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Abstract

In this paper, the ground state Wigner function of a many-body system is explored theoretically and numerically. First,
an eigenvalue problem for Wigner function is derived based on the energy operator of the system. The validity of
finding the ground state through solving this eigenvalue problem is obtained by building a correspondence between
its solution and the solution of stationary Schrödinger equation. Then, a numerical method is designed for solving
proposed eigenvalue problem in one dimensional case, which can be briefly described by i) a simplified model is
derived based on a quantum hydrodynamic model [Z. Cai et al, J. Math. Chem., 2013] to reduce the dimension of the
problem, ii) an imaginary time propagation method is designed for solving the model, and numerical techniques such
as solution reconstruction are proposed for the feasibility of the method. Results of several numerical experiments
verify our method, in which the potential application of the method for large scale system is demonstrated by examples
with density functional theory.
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1. Introduction

The study of the ground state of a many-body quantum system plays an important role in a variety of areas such as
geometry optimization of molecules, photon absorption spectra of atoms and molecules, and linear response theory in
the molecular dynamics.

The ground state can be obtained by solving the fundamental governing equation, i.e., Schrödinger equation, in
quantum mechanics. However, due to the curse of dimensionality, direct numerical study of Schrödinger equation via
classical mesh-based approaches is intractable even for small molecule such as methane. Hence, approximate solution
of Schrödinger equation has been a long-standing research topic, in which many pioneer works have been done. For
example, quantum Monte Carlo methods [2, 47] uses stochastic methods to evaluate integrals arising in the many-body
problems. Quantum Monte Carlo method offers potential to describe directly many-body effect of a quantum system.
However, the efficiency of the method suffers from its slow convergence in the simulations. By using a single Slater
determinant as an ansatz for the many-body wavefunction, the main task of Hartree-Fock method[12] is to solve a
set of equations derived from a variational method. With acceleration techniques for the self-consistent field iteration
and quality solver for the generalized eigenvalue problem, the efficiency of Hartree-Fock method becomes acceptable
for large scale system from practical problems, which makes the method very popular in the quantum computational
chemistry community even nowadays. However, the lack of electron correlation would introduce large deviations from
the experimental results, which limits the application of the Hartree-Fock method. Density functional theory[21, 30]
combines the advantages from above two methods. Theoretically[20], it has been proved that three dimensional ground
state electron density is a fundamental quantity in a given many-body system, and both the electron exchange and
the electron correlation are described in derived Kohn-Sham model[40]. Numerically, the techniques developed for
Hartree-Fock method can be borrowed for solving Kohn-Sham model. Even better, with the application of local basis
functions for the wavefunction[4, 27], the numerical efficiency can potentially be further improved by using fast solvers
for sparse system.
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Besides the conventional Schrödinger wave function in Hilbert space, the Wigner phase-space quasi-distribution
function [45] provides an equivalent approach to describe quantum object that bears a close analogy to classical me-
chanics [49]. Moreover, the intriguing mathematical structure of the Weyl-Wigner correspondence has also been
employed in some advanced topics, such as the deformation quantization[50]. The Wigner formalism has been applied
to a variety of situations ranging from atomic physics [43] to quantum electronic transport [33, 44] and many-body
quantum systems[39]. Furthermore, both pure and mixed states of a quantum system can be handled in a unified ap-
proach by Wigner function[8]. All theoretical advantages motivate the research on developing models and numerical
methods for finding the Wigner functions of a quantum system.

Different from the situation for Schrödinger equation that there have been lots of mature approximate models and
numerical methods, more efforts are needed towards the Wigner functions. The first attempts to simulate quantum
phenomena by Wigner function were [15, 16] for one-dimensional one-body case. Recently, several methods were
designed for the simulation based on Wigner function, such as cell average spectral element method[41], moment
method[26, 17], WENO-solver[11], Gaussian beam method[48], etc. While there were also various stochastic methods,
e.g., signed particle Wigner Monte Carlo method[31, 32, 34] and path integral method[23, 22, 5]. In many-body
situation, the Wigner based simulation was achieved by advective-spectral-mixed method[46], Monte Carlo method[35,
37, 38] and the method based on branching random walk[42]. It is known that in a dynamic study of a given system,
an initial state of the system should be specified, which is the ground state of the system in most cases. It is noted
that although there have been works mentioned above for dynamics of a given quantum system, the work towards the
Wigner functions of the ground state is rare. To our best knowledge, only [36] proposed a feasible framework to handle
both time-dependent and time-independent problem based on Monte Carlo method, while no result on the deterministic
method for a many body quantum system can be found from the literature, even for the simplest one-dimensional two-
body case.

In this paper, in the category of deterministic approach, with the aid of density functional theory, the ground state
Wigner function is explored both theoretically and numerically for a given many-body quantum system. More specif-
ically, we firstly derive an eigenvalue problem of energy operator for Wigner function based on the stationary Wigner
equation. Then the correspondence between Wigner eigenfunction and Schrödinger eigenfunction in the sense of con-
struction is deduced to guarantee the validity of calculation of the ground state Wigner function through solving this
eigenvalue problem. Focusing on the one-dimensional case, a numerical method based on imaginary time propagation
method [9, 25, 3] is designed for the solution of the proposed eigenvalue problem. A quantum hydrodynamic model
proposed in [6] is simplified in our work to reduce the dimension of the problem, while a reconstruction method is
proposed to resolve the well-posedness issue introduced by truncating the approximation. Four examples are tested
to show the effectiveness of our method. The numerical convergence of the method can be observed clearly in all
numerical experiments. Furthermore, the capability of the numerical method on calculating the excited states of the
system, and on handling the case with singular potential, is also demonstrated successfully in the harmonic oscillator
and the hydrogen examples, respectively. More importantly, the potential of our method for the ground state calculation
of large-scale systems is also shown obviously in the last two examples with effective potentials in density functional
theory. It is worth mentioning that compared with the Monte Carlo approach, our method is more robust in the sense
that random initial guess of the Wigner function is adopted in our simulation. It is known that a general issue of Monte
Carlo method is its slow convergence, while our method successfully demonstrates the theoretical convergence rate of
linear finite element method. The method can be extended to higher-order cases in a natural way.

The rest of this paper is organized as follows: In Section 2 we briefly introduce Wigner function and stationary
Wigner equation. The derivation of the eigenvalue problem and the correspondence between Wigner eigenfunction and
Schrodinger eigenfunction are demonstrated in Section 3. In Section 4, the discretization along p direction is provided.
One-dimensional numerics based on imaginary time propagation method is considered in Section 5. Four numerical
examples are presented in Section 6. In Section 7 we conclude this paper and discuss the direction of future work.
The conversion between wave function and the coefficient functions and related numerical benefit are illustrated in
appendix A.

For convenience, we only consider the Hartree atomic units ~ = m = e = 1, where ~ is the reduced Planck constant,
m is the effective mass of electron, and e is the positive electron charge. The range of appearing integrals is from −∞
to∞ without extra explanation.

