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Abstract

In simulations of fluid motion time accuracy has proven to be elusive.
We seek highly accurate methods with strong enough stability properties to
deal with the richness of scales of many flows. These methods must also be
easy to implement within current complex, possibly legacy codes. Herein
we develop, analyze and test new time stepping methods addressing these
two issues with the goal of accelerating the development of time accurate
methods addressing the needs of applications. The new methods are created
by introducing inexpensive pre-filtering and post-filtering steps to popular
methods which have been implemented and tested within existing codes. We
show that pre-filtering and post-filtering a multistep or multi-stage method
results in new methods which have both multiple steps and stages: these are
general linear methods (GLMs). We utilize the well studied properties of
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GLMs to understand the accuracy and stability of filtered method, and to
design optimal new filters for popular time-stepping methods. We present
several new embedded families of high accuracy methods with low cognitive
complexity and excellent stability properties. Numerical tests of the methods
are presented, including ones finding failure points of some methods. Among
the new methods presented is a novel pair of alternating filters for the Implicit
Euler method which induces a third order, A-stable, error inhibiting scheme
which is shown to be particularly effective.

Keywords: Navier-Stokes, general linear methods, time discretization, time
filter

1. Introduction

There is significant cognitive complexity required for understanding, im-
plementing and validating new methods in complex, possibly legacy, codes.
This results in a need for improved methods that can be easily implemented
through small modifications of simpler and well-tested codes. Herein, we
develop high order timestepping methods with favorable stability properties
that can be implemented by adding a minimal code modification of a few,
O(2), extra lines to simple methods often used in legacy codes. The newly
developed methods often do not require additional function evaluations or
extra storage, as the variables are simply over-written. Some of these meth-
ods provide an embedded error estimator, have natural extensions to variable
timesteps and arise from a process, Section 3.3, that is amenable to opti-
mization with respect to applications driven design criteria.

To motivate the rest of the paper and provide useful methods, we now
give three (constant ∆t) examples of the new methods as time discretizations
of the incompressible Navier–Stokes equations (NSE) (the application used
to test the methods in Section 5). The NSE are

ut + u · ∇u− ν∆u+∇p = f and ∇ · u = 0. (1)

Here, u is the velocity, p is the pressure, ν is the kinematic viscosity, and
f = f(x, t) is an external non-autonomous body force. The two equations
describe the conservation of momentum and mass, respectively. We set f = 0
for simplicity in these examples.

Example 1: Beginning with the usual fully implicit Euler (IE) method,
let ∆t denote the timestep and superscript the timestep number. Suppressing
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the spatial discretization, the IE method for the Navier-Stokes equations
(NSE) is:

un+1 − un

∆t
+ un+1 · ∇un+1 − ν∆un+1 +∇pn+1 = 0 and ∇ · un+1 = 0. (2a)

Adding two extra lines of code yields the following new method:

1) Pre-filter ũn = un − 1
2

(un − 2un−1 + un−2) ,

2) IE Solve:

{
1

∆t
un+1 + un+1 · ∇un+1 − ν∆un+1 +∇pn+1 = 1

∆t
ũn

∇ · un+1 = 0

3) Post-filter un+1
3rd = un+1 − 5

11
(un+1 − 3un + 3un−1 − un−2) ,

The method arising by stopping after Step 2 is second order accurate and
L-stable, Section 4.1.2, and is referred to herein as IE-Pre-2. The method
after Step 3 is third order accurate and A(α) stable with α ' 71◦, Section
4.1.3, and is referred to as IE-Pre-Post-3. Thus the difference between the
Steps 2 and 3 approximation is an estimator of the local truncation error2. We
stress that the pre and post-filters are themselves comprehensible (not exotic)
operations and reduce the discrete fluctuation of the numerical solution.

Steps 2 and 3 are time filters designed to have no effect on (some realiza-
tion of) smooth solution scales and damp (some realization of) fluctuating
scales. For example, for the prefilter ũn = un − 1

2
(un − 2un−1 + un−2), if

un = a + btn then the filter does not alter un. Let κ = un − 2un−1 + un−2

denote the discrete curvature, then the filter also has the effect of halving the
discrete curvature: κpost = 1

2
κpre. The post-filter is a higher order realization

of this process. The coefficient values, 1/2 and 5/11, are derived by applying
the order conditions in the general linear method induced by the pre and
post filtered method, Section 3.

Example 2: One equivalent realization3 of the usual implicit midpoint

2The pair of approximations allows implementation as a variable order method, not
developed herein.

