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Abstract

In this paper, we study the parallel simulation of the magnetohydrodynamic

(MHD) dynamo in a rapidly rotating spherical shell with pseudo-vacuum mag-

netic boundary conditions. A second-order finite volume scheme based on a

collocated quasi-uniform cubed-sphere grid is applied to the spatial discretiza-

tion of the MHD dynamo equations. To ensure the solenoidal condition of the

magnetic field, we adopt a widely-used approach whereby a pseudo-pressure is

introduced into the induction equation. The temporal integration is split by a

second-order approximate factorization approach, resulting in two linear alge-

braic systems both solved by a preconditioned Krylov subspace iterative method.

A multi-level restricted additive Schwarz preconditioner based on domain de-

composition and multigrid method is then designed to improve the efficiency

and scalability. Accurate numerical solutions of two benchmark cases are ob-

tained with our code, comparable to the existing local method results. Several

large-scale tests performed on the Sunway TaihuLight supercomputer show good

strong and weak scalabilities and a noticeable improvement from the multi-level
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preconditioner with up to 10368 processor cores.

Keywords: Spherical shell dynamo, Pseudo-vacuum condition, Parallel

simulation, Finite volume method, Cubed-sphere grid, Multilevel method

1. Introduction

The magnetic field of the Earth as well as many other planets is widely

thought to be generated by the convection of the electrically conducting fluid in

the outer core, which creates the so-called self-consistent dynamo action (Zhang

and Schubert, 2000; Christensen and Wicht, 2007; Wicht and Tilgner, 2010;

Jones, 2011; Roberts and King, 2013; Moffatt and Dormy, 2019; Deguen and

Lasbleis, 2020). Due to a series of reasons (Aurnou et al., 2015; Vantieghem

et al., 2016), it is a challenging task to fully understand the dynamics in plane-

tary fluid cores. Starting with the pioneering work by Glatzmaier and Roberts

(1995), Kageyama and Sato (1995) and Kuang and Bloxham (1997), signifi-

cant progresses have been made in understanding of the origin and evolution of

the Earth’s magnetic field by means of numerical dynamo simulations (Sheyko

et al., 2016; Christensen, 2018; Petitdemange, 2018; Aubert, 2019). Although

there has been a number of numerical codes for dynamo modelling developed

independently by various groups (Matsui et al., 2016), there is still a long way

from achieving dynamo simulations with physically realistic parameters, due

mainly to the difficulties in extreme-scale spatial resolutions (Glatzmaier, 2002;

Jones, 2011; Roberts and King, 2013; Aurnou et al., 2015). Tremendous amounts

of computing resources are required for such extreme-resolution dynamo sim-

ulations, which can only be made possible with the aid of massively parallel

supercomputers (Harder and Hansen, 2005; Chan et al., 2006). Innovations

in the numerical algorithms and their applications on massively parallel su-

percomputers are likely beneficial to extend the parameter regime in dynamo

simulations towards more realistic values relevant to the planetary cores (Mat-

sui and Okuda, 2002, 2004a; Harder and Hansen, 2005; Chan et al., 2006, 2007;

Matsui et al., 2016).

2



As reported in Matsui et al. (2016), a majority of the existing widely-used nu-

merical dynamo models employ global-nature spectral methods, which are based

on the poloidal-toroidal decomposition and spherical harmonic expansions. The

solenoidal condition of the velocity and magnetic field and the insulating bound-

ary condition for the magnetic field can be easily dealt with in such methods.

However, a significant number of global communications are usually required

for the computation of nonlinear terms, which could make spectral methods

less suitable for large-scale parallel computations (Harder and Hansen, 2005;

Chan et al., 2006, 2007; Wicht et al., 2009). Besides, spectral methods are often

hard to be adapted to more complicated domains without a spherical symmetry

(Iskakov et al., 2004; Vantieghem et al., 2016) and local horizontal variations of

physical properties such as the electrical conductivity (Chan et al., 2007; Wicht

et al., 2009). In contrast, local discretization approaches, such as finite volume

and finite element methods, show more potentials for parallel computations and

could be more flexible to complicated domains and local variations, thus are

bringing an increasing interest in dynamo simulations (e.g. Kageyama and Sato,

1995, 1997; Hejda and Reshetnyak, 2003, 2004; Kageyama and Yoshida, 2005;

Harder and Hansen, 2005; Matsui and Okuda, 2002, 2004a,b, 2005; Chan et al.,

2001a,b, 2006, 2007; Vantieghem et al., 2016; Yin et al., 2017, 2019). However,

the applications of the local methods in dynamo simulations still face several

difficulties, such as: (i) the solenoidal conditions of the velocity and magnetic

field, (ii) the insulating boundary condition for the magnetic field, and (iii)

parallel scalability. To cope with the solenoidal constraint, most of the dy-

namo simulations adopt a projection-based method introduced by Tóth (2000),

in which a pseudo-pressure gradient is added into the induction equation and

the pseudo-pressure is interpreted as an effecting projection of the provisional

magnetic field onto the solenoidal space, just as the pressure in momentum equa-

tion. This method has been applied successfully to a large number of dynamo

models (e.g. Chan et al., 2001a; Harder and Hansen, 2005; Chan et al., 2007;

Vantieghem et al., 2016).

The exterior space outside the Earth’s core is generally thought as an electri-
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cally insulating medium, resulting in a non-local nature of the magnetic bound-

ary condition since the solution of a Laplace equation for the magnetic scalar

potential in the infinite exterior domain is theoretically required. This insu-

lating boundary condition brings substantial difficulties in dynamo simulations

with local methods. A straightforward approximation is to replace the infinite

exterior extent with a finite domain since the magnetic scalar potential declines

as O(r−2) in the insulating exterior and can be approximated as zero at the

location far enough from the fluid domain of interest. Based on this approxima-

tion, several dynamo models with local methods treat the insulating boundary

condition via an extra numerical cost in a finite exterior domain. Examples in-

clude Chan et al. (2001a) and Chan et al. (2007) in which a weak conductivity

approximation is introduced and Matsui and Okuda (2005) where a formulation

of the magnetic vector potential is used. Another approach is to introduce a

mathematically equivalent boundary integral formulation proposed by Iskakov

et al. (2004), in which the 3-D Laplace equation for the magnetic potential is

recast as a 2-D integral equation on the boundary surface next to the insulating

medium. However, such boundary integral approach usually leads to a higher

computational cost due to the dense coefficient matrix and the global com-

munication between all processors handling the boundary points. On the other

hand, pseudo-vacuum boundary conditions, which prescribe the tangential com-

ponent of the magnetic field on the boundary to be zero, since first adopted by

Kageyama and Sato (1995) in their finite difference code, have become a popular

alternative. Implementation of such conditions in local methods is straightfor-

ward and no extra numerical cost or global communication is required. Though

these conditions may result in quite different numerical solutions from the in-

sulating condition (Harder and Hansen, 2005; Jackson et al., 2014), it may be

quite suitable to apply them to the benchmark studies, as was done in Jackson

et al. (2014) and Vantieghem et al. (2016), thus providing a convenient way to

validate dynamo codes with local methods.

The parallel scalability, which is the key limiting factor for the massive-

scale simulations, is frequently investigated in dynamo simulations to different
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degrees (e.g. Harder and Hansen, 2005; Chan et al., 2006, 2007; Vantieghem

et al., 2016). In particular, parallel performance benchmarks from 15 widely-

used parallel dynamo models are thoroughly reported by Matsui et al. (2016)

but only two codes based on local methods are included therein. While local

methods show great potentials for the massive-scale dynamo simulations, the

study on improving the parallel scalability of local codes is still of critical impor-

tance. The temporal integration in the projection-based local models generally

involves a fractional step algorithm consisting of a prediction procedure and a

correction step. In practice, most of the computing time in the temporal inte-

gration is spent on the numerical solution of the pressure Poisson equation in the

correction step (Harder and Hansen, 2005; Vantieghem et al., 2016; Yin et al.,

2017). To improve the parallel performance of this type of code, the design

of a scalable solver for the prediction equation and especially for the pressure

Poisson equation is highly desirable.

