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Abstract

Following the development of a third-order compact gas-kinetic scheme (GKS) for the
Euler and Navier-Stokes equations (Journal of Computational Physics 410 (2020) 109367),
in this paper an even higher-order compact GKS up to sixth order of accuracy will be
constructed for the shock and acoustic wave computation on unstructured mesh. The com-
pactness is defined by the physical domain of dependence for an unstructured triangular
cell, which may involve the closest neighbors of neighboring cells. The compactness and
high-order accuracy of the scheme are coming from the consistency between the high-order
initial reconstruction and the high-order gas evolution model under GKS framework. The
high-order evolution solution at a cell interface provides not only a time-accurate flux func-
tion, but also the time-evolving flow variables. Therefore, the cell-averaged flow variables
and their gradients can be explicitly updated at the next time level from the moments
of the same time-dependent gas distribution function. Based on the cell averages and cell-
averaged derivatives, both linear and nonlinear high-order reconstruction can be obtained for
macroscopic flow variables in the evaluation of local equilibrium and non-equilibrium states.
The current nonlinear reconstruction is a combination of WENO and ENO methodology,
which is specifically suitable for compact GKS on unstructured mesh with a high-order
(≥ 4) accuracy. The initial piecewise discontinuous reconstruction is used for the deter-
mination non-equilibrium state and an evolved smooth reconstruction for the equilibrium
state. The evolution model in gas-kinetic scheme is based on a relaxation process from
non-equilibrium to equilibrium state. The time-accurate gas distribution function in GKS
provides the Navier-Stokes flux function directly without separating the inviscid and viscous
terms, which simplifies the numerical method on unstructured mesh. Based on the time-
accurate flux solver, the two-stage fourth-order time discretisation can be applied to get a
fourth-order time-accurate solution with only two stages, which reduces two reconstructions
in comparison with the same time-accurate method with Runge-Kutta time stepping. The
current high-order GKS can uniformly capture acoustic and shock waves without identifying
trouble cells and implementing additional limiting procedure. In addition, the fourth- up to
sixth-order compact GKS can use almost the same time step as a second-order shock captur-
ing scheme. The fourth-order GKS on unstructured mesh will be used in the computations
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from low speed incompressible viscous flow to the high Mach number shock interaction. The
accuracy, efficiency, and robustness of the scheme have been validated. The main conclu-
sion of the paper is that beyond the first-order Riemann solver, the use of high-order gas
evolution model seems necessary in the development of high-order schemes.

Keywords: Gas-kinetic model, High-order reconstruction, Compact scheme, Triangular
mesh

1. Introduction

The development of high-order methods is important for the compressible flow compu-
tations in many engineering applications, such as compressible turbulent flows [1], aero-
acoustics [2], and complex flows with shock and boundary layer interactions [3]. With
the advantages of high-order methods in terms of solution accuracy and computational effi-
ciency [4], extensive effort has been spent on search of high-order schemes in the past decades
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The incompatibility among the compactness, high-order
accuracy, and shock capturing still remains in the algorithm development. The discrepancy
between the linear scheme for smooth flow and nonlinear scheme for discontinuous one has
not been solved uniformly. For the flow with co-existing shock interaction and acoustic wave
propagation, the unification of linear and nonlinear formulation is a preferred property in a
high-order scheme.

The high-order compact scheme is attractive due to its high resolution, high parallel
efficiency, low storage, and simple implementation on unstructured mesh [15, 16, 9, 12, 13].
Compact scheme has physical foundation because the CFL condition determines the domain
of dependence, where only neighboring cells are dynamically connected. Theoretically, all
high-order non-compact schemes have weakness by including the cells without dynamic
dependence into the evolution of local solution. The popular Lele-type compact schemes
are based on the implicit relation between flow variables and their derivatives within a
compact stencil [15], which influences greatly on the development of linear schemes [17, 18].
For smooth flows, the successful compact schemes include the finite difference (FD) and
finite volume (FV) schemes [15, 19, 17], DG method [10, 11], and correction procedure via
reconstruction (CPR) method [20, 12]. The DG method has the same stencil as the second-
order scheme, and achieves high accuracy by using high-order piecewise polynomials within
cells and evolving the multiple degrees of freedom (DOFs) based on their distinguishable
governing equations from the weak formulations. Each cell in DG method only interacts
with its neighboring cells and the method become very efficient for parallel computation
[9] and the application on unstructured meshes. For discontinuous flows, the success of
the above compact schemes is limited. The research on identifying the trouble cells and
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using additional limiting procedure seems unavoidable in DG [21, 22, 23] and CPR [24, 25]
methods.

Nonlinear schemes have been designed for the flows with discontinuities. The success-
ful nonlinear schemes include total variation diminishing (TVD) schemes [26], essentially
non-oscillation (ENO) schemes [6], and weighted ENO (WENO) schemes [7, 8]. In past
twenty years, the WENO-type high-order methods have received the most attention among
nonlinear schemes. The central ingredients in WENO schemes are to construct several low
order polynomials and to design smoothness indicators to adaptively assemble them to get
a high-order one. Most recent effort is about the optimization of stencil selection and the
design of weighting functions [27, 28, 29, 30]. WENO schemes can achieve very high-order
accuracy in the smooth region and maintain non-oscillatory property across shock waves
[31]. But, as mentioned before, the large stencils used in WENO use the information of
the cells which have no any dynamic connection under the CFL condition with the local
reconstructed cell. As a result, the numerical dissipation in WENO is still high in compari-
son with compact schemes [27]. Modified WENO schemes, such as WENO-M and WENO-Z
[28, 29], have been proposed to improve the performance at critical points. The hybrid linear
and nonlinear schemes have been investigated as well [1, 32].

Both non-compact and compact high-order GKS have been developed in the past years on
structured and unstructured meshes [14, 33, 34, 35]. On unstructured mesh, only third-order
accurate compact GKS has been developed [36, 37]. However, on structured uniform mesh,
compact GKS up to eighth-order accuracy have been successfully constructed for compress-
ible flow simulation with shock and aero-acoustics waves [16, 38]. The high-order compact
GKS demonstrates high-order accuracy, spectral-like resolution and excellent robustness for
both smooth and discontinuous solutions under a large CFL number (CFL ≥ 0.5). In
this paper, the compact high-order GKS on unstructured mesh will be further developed
with even higher-order accuracy. Here the compactness is related to the domain of depen-
dence for physical wave propagation under the CFL condition, which involves only nine cells
around the central triangle, see Fig.1. Based on such a stencil, up to sixth-order compact
scheme will be developed. For the non-compact WENO schemes with the same accuracy
on unstructured mesh, a much large stencil with different order of magnitude has to be
used. The high-order compact GKS can capture smooth and discontinuous solutions with
the update of the numerical solution without identifying the trouble cells and including ad-
ditional limiting procedure. Due to the time-accurate evolution solution at a cell interface,
both cell-averaged conservative flow variables and their gradients can be explicitly updated
[39, 35]. The cell-averaged derivatives are coming from the strong evolution solution rather
than the weak formulation in DG method for the update of the similar DOFs [11, 21].

Besides gas evolution model, the high-order linear and nonlinear reconstructions are
also involved in the GKS. Based on the cell-averaged flow variables and their derivatives,
the methodology of WENO method can be extended here on unstructured mesh for the
nonlinear reconstruction to deal with discontinuous flow, even though it has difficulty to
get high-order reconstruction in the traditional WENO methods with the cell-averaged flow
variables alone [40, 41]. The nonlinear WENO reconstruction will be combined with a
linear reconstruction obtained through a constrained least square (CLS) method to get an
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initial piecewise discontinuous reconstruction. The nonlinear reconstruction will be for the
determination of non-equilibrium state around a cell interface. A smooth reconstruction for
the equilibrium state there is obtained from the nonlinear reconstructions through a kinetic
collision model. Then, the time accurate gas distribution function at a cell interface is
constructed from a relaxation process from the initial non-equilibrium state to an equilibrium
one, and it provides Navier-Stokes solution for the flow variable and flux evaluation. The
convergence study shows that the compact GKS can work well from fourth to sixth order of
accuracy. Based on the time-accurate flux solver, another advantage of the current method
is to implement the two-stage fourth-order (S2O4) time discretisation, which is developed
for the Lax-Wendroff type flow solvers [42, 43], to improve the temporal accuracy with
less middle stages. The S2O4 method has been validated in the previous non-compact and
compact GKS [14, 44, 35, 37]. Due to the use of only two reconstructions in the fourth-order
scheme, the GKS becomes efficient in comparison with the schemes based on the Runge-
Kutta time stepping method. Besides, the multi-stage multi-derivative time integrators
for hyperbolic conservation laws [45] can be adopted into GKS for higher-order temporal
accuracy [34].