3The next steps would be reorganized for a different implementation of the method.
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(1-1 Padé, Crank-Nicolson, one-leg trapezoidal) method is: given un{
1

1
2

∆t
un+ 1

2 + un+ 1
2 · ∇un+ 1

2 − ν∆un+ 1
2 +∇pn+ 1

2 = 1
1
2

∆t
un ,

∇ · un+ 1
2 = 0,

(3a)

un+1 = 2un+ 1
2 − un. (3b)

We abbreviate this as MP. The pre- and post-filtered methods in Section 4.2
require introducing temporary variables ũn, ũn+1 (that can be overwritten
each time step) and produces an embedded triplet of approximations of 2nd,
3rd and 4th order un+1

2nd , u
n+1
3rd , u

n+1
4th . Naturally one must be selected to be

un+1. The method is

1) Pre-filter ũn = un + 5
6

(
un − 3

2
un−1 + 3

5
un−2 − 1

10
un−3

)
2) IM Solve


1

1
2

∆t
un+ 1

2 + un+ 1
2 · ∇un+ 1

2 − ν∆un+ 1
2 +∇pn+ 1

2 = 1
1
2

∆t
ũn,

∇ · un+ 1
2 = 0,

un+1 = 2un+ 1
2 − ũn

3) Post-filters un+1
3rd = 1

2
(un+1 + ũn)

un+1
2nd = 12

11
un+1

3rd − 7
22
un + 9

22
un−1 − 5

22
un−2 + 1

22
un−3,

un+1
4th = 24

25
un+1

3rd + 4
25
un − 6

25
un−1 + 4

25
un−2 − 1

25
un−3.

The 2nd order approximation, MP-Pre-Post-2, is A-stable, and has the same
linear stability region as MP. The 3rd order approximation, MP-Pre-Post-
3, is A(α) with α = 79.4◦ while the fourth order approximation, MP-Pre-
Post-4, is A(α) with α = 70.64◦, Section 4.2. Their differences provide an
estimator, which makes MP-Pre-Post-2/3/4 potentially useful as the basis
for a variable stepsize variable order (VSVO) method. Other examples are
provided building on BDF2 (Section 4.3) and Runge-Kutta methods (Section
4.4). The above is the natural implementation without requiring additional
function evaluations.

Example 3: Looking at the pre- and post-filtering process as a general
linear method (GLM) also opens the door to creating methods that have the
error inhibiting properties described in [EIS20]. An example of this is the
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EIS method IE-EIS-3 which we will describe in 4.1.4:

1) Pre-filter ũn = 23
5
un−

1
3 − 3un − 9

5
ũn−1 + 6

5
ûn−1

2) IE Solve:

{
1

∆t
un+ 2

3 + un+ 2
3 · ∇un+ 2

3 − ν∆un+ 2
3 +∇pn+ 2

3 = 1
∆t
ũn

∇ · un+ 2
3 = 0

3) Filter ûn = 5
12
un − 1

12
un+ 2

3 − 5
12
ûn−1 + 13

12
ũn

4) IE Solve:

{
1

∆t
un+1 + un+1 · ∇un+1 − ν∆un+1 +∇pn+1 = 1

∆t
ûn

∇ · un+1 = 0

This method is third order and A-stable, and has the cost of two implicit
Euler evaluations.

Method design and analysis. In the methods’ derivation and imple-
mentation, extra variables are introduced. In their analysis and design the
extra variables are condensed to obtain an equivalent single method. With
pre and post filtering, this equivalent method can be both multi-step and
multi-stage. Thus its optimization and analysis must be through the theory
of general linear methods, Section 2. Section 3 shows how this theory can be
used to design filters so that the induced method satisfies desired optimality
conditions. In Section 3 we will show how to rewrite time-filtering meth-
ods as general linear methods, and give some examples of such time-filtered
methods as GLMs. In Section 3.3 we will show how this formulation can be
used to develop an optimization code that is a powerful tool that allows us
to find pre- and post- processed methods with advantageous stability proper-
ties. We will demonstrate the utility of this approach showing some methods
that resulted from this optimization code (Section 4). Section 4 applies
Section 2 and 3 to derive the methods in the section above and several more
based on design criteria of stability, accuracy and an embedded algorithmic
structure. These new methods are embedded families of high order methods
based on combinations of pre- and post-filtering for the most commonly used
methods for time discretization of incompressible flows, including the fully
implicit Euler method, the midpoint rule, and the BDF2 method. (We stress
however that the theory can be applied to a wide variety of other applica-
tions driven design criteria.) The tools developed in Sections 2 and 3 thus
show how to accelerate the development of time accurate methods addressing
the needs of applications. Finally, we study the performance of some of these
methods in Section 5. The higher Reynolds flow problems in Section 5 were
selected because they are nonlinearity dominated and have solutions rich in
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scales, so accuracy is difficult and stability is essential.

1.1. Related work

Time filters are widely used to stabilize leapfrog time discretizations of
atmosphere models, e.g., [R69], [A72], [W09]. Our study of this important
work, in particular its stress on balancing computational, space and cognitive
complexities, was critical for the development path herein. In [GL18] it was
shown a well calibrated post-filter can increase accuracy in the fully implicit
method to second order, preserve A-stability, anti-diffuse the approximation
and yield an error estimator useful for time adaptivity. The new methods
and analysis in [GL18] for y′ = f(t, y) were extended to the Navier-Stokes
equations in [DLZ18]. In [DGLL18] post-filters were studied starting with
BDF3 (yielding an embedded family of orders 2,3,4). It was also proven that
post-filtering alone has an accuracy barrier: improvement by at most one
power of ∆t is possible from any sequence of linear post-filters. The idea
of adding a prefilter step herein is simple in principle (though technically
intricate in analysis and design, Sections 2,3) and overcomes this accuracy
barrier.