2. Wigner function and stationary Wigner equation

In this section, the Wigner formalism and the widely used stationary Wigner equation will be introduced briefly.
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We define the density matrix

ρ(x, x′) =
∑

j

P jψ j(x)ψ∗j(x
′), (1)

where ψ j is the j-th eigenfunction of the time-independent Schrödinger equation

Hsψ j(x) =

[
−
∇2

2
+ V(x)

]
ψ j(x) = E jψ j(x), (2)

and P j is the probability to find the j-th eigenstate. The Wigner function f (x,p) in the 2D-dimensional phase space
(x,p) ∈ R2D is defined by applying Wigner-Weyl transform to the density matrix

f (x,p) =
1

(2π)D

∫
ρ
(
x +

y
2
, x −

y
2

)
exp(−ip · y)dy. (3)

By taking integral of (3) with respect to p, we get the particle density

ρ(x) = ρ(x, x) =

∫
f (x,p)dp. (4)

Following the basic property of the Weyl transform, the energy in the Wigner formalism can be expressed by

E =

∫∫ [
|p|2

2
+ V(x)

]
f (x,p)dxdp. (5)

Specially, if the density matrix corresponds to a pure state eiAψ(x), where ψ(x) is a real-valued function, with the fact
that Wigner function is also a real-valued function, we can derive that

f (x,−p) = f (x,−p)∗

=
1

(2π)D

∫
ψ

(
x +
−y
2

)
ψ∗

(
x −
−y
2

)
exp(−ip · (−y))dy = f (x,p).

(6)

Thus the Wigner function of any pure state with a constant phase factor is even with respect to p.
Following the method in [19], we can deduce the stationary Wigner equation from the time-independent Schrödinger

equation

p · ∇x f (x,p) + (Θ[V] f )(x,p) = 0, (7)

where Θ[V] f is a non-local pseudo-differential operator defined by

(Θ[V] f )(x,p) =

∫
Vw(x,p′) f (x,p − p′)dp′, (8)

and the Wigner potential reads

Vw(x,p) =
i

(2π)D

∫ [
V

(
x +

y
2

)
− V

(
x −

y
2

)]
exp(−ip · y)dy. (9)

If the potential V ∈ Cω(RD), (8) can be locally expressed by means of Taylor expansion

(Θ[V] f )(x,p) = −
∑

λ,|λ|odd

1
λ!(2i)|λ|−1

∂λV
∂xλ

∂λ

∂pλ
f (x,p), (10)

where λ is a D-dimensional multi-index, λ! =
∏D

j=1 λ j!, xλ =
∏D

j=1 xλ j

j , and

∂λ

∂xλ
=

D∏
j=1

∂λ j

∂xλ j

j

,
∂λ

∂pλ
=

D∏
j=1

∂λ j

∂pλ j

j

. (11)

We close this section by the following theorem, which illustrates the effect of stationary Wigner equation from the
perspective of Fourier transform:
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Theorem 2.1. If the eigenenergy of Schrödinger Hamiltonian is nondegenerate, the Wigner function f (x,p) satisfying
(7) can be expressed by linear combination of the ones corresponding to pure state.

Proof. We rewrite Wigner function as follows

f (x,p) =
1

(2π)D

∫
f̃ (x, y)e−ip·ydy. (12)

Introducing change of variables u = x + y/2, v = x − y/2, it follows (7) that

[Hs(u) − Hs(v)] f̃ = 0, where Hs(u) = −
1
2
∇2

u + V(u). (13)

Consequently, in nondegenerate case we have Following the equation above we find(
f̃ , ψ∗i (u)ψ j(v)

)
=

1
Ei

(
f̃ ,Hs(u)ψ∗i (u)ψ j(v)

)
=

1
Ei

(
Hs(u) f̃ , ψ∗i (u)ψ j(v)

)
=

1
Ei

(
Hs(v) f̃ , ψ∗i (u)ψ j(v)

)
=

1
Ei

(
f̃ , ψ∗i (u)Hs(v)ψ j(v)

)
=

E j

Ei

(
f̃ , ψ∗i (u)ψ j(v)

)
= δi j

(
f̃ , ψ∗i (u)ψi(v)

)
,

where δi j is the Kronecker delta symbol.

3. Eigenvalue problem

In order to find the Wigner function of ground state, the Wigner analogy of the eigenvalue problem with respect to
energy operator is needed. Starting from the eigenvalue problem proposed in [19], Lemma 3.1 is deduced for deriving
Wigner eigenvalue problem. Finally, to guarantee the validity of the ground state calculation based on Wigner function,
the correspondence between Schrödinger eigenfunction and Wigner eigenfunction is established in Theorem 3.1.

Lemma 3.1. Let A(x,p) = F(x) be the Weyl transform of the operator Â = A(x̂, p̂) = F̂ = F(x̂), the eigenvalue problem
of Wigner function with respect to A is

1
πD

∫∫
F(v) f (x, r)e2i(v−x)·(r−p)dvdr = λ f (x,p). (14)

If F is a polynomial, then (14) can be further simplified as

F
(

i
2
∂

∂p
+ x

)
f (x,p) = λ f (x,p). (15)

For A(x,p) = G(p), similarly, we have the corresponding eigenvalue problem

1
πD

∫∫
G(r) f (v,p)e−2i(v−x)·(r−p)dvdr = λ f (x,p), (16)

and if G is polynomial, we have

G
(
−

i
2
∂

∂x
+ p

)
f (x,p) = λ f (x,p). (17)

In [19], the general eigenvalue problem for an operator Â = A(x̂, p̂) has been formulated as(
4
π2

)D ∫∫∫∫
A(y + y′,q − q′) f (y − y′,q + q′) exp{4iy′ · (q − p) + 4iq′ · (y − x)}dydy′dqdq′ = λ f (x,p), (18)

from which (14) and (16) can be immediately obtained. The alternative forms (15) and (17) can then be derived via
integration by parts. Now we consider the Weyl transform of the energy operator H(x,p) = |p|2/2 + V(x). By Lemma
3.1, using (7) to cancel the imaginary part we can define the Wigner analogy of the eigenvalue problem corresponding
to energy operator

Hw f (x,p) =
1
2

(
−

1
4
∇2

x f (x,p) + |p|2 f (x,p) +

∫
Veig(x,p′) f (x,p − p′)dp′

)
= E f (x,p), (19)
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where

Veig(x,p) =
1

(2π)D

∫ [
V

(
x +

y
2

)
+ V

(
x −

y
2

)]
exp(−ip · y)dy. (20)

If the potential V is analytic on RD, the integral in (19) has local expression similar to (10)∫
Veig(x,p′) f (x,p − p′)dp′ =

∑
λ,|λ|even

2
λ!(2i)|λ|

∂λV
∂xλ

∂λ

∂pλ
f (x,p). (21)

The eigenvalue problem (19) and stationary Wigner equation (7) are exactly the real and imaginary parts of the “star-
genvalue problem” introduced in [10], respectively. It is proved in [10] that the Wigner function satisfying star-genvalue
problem corresponds to a pure state wave function.