This paper is organized as follows. The GKS will be introduced in Section 2. Section
3 is about the updates of cell averaged flow variables and cell-averaged derivatives through
S2O4 method. Section 4 and Section 5 will present the compact linear and nonlinear re-
constructions for the determination of a final piecewise discontinuous high-order polynomial
inside each control volume. In Section 6, the GKS will be validated in a wide range of test
cases from the strong shock interaction to acoustic wave propagation. The last section is
the conclusion.

2. Gas-kinetic schemes

The GKS provides a time-accurate gas evolution model from a piecewise discontinuous
initial polynomials [46, 47]. Starting from high-order spatial reconstruction, various temporal
discretizations have been used in GKS [48, 49, 34, 35, 36]. The successful applications include
compressible multi-component flow [44], DNS at high Mach number [50], and turbulence
simulation [51]. A brief introduction of GKS and the special features will be presented in
this section.

The gas-kinetic evolution model in GKS is based on the BGK equation [52],

ft + u · ∇f =
g − f

τ
, (1)

where u = (u, v) is the particle velocity, f is the gas distribution function, g is the correspond-
ing equilibrium state that f approaches, and τ is particle collision time. The equilibrium
state g is a Maxwellian distribution,

g = ρ(
λ

π
)
K+2

2 e−λ((u−U)2+(v−V )2+ξ2),

where λ = m/2kT , and m, k, T are the molecular mass, the Boltzmann constant, and
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temperature, respectively. K is the number of internal degrees of freedom, i.e. K = (4 −
2γ)/(γ−1) for two-dimensional flow, and γ is the specific heat ratio. ξ is the internal variable
with ξ2 = ξ21 + ξ22 + ...+ ξ2K. Due to the conservation of mass, momentum and energy during
particle collisions, f and g satisfy the compatibility condition,

∫
g − f

τ
ψψψdΞ = 0, (2)

at any point in space and time, where ψψψ = (ψ1, ψ2, ψ3, ψ4)
T = (1, u, v,

1

2
(u2 + v2 + ξ2))T ,

dΞ = dudvdξ1...dξK .
The macroscopic mass ρ, momentum (ρU, ρV ), and energy ρE can be evaluated from

the gas distribution function,

W =




ρ
ρU
ρV
ρE


 =

∫
fψψψdΞ. (3)

The corresponding fluxes for mass, momentum, and energy in i-th direction is given by

Fi =

∫
uifψψψdΞ, (4)

with u1 = u and u2 = v in the 2D case.
Based on the BGK equation, the GKS provides a time-accurate evolution solution f at a

cell interface [47]. On the mesh size scale, the conservations of mass, momentum and energy
in a control volume become

dWj

dt
= − 1∣∣Ωj

∣∣

∫

∂Ωj

F · ndl, (5)

where Wj is the cell-averaged conservative variables, F = (F1,F2) is the time dependent
fluxes at cell interfaces. The Wj is defined as

Wj ≡
1∣∣Ωj

∣∣

∫∫

Ωj

W(x, y)dxdy. (6)

The line integral on the right hand side (RHS) of Eq.(5) is discretized by a q-point Gaussian
integration formula,

∫

∂Ωj

F · ndl =
l0∑

l=1

(∣∣Γl

∣∣
q∑

k=1

ωkF(xk, yk) · nl

)
, (7)

where l0 is the side number of cell Ωj , and l0 = 3 for a triangular mesh. Due to the
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connection among the flow variables W, the fluxes F , and the gas distribution function f ,
the central point of GKS is to construct a time-dependent gas distribution function f at the
cell interface. The integral solution of BGK equation is [46],

f(x0, t,u, ξ) =
1

τ

∫ t

0

g(x
′

, t′,u, ξ)e−(t−t′)/τdt′

+ e−t/τf0(x0 − u(t− t0), u, v, ξ),

(8)

where x0 is the numerical quadrature point at the cell interface for flux evaluation, and x0 =
x

′

+u(t− t′) is the particle trajectory. Here f0 is the initial state of gas distribution function
f at t = 0. The integral solution basically presents a physical process from the particle free
transport in f0 in the kinetic scale to the hydrodynamic flow evolution in the integration of g.
The contributions from f0 and g in the determination of f at the cell interface depend on the
ratio of time step to the local particle collision time, i.e., e−t/τ . For the NS solution, based on
the Chapman-Enskog expansion f0 can be explicitly determined from initial reconstructions
of macroscopic flow variables. In the current high-order GKS, the high-order nonlinear
reconstruction with compact stencils will be used in the determination of f0. And based on
the nonlinear reconstruction on both sides of the cell interface, the smooth reconstruction is
obtained dynamically with the same high-order accuracy for the equilibrium g. Therefore,
the above integral solution not only incorporates a physical evolution process from initial
discontinuous non-equilibrium state to a continuous equilibrium one, but also unifies the
discontinuous and smooth reconstruction in the evolution process. This fact is crucially
important for the scheme to capture both nonlinear shock and linear acoustic wave accurately
in the computation with its dynamic adaptation factor of exp (−t/τ).

In order to obtain the solution f , both f0 and g in Eq.(8) need to be modeled [46, 48].
Based on the integral solution, the gas distribution function with a second-order accuracy
is [46]

f(x0, t,u, ξ) =(1− e−t/τ )g0 + ((t+ τ)e−t/τ − τ)(a1u+ a2v)g0

+(t− τ + τe−t/τ )Āg0

+e−t/τgr[1− (τ + t)(a1ru+ a2rv)− τAr)]H(u)

+e−t/τgl[1− (τ + t)(a1lu+ a2lv)− τAl)](1−H(u)), (9)

where the terms related to g0 are from the integral of the equilibrium state and the terms
related to gl and gr are from the initial term f0 in the Eq.(8). All the coefficients in Eq.(9)
can be determined from the initially reconstructed macroscopic flow variables.

3. Update of cell-averaged variables and derivatives

In this section, the updates of cell-averaged conservative variables and their derivatives
are presented. Based on the time-accurate gas distribution function in Eq.(9), both fluxes
and conservative flow variables at the cell interface can be evaluated. Besides the updates of
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conservative flow variables through fluxes, the cell-averaged derivatives can be calculated as
well through Gauss’s theorem with the integration of flow variables around a closed boundary
of the target cell. The original complicated time relaxation process in gas distribution func-
tion can be approximated as a linear function of time and is used in the MSMD framework
in time discretization.

3.1. Time-accurate gas distribution function and temporal discretisation

For the second-order evolution model, the time accurate f in Eq.(9) at cell interface can
be approximated as a linear function of time,

f̂(t) = fn + tfn
t , (10)

where the unknowns fn and fn
t can be determined by two conditions from Eq.(9). Define

the time integration of f(t) as

f(t) =

∫ t

0

f(t′)dt′.

By using f(t/2) and f(t), we can get the unknowns in Eq.(10)

fn =
1

t

(
4f(t/2)− f(t)

)
,

fn
t =

4

t2
(
− 2f(t/2) + f(t)

)
.

(11)

Taking moments uψψψ on f̂(t) and f̂t(t) at t = 0, the numerical flux and its time derivative
can be obtained,

Fn =

∫
ufnψψψdΞ,

Fn
t =

∫
ufn

t ψψψdΞ.

(12)

Both Fn and Fn
t will be used to update the cell averages of flow variables through MSMD

method.
The S2O4 method [42, 14, 35] is adopted in the compact GKS as temporal discretisation

to achieve a fourth-order accuracy. It can be extended to higher-order temporal accuracy
with the multi-stage multi-derivative time integrator [53, 45] under the Lax-Wendroff type
solver-based finite volume framework [42, 14]. The details can be found in [34]. In this paper
the fourth-order time discretization will be adopted. For conservation laws, the semi-discrete
finite volume scheme Eq.(5) is rewritten as

dWj

dt
≡ Lj(W),
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where Lj(W) is the total flux around the control volume Ωj . A solution W(t) at t = tn+∆t
with fourth-order time accuracy can be obtained by

W
n+1/2
j = Wn

j +
1

2
∆tLj(W

n) +
1

8
∆t2

∂

∂t
Lj(W

n),

Wn+1
j = Wn

j +∆tLj(W
n) +

1

6
∆t2
( ∂
∂t

Lj(W
n) + 2

∂

∂t
Lj(W

n+1/2)
)
,

(13)

where Lj and ∂Lj/∂t are related to the fluxes and the time derivatives of the fluxes which

are given in Eq.(12). The middle state W
n+1/2
j is obtained at time tn+1/2 = tn +∆t/2.