There is a significant body of detailed and technically intricate stabil-
ity and convergence analysis for CFD problems of, mostly simpler (e.g., IE,
IM, BDF2) and mostly constant timestep methods, including [G79], [CR78],
[BDK82], [JMRT17], [E04a], [E04b], [J15]. Important work on adaptive
timestepping for similar problems occurs in [KGGS10], [VV13], [HEPG15],
[JR10]. The embedded structure of the new method families herein suggest
their further development into adaptive methods.

2. Examples: Time Filters induce General Linear Methods (GLMs)

Writing the method induced by adding pre- and post-filters in the form of
a GLM allows us to apply the order conditions and stability theory of GLMs
to optimize the method. To illustrate how a GLM is induced, for

ut = F (u)
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we consider the pre- and post-filtered implicit Euler method (Example 1 in
Section 1) which can be written in the form

y(1) = un − 1

2

(
un − 2un−1 + un−2

)
(4a)

y(2) = y(1) + ∆tF
(
y(2)
)

(4b)

un+1 = y(2) − 5

11

(
y(2) − 3un + 3un−1 − un−2

)
(4c)

GLMs represent any combination of multistep and multistage methods.
A GLM with s stages and k steps is

y(i) =
k∑
`=1

di`u
n−k+` + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j)) 1 ≤ i ≤ s

(5a)

un+1 =
k∑
`=1

θ`u
n−k+` + ∆t

k−1∑
`=1

b̂`F (un−k+`) + ∆t
s∑
j=1

bjF (y(j)), (5b)

where the un−k+l denote the steps, while the ynj are intermediate stages used
to compute the next solution value un+1. We will refer to these coefficients
more compactly by the matrices D,A, Â given by

Di` = di`, Âi` = âi`, and Aij = aij,

and the vectors Θ,b, b̂ that are given by

Θ` = θ`, b̂` = b̂`, and bj = bj.

The method (4) is in the form (5) with

D =

(
−1

2
, 1,

1

2

)
, θ =

(
2

11
,− 9

11
,
18

11

)
, Â = (0, 0, 0) , b̂ = (0, 0, 0) ,

and A = 1, b1 = 6
11
. Note that we can write this method as a pair of embed-

ded second and third order methods. Only pre-filtering the implicit
Euler method yields the O(∆t2) accurate4 method

y(1) = −1

2
un−2 + un−1 +

1

2
un

un+1
2nd = y(1) + ∆tF

(
un+1

2nd

)
.

4All accuracy statements are proven by checking the order conditions for GLMs pre-
sented in Section 3.
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Adding a final postprocessing line

un+1
3rd =

5

11
un−2 − 15

11
un−1 +

15

11
un +

6

11
un+1

2nd (6)

makes the approximation O(∆t3). This embedded structure means that the
difference between the velocities un+1

3rd and un+1
2nd can be used as an error esti-

mator.
A 1-parameter family of pre- and post-filtered methods. Adding

a parameter to the pre- and post- filters allows optimization with respect to
accuracy, stability and error constant criteria in Section 3. For the implicit
Euler method the parametric family is

y(1) = un − d
(
un − un−1

)
(7a)

y(2) = y(1) + ∆tF
(
y(2)
)

(7b)

un+1 = y(2) − 1

3− 2d

{
(1− 2d)y(2) − 2(1− d)un + un−1

}
. (7c)

This method can be written as a GLM by

y(1) = dun−1 + (1− d)un

y(2) = y(1) + ∆tF
(
y(2)
)

un+1 =
2d− 1

3− 2d
un−1 +

4(1− d)

3− 2d
un +

2

3− 2d
∆tF (y(2)).

which is of GLM form with the choices A = 1, b1 = 2
3−2d

and

D =

(
d 1− d
d 1− d

)
, θ =

(
2d− 1

3− 2d
,
4(1− d)

3− 2d

)
, Â = (0, 0) , b̂ = (0, 0) .

Clearly, it is possible to develop easily implemented methods with many
free parameters by pre- and post-filtering widely used methods. Next, in
Section 3, we show that the induced GLM form can simplify, automate and
accelerate filter, and thus method design.

3. Optimizing Time Filters using the GLM framework

Section 2 illustrates that adding two lines of time filter code to commonly
used linear multistep methods can increase accuracy without significant ad-
ditional computational work. To design the filter required, it is necessary
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to write the filtered methods in the GLM form (5). This section develops
the GLM form of filtered general GLMs, shows how to use this in a method
design process and generalizes the filtering process to also include, previously
computed, trend values (i.e. values of F (y(j))).

Subsection 3.1 shows that pre- and post-filtering any GLM, whether a
multistep, Runge–Kutta, or a combination of these, induces another GLM
whose properties depend on the filter parameters in a precise way. Theorem
1 gives a complete characterization of the coefficients of the filtered GLM
that results from pre- and/or post-filtering a core GLM method in terms of
the filter parameters and the coefficients of the core method. Subsection 3.2
shows how to determine the accuracy and stability properties of the method
so induced. The results in the first three subsections open the possibility,
developed in Subsection 3.3, of optimizing accuracy and stability properties
of the filtered GLM over the choices of the filter parameters. The optimization
algorithm in Subsection 3.3 is then used to design methods with favorable
stability and accuracy properties. We will present the new methods found
using this optimization in Section 4.