In this work, we present a parallel finite volume solution for the convection-

driven magnetohydrodynamic (MHD) dynamo in a rapidly rotating spherical

shell with pseudo-vacuum magnetic boundary conditions. As a continuation to

our previous work (Yin et al., 2017) on the non-magnetic convection problem,

this paper inherits the approximate factorization method in temporal integra-

tion and the finite volume scheme on a collocated quasi-uniform cubed-sphere

grid, and focuses on the algorithms and implementations related to the mag-

netic field. In addition to that, efforts have also been made on the design of a

multi-level restricted additive Schwarz preconditioner based on domain decom-

position and multigrid method to improve the efficiency and scalability. It is

worth mentioning that the adopted cubed-sphere grid can be easily extended

to ellipsoidal shell domains and, in theory, other geometries which can be ex-

pressed by a similar projection relationship. Besides, a non-staggered finite vol-

ume scheme in general curvilinear geometries has been successfully developed

for the compressible MHD equations (Chacón, 2004) and an implicit Newton-

Krylov solver with a well-designed preconditioner (Chacón, 2008) has shown the

good efficiency of the multigrid method in such problem. In contrast, this work

5



specifically concerns the finite volume discretization of the incompressible MHD

dynamo equations on the composite cubed-sphere grid and the efficiency of the

semi-implicit fractional step solver for the dynamo problem.

The remainder of the paper is organized as follows. We first present the gov-

erning equations for the MHD dynamo problem and the boundary conditions in

Section 2. Then in Section 3, we introduce the numerical methods including the

temporal integration, spatial discretization and parallel multi-level solver. The

numerical results about the validation and parallel performance are reported in

Section 4. We conclude the paper in Section 5.

2. Mathematical model

In this work we focus our discussion on solving the convection-driven MHD

dynamo problem in a rapidly rotating spherical shell with pseudo-vacuum mag-

netic boundary conditions. The spherical shell, with outer radius ro and inner

radius ri, is filled with electrically conducting viscous incompressible fluids and

rotates with a constant angular velocity Ω = Ωẑ, where ẑ is a unit vector par-

allel to the axis of rotation. The incompressible fluids in the spherical shell is

assumed to satisfy the Boussinesq approximation, with the density ρ, kinetic

viscosity ν, thermal diffusivity κ, thermal expand coefficiency α, magnetic dif-

fusivity η, magnetic permeability µ. The temperatures on the inner and outer

boundaries are fixed to be Ti and To, respectively and the temperature differ-

ence is denoted by ∆T = Ti − To. Choosing the shell thickness D = ro − ri as

the fundamental length scale, D2/ν as the time scale, ν/D as the velocity scale,

∆T as the temperature scale,
√
ρµηΩ as the magnetic field scale, ρνΩ as the

pressure scale, we can obtain the non-dimensional governing equations of the

6



MHD dynamo problem

E

(
∂u

∂t
+ u · ∇u−∇2u

)
+ 2ẑ × u +∇P = Ra

r

ro
(T − T0) +

1

Pm
B · ∇B,

(1)

∇ · u = 0, (2)

∂T

∂t
+ u · ∇T =

1

Pr
∇2T, (3)

∂B

∂t
= ∇× (u×B) +

1

Pm
∇2B, (4)

∇ ·B = 0, (5)

where u, P , B, T , T0 and r are non-dimensional velocity, reduced pressure,

magnetic field, temperature, reference temperature and spatial position vector,

respectively. The reference temperature T0 can be expressed by

T0(r) = ri

(ro
r
− 1
)
, (6)

where the dimensionless radii are set to be ri = 7/13, ro = 20/13. The non-

dimensional parameters E,Ra, Pr, Pm in the above equations are Ekman num-

ber, modified Rayleigh number, Prandtl number and magnetic Prandtl number

respectively and defined by

E =
ν

ΩD2
, Ra =

αgo∆TD

νΩ
, P r =

ν

κ
, Pm =

ν

η
, (7)

where go is the gravitational acceleration at the outer radius.

An equivalent form of the magnetic induction equation (4) is

∂B

∂t
= ∇× (u×B)− 1

Pm
∇×∇×B. (8)

Applying the divergence operator to the above equation, we can obtain

∂ (∇ ·B)

∂t
= 0. (9)

This equation indicates that the magnetic field will keep the divergence-free con-

straint (5) all the time in the evolution if the initial magnetic field is solenoidal.

In numerical simulations, however, the divergence-free constraint is difficult to
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maintain. To overcome this difficulty, we adopt a technique of introducing

a pseudo-pressure gradient into the magnetic induction equation (Tóth, 2000;

Harder and Hansen, 2005; Chan et al., 2007; Vantieghem et al., 2016) and re-

place the induction equation (4) with the following equation

∂B

∂t
+

1

E
∇Pb = ∇× (u×B) +

1

Pm
∇2B, (10)

where Pb is the pseudo-pressure. Therefore, a projection method similar to the

well-known treatment (Chorin, 1968; Guermond et al., 2006) of velocity fields

can be applied to the magnetic field to ensure the divergence-free constraint.

Replacing the temperature T with an auxiliary temperature variable Θ =

T − T0, we can rewrite the non-dimensional governing equations as

∂u

∂t
−∇2u +

2

E
ẑ × u− Ra

Ero
Θr +

1

E
∇P = −u · ∇u +

1

EPm
B · ∇B, (11)

∂Θ

∂t
− 1

Pr
∇2Θ− riro

r3
u · r = −u · ∇Θ, (12)

∂B

∂t
− 1

Pm
∇2B +

1

E
∇Pb = (B · ∇) u− (u · ∇) B, (13)

∇ · u = 0, (14)

∇ ·B = 0. (15)

To solve the above system, it is necessary to apply proper boundary conditions

to the velocity, temperature and magnetic field. On the shell boundaries, we

employ the no-slip condition for the velocity and isothermal condition for the

temperature,

u = 0, Θ = 0, r = ri, ro. (16)

And for the magnetic field, we adopt the pseudo-vacuum boundary condition

r×B = 0, r = ri, ro, (17)

on the shell boundaries, which indicates that the tangential component of B is

zero and only the normal component exists (Kageyama and Sato, 1995; Jackson

et al., 2014). The value of the normal component on the boundaries can be

constrained by the solenoidal condition ∇ ·B = 0.
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3. Numerical methods

In this section, we present the proposed numerical methods to discretize and

solve the MHD dynamo equations (11)–(15) with the boundary conditions (16)–

(17). Since some of the algorithms have already been introduced in a previous

work that does not involve the magnetic field (Yin et al., 2017), we will focus

on the treatments of the issues related to the magnetic field.

3.1. Temporal integration scheme

A second-order approximate factorization method (Dukowicz and Dvinsky,

1992) was applied successfully to deal with the temporal integration and ensure

the solenoidal condition of the velocity in the non-magnetic convection problem

(Chan et al., 2006; Yin et al., 2017). In this section, we inherit the approx-

imate factorization method and extend it to the temporal integration of the

magnetic field. The dynamo governing equations (11)–(15) can be rewritten in

the following operator form

∂u

∂t
− L1(u)−R1(Θ) +G(P ) = f1, (18)

∂Θ

∂t
− L2(Θ)−R2(u) = f2, (19)

∂B

∂t
− L3(B) +G(Pb) = f3, (20)

D(u) = 0, (21)

D(B) = 0, (22)

where the L1, R1, G, L2, R2, L3 and D are linear operators defined by
L1(u) = ∇2u− 2

E
(ẑ × u), R1(Θ) =

Ra

Ero
(Θr), G(P ) =

1

E
∇P,

L2(Θ) =
1

Pr
∇2Θ, R2(u) =

riro
r3

u · r, L3(B) =
1

Pm
∇2B,

G(Pb) =
1

E
∇Pb, D(u) = ∇ · u, D(B) = ∇ ·B,

(23)
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and the right hand sides are nonlinear terms
f1 = −u · ∇u +

1

EPm
B · ∇B,

f2 = −u · ∇Θ,

f3 = B · ∇u− u · ∇B.

