical Results
	5.1 Plane source problem
	5.2 Modified Reed's problem
	5.3 Line source problem
	5.4 Hohlraum problem
	5.5 Lattice problem
	5.6 Double Chevron problem

	6 Conclusions