3.1. Pre and post filtering a GLM

In the section above, we showed how time-filtering a linear multistep
method can be written as a GLM. Filtering is also useful for multi-stage
(Runge–Kutta) methods and multistep multi-stage methods, GLMs. If the
core method is a linear multistep method as in (11) the section above then we
have one stage only and k steps. If the core method is a Runge–Kutta method
then we have k = 1 steps and s stages. In more generality, we consider here a
core method with s stages and k steps, defined by the coefficients ďi`, âi`, aij
for i = 2, ..., s, j = 2, ..., s and ` = 1, ..., k:

y(1) = un

y(i) =
k∑
`=1

ďi`u
n−k+` + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j)) (8)

for 2 ≤ i ≤ s

un+1 = y(s).

We can write this in the form (5) where the final row coefficients are the same
as the prior row coefficients. In the last theorem we limited the form of the
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post-filter to be (12c) and not include any function evaluations. However,
the post filter does not have to be limited to the form (12c), but in fact can
have θl, b̂l, bj as free parameters, chosen only to satisfy stability and accuracy
considerations. This does not impose much additional cost to the method,
as any function evaluations have already been computed by the final stage.

The following theorem provides the relationship between the core method,
the filter parameters and the filtered method.

Theorem 1. If we filter a GLM of the form (8) we obtain a GLM of the
form (5) where the first stage is a pre-filter is given by

y(1) =
k∑
`=1

d1`u
n−k+` (9a)

and the final stage is a post filter given by

un+1 =
k∑
`=1

θ`u
n−k+` + ∆t

k−1∑
`=1

b̂`F (un−k+`) + ∆t
s∑
j=1

bjF (y(j)). (9b)

The coefficients d1` of (9a) are the pre-filter coefficients, and the coefficients
θ`, b̂`, bj in (9b) are the post-filter coefficients. These do not depend on the
coefficients of the core method (8) and can be chosen freely, subject only to
order and stability constraints.

The middle stages 2 ≤ i ≤ s of the filtered method have the form

y(i) =
k∑
`=1

di`u
n−k+` + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j)),

where coefficients aij and âil are not impacted by the filtering, and the coeffi-
cients di` of the filtered methods are related to the coefficients ďi` of the core
method (8) by

di` = ďi1d1` + ďi` for ` = 1, k − 1 (10a)

dik = ďi1d1k. (10b)

Proof. Clearly, the pre-filter coefficients d1` in (9a) can be freely chosen, sub-
ject only to accuracy and stability considerations. We then use y(1) instead
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of un in all the middle stages of (8):

y(i) = d̃i1y
(1) +

k−1∑
l=1

d̃i`u
n−k+` + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j))

= d̃i1

k∑
`=1

d1`u
n−k+` +

k−1∑
`=1

d̃i`u
n−k+` +

+ ∆t
k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j))

=
k∑
`=1

di`u
n−k+` + ∆t

k−1∑
`=1

âi`F (un−k+`) + ∆t
s∑
j=1

aijF (y(j)),

where the coefficients of the pre-processed scheme are related to the original
coefficients by:

di` = d̃i1d1` + d̃i` for ` = 1, k − 1, and dik = d̃i1d1k

To post-process the method, we simply modify the final line (9b) by allowing
the postprocessing coefficients θ`, b̂`, bj to be chosen freely, subject only to
order conditions and stability considerations.

Remark 2. By placing additional constraints on the post-filter coefficients,
methods may be derived where the function evaluations in (9b) are replaced by
a linear combination of previously computed un−k+l and stages y(j). This may
be desirable depending on the problem, computer architecture, and availability
of function evaluations from a possibly black box solver.

3.1.1. Filtering a linear multistep method

Consider a k-step linear multistep method:

un+1 =
k∑
`=1

α`u
n−k+` + ∆t

k+1∑
`=1

β`F (un−k+`). (11)
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We pre-filter (Eqn. (12a)) and post-filter (Eqn. (12c) ) as in Section 2:

ûn = un − α

2

k∑
`=1

d̂lu
n−k+` (12a)

ûn+1 = αkû
n +

k−1∑
`=1

αlu
n−k+` + ∆t

k−1∑
`=1

β`F (un−m+`) (12b)

+ ∆tβkF (ûn) + ∆tβk+1F (ûn+1)

un+1 = ûn+1 − ω

2

k∑
`=1

q̂`u
n−k+`. (12c)

Following Theorem 1, the coefficients of the filtered methods satisfy:

d1k = 1− α

2
d̂k, d2k = αkd1k and d1` = −α

2
d̂`, d2` = αkd1` + αl for ` < k.

â2` = βl for ` ≤ k − 1, and a21 = βk, a22 = βk+1.

Generally, the post-filtering coefficients θ` and b̂` for ` ≤ k, and bj for j =
1, 2 can be chosen freely subject only to order and stability considerations.
However, if we wish to limit our post-filtering to the form (12c), which does
not include function evaluations, then we have

θ` = d2l −
ω

2
q̂`, b̂l = â2`, and bj = a2j. (13)

Notice that in the pre-filter (12a), for consistency
∑
d̂lu

n−k+l should an-
nihilate polynomials up to a certain (non-zero) degree so that this quantity
is related to a discrete derivative. In particular, for un ≡ 1 this implies∑k

l=1 d̂l = 0. In general, the quantity
∑k

l=1 d̂lu
n−k+l represents a discrete

fluctuation. Pre-filtering acts to reduce the discrete fluctuation of the nu-
merical solution.