Remark 3.1. Suppose the validity of separation of variables for the eigenfunctions of Hw. Following a similar discus-
sion to Theorem 2.1, we can derive that

[Hs(u) + Hs(v)] f̃ = 2E f̃ . (22)

Using the method of separation of variables we find

Hs(u)U
U

+
Hs(v)V

V
= 2E,

Therefore the eigenfunction has the form

fi j(x,p) =
1

(2π)D

∫
ψ∗i

(
x +

y
2

)
ψ j

(
x −

y
2

)
e−ip·ydy. (23)

with eigenvalue Ei j = (Ei + E j)/2.

Remark 3.2. To distinguish the Wigner function corresponding to pure state from other eigenfunctions in Remark 3.1,
we have following relation: ∫∫

fi j(x,p)dxdp =

∫
ψ∗i (x)ψ j(y)dx = δi j, (24)

where δi j is Dirac delta function.

Furthermore, the correspondence between Schrödinger eigenfunction and Wigner eigenfunction can be derived as
follows.

Theorem 3.1. Let ψ(x) be a Schrödinger eigenfunction with energy E, then there exists a Wigner eigenfunction f (x,p)
with the same eigenvalue E satisfying the stationary Wigner equation. Conversely, if f (x,p) is a Wigner function
satisfying stationary Wigner equation and the eigenvalue problem, there exists a Schrödinger eigenfunction function
with the same eigenvalue.

Proof. The derivation of the eigenvalue problem (19) and stationary Wigner equation (7) has clearly shown that the
Wigner-Weyl transform of ψ satisfies these two equations.

On the contrary, let f (x,p) be an eigenfunction of Hw with eigenvalue E, which satisfies (7). Applying the inverse
Wigner-Weyl transform we have

ψ(x) = A
∫

f
(x + x0

2
,p

)
eip·(x−x0)dp, (25)

where A is the normalization constant. It can be verified by direct calculation and substitution of (7) that(
−
∇2

2
+ V(x)

)
ψ = Eψ, (26)

which means such construction yields a Schrödinger eigenfunction with the same energy.

The above theorem guarantees the correspondence between Schrödinger eigenfunction and Wigner eigenfunction
in the sense of construction, which validates the ground state calculation based on Wigner function by solving the
eigenvalue problem with the constraint of stationary Wigner equation. Furthermore, based on the construction in
theorem 3.1, the conversion between Schrödinger eigenfunction and Wigner eigenfunction expressed by coefficient
functions is established in Appendix B. Below we will focus on the Wigner formalism to develop our numerical
schemes.
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4. Hermite expansion of Wigner function

To deal with the global integral operators and reduce the dimension of problem, we consider the quantum hy-
drodynamic model proposed in [6]. It is noted that the hydrodynamic model in [6] is developed for time-dependent
simulations, and is derived based on a series expansion of the Wigner function with respect to the momentum variable
p, where the basis functions vary for different positions and times. Here in the computation of ground states, we fix the
bases and expand the Wigner function as

f (x,p) =
∑
α∈ND

fα(x)Hα(p), (27)

where α is a D-dimensional multi-index. The basis functionHα is defined as

Hα(p) =
1

(2π)D/2 exp
(
−
|p|2

2

) D∏
j=1

Heα j (p j), (28)

where Hen(x) is the n-degree Hermite polynomial

Hen(x) = (−1)n exp
(

x2

2

)
dn

dxn exp
(
−

x2

2

)
= n!

b n
2 c∑

m=0

(−1)m

m!(n − 2m)!
xn−2m

2m . (29)

To deduce the equations of coefficient functions corresponding to stationary Wigner equation and the eigenvalue prob-
lem, we need the following useful properties of Hermite polynomial [1]:

1. Orthogonality:
∫

Hem(x) Hen(x) exp(−x2/2)dx = m!
√

2πδm,n;
2. Recursion relation: Hen+1(x) = x Hen(x) − n Hen−1(x);
3. Differential relation: He′n(x) = n Hen−1(x).

Combining the last two relations we find[
Hen(x) exp(−x2/2)

]′
= −Hen+1(x) exp(−x2/2). (30)

Therefore
∂

∂p j
Hα(p) = −Hα+e j (p). (31)

A direct result of the orthogonality of Hermite polynomials is

fα(x) =
1
α!

∫  D∏
j=1

Heα j (p j)

 f (x,p)dp. (32)

Due to the fact that the Wigner function of any pure state is even with respect to p, in the situation of ground state
calculation, it is reasonable to assume

fα(x) = 0, if |α| is odd. (33)

Finally, to avoid a system with infinite unknowns, we only consider fα(x) with |α| 6 M, where M is an even positive
number.

Particularly, for two Wigner functions fa(x,p) and fb(x,p) corresponding to two orthogonal eigenstates ψa and ψb,
respectively, following the property of Weyl transform, using integration by part we obtain (For detailed illustration,
one can refer to [8])

(2π)−D
∑

α,β6M

Cα+β

∫
f (a)
α (x) f (b)

β (x)dx ≈
∫∫

fa(x,p) fb(x,p)dxdp = (2π)−D|〈ψa|ψb〉|
2 = 0, (34)

where f (a)
α (x) and f (b)

β (x) are the coefficient functions of fa(x,p) and fb(x,p), respectively, and (For detailed derivation,
see Appendix A.)

Cα =

∫  D∏
j=1

Heα j (p j)

 exp(−|p|2)dp =

 (−1/4)|α|/2
α!

(α/2)!
πD/2, if α j is even for 1 6 j 6 D,

0, otherwise.
(35)
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Then we will use the properties mentioned above to derive governing equations of the coefficient functions correspond-
ing to the stationary Wigner equation and the eigenvalue problem. The procedure follows the Petrov-Galerkin spectral
method, which can also be regarded as taking moments on both sides of the equations.

4.1. Stationary Wigner equation

For convenience, we take fα = 0 for any multi-index α with at least one negative component. Following the same
method in [7], we get the series expansion fo the first term in (7) as

p · ∇x f (x,p) =
∑
α

D∑
j=1

(
(α j + 1)

∂ fα+e j

∂x j
+
∂ fα−e j

∂x j

)
Hα(p). (36)

Using (30), the pseudo-differential operator term Θ[V] f with expression (10) becomes

(Θ[V] f )(x,p) =
∑
α

( ∑
λ6α,|λ|odd

1
λ!(2i)|λ|−1

∂λV
∂xλ

fα−λ
)
Hα(p). (37)

Plugging (36) and (37) into (7) and equating the coefficient of each basis function to zero, we obtain

D∑
j=1

(
(α j + 1)

∂ fα+e j

∂x j
+
∂ fα−e j

∂x j

)
+

∑
λ6α,|λ|odd

1
λ!(2i)|λ|−1

∂λV
∂xλ

fα−λ = 0. (38)

This equation holds for every α with |α| being odd.