3.2. Update of the cell-averaged derivatives

Taking moments ψψψ on the same f̂(t) and f̂t(t) in Eq.(10) at t = 0, the flow variables and
their time derivatives at cell interface can be obtained,

Wn(x) =

∫
fnψψψdΞ,

Wn
t (x) =

∫
fn
t ψψψdΞ.

(14)

Similar to the updates of the cell averages, the update of flow variables at cell interface has
a middle state Wn+1/2(x) at tn+1/2 = tn +∆t/2 obtained by

Wn+1/2(x) = Wn(x) +
1

2
∆tWn

t (x), (15)

which gives a second-order approximation to W(x, tn+1/2) as

Wn+1/2(x)−W(x, tn+1/2) = −1

8
∆t2Wtt(x, t

n) +O(∆t3).

In order to get Wn+1(x) with a third order of accuracy, a two-stage third-order (S2O3) time
marching method can be adopted, and Wn+1(x) can be obtained as

Wn+1(x) = Wn(x) + ∆tW
n+1/2
t (x), (16)

where W
n+1/2
t (x) is given in the same way as Wn

t (x) in the stage from tn+1/2 to tn+1. Thus,
the conservative variables Wn+1(x) at cell interface are obtained with a third-order accuracy
from the same distribution function for fluxes in Eq.(10) through Eq.(15) and Eq.(16), and
it has third-order accuracy

Wn+1(x)−W(x, tn+1) = −1

6
∆t3Wttt(x, t

n) +O(∆t4). (17)
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The cell-averaged derivatives of flow variables are calculated directly from Wn+1(x) by
Gauss’s theorem.

Wj,x ≡ 1∣∣Ωj

∣∣

∫∫

Ωj

∂W(x, y)

∂x
dxdy =

1∣∣Ωj

∣∣

∫

∂Ωj

W(x, y)dy,

Wj,y ≡
1∣∣Ωj

∣∣

∫∫

Ωj

∂W(x, y)

∂y
dxdy = − 1∣∣Ωj

∣∣

∫

∂Ωj

W(x, y)dx.

(18)

The above integration can be discretized by Gaussian quadrature, where the same quadrature
points are used to calculate the numerical fluxes at the interface in Eq.(7). Thus the cell-
averaged derivatives at tn+1 can be updated as

Wn+1
j,x =

1∣∣Ωj

∣∣
l0∑

l=1

(
|Γl| · nl,x

q∑

k=1

ωkW
n+1(xk)

)
,

Wn+1
j,y =

1∣∣Ωj

∣∣
l0∑

l=1

(
|Γl| · nl,y

q∑

k=1

ωkW
n+1(xk)

)
.

(19)

Next, it will be demonstrated that the cell-averaged derivatives in Eq.(19) have a third
order of accuracy. Without loss of generality, the cell-averaged x derivative will be used to
give the proof. Substituting Eq.(17) into the first equation of Eq.(19), we have

Wn+1
j,x =

1∣∣Ωj

∣∣
l0∑

l=1

(
|Γl| · nl,x

q∑

k=1

ωk

(
W(xk, t

n+1)− ∆t3

6
Wttt(xk, t

n) +O(∆t4)
))

=
1∣∣Ωj

∣∣
l0∑

l=1

(
|Γl| · nl,x

q∑

k=1

ωkW(xk, t
n+1)

)

− 1∣∣Ωj

∣∣
l0∑

l=1

(∆t3
6

|Γl| · nl,x

q∑

k=1

ωkWttt(xk, t
n)
)
+O(∆t4/h),

(20)

where h is a characteristic quantity representing the mesh size, and the magnitude of h is

h ∼ O
(∣∣Ωj

∣∣1/2) ∼ O(|Γl|). Due to the closed cell interfaces of a control volume, the following
identity holds

l0∑

l=1

|Γl| · nl,x = 0. (21)
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Then the last two terms on RHS of Eq.(20) becomes

T.E.(Wj,x) ≡ − 1∣∣Ωj

∣∣
l0∑

l=1

∆t3

6
|Γl| · nl,x

( q∑

k=1

ωkWttt(xl,k, t
n)
)
+O(∆t4/h)

= − 1∣∣Ωj

∣∣
l0∑

l=2

∆t3

6
|Γl| · nl,x

( q∑

k=1

ωk

(
Wttt(xl,k, t

n)−Wttt(x1,k, t
n)
))

+O(∆t4/h).

(22)

Suppose Wttt(x, t
n+1) in Eq.(22) is locally bounded and Lipschitz continuous in the domain

{x|x ∈ Ωj + ∂Ωj}, i.e.,
∣∣Wttt(xl,q, t

n+1)−Wttt(x1,q, t
n+1)

∣∣ ≤ L · h, (23)

where L is a constant. Substituting Eq.(23) into Eq.(22), the truncation error becomes

T.E.(Wj,x) = − 1∣∣Ωj

∣∣
l0∑

l=2

∆t3

6
|Γl| · nl,x

( q∑

k=1

ωkL · h
)
+O(∆t4/h)

= O(∆t3 +∆t4/h).

(24)

Thus the cell-averaged derivative in Eq.(19) approximates the exact one with a third order
of accuracy. The cell-averaged derivative is used to get the compact reconstruction in the
next section.

4. Compact linear reconstruction

The GKS needs reconstruction of macroscopic variables for both initial non-equilibrium
state and evolved equilibrium one. The linear reconstruction is the foundation of the non-
linear one. In this section, the linear reconstruction will be firstly introduced.

In this paper only the triangular mesh is considered. The reconstruction will be con-
ducted in the conforming space. In GKS, besides the cell average Wj, the cell-averaged
derivatives Wj,x and Wj,y of conservative variables are available in each cell, as presented in
the Section 3. The components (i.e. components of conservative or characteristic variables)
of cell averages and their derivatives are denoted as Qj, Qj,x and Qj,y. To achieve a high-
order spatial discretisation, the high-order polynomial will be reconstructed from the given
cell averages and cell-averaged derivatives. With the consideration of possible large aspect
ratio of the edges of the triangle, a reference coordinate system ξ−η is introduced first to do
the reconstruction. For the cell Ω0, the transformation from the physical coordinate system
x− y into the reference coordinate system ξ − η is defined as

(
x
y

)
=

(
x1
y1

)
+ J

(
ξ
η

)
, (25)
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where J is the Jacobian matrix, and (xk, yk), k = 1, 2, 3 is the nodes’ coordinates of Ω0 in
the physical coordinate system x − y. With the transformation, the cell Ω0 is transformed
to Ω̃0. The Jacobian matrix takes

J =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
. (26)

The reconstruction polynomial for cell Ω̃0 can be expanded over polynomial basis func-
tions expressed as ϕk(ξ) in the reference coordinate system. The polynomial and basis
functions are given by

P r(ξ) =

N∑

k=0

ak · ϕk(ξ),

ϕk(ξ) =
1

k!
ξk1ηk2, k1 + k2 = k, k1, k2 = 0, · · · , k,

(27)

where ξ = (ξ, η) are the coordinates in the reference coordinate system. ak are the DOFs
in the summation of expansion. N is related to the order of the polynomial by N =
1
2
(r + 1)(r + 2) for the current two-dimensional case. To fully determine the reconstructed

polynomials, the given averages in all cells of a stencil S̃0 should be recovered, i.e.,

(
∣∣J
∣∣

∣∣Ωl

∣∣

∫

Ω̃l

ϕk(ξ)dξdη
)
ak = Ql,

(
∣∣J
∣∣

∣∣Ωl

∣∣

∫

Ω̃l

ϕk,ξ(ξ)dξdη
)
ak = Ql,ξ,

(
∣∣J
∣∣

∣∣Ωl

∣∣

∫

Ω̃l

ϕk,η(ξ)dξdη
)
ak = Ql,η, Ω̃l ∈ S̃0,

(28)

where J is the determinant of the Jacobian matrix J, and
∣∣Ωl

∣∣ is the area of cell Ωl. There

is
∣∣Ωl

∣∣/J =
∣∣Ω̃l

∣∣ for l = 0. The Ql,ξ and Ql,η are the cell-averaged derivatives in Ω̃l in the
reference coordinate system, and both derivatives are obtained from Ql,x and Ql,y,