Proposition 3. If
0 < αd̂k < 2,

then the filter

unpre = un − α

2

k∑
`=1

d̂lu
n−k+l

12



strictly reduces without changing sign the discrete fluctuation
∑
d̂`u

n−k+l(
d̂ku

n
pre +

k−1∑
l=1

d̂lu
n−k+`

)
=

(
1− αd̂k

2

)(
k∑
`=1

d̂`u
n−k+`

)
Proof. Multiply by d̂k to obtain

d̂ku
n
pre = d̂ku

n − αd̂k
2

k∑
`=1

d̂`u
n−k+`.

Add
∑k−1

`=1 d̂`u
n−k+` to both sides:(

d̂ku
n
pre +

k−1∑
`=1

d̂`u
n−k+`

)
=

(
d̂ku

n +
k−1∑
`=1

d̂`u
n−k+`

)
− αd̂k

2

(
k∑
`=1

d̂`u
n−k+`

)

=

(
1− αd̂k

2

)(
k∑
`=1

d̂`u
n−k+`

)
which establishes the result.

3.2. Background on General Linear Methods

To analyze the order and stability of (5) we convert to the compact form

y(i) = un−k+i for i =1 ..., k-1 (14a)

y(i) =
k∑
`=1

di`u
n−k+` + ∆t

k+s∑
j=1

ÃijF (y(j)) for i =k ..., k+s (14b)

un+1 =
k∑
`=1

θ`u
n−k+` + ∆t

k+s∑
j=1

b̃jF (y(j)) (14c)

where

Ã =

 0(k−1)×(s+k−1)

Â A

 , D̃ =

[
I(k−1)×(k−1) 0(k−1)×(1)

D

]
, b̃ =

[
b̂ b

]
are matrices of dimension (s + k − 1) × (s + k − 1), (s + k − 1) × k, and
1× (s+ k − 1), respectively. This compact form is obtained by defining the
first few stages to be older steps. The consistency and stability properties of
GLMs are delineated in [B66, B06, 19], reviewed next.
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Definition 4. Let e denote a column vector of 1’s, and define the vectors

` = − [k − 1, k − 2, · · · , 1, 0]T and c = Ães+k−1 + D̃`.

Below, let terms of the form cp, `p mean that each element is raised to the
power p, and terms of the form c · Ãc mean element-wise multiplication of
the vector c with the vector Ãc.

A k-step s-stage method of the form (14) is consistent of order p if
the order conditions are satisfied

τqi = 0, ∀qi such that q ≤ p.

The values τqi are given in Appendix A.

Order conditions for GLMs are similar to those of Runge-Kutta methods,
but take into account how previous time levels provide additional information
in the form of the elementary differentials.

Definition 5. A General Linear Method (14) has an evolution operator

M(z) =

[
0 Ik−1

Φ(z)

]
where 0 is a vector of zeros of length k − 1,and Ik−1 is a (k − 1) × (k − 1)
identity matrix, and

Φ(z) = Θ + zb̃(I − zÃ)−1D̃.

Definition 6. A GLM of the form (14) is linearly stable if and only if the
roots of M satisfy the root condition: the eigenvalues λi(M) are less than or
equal to one in magnitude, and that when a given eigenvalue has magnitude
one then it must have algebraic multiplicity equal to one.

3.3. Formulating the Optimization Problem

Building on the work of Ketcheson [DK08], this section formulates meth-
ods to optimize pre- and post-filters. Optimization requires specifying the
objective function to be optimized, the inputs, the free parameters, and the
equality and inequality constraints. We begin with a core method with given
coefficients, and aim to determine the coefficients of a pre-filter and post-filter
so that the resulting order is of a specified value p and the A(α) stability re-
gion is maximized. The optimization problem is described in the following
algorithm:
Optimization algorithm:

14



• The GLM is defined by:

– Core method coefficients: The coefficients of the core method
A, Â, D̃.

– Free variables: The pre- and post-filter coefficients, which are
the coefficients in θ,b, b̂ and the first row of D.

– Computed coefficients: The coefficients in all but the first row of
D are defined by (10a), which depends on the core coefficients and
the free variables.

• Select the free variables to maximize R subject to conditions:

1. (Inequality constraints:) The eigenvalues λj of M(z) defined in
Definition 5 satisfy

maxj |λj| < 1

for all z = |z| exp(iθ) in the wedge defined by

0 ≤ |z| ≤ ∞, and θ ∈
(
µ2 + 1

2µ2 + 1
π, π

)
for 0 ≤ µ ≤ r.

(We enforce this condition for 0 ≤ |z| ≤ 104 in the optimization,
but then verify the results for larger values of z.)

2. (Equality constraints:) The order conditions in Definition 4 are
satisfied to order p.

The α that corresponds to the value of r resulting from this optimization

algorithm is given by α = 180
(

1− r2+1
2r2+1

)
.

If the needs of an application requires optimization of a different type
of stability region (e.g. imaginary axis stability or real axis stability), we
replace the definition of A(α) with a different type of stability region, such
as:

1. Imaginary axis stability: For imaginary axis stability, we require
that the eigenvalues λj of M(z) satisfy maxj |λj| < 1 for all z = iν
where 0 ≤ ν ≤ r.