4.2. Eigenvalue problem

Using the recursion relation of Hermite polynomials, the first two terms in (19) can be expanded as(
−

1
4
∇2

x + |p|2
)

f (x,p) =
∑
α

(
−

1
4
∇2

x fα +

D∑
j=1

(
(α j + 2)(α j + 1) fα+2e j + (2α j + 1) fα + fα−2e j

) )
Hα(p). (39)

With the help of the differential relation, the last term with local expression (21) can be written as∫
Veig(x,p′) f (x,p − p′)dp′ =

∑
α

( ∑
λ6α,|λ|even

2
λ!(2i)|λ|

∂λV
∂xλ

fα−λ
)
Hα(p). (40)

Similar to the derivation of (38), the orthogonality of Hermite polynomials yields

−
1
4
∇2

x fα +

D∑
j=1

(
(α j + 2)(α j + 1) fα+2e j + (2α j + 1) fα + fα−2e j

)
+

∑
λ6α,|λ|even

2
λ!(2i)|λ|

∂λV
∂xλ

fα−λ = 2E fα. (41)

In the above equation, we choose α such that |α| is even.
So far we have already derived the general eigenvalue problem and the constraint based on stationary Wigner

equation for our model. In next section, we will restrict ourselves to one-dimensional case, and provide a feasible
numerical framework on the strength of imaginary time propagation method.

5. One-dimensional numerics

Now we restrict ourselves to one-dimensional case, and take M = 2K, where K ∈ N. Taking α = 2k + 1 in (38) we
find

(2k + 2)
∂ f2k+2

∂x
+
∂ f2k

∂x
+

k∑
l=0

1
(2l + 1)!(2i)2l

∂2l+1V
∂x2l+1 f2k−2l = 0, k = 0, 1, . . . ,K. (42)
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Remark 5.1. For 0 6 k 6 K, since∫
f2k(x)dx =

1
(2k)!

∫∫
He2k(p) f (x, p)dxdp =

1
(2k)!

〈He2k(p)〉 (43)

must be a finite expectation value, we have limx→−∞ f2k(x) = 0 for all k > 0, integrating both sides of (42) from −∞ to
x we obtain

(2k + 2) f2k+2(x) + f2k(x) +

k∑
l=0

1
(2l + 1)!(2i)2l

∫ x

−∞

(
∂2l+1V
∂x2l+1 f2k−2l

)
(s)ds = 0. (44)

Thus f2k+2 can be calculated by { f2l}
k
l=0. Once given the density ρ(x) = f0(x), we could construct { f2k}

∞
k=1 recursively.

Therefore in one-dimensional case, the Wigner function of pure state is determined by the density.

The corresponding eigenvalue problem is given by taking α = 2k in (41)

−
1
4
∇2

x f2k + (2k + 2)(2k + 1) f2k+2 + (4k + 1) f2k + f2k−2 +

k∑
l=0

2
(2l)!(2i)2l

∂2lV
∂x2l f2k−2l = 2E f2k, k = 0, 1, . . . ,K. (45)

It is noted that (45) depicts an underdetermined eigenvalue system of coupled functions, which is difficult to directly
solve by commonly-used method such like block Schur factorization due to its coupled structure. Instead we consider
solving it from the perspective of time propagation. In next subsection we will introduce imaginary time propagation
method for the utilization of ground state calculation. It is worth to mention that the truncated system is underdeter-
mined due to the appearance of f2K+2, a reconstruction approach is proposed in Subsection 5.2 to achieve a well-posed
system. Finally, the numerical detail is shown in the last subsection.

5.1. Imaginary time propagation method
Imaginary time propagation (ITP) method is a widely-used method for solving eigenvalue problems such as the

time-independent Schrödinger equation. Its basic idea is to use the fact that for any Hermitian operator H and large
t, we have exp(−tH)Ψ is approximately an eigenfunction of H associated with its smallest eigenvalue, given that Ψ

is not orthogonal to the corresponding eigenspace. In order to prevent the eigenfunction from being too large/small,
renormalization is applied during the time propagation. In the context of finding the ground state, we can illustrate this
idea by considering the time-dependent Schrödinger equation

i
∂Ψ(x, t)
∂t

= HsΨ(x, t), Ψ(x, 0) = Ψ0(x), (46)

where Hs = −∇2/2 + V is the Hamiltonian in the Schrödinger picture. We adopt Wick rotation of the time coordinate,
i.e., t = −iτ, then (46) becomes

−
∂Ψ(x, τ)
∂τ

= HsΨ(x, τ), Ψ(x, 0) = Ψ0(x), (47)

with the formal solution
Ψ(x, τ) = e−τHΨ0(x)→ e−E0τψ0(x) as t → ∞. (48)

Since the ground state eigenfunction ψ0 has the lowest eigenvalue E0, given the initial state that is not orthogonal to ψ0,
the normalized steady-state of (47) yields the ground state of the time-independent Schrödinger equation (2) as other
exponentials decay more rapidly. To find the excited state, we only need to propagate several functions simultaneously
with orthogonalization process after each step.

Following the similar way to derive (38), with the help of (47), direct calculating the time derivative of Wigner
function in the expression of (3) we obtain the equations for ITP. Recall the eigenvalue problem for the Wigner function
(45), the ITP governing equations for coefficient functions are the ones by replacing the right-hand side of (45) with
negative time derivative:

−
1
4
∇2

x f2k + (2k + 2)(2k + 1) f2k+2 + (4k + 1) f2k + f2k−2 +

k∑
l=0

2
(2l)!(2i)2l

∂2lV
∂x2l f2k−2l = −

∂ f2k

∂τ
, (49)

where k = 0, 1, . . . ,K.
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It is desired to mention that the constraint of stationary Wigner equation makes the gap between the smallest eigen-
value and second-smallest eigenvalue larger, i.e., from (E0 + E1)/2− E0 to E1 − E0, which accelerates the convergence
process. Although the infinite system satisfies the constraint of stationary Wigner equation if the initial condition sat-
isfies such constraint. Due to the closure and numerical error arising during time evolution, we enforce this condition
at each time step. The evolution of { f2k}

K
k=0 is depicted by the following two-step procedure [ f0, f2, . . . , f2K]T = e−τHcf [ f0, f2, . . . , f2K , f2K+2]T ;

[ f0, f2, . . . , f2K]T = P[ f0, f2, . . . , f2K]T

(50a)

(50b)

where (50a) is rewritten from (49). The projection step (50b) is to guarantee that (42) holds. In next subsection, we
will propose a reconstruction method to deal with the underdetermined system (50a) and utilize the projection (50b).

5.2. Reconstruction
Notice that (50a) depicts a underdetermined system due to the appearance of f2K+2, to close the system we con-

sider the reconstruction of f2K+2. As discussed at the beginning of this section, f2K+2 is determined by { f2k}
K
k=0 from

stationary Wigner equation (42). On the other hand, stationary Wigner equation is a constraint to be met for ground
state calculation. With appropriate boundary condition, we consider the reconstructing f2K+2 based on (42). To achieve
a system with finite unknowns, we adopt truncation on our domain, i.e., use [−a, a] instead of R, where a is a large
positive number. Since limx→±∞ f2k = 0 as previous discussion, it is reasonable to use the approximation f2K+2(−a) = 0
as boundary condition for reconstruction.