(24)

Applying the Crank-Nicolson scheme to the linear operators and discretizing

all terms spatially, the governing equations (18)–(22) can be fully discretized as

un+1 − un

∆t
− L1

(
un+1 + un

2

)
−R1

(
Θn+1 + Θn

2

)
+ G

(
Pn+1 + Pn

2

)
= f̂

n+ 1
2

1 +O
(
∆t2

)
, (25)

Θn+1 −Θn

∆t
− L2

(
Θn+1 + Θn

2

)
−R2

(
un+1 + un

2

)
= f̂

n+ 1
2

2 +O
(
∆t2

)
, (26)

Bn+1 −Bn

∆t
− L3

(
Bn+1 + Bn

2

)
+ G

(
Pn+1
b + Pnb

2

)
= f̂

n+ 1
2

3 +O
(
∆t2

)
, (27)

D
(
un+1

)
= D

(
Bn+1

)
= 0, (28)

where ∆t is the time step size and n denotes the time step number. L1, R1, G,

L2, R2, L3 and D are discrete linear operators corresponding to the linear terms

in equation (23). Note that L1 is not a symmetric operator due to the implicit

treatment of the Coriolis force term. f̂1, f̂2 and f̂3 are the discrete nonlinear

terms corresponding to equation (24). The nonlinear terms f̂1, f̂2 and f̂3 are

calculated by the second-order Adams-Bashforth formula

fn+
1
2 =

3

2
fn − 1

2
fn−1 +O

(
∆t2

)
, (29)

except the first time step by a first-order approximation f
1
2 = f0. The spatial

discretization schemes of the linear and nonlinear terms in the above equations

will be described in Section 3.2.

Moving the unknown terms about the time step n+ 1 to the left hand sides

and others to the right, the equations (25)–(27) can be transformed into the
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following form

ũn+1 − ∆t

2
L1

(
ũn+1

)
− ∆t

2
R1

(
Θn+1

)
= ûn +

∆t

2
L1 (ûn) +

∆t

2
R1 (Θn)

+ ∆tf̂
n+ 1

2
1 − ∆t2

4
L1G

(
Pn+1 − Pn

)
+O

(
∆t3

)
, (30)

Θn+1 − ∆t

2
L2

(
Θn+1

)
− ∆t

2
R2

(
ũn+1

)
= Θn +

∆t

2
L2 (Θn) +

∆t

2
R2 (ûn)

+ ∆tf̂
n+ 1

2
2 − ∆t2

4
R2G

(
Pn+1 − Pn

)
+O

(
∆t3

)
, (31)

B̃n+1 − ∆t

2
L3

(
B̃n+1

)
= B̂n +

∆t

2
L3

(
B̂n
)

+ ∆tf̂
n+ 1

2
3 − ∆t2

4
L3G

(
Pn+1
b − Pnb

)
+O

(
∆t3

)
, (32)

where ũn+1, ûn, B̃n+1 and B̂n are intermediate velocities and magnetic fields

defined by

ũn+1 = un+1 +
∆t

2
G
(
Pn+1

)
, B̃n+1 = Bn+1 +

∆t

2
G
(
Pn+1
b

)
, (33)

ûn = un − ∆t

2
G (Pn) , B̂n = Bn − ∆t

2
G (Pnb ) . (34)

By expanding Pn+1 in Taylor series about Pn, It can be observed that

the pressure terms (−∆t2/4)L1G(Pn+1 − Pn), (−∆t2/4)R2G(Pn+1 − Pn) and

(−∆t2/4)L3G(Pn+1
b − Pnb ) are all of O(∆t3) . Discarding these terms as well

as the temporal truncation error, we can obtain the following fully discretized

time stepping equations for the intermediate velocity ũn+1, temperature Θ and

intermediate magnetic field B̃n+1

ũn+1 − ∆t

2
L1

(
ũn+1

)
− ∆t

2
R1

(
Θn+1

)
= ûn +

∆t

2
L1 (ûn) +

∆t

2
R1 (Θn)

+ ∆tf̂
n+ 1

2
1 , (35)

Θn+1 − ∆t

2
L2

(
Θn+1

)
− ∆t

2
R2

(
ũn+1

)
= Θn +

∆t

2
L2 (Θn) +

∆t

2
R2 (ûn)

+ ∆tf̂
n+ 1

2
2 , (36)

B̃n+1 − ∆t

2
L3

(
B̃n+1

)
= B̂n +

∆t

2
L3

(
B̂n
)

+ ∆tf̂
n+ 1

2
3 . (37)

Applying the divergence operator to equation (33) and subtracting equation

(28), we can obtain two Poisson equations for the pressure Pn+1 and pseudo-
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pressure Pn+1
b respectively

∆t

2
DG

(
Pn+1

)
= D

(
ũn+1

)
, (38)

∆t

2
DG

(
Pn+1
b

)
= D

(
B̃n+1

)
. (39)

Boundary conditions for the pressure P and pseudo-pressure Pb are required

to solve the above equations. The Neumann boundary condition n · ∇P = 0

is applied to the pressure P , where n denotes the outward normal unit vector,

and a detailed discussion can be found in Yin et al. (2017). The pseudo-vacuum

condition (17) is applied to both P and Pb, and according to equation (33), we

can obtain n ×∇Pb = 0, which indicates a Dirichlet boundary condition of Pb

on the boundaries.

As a result, two linear algebraic systems are obtained including the equations

for the velocity, temperature and magnetic field (VTBE) (35)–(37) and the

equations for the pressure and pseudo-pressure (PPBE) (38)–(39). Based on

these two linear systems, a predictor-corrector procedure is adopted to obtain

the required numerical solutions. The outline of the resulting semi-implicit time

stepping scheme can be summarized as follows:

Step 1: According to the previous values un, Θn, Bn and Pn, calculate ûn

and B̂n and then solve VTBE to obtain the current solutions ũn+1, Θn+1

and B̃n+1.

Step 2: Solve PPBE to obtain Pn+1 and Pn+1
b based on ũn+1 and B̃n+1.

Step 3: Update the current solutions un+1 and Bn+1 according to equation

(33).

In the above time stepping scheme, the intermediate variables ûn and B̂n are

calculated from equations (34) except the initial values û0 and B̂0 by first-order

approximations û0 = u0, B̂0 = B0.

3.2. Finite volume spatial discretization

As an alternative to the traditional latitude-longitude grid that suffers from

disadvantages such as singularity and non-uniformity, the cubed-sphere grid

12



(a) (b)

Figure 1: A cubed-sphere grid based on the equiangular gnomonic projection. (a) (ξ, η) grid

on a spherical surface, (b) An open grid by shifting the six blocks outwards.

(Sadourny, 1972; Ronchi et al., 1996) obtained by a projection of the inscribed

cube is becoming popular for problems defined on the spherical geometry. Adopt-

ing the cubed-sphere grid based on the equiangular gnomonic projection (Ronchi

et al., 1996), a spherical shell is divided into six identical blocks, of which each

block is described by a local coordinate system (ξ, η, r), ξ, η ∈ [−π/4, π/4]. With

each block being divided uniformly in the three coordinate directions, a quasi-

uniform cubed-sphere grid covering the whole spherical shell can be obtained,

as shown in Fig. 1. In spite of the complexity caused by the non-orthogonality

of ξ and η, the resulting cubed-sphere grid is quite regular and thus can be

adapted well to the algorithms of domain decomposition (Toselli and Widlund,

2005) and multigrid (Saad, 2003).

A collocated arrangement by which all the unknown variables (u,Θ,B, P, Pb)

are located at the center of grid cells is employed in the spatial discretization.

For each block, the numbers of grid cells in ξ and η directions are set to be

the same value Ns and the cell number in r direction is denoted by Nr. The

coordinates of the unknown point with the indices (i, j, k), 0 ≤ i, j ≤ Ns−1, 0 ≤

13



k ≤ Nr − 1 in each block can be calculated by

ξi = −π
4

+ (i+ 0.5)hs, ηj = −π
4

+ (j + 0.5)hs, rk = ri + (k + 0.5)hr, (40)

where hs = π/(2Ns), hr = (ro − ri)/Nr are the grid spacings in ξ (η) and

r directions, respectively. The total cell number of the cubed-sphere grid is

denoted by N = Ns ×Ns ×Nr × 6.

A finite volume scheme based on the cubed-sphere grid is applied to the

spatial discretization of the linear operators in (23) and the nonlinear terms in

(24). Given a vector v, its divergence at the center of the grid cell (i, j, k) is

numerically approximated by the Gauss theorem

∇ · v|i,j,k ≈
1

Vi,j,k

∫
V

∇ · v dV =
1

Vi,j,k

∮
S

v · dS

≈ 1

Vi,j,k

[(
v1
√
g
)
i+ 1

2 ,j,k
hshr −

(
v1
√
g
)
i− 1

2 ,j,k
hshr

+
(
v2
√
g
)
i,j+ 1

2 ,k
hshr −

(
v2
√
g
)
i,j− 1

2 ,k
hshr

+
(
v3
√
g
)
i,j,k+ 1

2

hshs −
(
v3
√
g
)
i,j,k− 1

2

hshs

]
, (41)

where Vi,j,k ≈ √gi,j,khshshr refers to the volume of the grid cell (i, j, k),

(v1, v2, v3) are the contravariant components of v and g is the determinant

of the covariant components gmn of the metric tensor in the cubed-sphere grid

√
g =

√
det(gmn) = r2 sec2 ξ sec2 η/

(
1 + tan2 ξ + tan2 η

) 3
2 . (42)

The spatial differential operators in equations (23) and (24) are transformed

into the divergence forms and then discretized according to equation (41).