(
Qξ

Qη

)
= JT

(
Qx

Qy

)
. (29)

Based on Eq.(28), the error in the reconstruction from the cell-averaged derivatives becomes
O(h) · T.E.(Q0,x) ∼ O(h∆t3 +∆t4). On the other hand, the point-wise value given by the
reconstruction polynomial will be a linear combination of Ql and hQl,s, s = x, y. Thus,
the fourth-order spatial accuracy can be maintained in the current reconstruction for the
fourth-order compact GKS. In order to improve the order of accuracy of the scheme which
is related to the temporal discretisation, a third-order gas distribution function and higher-
order MSMD methods can be applied [34]. In fact, the total order of accuracy of the scheme

11



is limited by both the order of spatial and temporal discretisation. Here the fourth-order
compact GKS will be our main target, and the second-order gas evolution model and S2O4
method presented in section 3 are sufficient for such a purpose.

In order to determine the polynomial in Eq.(28) for arbitrary geometrical triangular
mesh, the number of equations M in Eq.(28) should be greater than N to avoid an ill-
conditioned system. In the compact GKS, the reconstruction stencil in Fig. 1 is used. The
high-order reconstruction will be obtained for the central cell Ω0. Compared with the sten-
cils of second-order scheme, the neighbors’ neighbors (Ωi1 ,Ωi2 ,Ωj1 ,...,Ωk2) are needed for the
compact fourth- to sixth-order GKS. The dotted circle represents the physical domain of
dependence, which indicates the physically compactness of the scheme. Even for the regular
isotropic mesh shown in Fig. 1, the physical domain of dependence of Ω0 contains neighbor-
ing cells of Ω0’s neighbors, i.e., Ωi1 ,Ωi2 , · · · ,Ωk2 . Thus, the current compactness considers
the compatibility from the physical domain of dependence in a numerical algorithm.

0

ij

k

j1

j2

k1 k2

i1

i2

Figure 1: A typical stencil of compact high-order GKS from fourth order to sixth order on triangular meshes.
Notice that some of the neighbor’s neighbors (Ωi1 ,Ωi2 ,Ωj1 ,...) may coincide for arbitrary triangular meshes.
The green dotted circle represents the physical domain of dependence.

Since the cell averages and cell-averaged derivatives in each cell are provided, at most
30 datum can be used in the reconstruction. For a series of compact schemes from fourth-
up to sixth-order reconstruction, the following data sets are used to get the reconstructed
polynomials,

Sp3 = {Ql1 , Ql2,x, Ql2,y}; l1 = 0, i, j, k, i1, i2, · · · , k1, k2; l2 = 0, i, j, k;

Sp4 = {Ql1 , Ql1,x, Ql1,y}; l1 = 0, i, j, k, i1, i2, · · · , k1, k2;
Sp5 = {Ql1 , Ql1,x, Ql1,y}; l1 = 0, i, j, k, i1, i2, · · · , k1, k2.

Generally the least-square method can be adopted to solve the system (28) for ak. In the
solution process, the conservation condition is strictly satisfied, i.e., the first equation in
Eq.(28) for l = 0, and the others hold in the least squares sense. In this paper, a new
constrained least square (CLS) method is adopted to solve the system (28), where the cell
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averages of Ω̃0, Ω̃i, Ω̃j and Ω̃k are strictly satisfied by the polynomial P r(ξ, η). As a result,
more accurate and smooth reconstructions are obtained at cell interfaces of Ω0. The CLS
solution for system (28) is obtained by taking the extreme value of the function

E =(Ãl1(k),mam − Q̃l1(k))(Ãl1(k),nan − Q̃l1(k))+

λk(Al2(k),mam −Ql2(k)),
(30)

where λk is a Lagrangian factor. For the linear reconstruction on the large stencil l2 = 0, i, j, k
and l1 = i1, i2, · · · , k2, Al2,m is the modified cell average of the basis ϕm in Ω̃l2 , i.e.,

Al2,m =
Ml2∣∣Ω̃l2

∣∣

∫

Ω̃l2

ϕm(ξ)dξdη. (31)

where the geometrically dependent coefficient Ml2 =
∣∣J
∣∣∣∣Ω̃l2

∣∣/
∣∣Ωl2

∣∣. And Ãl1(k),m is the

generalized modified cell average of the basis. Ãl1(k),m can be the modified cell average of

ϕm and the modified cell average of ∂ϕm/∂s in Ω̃l1 , such that the modified cell average of

∂ϕm/∂s in Ω̃l1 is

A
′

l1,m =
Ml1∣∣Ω̃l1

∣∣

∫

Ω̃l1

∂ϕm(ξ)

∂s
dξdη, (32)

where s = x, y. Q̃l1 is the cell average or cell-averaged derivative in Ω̃l1 . Then the extreme
value of E is taken with the conditions

∂E

∂am
= 0,

∂E

∂λk
= 0,

and the final linear system of ak and λ becomes

(
2Ãl1(k),mÃl1(k),l Ãl2(k),m

Ãl2(k),l 0

)(
al
λk

)
=

(
2Ãl1(k),mQ̃l1(k)

Ql2(k)

)
. (33)

For the cell located at the boundary of the computational domain, the simplified stencil
is used to get the high-order reconstruction. A graphical illustration is shown in Fig. 2.
One side or two sides of the cell Ω0 in Fig. 2 may coincide with the boundary of compu-
tational domain. Along the normal direction of each boundary, only one ghost cell of Ω0 is
constructed, just as in the second-order scheme. A fourth order accuracy consistent with
the inner mesh cells can be maintained for the reconstruction in Ω0. The only difference is
that the orders of the candidate polynomials on some sub-stencils are reduced to one, while
the orders of candidate polynomials don’t affect the accuracy order of final reconstruction,
which will be illustrated in the next section. Numerical test cases demonstrate the same
robustness by selecting the simplified stencils for cells adjacent to the boundary.
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0
Boundary

0

Boundary

Figure 2: Simplified stencil of compact high-order GKS for a cell adjacent to boundaries of computational
domain.

5. Compact nonlinear reconstruction

Nonlinear reconstruction is necessary for shock capturing scheme. The WENO idea is
one of the best choices for the nonlinear reconstruction [7]. On structured mesh [7, 8],
the reconstruction is based on the nonlinear convex combination of lower-order candidate
polynomials. For the current nonlinear reconstruction on unstructured mesh, a simplified
non-oscillatory reconstruction without optimal linear weights is obtained by the combination
of the lower-order and high-order polynomials. This simplified reconstruction works well on
structured mesh as well, which will not be presented here.

The candidate polynomials in nonlinear reconstruction are qrk(ξ), where r is the order
of qrk(ξ), and k = 1, 2, · · · , n. In the original WENO method, the value of a high-order
polynomial P r(ξ) at a given point is a combination of several lower-order polynomials at
that point,

P (ξ) =
n∑

k=1

dkq
r
k(ξ), (34)

where dk are optimal linear weights and have positive values with the order O(1). Then,
the nonlinear reconstruction is obtained by defining nonlinear weights [8]. In the cases with
negative or very large linear weights in Eq.(34), the scheme becomes unstable. The modified
WENO reconstruction on unstructured mesh is proposed in [41]. In the current scheme, a
simple non-oscillatory reconstruction is proposed. The linear combination of lower-order
polynomials in Eq.(34) can be rewritten as

P (ξ) =

n∑

k=1

Ck

1 + C
qk(ξ) +

n∑

k=1

CCk

1 + C

(1 + C

CCk
dk −

1

C

)
qk(ξ), (35)

where C is a free parameter,
∑n

k=1Ck = 1, C > 0, and 0 < Ck < 1. Here (1+C)/(CCk)dk−
1/C = 1 when Ck = dk. Let’s define normalized linear weights as

dk =
Ck

1 + C
, d

′

k =
CCk

1 + C
, k = 1, ..., n.
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Based on the linear convex combination of Eq.(35), the nonlinear combination can be de-
signed as