It is deserved to mention that such reconstruction is not confined to f2K+2. Since the approximation f2k+2(−a) = 0
also works for 0 6 k < K, start from f0, we can construct f2k for k = 1, 2, . . . ,K in turn, and finally obtain coefficient
functions { f2k}

K
k=0 satisfying (50b). Therefore, such reconstruction is also adopted for the utilization of (50b).

5.3. Numerical discretization
Since the Crank-Nicolson scheme is unconditionally stable and second-order in time, it is adopted for temporal

discretization as following approximation

e−∆τHcf ≈
1 + ∆τHcf/2
1 − ∆τHcf/2

. (51)

With regard to spatial discretization, we consider finite element method (FEM). The coefficient functions { f2k}
K
k=0 are

approximated by the linear combination of piecewise-polynomial basis functions {φi}, where {φi} is defined on a set of
real space interpolation nodes {pi}. Denote coefficients by {ϕk,i}, then we have:

f2k ≈

Nbasis∑
i=1

ϕk,iφi, k = 0, 1, . . . ,K, (52)

where Nbasis stands for the dimension of space Vh = span{φi, 1 6 i 6 Nbasis}. And φi is the i-th basis function that
is typically chosen such that φi(p j) = δi, j, δi, j is Kronecker delta function. As a result, we have ϕk,i = f2k(pi), for
1 6 i 6 Nbasis and 0 6 k 6 K. Let the superscript (n) denote the corresponded term at time τ = n∆τ, where ∆τ is the
time step, and denote ϕk = [ϕk,1, ϕk,2, . . . , ϕk,Nbasis ]

T . Introducing the approximation (51) to finite element discretization
of the equation (49) within the subspace Vh, we obtain

Mϕ(n+1)
k −

1
2

∆τHFEM
cf (ϕ(n+1)

0 , ϕ(n+1)
1 , . . . , ϕ(n+1)

k , ϕ(n+1)
k+1 ) = Mϕ(n)

k +
1
2

∆τHFEM
cf (ϕ(n)

0 , ϕ(n)
1 , . . . , ϕ(n)

k , ϕ(n)
k+1), (53)

where

HFEM
cf (ϕ(n)

0 , ϕ(n)
1 , . . . , ϕ(n)

k , ϕ(n)
k+1) = (2k + 2)(2k + 1)Mϕ(n)

k+1 +

(
1
4

S + (4k + 1)M
)
ϕ(n)

k + Mϕ(n)
k−1 +

k∑
l=0

2
(2l)!(2i)2l M(2l)ϕ(n)

k−l.

(54)

In the equations above,

S =

[∫
Ω

∇φi · ∇φ jdx
]
, M =

[∫
Ω

φiφ jdx
]
, M(m) =

[∫
Ω

∂mV
∂xm φiφ jdx

]
, (55)
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and Ω = [−a, a] is the truncated domain. The finite element discretization of (42) yields the equations for reconstruction

−(2k + 2)Aϕ(n)
k+1 + Aϕ(n)

k +

k∑
l=0

1
(2l + 1)!(2i)2l M(2l+1)ϕ(n)

k−l = 0, k = 0, 1, . . . ,K, (56)

where

A =

[∫
Ω

∂φi

∂x
φ jdx

]
(57)

and M(m) is defined as above. While the normalization condition of {ϕk}
K
k=0∫

f0dx = 1 (58)

becomes
Nbasis∑
i=0

ϕ0,i

∫
Ω

φidx = 1. (59)

The main components of the flow chat are introduced as follows

Algorithm 1: One-dimensional ground state calculation of Wigner function based on ITP

Data: Truncation order K, time T , time step dt, tolerance tol, initial value {ϕini
k }

K
k=0.

Result: Coefficient functions of Wigner function of ground state, represented by {ϕnow
k }

K
k=0.

ϕnow
k ← ϕini

k , ϕlast
k ← ϕini

k for 0 6 k 6 K;
while t < T and err > tol do

Reconstruct ϕnow
K+1 by the approximation f2K+2(−a) = 0 and (42);

Time propagation based on ITP method (53), (54) and (55);
Apply strategy to restrict solution space, i.e., set f0 to be even (optional);
Orthogonalization process by (34) (optional for calculation of excited state);
Normalize {ϕnow

k }
K
k=0 based on (59);

for k = 1 : K do
Construct ϕnow

k by {ϕnow
l }

k−1
l=0 using the same method to construct ϕnow

K+1;

Calculate err = max06k6K ‖ϕ
now
k − ϕlast

k ‖∞, t = t + dt, ϕlast
k = ϕnow

k for 0 6 k 6 K;

Remark 5.2. As indicated in (3) that Wigner function depends on only one variable, thus an arbitrary two-variable
function cannot be expressed by linear combination of the Wigner functions of pure states. A straightforward idea
is to consider the strategy to restrict solution space. Based on our numerical experiment, although the convergence
to ground state can be observed without such strategy, it can accelerate the convergence process. Furthermore, this
strategy becomes necessary if the excited state is taken into consideration.

Particularly, when we have a symmetric potential, it can be easily proved that the Schrödinger eigenfunction is
either odd or even, which always leads to an even density. Therefore artificially taking f0 to be even is a reasonable
choice to restrict the solution space in such cases.

6. Numerical experiments

In this section, the numerical effectiveness of our method is verified by following four examples. The first example
is a quantum harmonic oscillator, which is a fundamental example employed as a sanity check. Meanwhile, the influ-
ence of size of domain for the simulation is studied in this example, and the ability of calculating the excited states using
our approach is also demonstrated by supplementing Algorithm 1 with additional orthogonalization process. Second,
we consider a one-dimensional hydrogen system, where the solution contains singularity, and thus we need at least
quadratic finite elements to produce a reliable ground state solution. The third and fourth examples are, respectively,
a two-particle Hooke’s atom system and its variation, where both systems are represented in the context of the density
functional theory. Numerical results from these two examples show the potential of our method for simulating large
scale systems.

In all examples, the computational domain is chosen as [−10, 10] with a uniform mesh unless otherwise specified.
In each example, different mesh sizes h and truncation orders K are tested to show the convergence rate and the
influence of truncation order. Error estimation is given by the infinity norm.

10



6.1. Harmonic oscillator

We consider the potential of harmonic oscillator

V =
1
2
ω2x2. (60)

For the sake of simplicity, we take ω = 1. Then the Wigner function of the n-th eigenstate is given by [18]

f (n)(x, p) =
(−1)n

π
exp

[
−2

(
p2

2
+

x2

2

)]
Ln

(
4
(

p2

2
+

x2

2

))
, with energy En =

2n + 1
2

, (61)

where Ln(x) is the n-th Laguerre polynomial.
We first discuss the choices of truncation on domain. The numerical results obtained from different sizes of domain

are demonstrated in Figure 6.1.

Figure 6.1: Errors max06k6K ‖ f2k − f exc
2k ‖∞ for different truncated domain with K = 10 for ground state (left) and 1st excited state (right).