Most of the spatial terms in the governing equations (18)–(22) have been

discussed in our previous work (Yin et al., 2017). In this section, we focus on

the new terms related to the magnetic field B, including the Laplacian term

∇2B, divergence term ∇ ·B and nonlinear terms B · ∇B, B · ∇u and u · ∇B.

The Laplacian term ∇2B and divergence term ∇·B are discretized in the same

way as ∇2u and ∇ · u, respectively, while some additional effort is required for

the three nonlinear terms.
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To deal with the three nonlinear terms in a uniform way, we consider a

generic form a · ∇b, where a and b are two arbitrary vectors conforming

divergence-free condition ∇ · a = ∇ · b = 0. The nonlinear term a · ∇b can

be rewritten in a conservative form and divided into two parts

a · ∇b = ∇ · (ab) =
[
∇ ·
(
abk
)

+ aibjΓkij
]
gk, i, j, k = 1, 2, 3, (43)

where Γkij(i, j, k = 1, 2, 3) are the Christoffel symbols whose expressions are

(
Γ1
ij

)
=



2 tan ξ tan2 η

1 + tan2 ξ + tan2 η
− tan η sec2 η

1 + tan2 ξ + tan2 η

1

r

− tan η sec2 η

1 + tan2 ξ + tan2 η
0 0

1

r
0 0

 , (44)

(
Γ2
ij

)
=


0 − tan ξ sec2 ξ

1 + tan2 ξ + tan2 η
0

− tan ξ sec2 ξ

1 + tan2 ξ + tan2 η

2 tan η tan2 ξ

1 + tan2 ξ + tan2 η

1

r

0
1

r
0

 , (45)

(
Γ3
ij

)
=

r sec2 ξ sec2 η(
1 + tan2 ξ + tan2 η

)2

− sec2 ξ tan ξ tan η 0

tan ξ tan η − sec2 η 0

0 0 0

 , (46)

and gk(k = 1, 2, 3) are the covariant base vectors in the cubed-sphere coordinate

system. The divergence term is discretized in a finite volume scheme

∇ ·
(
abk
)∣∣
i,j,k
≈ 1

Vi,j,k

∫
V

∇ ·
(
abk
)

dV =
1

Vi,j,k

∮
S

(
abk
)
· dS

≈ 1

Vi,j,k

[(
a1bk
√
g
)
i+ 1

2 ,j,k
hshr −

(
a1bk
√
g
)
i− 1

2 ,j,k
hshr

+
(
a2bk
√
g
)
i,j+ 1

2 ,k
hshr −

(
a2bk
√
g
)
i,j− 1

2 ,k
hshr

+
(
a3bk
√
g
)
i,j,k+ 1

2

hshs −
(
a3bk
√
g
)
i,j,k− 1

2

hshs

]
. (47)
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The rest term can be expressed as

aibjΓ1
ij = a1b1Γ1

11 + a1b2Γ1
12 + a1b3Γ1

13 + a2b1Γ1
21 + a3b1Γ1

31,

aibjΓ2
ij = a1b2Γ2

12 + a2b1Γ2
21 + a2b2Γ2

22 + a2b3Γ2
23 + a3b2Γ2

32,

aibjΓ3
ij = a1b1Γ3

11 + a1b2Γ3
12 + a2b1Γ3

21 + a2b2Γ3
22,

(48)

and is treated as a source term. We apply the above finite volume scheme to

the three nonlinear terms B · ∇B, B · ∇u and u · ∇B.

Some special attention should be paid to the boundary condition of the mag-

netic field. Let (B1, B2, B3) denote the contravariant components of the mag-

netic field in the cubed-sphere grid. According to the pseudo-vacuum boundary

condition (17), we can deduce that the tangential components of the magnetic

field equal zero on the boundaries, i.e. B1 = B2 = 0. The normal component B3

can be constrained by the solenoidal condition ∇ ·B = 0. In the cubed-sphere

grid, the solenoidal condition can be expressed as

∇·B =
∂B1

∂ξ
+
∂B2

∂η
+
(
Γ1
11 + Γ2

12

)
B1+

(
Γ1
12 + Γ2

22

)
B2+

1

r2
∂

∂r

(
r2B3

)
= 0. (49)

Due to B1 = B2 = 0, we can obtain

∂

∂r

(
r2B3

)
= 0, (50)

following which the normal component of magnetic field B3 on the boundaries

is calculated.

3.3. Parallel solution and multilevel preconditioner

At each time step, there are two linear algebraic equations, i.e. VTBE and

PPBE, to be considered. The Krylov subspace iterative method combined with

the preconditioning technology is employed to solve these linear systems in this

paper. With preconditioning, a linear system, e.g. Ax = b, is replaced with a

right preconditioned system

A′x′ = b, (51)

where A′ = AM−1, x′ = Mx. Here the matrix M is generally called precondi-

tioner. For any time step, x′ is initialized as x′0 = Mx0 where x0 is usually set
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to be the solution of previous time step. Then the new preconditioned linear

system (51) is solved by a restarted generalized minimum residual (GMRES)

algorithm until the residual satisfies

‖A′x′ − b‖ ≤ max{εa, εr ‖A′x′0 − b‖}, (52)

where εa, εr are the absolute and relative convergence tolerances, respectively.

And finally the present time step solution x can be obtained by x = M−1x′.

When solving the linear system (51) by the Krylov subspace iterative method,

the convergence rate strongly depends on the condition number of the coefficient

matrix A′ = AM−1 (Demmel, 1997). If A′ is well conditioned, that is, its con-

dition number is sufficiently small, the iteration number of the Krylov subspace

method can be dramatically reduced. This can be achieved by choosing an ap-

propriate preconditioner M . A good choice of the preconditioner should also

help improve the scalability of parallel computations on large-scale supercom-

puters. In other words, with the aid of a scalable preconditioner, the iteration

number should remain a steady level as the number of processor cores increases.

It is often problem-dependent to construct an efficient and scalable precondi-

tioner. In present study, we design a parallel multi-level restricted additive

Schwarz preconditioner based on domain decomposition and multigrid method.

The cubed-sphere grid is divided into six identical blocks and each block

is decomposed into p = p1p2p3 non-overlapping subdomains in a structured

manner, where p1, p2, p3 are numbers of subdivisions corresponding to three

coordinate directions respectively. Each subdomain is assigned to one proces-

sor core and the number of processor cores corresponding to each block is p.

Thus the total number of processor cores is 6p as well as the total number

of subdomains. For each non-overlapping subdomain Ωi, i = 1, 2, . . . , 6p, we

can obtain a corresponding larger overlapping subdomain Ωδi by extending Ωi

with δ layers of mesh cells, as shown in Fig. 2a. The subdomains containing

one or more block interfaces are extended to the adjacent mesh cells of the

neighbouring block(s). The extending parts of overlapping subdomains lead to

data exchanges, i.e. communications between corresponding processor cores. To
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Figure 2: A two-dimensional illustration of domain decomposition and multigrid. (a) fine

mesh, (b) coarse mesh of which the cell number in each direction is reduced by 1/2.

achieve good scalability, the influence of communication time should be reduced

as much as possible.