2. Negative real axis stability: For negative real axis stability, we
require that the eigenvalues λj of M(z) satisfy maxj |λj| < 1 for all
z = −ν where 0 ≤ ν ≤ r.

Of course, it is possible to optimize with respect to other properties as
well simply by adding these to the objective function or the constraints.
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4. Some new methods induced by time-filters

In the following sections we present some of the methods we discussed
above and some new methods that we obtained by optimization.

4.1. Core method: Implicit Euler (IE)

Consider the implicit Euler method as the starting point or core method:

un+1 = un + ∆tF (un+1).

4.1.1. Second order method based on implicit Euler with 2-point filters (IE-
Filt(d))

The simplest possible pre-filter to the implicit Euler method is a 2 point
filter of the form:

y(1) = un − d
(
un − un−1

)
for some 0 < d < 1.

If a 3-point post-filter is also added the resulting 1-parameter family of second
order methods, given in Eqn. (7), can be written as a GLM of the form:

y(1) = dun−1 + (1− d)un

y(2) = y(1) + ∆tF
(
y(2)
)

un+1 =
2d− 1

3− 2d
un−1 +

4(1− d)

3− 2d
un +

2

3− 2d
∆tF

(
y(2)
)
.

The case d = 0 gives a method that is not pre-filtered at all, only post-
filtered. However, this does not impact the order of the scheme which is
O(∆t2). This pre-filter does not enhance the order of the method, but it may
serve to improve the error constants. The post-filter is designed to impact
both the order enhancement and the stability properties of the method.

When implementing this method, especially in a black-box setting, it is
easier to write it as

y(1) = dun−1 + (1− d)un

y(2) = y(1) + ∆tF
(
y(2)
)

un+1 =
1

3− 2d

(
2y(2) + 2(1− d)un − un−1

)

16



All values of 0 ≤ d ≤ 1 give an A-stable second order method. We also
show that this method is energy-stable for all values 0 ≤ d ≤ 1 (see proof in
Appendix). An interesting value is

d =
3−
√

3

3
,

the resulting method is second order, but for linear problems we will see third
order convergence.

4.1.2. Second order L-stable method based on implicit Euler with 3-point pre-
filter (IE-Pre-2)

We saw above that a 2-point pre-filter introduces a parameter that can
then be used to optimize some property of the scheme but does not increase
order of accuracy, while the post-filter allows the enhancement of accuracy.
In this section we show that 3-point pre-filter can be used to increase order
of accuracy while maintaining favorable stability properties.

Consider the 3-point pre-filter added to the core implicit Euler method:

y(1) = −1

2
un−2 + un−1 +

1

2
un (15a)

un+1 = y(1) + ∆tF (un+1). (15b)

This produces a second order approximation to the solution, and the method
is L-stable.

We can verify that this method is L-stable by analyzing the eigenvalues
of the incremental operator, M(z), which advances the solutions to the next
time level i.e.un−1

un

un+1

 = M(z)

un−2

un−1

un

 where M(z) =

 0 1 0
0 0 1
−1

2(1−z)
1

1−z
−1

2(1−z)


When we take limz→−∞M(z), M becomes upper triangular so all its eigen-
values become zero. This shows that the second order pre-filtered method
(15) is L-stable. The stability region of this method is shown in Figure 1 on
the left.
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Figure 1: Stability Region of the pre-filtered implicit Euler method IE-Pre-2 (15) (left)
which is L-stable, and of the pre- and post-filtered implicit Euler IE-Pre-Pose-3 (16)(right)
which is not A-stable, but is A(α) stable with α ≈ 71.51.

4.1.3. Third order method using with 3-point pre- and post-filters (IE-Pre-
Post-3)

The method above has only a pre-filter. To raise the order of accuracy of
the scheme to third order, we can add a post-filter as well:

y(1) = −1

2
un−2 + un−1 +

1

2
un (16a)

y(2) = y(1) + ∆tF
(
y(2)
)

(16b)

un+1 =
5

11
un−2 − 15

11
un−1 +

15

11
un +

6

11
y(2) (16c)

While we have gained order of accuracy, we lost stability properties by adding
a post-filter. This third order method is not A-stable, but it has an A(α)
region of stability with α ≈ 71.51. The stability region of this method is
shown in Figure 1 on the right.

4.1.4. A-stable third order error inhibiting method (IE-EIS-3)

An A-stable third order method that is based on the implicit Euler
method can be obtained by using the error inhibiting approach presented
in [EIS20]. In this formulation, we retain previous stages as well as previous

18



steps, to create a method of the form

un+ 2
3 =

14

5
un−

1
3 − 9

5
un +

9

5
∆tF (un−

1
3 )− 6

5
∆tF (un) + ∆tF (un+ 2

3 )

un+1 =
14

5
un−

1
3 − 9

5
un +

9

5
∆tF (un−

1
3 )

− 47

60
∆tF (un)− 1

12
∆tF (un+ 2

3 ) + ∆tF (un+1).