R(ξ) =

n∑

k=1

wkqk(ξ) +

n∑

k=1

w
′

k

[(1 + C

CCk
dk −

1

C

)
qk(ξ)

]
, (36)

where wk and w
′

k are the WENO weights. In this paper, the WENO-Z weight is used,

wk =
w̃k∑n

j=1

(
w̃j + w̃

′

j

) , w
′

k =
w̃

′

k∑n
j=1

(
w̃j + w̃

′

j

) ,

w̃k = dk
(
1 +

( τZ
ISk + ǫ

)l)
, w̃

′

k = d
′

k

(
1 +

( τZ
ISk + ǫ

)l)
, k = 0, ..., n,

where τZ is a local high-order reference value, and l is a parameter with a value 3 in WNEO-Z
weight. The smooth indicator ISk is [40]

ISk =

rk∑

|α|=1

|Ω||α|−1

∫∫

Ω

(
Dαq(ξ)

)2
dξdη,

where rk is the order of qk(ξ), and α is a multi-index, and D is the derivative operator. For
example, when α = (1, 2), then |α| = 3 and Dαq(ξ) = ∂3q(ξ)/∂ξ1∂η2. For smooth solution,
Eq.(36) can give the reconstruction with the same order of accuracy as linear reconstruction.
For discontinuous solution, the “ENO” property will be maintained. The nonlinear weight
wk of qk(ξ) when crossing discontinuity becomes wk ∼ O(h2l). In smooth case the nonlinear
weight wk for a smooth candidate polynomial qk(ξ) is wk ∼ O(1).

A robust reconstruction can be obtained by taking IS0 = max{ISk}, k = 1, 2, ..., n, and
IS0 is used to determine all w

′

k, k = 1, 2, ..., n. As a result, only the first part of the RHS of
Eq.(36) remains in discontinuous case, while the second part vanishes with O(h2l). Then,
Eq.(36) can be simplified as

R(ξ) =
n∑

k=1

wkqk(ξ) + w0

n∑

k=1

[(1 + C

C
dk −

Ck

C

)
qk(ξ)

]

=
n∑

k=1

wkqk(ξ) + w0

(1 + C

C
P (ξ)−

n∑

k=1

Ck

C
qk(ξ)

)
,

(37)

where P (ξ) is the high-order polynomial obtained by the linear reconstruction in Section 4.
Thus, the final formula of the nonlinear reconstruction is a combination of the high-order and
lower-order polynomials, i.e., the so-called a combination of ENO and WENO methodology.
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The nonlinear weights wk can be simplified as well

wk =
w̃k∑n
j=0 w̃j

,

w̃k = dk
(
1 +

( τZ
ISk + ǫ

)l)
,

(38)

and dk is

d0 =
C

1 + C
, dk =

Ck

1 + C
, k = 1, ..., n. (39)

The compact scheme is insensitive to the values of C and Ck. In this paper, we take
C = 5 and Ck = 1/n. Generally, IS0 is bounded by the smooth indicator of the high-order
polynomial from a large stencil, and IS0 is taken as the smooth indicator of P (ξ) in this
paper.

The sub-stencils for the nonlinear reconstruction are given by the seven choices,

S1 = {0, i, i1, i2, j}, S2 = {0, i, i1, i2, k},
S3 = {0, j, j1, j2, i}, S4 = {0, j, j1, j2, k},
S5 = {0, k, k1, k2, j}, S6 = {0, k, k1, k2, i},
S7 = {0, i, j, k}.

The first two sub-stencils are presented in Fig. 3. The last four sub-stencils are similar to the
presented ones, but in different directions. And the seventh stencil is a central sub-stencil.
For the sub-stencils S1, S2, · · · , S6, the cell averages of the cells in each sub-stencil and the
cell-averaged derivatives of the second cell (highlighted in green in Fig. 3) are used to obtain
a quadratic polynomial. For the sub-stencil S7, only the four cell averages are used to get a
linear polynomial.
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Figure 3: Two sub-stencils in the sub-stencils of compact GKS.

Based on the sub-stencils, the same CLS method given in Eq.(33) is adopted to determine
the candidate polynomials. In CLS, in the determination of the candidate polynomials, only
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the cell average Q0 is strictly satisfied, while the other cell averages are satisfied in the sense
of least squares. When the reconstruction cell is on the boundary of the computational
domain as presented in Fig.2, at least two sub-stencils will contain three cells only. Since a
quadratic polynomial cannot be fully determined from three cells, a first-order polynomial
is reconstructed. This treatment has no effect on the order of accuracy of the scheme in
smooth region.

After the candidate polynomials are determined, the local higher-order reference value
τZ in nonlinear weight can be constructed as

τZ =

3∑

l=1

|2IS0 − IS2l−1 − IS2l|.

Such a definition of τZ can make the nonlinear weight approximate the linear one with
wk = dk+O(h

4), k = 0, 1, 2, · · · , 7. And the nonlinear reconstruction can achieve the formal
fourth order up to sixth order of accuracy in the reconstruction.

In conclusion, the high-order reconstruction polynomials in each cell have been obtained
based on the compact stencils. The CLS method is adopted to solve linear systems to
give the high-order polynomial from a large stencil and lower-order candidate polynomials
from the sub-stencils. The simple WENO is proposed to give the nonlinear reconstruction
based on the high-order polynomial and lower-order ones. At the quadrature point on a cell
interface, the conservative variables and their derivatives on both sides of the interface can
be obtained by the nonlinear reconstruction. Then, the initial non-equilibrium state of the
gas distribution function and the equilibrium one in GKS are fully determined [46].

6. Numerical examples

In this section, we are going to test the compact high-order GKS on unstructured mesh.
The time step is determined by the CFL condition with CFL = 0.4 in all test cases if
not specified. For viscous tests case, the time step is also limited by the viscous term as
∆t = 0.7h2/(2ν), where h is the cell size and ν is the kinematic viscosity coefficient. In all
test cases, the same nonlinear reconstruction is used. There is no any additional “trouble
cell” detection or any additional limiter designed for specific test. The collision time τ for
inviscid flow at a cell interface is defined by

τ = ε∆t + Cnum|
pl − pr
pl + pr

|∆t,

where ε = 0.05, Cnum = 5, and pl and pr are the pressures at the left and right sides of a
cell interface. For the viscous flow, the collision time is related to the viscosity coefficient,

τ =
µ

p
+ Cnum|

pl − pr
pl + pr

|∆t,
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where µ is the dynamic viscosity coefficient and p is the pressure at the cell interface. In
smooth flow regions, it will reduce to τ = µ/p. The reason for including pressure jump
term in the particle collision time is to increase its value in the discontinuous region in
order to keep the physically consistent non-equilibrium mechanism in the construction of a
dissipative layer with mesh size thickness.

6.1. Accuracy test

The two-dimensional advection of density perturbation is used to verify the order of
accuracy of compact high-order GKS. The initial condition is given as follows

ρ(x, y) = 1 + 0.2 sin(π(x+ y)), U(x, y) = 1, V (x, y) = 1, p(x, y) = 1.

The computational domain is [0, 2] × [0, 2], and the periodic boundary conditions are ap-
plied in both directions. Two types of triangular meshes are used, i.e., the regular mesh and
irregular mesh shown in Fig.4. Except for some small regions, such as those near the bound-
ary of the computational domain, the cells of the regular mesh are very close to equilateral
triangles. And the size and shape of triangular cells in irregular mesh are arbitrary.

With the rth-order spatial reconstruction and S2O4 temporal discretisation, the leading
term of the truncation error is O(hr,∆t4, h∆t3), where the third term is from the evolution
of conservative variables at cell interface. To verify the accuracy order of reconstruction,
∆t ∼ min

{
hr/4, h(r−1)/3

}
is used for the rth-order scheme. The L1 and L∞ errors and

convergence orders at t = 2 are presented in Table 1 to Table 3, respectively. Due to the
non-uniform meshes, the accuracy order of L∞ cannot reflect the true convergence order of
the scheme. From the numerical results listed in Table 1 to Table 3, it can be seen that
whether for regular or irregular meshes, the accuracy orders of L1 are almost the same as
the theoretical ones. If the time step takes dt = hr/4, as that used the Runge-Kutta-based
schemes, the same accuracy orders can be achieved, which will not be presented here.

hre ErrorL1 OL1 ErrorL∞ OL∞ hirre ErrorL1 OL1 ErrorL∞ OL∞

1/5 4.0326e-04 1.0977e-03 1/5 7.4212e-04 2.2584e-03
1/10 2.9859e-05 3.76 7.7770e-05 3.82 1/10 4.7778e-05 3.96 1.4986e-04 3.91
1/20 1.5647e-06 4.25 5.7130e-06 3.77 1/20 3.2422e-06 3.88 1.0439e-05 3.84
1/40 9.5781e-08 4.03 3.1262e-07 4.19 1/40 2.2276e-07 3.86 1.0642e-06 3.29

Table 1: Accuracy test for compact fourth-order GKS: errors and convergence orders of linear compact
fourth-order scheme with P 3(x, y) reconstruction on regular and irregular meshes. The time step ∆t is
given by CFL = 1.0.