Let N denote the total number of mesh cells and d be the number of degrees

of freedom per point. Moreover, the number of mesh cells in overlapping sub-

domain Ωδi is denoted by Nδ
i . Then we can define a one-level restricted additive

Schwarz (RAS) (Cai and Sarkis, 1999) preconditioner as

M−1one =

6p∑
i=1

(
R0
i

)T (
Aδi
)−1

Rδi . (53)

The restriction operator Rδi is an Nδ
i ×N block matrix and its multiplication by a

N×1 block vector defined on the entire domain results in a smaller Nδ
i ×1 block

vector defined on the subdomain Ωδi by dropping the components corresponding

to the mesh cells outside Ωδi . The element of the restriction matrix
(
Rδi
)
q1,q2

,

which is a d × d block submatrix, is an identity block if the integer indices

1 ≤ q1 ≤ Nδ
i and 1 ≤ q2 ≤ N belong to a cell in the overlapping subdomain

Ωδi , or a block of zeros otherwise. As a special case, R0
i is also an Nδ

i ×N block

matrix that is similarly defined, but is a restriction to the non-overlapping

subdomain Ωi. The matrix Aδi is the restriction of the coefficient matrix A
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to the overlapping subdomain Ωδi with size Nδ
i × Nδ

i and is defined as Aδi =

RδiA
(
Rδi
)T

. The matrix-vector multiplication with
(
Aδi
)−1

refers to solving a

local linear system in subdomain Ωδi and can be computed exactly by using a

sparse LU factorization. Since LU factorization is often expensive and to form an

exact preconditioner is generally not necessary, the matrix-vector multiplication

is usually obtained approximately by a less expensive incomplete LU (ILU)

factorization.

In our previous work (Yin et al., 2017), it is found that the one-level RAS

preconditioner can achieve very good parallel performance for the solution of

the velocity-related equation but scales poorly for the pressure-related equation.

To improve the scalability of the one-level RAS preconditioner, we employ a

multi-level RAS method based on hybrid preconditioning (Mandel, 1994) and

multigrid technique. By combining the one-level RAS preconditioner Bf with

a coarse level preconditioner Bc defined on a coarser mesh in a multiplicative

manner, we obtain a hybrid preconditioner

M−1two = hybrid (Bc, Bf ) = Bc +Bf −BfAfBc, (54)

where Bc = Ifc A−1c Icf and Af , Ac denote the coefficient matrices on the fine

and coarse meshes, respectively. Here, Icf is a restriction operator mapping from

a vector defined on the fine mesh to a coarse mesh vector. Similarly, Ifc is a

prolongation operator from the coarse mesh to the fine mesh. More precisely

speaking, to calculate the multiplication of the hybrid two-level preconditioner

and a vector x, y = M−1twox, we first apply a coarse mesh preconditioning

w =
(
Ifc A−1c Icf

)
x, (55)

and then correct the coarse solution by adding the fine mesh solution to obtain

the final result

y = w +M−1one (x−Afw) . (56)

For each application of the two-level preconditioner (54), a smaller linear

system with the coefficient matrix Ac on the coarse mesh needs to be dealt with

during the coarse mesh preconditioning. This coarse level linear system is solved
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by using preconditioned GMRES with a relative tolerance ηc. The coarse level

preconditioner can be either one-level (53) or two-level (54). When a two-level

preconditioner is adopted on the coarse mesh as well, another coarser mesh is

required to form this preconditioner. Repeating the application of the two-level

RAS preconditioner (54) in multiple mesh levels can result in a multilevel hybrid

RAS method.

The best choices for some of the options in the multilevel RAS preconditioner

are often problem-dependent (Yang and Cai, 2011). One important option is the

number of mesh levels, whose choice strongly depends on a specific circumstance.

Since additional computational costs can be introduced by the coarse meshes,

excessive mesh levels may lead to the degradation of computational efficiency.

Furthermore, the choice of the number of mesh levels has a close relationship

to the problem size. If too many mesh levels are applied when the problem

size is not large enough, the computational load of each processor core may be

too small. At this situation, the influence of communication time may become

remarkable and the scalability may become worse. In the present study, we

choose a two-level version with a coarse-to-fine mesh ratio 1:2 in each direction

(see Fig. 2), by which an optimal efficiency is achieved in the considered spatial

resolutions. If a larger resolution is required, three or more levels may be taken

into consideration to achieve better performance. On the fine level mesh denoted

by N , the preconditioner is

M−1N = hybrid

(
INN/2A−1N/2I

N/2
N ,

6p∑
i=1

(
(RN )0i

)T (
(AN )δi

)−1
(RN )δi

)
, (57)

where N/2 refers to the coarse level mesh. A linear average restriction operator

IN/2N and a piecewise constant interpolation operator INN/2 are employed due

to their simplicities. The linear system about AN/2 on the coarse level mesh

is solved by an inner GMRES, preconditioned by a one-level RAS approach on

the corresponding coarse level

M−1N/2 =

6p∑
i=1

(
(RN/2)0i

)T (
(AN/2)δi

)−1
(RN/2)δi . (58)
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The choice of the subdomain solver at each level has a strong influence on

the overall performance of the preconditioner. A large number of numerical

experiments are often necessary to find out the proper selection. According

to our tests, the ILU factorization with no fill-in, ILU(0), is chosen as the

subdomain solver for both the fine level
(
(AN )δi

)−1
in equation (57) and the

coarse level
(
(AN/2)δi

)−1
in equation (58).

4. Numerical results

We build the parallel simulation code based on the Portable, Extensible

Toolkit for Scientific Computation (PETSc) library (Balay et al., 2013) and

carry out the numerical experiments on the Sunway TaihuLight supercomputer

(Fu et al., 2016) which took the top place of the Top-500 list (TOP500, 2020)

as of June 2016. The two resulting sparse linear algebraic equations, i.e. VTBE

and PPBE, are solved by GMRES algorithm with the restarting parameter 30.

The absolute and relative tolerance of GMRES are respectively set to be 10−10,

10−8 for VTBE and 10−8, 10−6 for PPBE.

4.1. Convergence test

To validate the accuracy of the spatial discretization and temporal integra-

tion scheme, a convergence analysis is performed for the dynamo problem with

the parameters Pr = 1, Ra = 100, E = 0.1, Pm = 1000 and the initial condition

(61). We define the L2 error (LeVeque, 2002) of a solution v as

L2(v) =

√√√√ 6∑
l=1

∑
i,j,k

∑
c

(vl,i,j,k,c − vrefl,i,j,k,c)
2Vi,j,k, (59)

where l is the block index, c is the component index in each mesh cell, (i, j, k)

are the grid indices, vref is the reference solution and Vi,j,k ≈ √gi,j,khshshr
refers to the volume of the grid cell (i, j, k). In order to quantify the error of the

spatial discretization and cancel out the temporal error, we fix the time step size

to ∆t = 1×10−5 and adopt the solution at t = 0.001 on 128×128×128×6 mesh

as the reference solution. The L2 errors of (u,Θ,B) with respect to different
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Figure 3: Convergence analysis in terms of the spatial accuracy and the temporal accuracy.

(a) The L2 error of (u,Θ,B) with respect to different grid sizes. The reference solution is

obtained on a 128×128×128×6 mesh. The horizontal axis shows the grid size in one direction.

The time step size is fixed to 1 × 10−5 for all grid sizes. (b) The L2 error of (u,Θ,B) with

respect to different time step sizes. The reference solution is obtained with ∆t = 3.125×10−3.

The spatial resolution is 64 × 64 × 64 × 6 for all time step sizes. The two gray dashed lines

indicate the ideal second-order convergence.

grid sizes are provided in Fig. 3a, in which we also plot the ideal second-order

convergence line. It can be seen that the spatial discretization is second-order

accurate. In terms of the temporal convergence, we fix the spatial resolution

to be 64 × 64 × 64 × 6 and use the solution at t = 1 with the time step size

∆t = 3.125 × 10−3 as the reference solution. The L2 errors of (u,Θ,B) with

respect to different time step sizes are shown in Fig. 3b, where the ideal second-

order convergence line is also provided. We can observe from the figure that

second-order accuracy is achieved with the employed the temporal integration

scheme.

4.2. Benchmark cases

Following the well-known benchmark study of Christensen et al. (2001)

where the insulating boundary condition is considered, a shell dynamo bench-

marking exercise with pseudo-vacuum boundary conditions was carried out by

Jackson et al. (2014) for the first time. Under the parameter regime in their
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work,

E = 10−3, P r = 1, Ra = 100, Pm = 5, (60)

at least five magnetic diffusion times are required to reach the quasi-steady state

from the suggested initial condition

u0 = 0,

Θ0 =
21√

17920π

(
1− 3x2 + 3x4 − x6

)
sin4(θ) cos(4φ), x = 2r − ri − ro,

B0
r =

5

8

9r3 − 4[4 + 3(ri + ro)]r
2 + [4ro + ri(4 + 3ro)]6r − 48riro

r
cos(θ),

B0
θ = −15

4

(r − ri)(r − ro)(3r − 4)

r
sin(θ),

B0
φ =

15

8
sin[π(r − ri)] sin(2θ).