This method takes the time levels un−
1
3 and un and advances them to un+ 2

3

and un+1. To reveal the dependence on previous stages and previous steps,
and the fact that the method is based on the implicit Euler method, we
re-write it in the form

y(1)
n =

14

5
y

(2)
n−1 −

9

5
un +

9

5
∆tF (y

(2)
n−1)− 6

5
∆tF (un)

y(2)
n = y(1)

n + ∆tF (y(2)
n )

y(3)
n = y(2)

n +
5

12
∆tF (un)− 13

12
∆tF (y(2)

n )

un+1 = y(3)
n + ∆tF (un+1).

It is usually preferable to implement this in the form:

y(1)
n =

23

5
y

(2)
n−1 − 3un − 9

5
y

(1)
n−1 +

6

5
y

(3)
n−1

y(2)
n = y(1)

n + ∆tF (y(2)
n ) (17)

y(3)
n =

5

12
un − 1

12
y(2)
n −

5

12
y

(3)
n−1 +

13

12
y(1)
n

un+1 = y(3)
n + ∆tF (un+1). (18)

This method satisfies the order conditions up to second order, but its coeffi-
cients also satisfy the error inhibiting property in [EIS20] and so the resulting
numerical solution is third order. As mentioned above, it is A-stable, and
we notice that while y(1) and y(3) are linear combinations of previous steps
and stages, y(2) and un+1 are simply implicit Euler computations, that can
be computed in any legacy code that is based on the implicit Euler method.

It is important to note that, as in Runge–Kutta methods, if the problem is
non-autonomous we need to compute the function evaluations at the correct
time-levels. In this case the time-levels are tn + 2

3
∆t for y

(2)
n , and tn + ∆t for

un+1.
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4.2. Core method: Implicit Midpoint Rule (MP)

Next, we will consider the second order implicit midpoint rule as our core
method:

un+1 = un + ∆t F

(
1

2
un +

1

2
un+1

)
which, as we saw in Section 2, can be written in the equivalent form

y(1) = un +
1

2
∆tF (y(1))

un+1 = 2y(1) − un.

Using pre- and post-filters we can raise the order of this method. While the
resulting methods are not A-stable, they are A(α) stable for large values of
α.

4.2.1. Third order filtered implicit midpoint rule (MP-Pre-Post-3)

We can filter the implicit midpoint method to obtain the following third
order method:

y(1) = − 1

12
un−3 +

1

2
un−2 − 5

4
un−1 +

11

6
un (19a)

y(2) = y(1) +
1

2
∆tF (y(2)) (19b)

y(3) = 2y(2) − y(1) (19c)

un+1 =
1

2
y(1) +

1

2
y(3) . (19d)

Observe that the final step is simply y(2), so we can say

y(1) = − 1

12
un−3 +

1

2
un−2 − 5

4
un−1 +

11

6
un

y(2) = y(1) +
1

2
∆tF (y(2))

un+1 = y(2) .

However, if one is working with a code that treats the implicit midpoint
rule as a black box and does not output the intermediate value in the core
method, it is more convenient to use (19).

This method is not A-stable, but it is A(α) stable with α = 79.4. The
advantage of this method is that using the same pre-filter but a different
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Figure 2: Stability regions of third order MP-Pre-Post-3 (left) and fourth order MP-Pre-
Post-4 (right) filtered implicit midpoint methods.

post-filter gives a fourth order method, as we see in the next subsection.
The two approaches form an embedded pair which is convenient for error
estimation.

4.2.2. Fourth order filtered implicit midpoint rule (MP-Pre-Post-4)

If we use a method similar to (19), but with a different post-filter

un+1 = − 1

25
un−3 +

4

25
un−2 − 6

25
un−1 +

4

25
un +

24

25
y(2) , (20a)

we obtain a fourth order method . If the implicit midpoint rule is coded as
a black box, we may prefer to write this in the form

y(1) = − 1

12
un−3 +

1

2
un−2 − 5

4
un−1 +

11

6
un

y(2) = y(1) +
1

2
∆tF (y(2))

y(3) = 2y(2) − y(1)

un+1 = − 2

25
un−3 +

2

5
un−2 − 21

25
un−1 +

26

25
un +

12

25
y(3)

This fourth order method has A(α) stability region with α ≈ 70.64. By
using the post-filter from the third order method (19) and comparing it with
the result from this fourth order method, we obtain an error estimator.
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4.3. Filtered BDF2

In this subsection, we begin with the second order backward differentia-
tion formula (BDF-2) scheme

un+1 = −1

3
un−1 +

4

3
un +

2

3
∆tF (un+1).

as the core method. We write this method in GLM form as

y(1) = un

y(2) = −1

3
un−1 +

4

3
un +

2

3
∆tF (y(2)).

un+1 = y(2).

4.3.1. Third order filtered method (BDF2-Post-3)

We can post-filter the BDF2 method to obtain a third order method:

y(1) = un

y(2) = −1

3
un−1 +

4

3
un +

2

3
∆tF (y(2))

un+1 = y(2) − 2

11

(
y(2) − 3un + 3un−1 − un−2

)
=

9

11
y(2) +

6

11
un − 6

11
un−1 +

2

11
un−2.

This method has stability region A(α) with α = 83.89.