It can be observed from Figure 6.1 that with a small domain a = 2.5, the desired numerical convergence cannot
be observed. However, with the increment of the domain size, theoretical convergence rate of linear finite element
method can be successfully obtained with a = 5, 10, 15. To balance numerical accuracy and efficiency, in our following
simulations, a = 10 is always used.

Next, we would like to show the difference between the algorithms with/without the projection step (50b). It follows
the discussion in the previous sections that introducing the constraint of stationary Wigner equation helps accelerate the
convergence, as is also confirmed by our numerical experiments. It is illustrated in the Figure 6.2 that the error of the
first excited state fails to decrease to 1.0×10−10 even with sufficiently long time. Based on our numerical experiment, it
is worth mentioning that the constraint of the stationary Wigner equation also contributes to suppressing some possible
numerical or modelling errors accumulated during the simulation. In fact, divergent results have been observed in our
experiments without such a constraint.
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Figure 6.2: Decay of errors max06k6K ‖ f now
2k − f last

2k ‖∞ for numerical simulation with(left)/without(right) constraint of stationary Wigner equation.

Besides the ground state, it is noted that by adding an orthogonalization process in Algorithm 1, excited states of
the system can be calculated simultaneously. Furthermore, the effect of truncation order K for the numerical solution
is also studied in our numerical experiments. The numerical results are provided in Figure 6.3.

Figure 6.3: Errors max06k6K ‖ f2k − f exc
2k ‖∞ for the ground state, 1st excited state and 2nd excited state, respectively (from left to right).

The numerical observations of Figure 6.3 are summarized as follows: i) In the computation of all the states, second-
order convergence with respect to the mesh size is observed. ii) The calculation of ground state converges fast with
respect to K; our numerical result for K = 5 almost coincides with that for K = 15. The convergence is slower for
the excited state calculation, but the behavior still looks like the spectral convergence due to the smoothness of the
solution. iii) Larger truncation order K is needed when higher excited state is calculated. This might be caused by the
accumulation of numerical error from the orthogonalization process. In addition, since the 2nd excited state has higher
energy, more terms in Hermite expansion are needed to depict its more oscillatory behavior.

6.2. One-dimensional hydrogen
The one-dimensional hydrogen system consists of an electron moving in the one-dimensional potential

V(x) = −
1
|x|
, (62)

with boundary condition ρ(x) = 0. It is shown in [28] that the ground state density is

ρ0(x) = 2x2e−2|x| with energy E0 = −
1
2
. (63)

It follows (3) that its Wigner function reads

f (x, p) = 2e−2|x|
(
x2δ(p) +

1
4
δ′′(p)

)
. (64)
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In our numerical experiment, it is found that linear finite element method fails to provide a convergent result, which
can be explained as follows.

Substituting f0 = 2x2e−2|x| + ε0 into the following numerical construction of f2 we find

2
∂ f2
∂x

+
∂ f0
∂x

= −
∂V
∂x

f0 =
sgn(x)

x2 ·

(
2x2e−2|x| + ε0

)
= 2 sgn(x)e−2|x| +

sgn(x)
x2 · ε0, (65)

Therefore in the element containing original point, we have the numerical error ε0/x2 = O(1) which prevents the
numerical convergence to the exact solution. To tackle this problem, we consider the quadratic finite element basis
functions in this example, which yields theoretical error O(h) by (65).

Figure 6.4: Numerical errors of one-dimensional hydrogen when K = 1.

Numerical results are shown in Figure 6.2, where we present both the error of all coefficient functions and the error
of density. The following observations can be made from the result: i) The error of density (orange curve) is better than
that of all coefficient functions (blue curve), as the normalization condition acts on density. ii) It is observed that when
the mesh size is large, the convergence rate is higher than the theoretical one. As the mesh is refined, the error gradually
saturates due to the truncation of the infinite system, and eventually the overall error is dominated by the reconstruction
of f4 when the mesh size is sufficiently small. Note that for larger K, the higher-order derivatives of V turn out to be
more singular, leading to the requirement of higher-order numerical methods to guarantee the convergence.

6.3. Hooke’s atom
In this example we consider the Hooke’s atom consisting of two electrons oscillating in the parabolic well. The

two-particle Schrödinger equation is−1
2
∂2

∂x2
1

−
1
2
∂2

∂x2
2

+ Vext(x1) + Vext(x2) +
1

|x1 − x2|

 Ψ(x1, x2) = EΨ(x1, x2), (66)

where the external potential of Hooke’s atom is

Vext(x) =
1
2

kHookex2, kHooke =
1
4
. (67)

It follows the derivation in Appendix B that the ground state density is

ρ(x) = 2
∫
|Ψ(x, x2)|2dx2 = 2C2e−

x2
2

(
(4 + 2x2)e−

x2
2 +
√

2π
(

7
4

+
5
2

x2 +
1
4

x4
)

+
√

2π erf
(

x
√

2

)
(3x + x3)

)
, (68)

where C = (16
√
π + 10π)−1/2, and erf(x) is the error function defined as

erf(x) =
2
√
π

∫ x

0
e−y2

dy. (69)
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Since erf(x) is odd by its definition, ρ(x) is an even function.
This two-particle system can be transformed into the Kohn-Sham equation(

−
1
2

d2

dx2 + VKS

)
ψi = εiψi(x), i = 1, 2, (70)

where
VKS = Vext + VH + VXC. (71)

The Kohn-Sham orbitals of (70) are given by

ψi(x) =
√
ρ(x)/2, i = 1, 2. (72)

With ψ = ψ1 = ψ2 and ε = ε1 = ε2, and with the assumption that the functional derivative of VH + VXC vanishes at
infinity, the Kohn-Sham potential can be exactly expressed as [24]

VKS(x) = ε +
1
2

d2ψ(x)/dx2

ψ(x)
= ε +

ρ′′(x)ρ(x) − (ρ′(x))2 /2
4ρ(x)2 . (73)

Since ρ(x) is even, VKS(x) is also an even function.
The numerical results for K = 0, 1, 2 with our method are listed in following table.

Table 6.1: Numerical errors and convergence rate of Hooke’s atom.
K 0 1 2
h error order error order error order

max06k6K ‖ f2k − f exc
2k ‖∞

2.0e-01 1.4667e-04 - 1.1195e-03 - 1.1194e-03 -
1.0e-01 3.4544e-05 2.0861 2.5899e-04 2.1119 2.5898e-04 2.1118
5.0e-02 8.9058e-06 1.9556 6.3706e-05 2.0234 6.3705e-05 2.0234
2.5e-02 2.5259e-06 1.8179 1.5864e-05 2.0057 1.5864e-05 2.0057

‖ f0 − ρexc‖∞

2.0e-01 - - 1.5784e-04 - 1.5785e-04 -
1.0e-01 - - 3.8595e-05 2.0320 3.8597e-05 2.0320
5.0e-02 - - 9.5975e-06 2.0077 9.5980e-06 2.0077
2.5e-02 - - 2.3961e-06 2.0020 2.3963e-06 2.0019

It can be observed in Table 6.1 that i) the numerical accuracy of the density is better than the high-order coefficients
which is similar to the previous example. ii) For K = 0, the numerical convergence towards the theoretical result can
already be obtained. However, with the refinement of mesh grids, the convergence order starts to decrease, since for
small K, the reconstruction error dominates when mesh size is sufficiently small. iii) The above issue is remedied when
K becomes larger. For K = 1, 2, the theoretical convergence order with respect to the grid size is obtained in all the
simulations. Furthermore, comparable numerical accuracy can be observed from results with K = 1 and K = 2, which
means that in this example, a small K can already provide sufficient numerical accuracy.