(61)

In the same spirit, Vantieghem et al. (2016) suggests a new benchmark case

with the non-dimensional control parameter

E = 10−3, P r = 1, Ra = 100, Pm = 8, (62)

and the same initial condition for the dynamo validations with pseudo-vacuum

boundary conditions. According to their numerical results, a quasi-steady so-

lution can be reached within less than one magnetic diffusion time. In this

section, we follow both these benchmark cases to validate the correctness of our

finite volume code. For simplicity, we refer to the benchmark case proposed by

Jackson et al. (2014) as case P5 and the case suggested by Vantieghem et al.

(2016) as case P8.

The values of the magnetic energy, kinetic energy and some other quantities

at the final quasi-steady state are compared with the reference solutions for the

benchmark case P5 and P8. To compare with the benchmark results, these

quantities should be calculated in a consistent dimension and we transform the

present solutions into the dimensions that are consistent with Jackson et al.

(2014) and Vantieghem et al. (2016). The relevant transformation formulae can

be easily obtained according to the conversion table in (Jackson et al., 2014,

Table 1). Thus, for the purpose of consistency, the kinetic energy Ekin and
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magnetic energy Emag are defined as follows

Ekin =
Pm2

2

∫
u2 dV, (63)

Emag =
Pm

2E

∫
B2 dV. (64)

And the velocity, temperature and magnetic field are calculated by transforming

from the quantities in present dimension

T ′ = T, (65)

u′ = uPm, (66)

B′ = B/
√

2. (67)

To conduct the numerical experiments for the case P5 and P8, four different

levels of spatial resolution, i.e. G48, G64, G80 and G96, are considered here.

The mesh sizes, the overall resolutions and the corresponding time step sizes

for these four employed grid levels are summarized in Table 1, where the overall

resolution R is defined as the third root of the number of degrees of freedom

for each scalar variable R = N
1/3
grid. It is worth mentioning that the explicit

treatment of the nonlinear terms in the temporal integration scheme leads to

a limitation of the time step size due to numerical stability condition. To test

the stability constraint, we define the Courant-Friedrichs-Lewy (CFL) number

on the Alfvén waves (Goedbloed et al., 2010)

CFLA = max

(∣∣∣∣v1Ahs
∣∣∣∣+

∣∣∣∣v2Ahs
∣∣∣∣+

∣∣∣∣v3Ahr
∣∣∣∣)∆t, (68)

where vA = B/
√
EPm is the dimensionless Alfvén velocity. In Table 1, we also

display the CFLA evaluated at the initial state on the four grid levels, within

which no numerical instability is observed. The time step sizes are carefully

chosen to obey the stability constraint for the case P5 and P8 on such grids,

as we find that the increase of CFLA by around 10% may result in numerical

instability.

Firstly, the benchmark case P5 is run by our finite volume code in the four

different spatial resolutions listed in Table 1 until t = 25.6, when the magnetic
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Table 1: Summary of the four employed grid levels. The column of total cells provides the

total number of grid cells. R is the overall resolution defined as the third root of the number

of degrees of freedom for each scalar variable R = N
1/3
grid.

Grid levels Ns Nr Total cells R ∆t (P5) CFLA (P5) ∆t (P8) CFLA (P8)

G48 48 72 995328 100 6.4× 10−5 1.13 8.0× 10−5 1.12

G64 64 96 2359296 133 4.0× 10−5 0.95 5.0× 10−5 0.94

G80 80 120 4608000 166 4.0× 10−5 1.19 5.0× 10−5 1.18

G96 96 144 7962624 200 3.2× 10−5 1.15 4.0× 10−5 1.13

time measured in units of magnetic diffusion time is tm = t/Pm = 5.12. The

time step sizes corresponding to the employed grid levels can be found in Table 1

as well. The time evolution of the magnetic energy Emag and the kinetic energy

Ekin on grid G96 is displayed in Fig. 4, which shows good agreement with the

result in Jackson et al. (2014). As discussed in Harder and Hansen (2005) and

Jackson et al. (2014), the drift of the quasi-steady solution with respect to the

grid may introduce a slight temporal oscillation into the numerical solution.

The periodicity of this grid-drift oscillation, depending on the spatial periodic

property of grid, is 90◦ for the cubed-sphere grid. In Fig. 5, we display the

oscillations of Emag on the four grid levels by limiting tm to a small local time

range near tm = 5.12. From Fig. 5, it is seen that the amplitude of the grid-drift

oscillation decays as the spatial resolution increases. Note that this grid-drift

oscillation only occurs for the steadily drifting solution, which is specifically

designed for the benchmark purposes, and should vanish for the real dynamo

simulations. In addition, the solution of the case P5 is close to the onset of

stable dynamo action and a slow decreasing observed from Fig. 5 indicates that

the stable solution is gradually settling in near tm = 5.12. Since the decreasing

is very slow (approximately 0.07%), the numerical result at tm = 5.12 is quite

close to the stable solution.

From the quasi-steady solution, we calculate the final global data of the ki-

netic energy Ekin, magnetic energy Emag and drift frequency ω, and the local

25



10

100

1000

10000

100000

1× 106

1e-06 1e-05 0.0001 0.001 0.01 0.1 1 10

E
ne

rg
y

tm

Emag
Ekin

Figure 4: Time evolution of the magnetic energy Emag and the kinematic energy Ekin on

grid G96 for the benchmark case P5. The magnetic time tm is measured in units of magnetic

diffusion time tm = t/Pm. The black dots indicate the reference data taken from Jackson

et al. (2014).
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Figure 5: Slight oscillations of Emag introduced by the drift of quasi-steady solution with

respect to the grid on the four grid levels. SM denotes the recommended value of Emag at

tm = 5.12 (Jackson et al., 2014).
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Table 2: Comparison with the benchmark results for the case P5. G48, G64, G80 and G96

are our numerical results in four different spatial resolutions. SM denotes the recommended

benchmark solution (Jackson et al., 2014) obtained by the spectral methods. V232 and ZS363

are respectively the largest resolution results obtained by the finite volume code V at the

overall resolution R = 232 and the finite element code ZS at R = 363 reported in Jackson

et al. (2014). SFEMaNS refers to the finite element result reported in Matsui et al. (2016).

The values in parentheses are relative errors compared with the SM results.

Results R Emag Ekin T ′ u′φ B′θ ω

G48 100 78015(2.57%) 15036(1.28%) 0.425945(0.013%) −57.987(0.33%) 0.9849(0.81%) 3.5664(4.88%)

G64 133 79320(0.94%) 14904(0.39%) 0.425886(0.001%) −58.110(0.12%) 0.9924(0.06%) 3.6651(2.25%)

G80 166 79461(0.76%) 14896(0.34%) 0.425969(0.019%) −58.105(0.13%) 0.9896(0.35%) 3.7075(1.12%)

G96 200 79700(0.46%) 14874(0.19%) 0.425955(0.015%) −58.130(0.08%) 0.9909(0.21%) 3.7756(0.70%)

V232 232 79012(1.32%) 14941(0.64%) 0.42630(0.096%) −57.932(0.42%) 0.9746(1.85%) 3.7457(0.10%)

ZS363 363 81210(1.42%) 15032(1.25%) 0.42700(0.261%) −58.480(0.52%) 0.9951(0.21%) 3.7940(1.19%)

SFEMaNS 80578(0.63%) 14797(0.33%) 0.42553(0.085%) −58.280(0.17%) 1.0015(0.86%)

SM 80071 14846 0.42589 −58.179 0.9930 3.7495

data of T ′, u′φ and B′θ at a reference point in the equatorial plane at mid-depth

where ur = 0 and (∂ur/∂φ) > 0. To eliminate the influence of the grid-drift

oscillation, these values are averaged over the period when the location of the

local reference point changes by 90◦, as was done in Harder and Hansen (2005)

and Jackson et al. (2014). The average results are reported in Table 2, where

comparisons with the recommended benchmark solution obtained by using spec-

tral methods and three other results with local methods are also provided. V232

and ZS363 are respectively the largest resolution results obtained by the finite

volume code V at the overall resolution R = 232 and the finite element code

ZS at R = 363 reported in Jackson et al. (2014). And SFEMaNS refers to the

finite element result reported in Matsui et al. (2016). The values in parenthe-

ses denote relative errors compared with the recommended benchmark solution

obtained by spectral methods. From Table 2, it is seen that the discrepancy

is less than 1% for all quantities on grid G64, G80 and G96 except the drift

frequency ω. On the coarsest grid G48, some of the relative errors are slightly

27



large but less than 5% and reduce considerably as the grid gets finer. As for the

error of ω, good convergence rate with respect to the spatial resolution can be

observed and the discrepancy drops below 1% on grid G96. The drift frequency

ω is usually the most difficult to determine precisely in local methods, since

it is usually obtained by interpolating from the discrete solution data whereby

additional error source could be introduced. Noticing that the overall resolu-

tion of the grid G64, G80 and G96 are respectively 133, 166 and 200, our finite

volume code produces highly accurate solutions, which are comparable to and

even better than the existing local results, for the benchmark case P5. The

convergences of these quantities as a function of the overall resolution R are

plotted in Fig. 6, in which we also provide the convergence results of the finite

volume code V and the finite element code ZS reported in Jackson et al. (2014)

for the purpose of comparison.