6.2. One dimensional Riemann problem

Three one-dimensional Riemann problems in two-dimensional unstructured mesh are
tested here. The shock tube problem is tested firstly to show the essentially non-oscillatory
property for shock waves. The initial condition of Sod problem is

(ρ, U, p) =

{
(1, 0, 1), 0 ≤ x < 0.5,

(0.125, 0, 0.1), 0.5 ≤ x ≤ 1.
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Figure 4: The triangular meshes with cell size h = 1/5: regular mesh (left) and irregular mesh (right).

hre ErrorL1 OL1 ErrorL∞ OL∞ hirre ErrorL1 OL1 ErrorL∞ OL∞

1/5 3.2702e-04 6.1466e-04 1/5 3.3221e-04 6.8051e-04
1/10 1.1291e-05 4.86 2.1244e-05 4.85 1/10 9.2734e-06 5.16 2.7177e-05 4.65
1/20 3.6287e-07 4.96 6.9429e-07 4.94 1/20 2.7593e-07 5.07 7.2777e-07 5.22
1/40 8.1121e-09 5.48 1.8885e-08 5.20 1/40 6.5075e-09 5.41 3.1871e-08 4.51

Table 2: Accuracy test for compact fifth-order GKS: errors and convergence orders of linear compact fifth-
order scheme with P 4(x, y) reconstruction on regular and irregular meshes. The time step is determined by
∆t = h4/3.

hre ErrorL1 OL1 ErrorL∞ OL∞ hirre ErrorL1 OL1 ErrorL∞ OL∞

2/5 1.5914e-03 4.6599e-03 2/5 1.1590e-03 3.4237e-03
1/5 2.5709e-05 5.95 5.7810e-05 6.33 1/5 2.9413e-05 5.30 8.2085e-05 5.38
1/10 4.5954e-07 5.81 1.1861e-06 5.61 1/10 4.8447e-07 5.92 1.6950e-06 5.60
1/20 5.2435e-09 6.45 2.0941e-08 5.82 1/20 6.9893e-09 6.12 3.5966e-08 5.56

Table 3: Accuracy test for compact sixth-order GKS: errors and convergence orders of linear compact sixth-
order scheme with P 5(x, y) reconstruction on regular and irregular meshes. The time step is determined by
∆t = h5/3.

And the initial condition of Lax problem is

(ρ, U, p) =

{
(0.445, 0.698, 3.528), 0 ≤ x < 0.5,

(0.5, 0, 0.571), 0.5 ≤ x ≤ 1.

The computational domain is [0, 1]× [0, 0.5]. The reflecting boundary condition is applied in
the y direction. The regular and irregular triangular meshes are used with cell size h = 1/100.
The density and velocity distributions at t = 0.2 and t = 0.16 along the horizontal center
line are shown in Fig.5 and Fig.6, respectively. The compact fourth-order GKS gives the
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essentially non-oscillatory solutions with high resolution.
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Figure 5: One dimensional Riemann problem: density and velocity distributions t = 0.2 along the horizontal
center line of Sod problem from compact fourth-order GKS. The mesh cell size is h = 1/100.
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Figure 6: One dimensional Riemann problem: density and velocity distributions t = 0.16 along the horizontal
center line of Lax problem from compact fourth-order GKS. The mesh cell size is h = 1/100.

To test the performance of capturing high frequency waves, the Shu-Osher problem [54]
is tested, which is a case of a shock wave interacting with the density wave. The initial
condition is given as follows

(ρ, U, p) =

{
(3.857134, 2.629369, 10.33333), x ≤ 1,
(1 + 0.2 sin(5x), 0, 1), 1 < x.

20



The computational domain is [0, 10] × [0, 0.25] and h = 1/40 irregular mesh is used. The
reflected boundary condition is applied in the y direction. The density distributions and
local enlargement at the center line at t = 1.8 are presented in Fig.7. The current compact
GKS demonstrates a high resolution for the high frequency wave.
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Figure 7: One dimensional Riemann problem: the density distribution, local enlargement for Shu-Osher
problem at t = 1.8 on irregular triangular mesh with h = 1/40.

The third case is the Woodward-Colella blast wave problem [5]. The test case verifies
the robustness of compact GKS for capturing strong shock wave on unstructured mesh. The
initial condition is given as follows

(ρ, U, p) =






(1, 0, 1000), 0 ≤ x < 0.1,

(1, 0, 0.01), 0.1 ≤ x < 0.9,

(1, 0, 100), 0.9 ≤ x ≤ 1.

The computational domain is [0, 1] × [0, 0.25], and the reflecting boundary conditions are
imposed on both directions. The regular mesh with h = 1/400 is used. In this test case, the
CFL number takes 0.2. The computed density and velocity profiles at t = 0.038 are shown
in Fig. 8. The numerical results agree well with the reference solutions. The scheme can
resolve the wave profiles well, particularly for the local extreme values. And there are not
numerical oscillations near the shock waves.

6.3. Double Mach reflection

This problem was extensively studied by Woodward and Colella [5] for the inviscid flow.
The computational domain is [0, 3.2] × [0, 1], and a solid wall lies at the bottom of the
computational domain starting from x = 1/6. Initially a right-moving Mach 10 shock is
positioned at (x, y) = (1/6, 0), and makes a 60◦ angle with the x-axis. The initial pre-shock
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Figure 8: One dimensional Riemann problem: the density distribution, local enlargement for blast wave
problem at t = 0.038 on regular triangular mesh with 1/400.

and post-shock conditions are

(ρ, U, V, p) = (8, 4.125
√
3,−4.125, 116.5),

(ρ, U, V, p) = (1.4, 0, 0, 1).

The reflecting boundary condition is used at the wall, while for the rest of bottom boundary,
the exact post-shock condition is imposed. At the top boundary, the flow variables are set
to follow the motion of the Mach 10 shock. The density distributions with h = 1/120 and
1/240 regular triangular meshes at t = 0.2 are shown in Fig. 9, and the corresponding
local density enlargements are shown in Fig. 10. The current compact fourth-order scheme
resolves the flow structure under the triple Mach stem very well.

6.4. Mach 3 wind tunnel with a step

The step problem was extensively studied in [5] for inviscid flow. The computational
domain is [0, 3]× [0, 1] \ [0.6, 3]× [0, 0.2]. The height of the wind tunnel is 1, and the length
is 3. The step is located at x = 0.6 with height 0.2 in the tunnel. Initially the tunnel is filled
with the gas which elsewhere has ρ = 1, U = 3, V = 0, p = 1/1.4. The same state is used
as the left boundary condition. The upper and lower boundaries are wall with slip Euler
boundary condition. The corner of the step is the center of a rarefaction fan. The method
of modifying the density and velocity magnitude on the several cells around the corner has
not been used in the current computation [5]. The local solution at the corner is properly
resolved by the compact GKS on the regular mesh with h = 1/60 and 1/120. The density
distribution at time t = 4.0 is plotted in Fig. 11. One can clearly observe that the current
scheme provides a high resolution solution of the physical instability and rolling up of the
slip line. This indicates that even with excellent shock capturing capability the scheme has
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Figure 9: Density distribution on the triangular mesh with h = 1/120 and 1/240 at t = 0.2.

Figure 10: Density enlargement distribution on the triangular mesh with h = 1/120 and 1/240 at t = 0.2.

less dissipation in resolving the small scale structure.

6.5. Hypersonic flow around scramjet configuration

In order to show the robustness of the scheme in capturing discontinuous solution, the
scramjet configuration was computed atMa = 5 [55]. A regular triangular mesh with 52204
cells was generated in the current computation. Fig. 12 shows the solutions of Mach number,
density, and pressure from the compact fourth-order GKS. Much of the details of flow field
are resolved, such as the rarefaction wave near the throat and the contact slip layer near the
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Figure 11: Mach 3 step problem: Density contours at t = 4 with h = 1/60 and h = 1/120 triangular mesh.

outlet.