6.4. Contact-interacting Hooke’s atom
Now we consider a more practical example by replacing the interacting function in (66) with delta function−1

2
∂2

∂x2
1

−
1
2
∂2

∂x2
2

+ Vext(x1) + Vext(x2) + δ(x1 − x2)
 Ψ(x1, x2) = EΨ(x1, x2), (74)

where Vext(x) is defined as (67). This two-particle system can be also transformed into the Kohn-Sham equation as (70)
with (71). The energy of system is given by [13]

E =

2∑
i=1

εi − UH[ρ] −
∫

VXC([ρ]; x)dx + EXC[ρ], (75)
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where

UH[ρ] =
1
2

∫
ρ(x)2dx, and EX[ρ] = −

1
4

∫
ρ(x)2dx. (76)

The local-density correlation energy functional is [29]

ELDA
C [ρ] =

∫ (
aρ(x)3 + bρ(x)2

ρ(x)2 + dρ(x) + e

)
dx, (77)

where a = −1/24, b = −0.00436143, d = 0.252758 and e = 0.0174457. By these definitions, we have

VH([ρ]; x) =
δUH[ρ]
δρ(x)

and VXC([ρ]; x) =
δ(EX[ρ] + ELDA

C [ρ])
δρ(x)

. (78)

To solve (74), a self-consistent iteration is employed due to the nonlinearity[14]. To validate our method, the
numerical result of the Schrödinger wave function is calculated as a reference. Both the numerical results of our
method with K = 0, 1, 2 and the ones of Schrödinger wave function are listed in Table 6.2. Here both the Wigner
function and the wave function are solved on different grids ranging from h = 0.2 to h = 6.25× 10−3, and the “energy”
columns list the ground state energy for all our simulations. For the “error” columns, we list the difference of the
particle densities ρw and ρfinest

s , where ρw stands for the Wigner function computed using different parameters h and K,
and ρfinest

s is obtained from the wave function computed on the finest grid.

Table 6.2: Numerical errors of density ‖ρw − ρ
finest
s ‖∞ and energy of contact-interacting Hooke’s atom.

K 0 1 2 Schrödinger
h error energy error energy error energy energy

2.00e-01 2.1068e-03 1.31718 1.9710e-03 1.31727 2.2879e-03 1.31568 1.31476
1.00e-01 5.8217e-04 1.31398 5.1479e-04 1.31403 6.0338e-04 1.31360 1.31347
5.00e-02 1.7063e-04 1.31323 1.3680e-04 1.31326 1.5979e-04 1.31315 1.31315
2.50e-02 5.3808e-05 1.31306 3.6827e-05 1.31308 4.2656e-05 1.31305 1.31307
1.25e-02 1.7723e-05 1.31304 9.2112e-06 1.31304 1.0677e-05 1.31304 1.31305
6.25e-03 5.2688e-06 1.31303 3.0021e-06 1.31304 3.4460e-06 1.31304 1.31304

It is shown in Table 6.2 that i) for each fixed K, the convergence towards the Schrödinger results can be observed as
the mesh is refined; ii) results of energies for two cases coincide with each other very well, especially when mesh size
is sufficiently small (h ≤ 0.025). These observations again validate both the model and the numerical method proposed
in this paper.

Table 6.3: Relative errors max06k6K ‖ f2k − f finest
2k ‖∞ and convergence order of contact-interacting Hooke’s atom.

K 0 1 2
h error order error order error order

2.00e-01 2.1015e-03 - 1.9700e-03 - 2.2866e-03 -
1.00e-01 5.7690e-04 1.8650 5.1378e-04 1.9390 6.0201e-04 1.9253
5.00e-02 1.6536e-04 1.8027 1.3580e-04 1.9197 1.5841e-04 1.9261
2.50e-02 4.8540e-05 1.7684 3.5820e-05 1.9226 4.1282e-05 1.9401
6.25e-03 1.2454e-05 1.9625 8.2042e-06 2.1263 9.3032e-06 2.1497

In Table 6.3, the relative errors of numerical solution are demonstrated with a result obtained on the finest mesh. It
can be found that the convergence rate is around the theoretical one of linear finite element method.

7. Conclusions

In this paper, a model of Wigner function of eigenstate is proposed, providing a theoretical foundation for ground
state calculation in Wigner formalism. With a simplified model of [6], ITP method is adopted for the realization of
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one-dimensional ground state calculation. For validation purposes, we applied our method to the simulation of several
benchmark systems. The aim of first two experiments is to show the capability of our method to handle excited state
and singularity of potential. While in the last two examples, with the assistance of DFT, our approach successfully
converges to the ground state. In particular, the consistency of results from our method with Schrödinger solution is
observed in the last example, indicating the feasibility of our method in DFT regime.

Our ongoing work is to generalize the proposed method in this paper to three-dimensional case, in which the
reconstruction of coefficient functions would be a nontrivial issue.

Acknowledgments

The first author would like to thank the support from Macao PhD Scholarship (MPDS) from University of Macau.
The second author was partially supported by the Academic Research Fund of the Ministry of Education of Singa-
pore under grant Nos. R-146-000-305-114 and R-146-000-291-114. The third author was partially supported by
National Natural Science Foundation of China (Grant Nos. 11922120 and 11871489), MYRG of University of Macau
(MYRG2019- 00154-FST) and Guangdong-Hong Kong-Macao Joint Laboratory for Data-Driven Fluid Mechanics and
Engineering Applications (2020B1212030001).

Appendix A. Calculation of the coefficient in the inner product of two Wigner functions

First we consider the calculation of the integral

In =

∫
xn exp(−x2)dx. (A.1)

It is evident that In = 0 if n is odd. For nonzero even number n, using integration by part we find

In = −
1
2

∫
xn−1d exp(−x2) = −

1
2

xn−1 exp(−x2)
∣∣∣∣∣∞
−∞

+
n − 1

2

∫
xn−2 exp(−x2)dx =

n − 1
2

In−2. (A.2)

It is noted that I0 =
√
π, therefore we have

In =

{ √
πn!/2n(n/2)!, if n is even;

0 if n is odd. (A.3)

Substituting it into the calculation of (35) we obtain

Cα =

D∏
j=1

∫
Heα j (x) exp(−x2)dx =

D∏
j=1

α j!
α j/2∑
k=0

(−1)k

k!(α j − 2k)!
Iα j−2k

2k

=

D∏
j=1

α j!
α j/2∑
k=0

(−1)k

k!(α j − 2k)!
1
2k

√
π(α j − 2k)!