The benchmark case P8 is then considered to further validate the proposed

methods and the implemented finite volume code. An attractive advantage

of this benchmark is that a quasi-steady solution can be reached within one

magnetic diffusion time, which allows a much quicker validation in contrast to

the benchmark case P5. It was found by Sheyko (2014) that two different types

of dynamo solutions can be obtained when changing the initial magnetic field

for this benchmark problem. For initial values of the magnetic energy between

407101 and 623428, such as the suggested one (61), one can obtain a quasi-

steady solution expressed in the form (u,B,Θ) = f(r, θ, φ− ωt). For the initial

magnetic energy outside this range, an oscillating dynamo solution can be found

(Vantieghem et al., 2016).

The numerical tests of the case P8 are run on grid G48, G64, G80 and G96

as well until t = 8, with the magnetic time tm = t/Pm = 1. The time step sizes

corresponding to these grid levels are given in Table 1. The time evolution of

the magnetic energy Emag on the grid G64 is displayed in Fig. 7, which also

shows an oscillating solution obtained by decreasing the initial magnetic field

B′initial = Binitial/
√

2. We can see from the figure that the magnetic energy Emag

reaches a constant value within one magnetic diffusion time for the quasi-steady
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Figure 6: Convergences as a function of the overall resolution R for the case P5. (a) u′φ, (b)

B′θ, (c) T ′, (d) Emag, (e) Ekin, (f) ω. The present result and the recommended solution by

spectral methods are denoted by Present and SM, respectively. V and ZS respectively refer to

the convergence results of the finite volume code V and the finite element code ZS reported

in Jackson et al. (2014).
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Figure 7: Time evolution of the magnetic energy Emag on the grid G64 for the benchmark

case P8 with two different initial magnetic field intensities. The magnetic time tm is measured

in units of magnetic diffusion time tm = t/Pm. The black dots indicate the reference data

taken from Vantieghem et al. (2016).

solution while the oscillating solution finally exhibits oscillation behaviour. And

it is clear that the time evolution of the magnetic energy are quite consistent

with the benchmark (Vantieghem et al., 2016).

We calculate the average reference quantities including Emag, Ekin, T ′, u′φ,

B′θ and ω from the final quasi-steady solution and summarize the comparison

with the benchmark results in Table 3. The values in parentheses denote relative

errors compared with the benchmark solution obtained by a pseudospectral

method. It can be seen from Table 3 that our results are in good agreement

with the benchmark pseudospectral solution and the accuracy is comparable to

the existing finite volume results. Besides, the relative errors of the global and

local quantities become smaller as the spatial resolution increases. We display

the convergences of these quantities as a function of the overall resolution R in

Fig. 8, where the finite volume result reported in Vantieghem et al. (2016) is

also shown for comparison.

The spatial structure of the quasi-steady solution on the grid G96 is distinctly

shown in Figs 9–11. Fig. 9 depicts the equatorial slices of the quasi-steady
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Figure 8: Convergences as a function of the overall resolution R for the case P8. (a) u′φ, (b)

B′θ, (c) T ′, (d) Emag, (e) Ekin, (f) ω. The present result and the suggested solution by the

pseudospectral method are denoted by Present and PS, respectively. FV refers to the finite

volume result reported in Vantieghem et al. (2016).
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Table 3: Comparison with the benchmark results for the case P8. G48, G64, G80 and G96

are our numerical results in four different spatial resolutions. FV64 and FV128 refer to the

finite volume results in Vantieghem et al. (2016) with six blocks of 643 and 1283 grid points,

respectively. PS denotes the suggested benchmark solution (Vantieghem et al., 2016) obtained

by the pseudospectral method. The values in parentheses are relative errors compared with

the PS results.

Results R Emag Ekin T ′ u′φ B′θ ω

G48 100 313663.1(0.29%) 21928.4(1.36%) 0.39391(0.18%) −80.08(1.05%) 2.2556(3.36%) 5.0082(9.91%)

G64 133 312804.6(0.02%) 21758.5(0.57%) 0.39345(0.06%) −80.62(0.39%) 2.2099(1.26%) 5.3562(3.65%)

G80 166 312664.3(0.03%) 21713.5(0.36%) 0.39336(0.04%) −80.78(0.18%) 2.1974(0.69%) 5.4563(1.84%)

G96 200 312603.7(0.05%) 21683.7(0.23%) 0.39328(0.02%) −80.86(0.09%) 2.1905(0.38%) 5.5115(0.85%)

FV64 116 309086.0(1.17%) 21502.1(0.61%) 0.3920(0.31%) −81.23(0.36%) 2.1510(1.43%) 5.6453(1.55%)

FV128 233 311950.2(0.26%) 21576.2(0.27%) 0.3925(0.18%) −80.74(0.24%) 2.1839(0.07%) 5.4959(1.13%)

PS 312754.7 21634.9 0.3932 −80.9318 2.1823 5.5588

quantities including T ′, B′θ, u
′
φ and u′r. It shows good agreement with the

benchmark results (Vantieghem et al., 2016). Fig. 10 gives the contours on the

mid-depth spherical surface of T ′, u′r and B′r, and Fig. 11 displays the contour

of B′r on the outer boundary surface. The spatial structure of the four-fold

azimuthal symmetry can be observed from these figures.

4.3. Parallel performance

The parallel performances of the one-level and two-level RAS preconditioner

for the case P8 are reported systematically in this section. In terms of the solver

options, the overlap size is δ = 1 and the subdomain solver is ILU(0) for the

one-level RAS preconditioner. For the two-level method, the overlap size δ = 1

and the subdomain solver ILU(0) are used for both the fine level and coarse

level, while the relative tolerance of the inner GMRES on the coarse level is

set to be 0.1. We apply both the one-level and two-level preconditioner to the

solution of PPBE and compare the two results on efficiency and performance.

The VTBE is only solved by GMRES with the one-level preconditioner.

Firstly, the strong scalability of the GMRES algorithm is studied with a
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(a) T ′ (b) B′θ

(c) u′φ (d) u′r

Figure 9: Equatorial slices of the quasi-steady solution on the grid G96 including T ′ (a), B′θ

(b), u′φ (c) and u′r (d).
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(a) T ′

(b) u′r

(c) B′r

Figure 10: Contours on the mid-depth spherical surface of the quasi-steady solution on the

grid G96 including T ′ (a), u′r (b) and B′r (c). The block interfaces of the cubed-sphere grid

are denoted by black lines.
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Figure 11: Contour of B′r on the outer boundary surface of the quasi-steady solution on the

grid G96.

Table 4: Strong scaling results with a fixed mesh 144 × 144 × 168 × 6 and a constant time

step size ∆t = 1 × 10−5. The results are averaged over the first ten time steps. The averaged

iteration numbers of the inner GMRES on the coarse mesh are given in parentheses when

using the two-level RAS preconditioner. np denotes the number of processor cores.

np

VTBE PPBE

Iteration number Compute time (s) Iteration number Compute time (s)

one-level one-level one-level two-level one-level two-level

1296 3.0 6.65 144.9 22.0(13.4) 29.69 15.80

2592 3.0 3.41 154.0 22.2(16.0) 16.90 10.18

5184 3.0 1.77 158.0 22.1(14.0) 9.60 5.72

10368 3.0 0.92 151.1 22.4(16.1) 5.24 4.20

fixed mesh 144× 144× 168× 6 (about 20.9 million mesh cells) and a constant

time step size ∆t = 1 × 10−5(CFLA = 0.33). The strong scalability refers

to the influence of the number of processor cores on the compute time for the

problem with a fixed spatial resolution. In the ideal situation, the compute time

should be reduced proportionally as the number of processor cores increases. We

double the number of processor cores from 1296 up to 10368 and average the

corresponding iteration number and compute time of GMRES over the first ten

time steps. The averaged results are summarized in Table 4.