6.6. Hypersonic flow around an inviscid cylinder

The incoming flow has Mach numbers up to 20. The adiabatic reflective boundary
condition is imposed on the wall of the cylinder while the right boundary is set as outflow
boundary condition. The mesh and pressure distributions are presented in Fig. 13. The
regular triangular mesh is used, and the mesh is refined near the cylinder. The results agree
well with those calculated on structured mesh by the non-compact high-order GKS. For the
case of Ma = 20, the CFL takes 0.2.

6.7. Viscous shock tube

Viscous shock tube problem is tested to validate the compact fourth-order GKS for the
complicated shock wave and boundary layer interaction. This problem requires not only
the robustness of the scheme, but also the accuracy of the numerical method. The flow
is bounded in a unit square cavity. The computational domain is set as [0, 1] × [0, 0.5]
and symmetrical condition is used on the top boundary. The non-slip and adiabatic wall
conditions are imposed on other boundaries. The initial condition is

(ρ, U, V, p) =

{
(120, 0, 0, 120/γ), 0 ≤ x < 0.5,

(1.2, 0, 0, 1.2/γ), 0.5 ≤ x ≤ 1.

The viscosity coefficient is µ = 0.005 with a corresponding Reynolds number Re = 200.
The Prandtl number in the current computation is set to be Pr = 1. Initially, the shock
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Figure 12: Hypersonic scramjet flow: Mach number, density and pressure contours with h = 1/100 triangular
mesh.
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Figure 13: Hypersonic inviscid flow passing through a circular cylinder: pressure distributions with Mach
number Ma = 5, 8 and 20 on triangular mesh.

wave, followed by a contact discontinuity, moves towards to the right wall. A thin boundary
layer is created above the lower wall. The complex shock and boundary layer interaction
occurs and results in a lambda-shape shock pattern after the reflecting shock wave from the
right wall. The density field at t = 1 is presented in Fig 15. The complex flow structure,
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including the lambda shock and the vortex configurations, are well resolved by the current
compact GKS with a mesh size h = 1/400. A quantitative verification for the result is
also given. The density distribution along the lower wall is presented. The result from
non-compact high-order GKS [48] with h = 1/720 structured mesh is used as the reference
solution. The result of third-order CPR-GKS scheme [56] with h = 1/500 triangular mesh
is plotted as well. The compact GKS has a better resolution on the coarse mesh. Compared
with the third-order CPR-GKS, there are no additional DOFs inside each cell and trouble
cell detection in the current compact GKS. This test case demonstrates that the current
compact GKS can resolve the flow with shock and boundary layer interaction robustly and
accurately.

x

y

0 0.25 0.5 0.75 1
0

0.25

0.5

Figure 14: Viscous shock tube: mesh distribution with h = 1/40.

6.8. Laminar boundary layer flow

The laminar boundary layer flow problem is tested to validate the compact GKS for
viscous flow, especially when the computational mesh is strongly stretched in one direction
with a large aspect ratio. The Mach number of the free stream is Ma∞ = 0.15, and the
Reynolds number is Re∞ = 1.0 × 105. The Reynolds number is defined as Re∞ = U∞L/ν,
where L = 100 is the length of plate and U∞ is the velocity of free stream. The density of
the free stream is ρ∞ = 1.0, and the pressure is p∞ = 1.0/1.4. The computational domain
and mesh are shown in Fig. 16. The plate is placed at y = 0 and x > 0. A total 75× 47× 2
cells are used in the domain. The minimum size of cells along streamwise and transverse
directions is h = 0.05. The mesh is generated from (0, 0) with a stretching rate of 1.1
along the positive x-direction, 1.3 along the negative x-direction, and 1.1 along the positive
y-direction. At the trailing edge, the maximum aspect ratio of the triangle in the current
mesh is about 190. The streamwise and transverse velocity profiles at different locations in
the flat plate boundary layer are shown in Fig. 17. The numerical results agree well with
the Blasius solution at the locations near and far from the leading edge. The wall friction
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Figure 15: Viscous shock tube: density field (left) and the density distribution along the lower wall (right)
with the mesh h = 1/400 at t = 1.0. 24 uniform contours are presented ranging from 20 to 120 for the
density field.

coefficient distribution along the flat plate is given in Fig. 18. The accurate wall friction
coefficient distribution is obtained along the flat plate except for a few mesh points close to
the leading edge.
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Figure 16: Laminar boundary layer flow: the computational domain and mesh. The minimum size of cells
along streamwise and transverse directions is h = 0.05, and the maximum aspect ratio of the triangle in the
mesh is about 190.

6.9. Lid-driven cavity flow

The lid-driven cavity problem is a test case for incompressible viscous flow. The fluid is
bounded in a unit square where the top boundary is moving with a uniform speed U0 = 1
and temperature T0 = 1. The corresponding Mach number isMa = U0/

√
γRT0 = 0.15. The

non-slip and isothermal boundary conditions are imposed on all boundaries with the wall
temperature Tw = T0. The initial flow is stationary with density ρ1 = ρ0 and temperature
T1 = T0. The computational domain is [0, 1]× [0, 1]. The case of Re = 1000 is tested. The
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Figure 17: Laminar boundary layer flow: streamwise and transverse velocity profiles at different locations
in flat plate boundary layer.
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Figure 18: Laminar boundary layer flow: wall friction coefficient distribution along the flat plate.

computational mesh and the streamlines are shown in Fig. 19. Total 33 × 33 × 2 mesh
cells are used, and the stretching rate in two directions is 1.2. The mesh is refined close
the wall and the minimum mesh size is about h = 0.0052. The velocities distribution along
horizontal and vertical center lines are shown in Fig. 20. The numerical results agree well
with the reference solutions.
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Figure 19: Lid-driven cavity flow: the computational mesh (left) with total 33 × 33 × 2 mesh cells and
streamlines for Re = 1000 flow (right).
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Figure 20: Lid-driven cavity flow: V-velocities along the horizontal centerline and U-velocities along the
vertical centerline with Re =1000.

6.10. Subsonic laminar flow over a circular cylinder

The laminar flow over a circular cylinder is studied in this section to validates the compact
GKS on triangular mesh for unsteady viscous flow. The incoming free streaming flow is
uniform with a Mach number of Ma = 0.2 and a Reynolds number Re = 150 based on
diameter of the circular cylinder D = 1. At this Reynolds number, the flow is essentially two
dimensional with periodic shedding vortex pairs from the downstream side of the cylinder.
The drag coefficient CD and Strouhal number St are quantitatively compared. A triangular
mesh in Fig. 21 is used. The outer boundary of the computational domain is a circle with
diameter of about 346. The radial size of the first layer mesh on the wall is 2.0 × 10−2,
and the stretching rate of the cell size in the radial direction is 1.1 in the region near the
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cylinder. The number of circumferential mesh points is 120. The total number of mesh
points is 44640.

The computed time history of the drag and lift coefficients are presented in Fig. 22,
in which it can be observed that the flow is almost fully developed after t = 400. The
single-frequency variation of the lift and drag coefficients is obtained. The frequency of lift
coefficient can be obtained by taking a Fourier transform of the lift coefficient in the range
of t = [500, 1200]. The frequency of the lift coefficient is f = 0.0362549. And from the lift
coefficient, we can get the dimensionless frequency, i.e. the Strouhal number

St = f ·D/U = 0.0362549× 1.0

0.2
= 0.181.

The experimental value of the Strouhal number St ranges from 0.179 − 0.182 [57]. The
average of the drag coefficient can be obtained with the drag coefficient in the range of
t = [500, 1200]. The reference CD from experiment is CD = 1.34 [57]. The results from other
computations are given in Table 4. The contours of Mach number of the fully developed
flow are shown in Fig. 23. The vortex street is captured clearly. The pressure perturbation
is shown in Fig. 24, where the pressure perturbation is defined as ∆p = (p− p∞)/p∞. The
dashed line represents negative value, and the solid line represents positive value.
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Figure 21: The computational mesh for the laminar Flow over a circular cylinder. The right figure is the
local enlargement of the mesh. The radial mesh size of the first layer above the wall is 2.0× 10−2, and the
number of circumferential mesh is 120. Starting at a distance of 50 from the center of the cylinder, the mesh
size along the radial direction is about 2.5.