2α j−2k(α j/2 − k)!
=

D∏
j=1

√
πα j!
2α j

α j/2∑
k=0

(−1)k

k!
1

2−k(α j/2 − k)!

=

D∏
j=1

√
πα j!
2α j

1
(α j/2)!

(1 − 2)α j/2 =

D∏
j=1

√
πα j!

(α j/2)!

(
−

1
4

)α j/2

=

(
−

1
4

)|α|/2
πD/2α!
(α/2)!

(A.4)

if all components of α are even; and Cα = 0 if one of the component of α is odd.

Appendix B. Conversion between wave function and Wigner coefficient function

Given the Wigner function of pure state

f (x,p) =
1

(2π)D

∫
ψ∗

(
x −

y
2

)
ψ

(
x +

y
2

)
exp(−ip · y)dy. (B.1)
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We have expanded it by series involving Hermite polynomials in Section 4. It follows (29) and (32) that we could
define

hα(x) =
1
α!

∫
pα f (x,p)dp =

∑
062β6α

1
2|β|β!

fα−2β(x). (B.2)

Conversely we have

fα(x) =
∑

062β6α

(−1)|β|

2|β|β!
hα−2β(x). (B.3)

Thus the coefficient functions { fα} is equivalent to {hα} in the sense that one can be expressed by the linear combination
of another. Using (B.1), hα could be calculated by the derivative of wave function:

hα =
1

α!(2π)D

∫∫
ψ∗

(
x −

y
2

)
ψ

(
x +

y
2

) 1
(−i)|α|

∂α

∂yα
e−ip·ydydp =

1
α!(2i)|α|

∑
β6α

(−1)|β|
(
α

β

)
∂βψ∗

∂xβ
∂α−βψ

∂xα−β
. (B.4)

On the other hand, it follows (35) and (29) that∫
Hα(p) exp

(
−

1
2
|p − i(x − x0)|2

)
dp = (2π)D/2(i(x − x0))α. (B.5)

Therefore with aid of (25), (27) and (28), we could recover the wave function from coefficient functions

ψ(x) =
exp(−|x − x0|

2/2)
ψ∗(x0)

∑
α

fα
(x + x0

2

)
(i(x − x0))α. (B.6)

Thus wave function could also be reconstructed from coefficient functions. In addition, (B.4) and (B.3) provide a
method to construct coefficient functions by wave function both theoretically and numerically.

Appendix C. Ground state density of Hooke’s atom

Introducing change of variables X = (x1 + x2)/2, x = x1 − x2 we obtain(
−

1
4
∂2

∂X2 −
∂2

∂x2 +
1
4

X2 +
1

16
x2 +

1
|x|

)
Ψ(x1, x2) = EΨ(x1, x2) (C.1)

Taking Ψ(x1, x2) = ΨX(X)Ψx(x), separating the variables we get(
−

1
4
∂2

∂X2 +
1
4

X2
)
ΨX = EXΨX , and

(
−
∂2

∂x2 +
1

16
x2 +

1
|x|

)
Ψx = ExΨx. (C.2)

The first equation is (
−

1
2
∂2

∂X2 +
1
2

X2
)
ΨX = 2EXΨX ,

which is the one-dimensional Schrödinger equation with harmonic oscillator potential. So the ground state wave
function is

ΨX = π−1/4e−X2/2, with energy 2EX =
1
2
, EX =

1
4
. (C.3)

Now we solve the equation for Ψx. At large x, the term x2/16 dominates, which implies the approximate solution

Ψx(x) ≈ Ae−x2/8 + Bex2/8.

To find a normalizable solution, we take B = 0, this suggests that Ψx(x) = h(x)e−x2/8. Then the Schrödinger equation
becomes

−
d2h
dx2 +

x
2

dh
dx

+

(
1
4

+
1
|x|
− Ex

)
h = 0. (C.4)
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We look for solutions to (C.4) in the form of power series in x: h(x) =
∑∞

j=0 a jx j. Plugging it into (C.4) we find

−

∞∑
j=0

( j + 1)( j + 2)a j+2x j +

∞∑
j=1

1
2

ja jx j +

∞∑
j=0

(
1
4
− Ex

)
a jx j +

∞∑
j=0

sgn(x)a j+1x j +
a0

|x|
= 0. (C.5)

Thus a0 = 0, matching the coefficients we get

−2a2 + sgn(x)a1 = 0 (C.6)

and

a j+2 =
sgn(x)a j+1 + ( j/2 + 1/4 − Ex) a j

( j + 1)( j + 2)
for j > 1. (C.7)

For large j = 2k, the recursion formula approximately becomes

a j+2 ≈
1
2 j

a j, with the approximate solution a j ≈
C(1/4) j/2

( j/2)!
=

C(1/4)k

k!

for some constant C. Similarly we find the approximate solution for odd j = 2k + 1

a j+2 ≈
1

2( j − 1)
a j ⇒ a j ≈

D(1/4)( j−1)/2

(( j − 1)/2)!
=

D(1/4)k

k!

for some constant D. These results yield the asymptotic behavior at large x:

h(x) =
∑

k

(a2k x2k + a2k+1x2k+1) ≈
∑

k

(C + Dx)
(x2/4)k

k!
≈ (C + Dx)ex2/4.

But such behavior leads to Ψx ≈ (C + Dx)ex2/8 at large x, which is not normalizable. Therefore the power series must
terminate for some j. Suppose that {an} terminates at n, i.e., an+1 = an+2 = 0. Taking j = n in (C.7) we find(

1
2

n +
1
4
− Ex

)
a j = 0 ⇒ Ex =

2n + 1
4

. (C.8)

Note that when n = 1, (C.6) implies trivial solution. For ground state we have n = 2, the corresponding wave function
and energy are

Ψx = a1

(
1
2

sgn(x)x2 + x
)

e−x2/8 = a1

(
1
2
|x| + 1

)
xe−x2/8, with energy Ex =

5
4
. (C.9)

Combining (C.3) and (C.9) we obtain the ground state wave function of Hooke’s atom

Ψ(x1, x2) = C
(

1
2
|x| + 1

)
xe−X2/2e−x2/8 = C

(
1
2
|x1 − x2| + 1

)
(x1 − x2)e−(x2

1+x2
2)/4 (C.10)

with energy E = EX + Ex = 3/2, where C = (16
√
π + 10π)−1/2 is the normalization constant and x, X are defined as

above. Therefore the ground state density is given by

ρ(x) = 2
∫
|Ψ(x, x2)|2dx2 = 2C2e−

x2
2

(
(4 + 2x2)e−

x2
2 +
√

2π
(

7
4

+
5
2

x2 +
1
4

x4
)

+
√

2π erf
(

x
√

2

)
(3x + x3)

)
, (C.11)

where erf(x) is the error function defined as

erf(x) =
2
√
π

∫ x

0
e−y2

dy. (C.12)
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