It is observed from Table 4 that the averaged iteration number of GMRES
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(b) Breakdown of the two-level method

Figure 12: Strong scaling results displaying the averaged compute time with respect to the

number of processor cores. (a) The averaged compute time of VTBE and PPBE. (b) Break-

down of the two-level method for PPBE. PC denotes the solution time of the two-level precon-

ditioner in GMRES. PC is then broken down into PC-C (solution time of the linear system on

the coarse mesh), PC-F (solution time of the one-level preconditioner on the fine mesh) and

PC-I (compute time of the intermediate steps). The dash line refers to the ideal situation.

for VTBE remains unchanged as the number of processor cores increases from

1296 to 10368, and the iteration number of PPBE strongly depends on the

employed preconditioner. For the one-level preconditioner, the iteration number

of PPBE increases mildly as the number of processor cores is doubled. With

the two-level preconditioner being employed, the iteration number of PPBE is

dramatically reduced and is kept to a low level in spite of the double growth in

the number of processor cores. In terms of the compute time of PPBE, the two-

level preconditioner is about 20%–47% faster than the one-level, which indicates

a noticeable improvement of computational efficiency. Fig. 12a displays the

averaged compute time of VTBE and PPBE with respect to the number of

processor cores. We can observe from the figure that the GMRES algorithm for

VTBE scales very well with up to 10368 processor cores and its strong scalability

is quite close to the ideal situation. The GMRES algorithm for PPBE scales well

if the number of processor cores is not too large. When using a large number

of processor cores, e.g. 10368, the strong scalability, as well as the efficiency

improvement by the two-level preconditioner, degrade to some extent, because

the amount of computations on each processor core is too small.
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According to equation (55) and (56), the solution process of the two-level

preconditioner can be broken down into three parts: i) solution of the linear

system on the coarse mesh, ii) solution of the one-level preconditioner on the

fine mesh, and iii) intermediate steps including restriction, prolongation and

others. The solution times of the two-level method for PPBE divided by these

three parts are provided in Fig. 12b. It is observed that the solution time

of the linear system on the coarse mesh is the dominant part of the two-level

method. Specifically, the solution time of the one-level preconditioner on the

fine mesh and the time spent on the intermediate steps are quite small and

scalable. Furthermore, the major time-consuming and non-scalable part lies

with the linear system solution on the coarse mesh.

To further investigate the performance of the proposed algorithms, we test

our code in terms of the weak scalability, which usually draws more interest

in practical applications. The weak scalability focuses on the variation of the

compute time with respect to the increase in the number of processor cores

while the computational load on each processor core is fixed. The compute time

should remain the same as the number of processor cores grows in the ideal

situation. In our weak scaling test, the time step size is set to be ∆t = 1× 10−5

and the mesh size assigned to each processor core is fixed to 20× 20× 20. The

number of processor cores is doubled from 648 to 10368 and the corresponding

spatial resolution is increased proportionally from 120× 120× 60× 6 to 240×
240 × 240 × 6 (about 82.9 million mesh cells). As the grid size increases, the

value of CFLA grows from 0.12 to 0.47, which are small enough to obey the

numerical stability. Table 5 displays the corresponding iteration number and

compute time of GMRES for VTBE and PPBE averaged over the first ten time

steps.

From Table 5, we can find that both the iteration number and the compute

time of VTBE grow slowly with respect to the increase in the number of proces-

sor cores. The compute time only increases by 44%, as the number of processor

cores increases from 648 to 10368 (16 times larger). For PPBE, the iteration

number of the one-level preconditioner grows fast, while the iteration number
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Table 5: Weak scaling results with a fixed mesh 20 × 20 × 20 for each processor core and

a constant time step size ∆t = 1 × 10−5. The results are averaged over the first ten time

steps. The averaged iteration numbers of the inner GMRES on the coarse mesh are given in

parentheses when using the two-level RAS preconditioner. np denotes the number of processor

cores.

np

VTBE PPBE

Iteration number Compute time (s) Iteration number Compute time (s)

one-level one-level one-level two-level one-level two-level

648 3.0 3.36 103.9 21.8(10.1) 11.02 7.48

1296 3.0 3.37 114.1 21.7(11.7) 12.20 7.87

2592 3.0 3.37 162.7 24.8(17.0) 17.47 11.63

5184 4.0 4.78 225.5 21.8(16.7) 24.56 10.31

10368 4.1 4.83 240.4 21.4(18.9) 26.37 11.47

of the two-level method stays at a low level. In terms of the compute time of

PPBE, the increase of the one-level preconditioner is 139% from 648 to 10368

processor cores, which is much larger than 53% of the two-level method. In

addition, the two-level preconditioner is about 32%–58% faster than the one-

level as the number of processor cores doubles from 648 to 10368. The variation

of the averaged compute time of VTBE and PPBE with respect to the num-

ber of processor cores is further displayed in Fig. 13a. From the figure it can

be seen that the VTBE and the PPBE with the two-level RAS preconditioner

scales quite well while the PPBE with the one-level method scales a little worse

in terms of the weak scalability. Fig. 13b shows the time breakdown of the

two-level preconditioner and it is found that the linear system solution on the

coarse mesh is also the dominant part as to the compute time and scalability.

Considering the solution time of the coarse linear system strongly depends on

the iteration number of the inner GMRES, which can be easily obtained via

multiplying the iteration number on the fine mesh by that on the coarse mesh

(e.g. 21.8 × 10.1 for np = 648), it is understandable that the compute time of

PPBE with the two-level method increases with the number of processor cores.
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(b) Breakdown of the two-level method

Figure 13: Weak scaling results displaying the average compute time with respect to the num-

ber of processor cores. (a) The averaged compute time of VTBE and PPBE. (b) Breakdown of

the two-level method for PPBE. PC denotes the solution time of the two-level preconditioner

in GMRES. PC is then broken down into PC-C (solution time of the linear system on the

coarse mesh), PC-F (solution time of the one-level preconditioner on the fine mesh) and PC-I

(compute time of the intermediate steps). The dash line refers to the ideal situation.

5. Conclusions

A scalable parallel solver for the convection-driven magnetohydrodynamic

dynamo problem in a rapidly rotating spherical shell with pseudo-vacuum mag-

netic boundary conditions is developed in this paper. A finite volume method

on a collocated quasi-uniform cubed-sphere grid is employed for the spatial dis-

cretization of the spherical shell dynamo equations. In terms of the temporal

integration, a second-order approximate factorization method, applied success-

fully to the non-magnetic thermal convection problem in our previous study

(Yin et al., 2017), is extended to the dynamo governing equations, resulting in

two linear algebraic systems, VTBE and PPBE, that are both solved by a pre-

conditioned Krylov subspace iterative method. To improve the computational

efficiency and parallel performance, we design a multi-level restricted additive

Schwarz preconditioner based on domain decomposition and multigrid method.

We perform the simulations of two benchmark cases suggested respectively by

Jackson et al. (2014) and Vantieghem et al. (2016) and obtain highly accurate
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numerical solutions, comparable to the existing local method results reported

in (Jackson et al., 2014; Vantieghem et al., 2016; Matsui et al., 2016). Several

numerical tests are carried out to investigate the computational efficiency and

the parallel performance with up to 10368 processor cores on the Sunway Taihu-

Light supercomputer. The solver of VTBE with the one-level restricted additive

Schwarz preconditioner shows very good strong and weak scalabilities. For the

solver of PPBE, a noticeable improvement in the computational efficiency and

the weak scalability by the two-level preconditioner is observed, comparing to

the one-level method.

To extend our code to the full dynamo problem, the implementations of the

insulating boundary condition and the singularity in the inner core should be

taken into consideration in the future. Possible solutions may include an integral

boundary element approach (Iskakov et al., 2004) together with a parallel fast

multipole method (Benson et al., 2014) for the issue of the insulating boundary

condition and a logically rectangular grid suggested by (Calhoun et al., 2008)

for the inner core problem.
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