6.11. Propagation of sound, entropy and vorticity waves

The case was studied by Tam and Webb [61] to demonstrate the high resolution of
finite difference schemes. Initially, an acoustic, entropy, and vorticity pulses are set on a
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Figure 22: Total lift coefficient.

Scheme St CD

Compact 4th-order GKS 0.181 1.337
P3P5 scheme[58] 0.182 1.33

FD-6th[59] 0.183 1.34
DG-4th[60] 0.183 1.349

Table 4: Strouhal number and average drag coefficient obtained by different schemes.

uniform mean flow. The wavefront of acoustic pulse expands radially, and the wave pattern
is convected downstream with the mean flow. The entropy and vorticity pulses are convected
downstream with the mean flow without any distortion. The initial condition of the uniform
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Figure 23: The contours of Mach number.
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Figure 24: The contours of pressure perturbation ∆p in the range of [−0.0285, 0.0290]. The ∆p is defined
as ∆p = (p− p∞)/p∞. The dash line represents negative value, and the solid line represents positive value

mean flow with three pulses is the following,

ρ = ρ∞ + ǫ1e
−α1·r21 + ǫ2e

−α2·r22 ,

p = p∞ + ǫ1e
−α1·r21 ,

U = U∞ + ǫ3e
−α3·r23(y − y3),

V = V∞ − ǫ3e
−α3·r23(x− x3),
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where ρ∞ = 1.0, U∞ = 0.5 and V∞ = 0. The Mach number is Ma = 0.5. αl (l = 1, 2, 3)
is αl = ln 2/b2l and bl is the half-width of the Gaussian perturbation. The parameters
of these initial pulses are ǫ1 = 1 × 10−2, ǫ2 = 1 × 10−3, ǫ3 = 4 × 10−4, b1 = 3, b2 =
b3 = 5. rl (l = 1, 2, 3) is rl =

√
(x− xl)2 + (y − yl)2, where (x1, y1) = (−100/3, 0) and

(x2, y2) = (x3, y3) = (100/3, 0). The computational domain is [−125, 125] × [−125, 125],
where the region [−125, 125] × [−125, 125]/[−100, 100] × [−100, 100] is the buffer region.
The irregular triangular mesh is used in the current computation. The cell size is h = 1 in
[−100, 100] × [−100, 100], and the cell size of the outer boundary of the buffer zone is 10.
The contours of density and pressure perturbations are plotted in Fig. 25. In order to check
the result quantitatively, the density and pressure perturbations along y = 0 are compared
with the reference solution from the compact eighth-order GKS on a finer uniform mesh
[16]. The current 4th-order compact GKS gets exact result. This test case demonstrates
that current GKS on triangular mesh can capture smooth acoustic waves accurately.
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Figure 25: Sound, entropy and vorticity wave test: density perturbation contours (upper) and pressure
perturbation contours (lower) in the range [0.0006, 0.001] with 0.00016 increment obtained by compact
fourth-order GKS at t = 0, t = 56.9 and t = 136. The irregular triangular mesh with h = 1 is used.

6.12. Sound generation by viscous shock-vortex interaction

The case is the interaction of a shock wave with a single vortex in a viscous flow [38, 62].
The computational domain is [−20, 8]×[−12, 12]. The velocity of the initial counterclockwise
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Figure 26: Sound, entropy and vorticity waves test: density and pressure perturbations along y = 0 at
t = 56.9 with cell size h = 1 from compact fourth-order GKS.

vortex is

Uθ(r) =Mvre
(1−r2)/2, Ur = 0,

where Uθ and Ur are the tangential and radial velocity respectively. The pressure and density
distribution superposed by the isentropic vortex downstream of shock wave are

p(r) =
1

γ
[1− γ − 1

2
M2

v e
(1−r2)]γ/(γ−1),

ρ(r) = [1− γ − 1

2
M2

v e
(1−r2)]1/(γ−1).

The case of the vortex Mach number Mv = 1.0 is computed. The Mach number of shock
wave is Ms = 1.2. The Reynolds number is Re = 800 defined by Re = ρ∞L∞a∞/µ∞, where
the subscript ∞ denotes the quantity upstream of the shock wave, L∞ = 1 is the critical
radius of the vortex, and a∞ = 1 is the incoming flow sound speed. The initial location of
vortex is (xv, yv) = (2, 0), and the stationary shock is at x = 0. In the computation, the
supersonic inflow boundary condition at x = 8 as well as the reflecting boundary condition
at y = ±12 are imposed. The non-reflective boundary conditions are adopted at x = −20.
The triangular mesh with a total number of 180570 cells is used. The mesh is refined near
the shock wave with the mesh size h = 0.03, and the mesh size at boundary is h = 1.

The sound pressure contours at t = 6 and t = 8 are given in Fig. 28. The sound pressure
is defined as △p = (p − p0)/p0, where p0 is the pressure downstream of the shock wave.
The multiple sound waves with quadruple structure are generated. The sound pressure
is smoothly distributed without apparent spurious oscillation. The reflected shock wave
extends and interacts with the vortex at core region. As a result, complicated flow patterns
are formed around the vortex. Fig. 29 is the distribution along radial direction with 1350

relative to the positive x-axis, and the distribution along y = 0 of the sound pressure at
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different times. The reflected shock wave produces a pressure jump between the precursor
and the second sound wave. The solutions obtained by the current scheme on triangular
mesh are compared with reference solutions [38]. In comparison with the computation by
high-order WNEO scheme on non-uniform structured mesh in [62], the maximum mesh size
used in the compact GKS is about 20 times of that used in the WNEO scheme, and the
minimum mesh size is about 10 times of that in the WNEO scheme.
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Figure 27: Sound generation by viscous shock-vortex interaction: mesh distribution near the shock wave
and the center of vortex at t = 8. The mesh is refined near the shock wave with the mesh size h = 0.03, and
the mesh size near the precursor wave at t = 8 is about h = 0.1.

7. Conclusion

In this paper, a fourth- to sixth-order compact GKS has been constructed on unstruc-
tured mesh for the compressible flow simulation. For the same order of accuracy, the stencils
used in the current scheme is much less than the non-compact counterpart. The success of the
scheme is mainly coming from the high-order gas evolution model at a cell interface, where
both time-accurate fluxes and flow variables are provided for the updates of cell-averaged
conservative flow variables and their gradients. Based on the cell averages and gradients,
high-order linear and nonlinear reconstructions can be obtained. The gas-kinetic scheme
uses the nonlinear discontinuous reconstruction for the determination of non-equilibrium
state and colliding smooth reconstruction for the equilibrium state, and unifies their con-
tributions through a relaxation process from non-equilibrium to equilibrium evolution. In
the evolution process, the inviscid and viscous terms are merged in the single time-accurate
gas distribution function. This property is preferred on the unstructured mesh for the NS
solutions. Due to the dynamic control of the contributions from the non-equilibrium and
equilibrium state from the relaxation factor exp(−∆t/τ), both shock wave and acoustic
wave solution can be properly captured. In the current scheme, there is no trouble cell
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Figure 28: Sound generation by viscous shock-vortex interaction: Mv = 1.0,Ms = 1.2, 80 equal-spaced
sound pressure contours from ∆pmin = −0.88 to ∆pmax = 0.12 on the triangular mesh. The △p is defined
as △p = (p − p0)/p0, and p0 is the downstream pressure of the shock wave. The dash line represents
rarefaction region, and the solid line represents the compression region.
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Figure 29: Sound generation by viscous shock-vortex interaction: pressure perturbation △p along radial
distribution direction (left) and the distribution △p along y = 0 (right). The results of compact 8th-order
GKS on the structured mesh are used as reference solutions [38]. The results of compact 4th-order GKS are
from the triangular mesh.

indicator or additional limiter used. Also, benefiting from the time-accurate flux solver, a
fourth-order time accuracy can be obtained through two stages, instead of four stages in
the traditional Runge-Kutta method. Therefore, the current scheme saves two additional
reconstructions and its efficiency is no worse than any traditional high-order DG and WENO
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scheme. Many test cases have been used to validate the scheme. Excellent performance has
been demonstrated in all cases from the high Mach number shock interaction to the acoustic
wave propagation. The current scheme is being extended to 3D calculation on unstructured
mesh.
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