4.3.2. A third order method with enhanced stability region (BDF2-Pre-Post-
3)

By adding a four-step pre- and post-filter, we can obtain a third order
method. The following third order method has four steps, three stages, and
stage order q = 2. The method was created to optimize the value α in the
A(α) linear stability region. This method has value α = 89.59.
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Figure 3: Stability region for the BDF2-Pre-Post-3 (21a), with k = 4, s = 3, q = 2. On
the left we see the stability region, the zoomed image on the right shows that the method
is not quite A-stable. In fact, we have A(α) stability with α ≈ 89.59.

y(1) = d1u
n−3 + d2u

n−2 + d3u
n−1 + d4u

n, (Pre-filter) (21a)

y(2) = −1

3
un−1 +

4

3
y(1) +

2

3
∆tF (y(2)), . (21b)

un+1 = θ1u
n−3 + θ2u

n−2 + θ3u
n−1 + θ4u

n + b∆tF (y(2)) (Post-filter)(21c)

= θ1u
n−3 + θ2u

n−2 + θ3u
n−1 + θ4u

n +
3b

2
∆t

(
y(2) +

1

3
un−1 − 4

3
y(1)

)
= θ1u

n−3 + θ2u
n−2 + (θ3 +

1

2
b)un−1 + θ4u

n +
3b

2
∆t

(
y(2) − 4

3
y(1)

)
,

with coefficients

d1 = 2.670130894410204, d2 = −3.311517498805319,

d3 = −3.489799303077245, d4 = 5.131185907472361,

θ1 = 0.370742163920604, θ2 = −0.631064728171402,

θ3 = −0.729528261935270, θ4 = 1.989850826186068,

b = 0.120568773483737,

The linear stability region is presented in Figure 3.

4.4. Filtered fully implicit Runge–Kutta (2,2)

We emphasize that this approach works to pre- and post-filter all GLMs,
not just linear multistep methods. Consider the L-stable fully implicit Lo-
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batto IIIC scheme:

y(1) = un +
1

2
∆tF (y(1))− 1

2
∆tF (y(2))

un+1 = un +
1

2
∆tF (y(1)) +

1

2
∆tF (y(2))

The 2-step time-filtered scheme, which we call RK22-Pre-Post-3, can be writ-
ten as :

û = d1u
n−1 + d2u

n

y(1) = û+
1

2
∆tF (y(1))− 1

2
∆tF (y(2))

y(2) = û+
1

2
∆tF (y(1)) +

1

2
∆tF (y(2))

un+1 = q1u
n−1 + q2u

n + q3y
(1) + q4y

(2)

where

d1 = 0.373461706729200, d2 = 0.626538293270800,

q1 = −0.075425887737539, q2 = 0.551112405533260,

q3 = −0.596071637983322, q4 = 1.120385120187601.

This scheme is third order and is A-stable, but not L-stable.

5. Numerical tests of the methods

This section presents several numerical test and comparisons of the timestep-
ping methods applied to the Navier-Stokes equations. The spacial terms are
discretized by a standard (not upwind) finite element method with inf-sup
stable elements. Let Pdk be Lagrange finite elements with d components
with d = 2 or 3, and degree k. We use Hood-Taylor elements described by
(Pdk ,P1

k−1), which correspond to Pdk vector elements for velocity and P1
k−1

scalar elements for pressure. We use a sufficiently fine meshes such that we
expect the error to be dominated by time discretization.

The fully discrete methods are based on a standard weak formulation for
the incompressible NSE. Let Ω be and open subset of R2, and let (·, ·) denote
the L2(Ω) inner product. In (1), test the momentum equation with a vector
valued function v which vanishes on the boundary and the mass equation
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with a scalar function q with zero mean. After integrating by parts, the
weak formulation of (1) is

(ut, v) + ν(∇u,∇v) + (u · ∇u+
1

2
(∇ · u)u, v)− (p,∇ · v) = (f, v),

(∇ · u, q) = 0.

The nonlinearity has been explicitly skew-symmetrized (when boundary con-
ditions allow) in a standard way by adding 1

2
(∇ · u)u.

While the methods we test are derived for autonomous ODEs, the en-
suing tests involve non-autonomous sources and time dependent boundary
conditions. There is also a question about the impact of the pre- and post-
processors on the fluid pressure since it is an unknown which does not satisfy
an evolution equation. These issues are addressed in Appendix C.

The first test in Section 5.1 is a convergence rate verification against a
closed form, exact solution. The second test, in Section 5.2, is a benchmark
test of flow through a channel past a cylindrical obstacle for which there are
published reference values in [J04]. The last test, in Section 5.3, is for a
quasi-periodic flow where phase accuracy is important.

5.1. Convergence Benchmark Test

For this test we solve the homogeneous NSE (so f(x) = 0) with d = 2
under 2π periodic boundary conditions with zero mean. Since the solution
is analytic, we used higher order Hood-Taylor, (P2

4 ,P1
3 ) elements and 125

element edges per side of the periodic box, resulting in 640,625 degrees of
freedom. The boundary conditions and zero mean condition are imposed
strongly (as usual) on the FEM spaces. The Taylor-Green exact solution
used is

u(x, y, t) = e−2νt(cosx sin y,− sinx cos y) and

p(x, y, t) = −1

4
e−4νt(cos 2x+ cos 2y)

The solutions are computed to a final time at Tf = 1 for several stepsizes
starting from ∆t = 0.2, and then halving. Since the solution decays exponen-
tially, absolute errors have little meaning. Thus we compute relative errors
at final time Tf = 1

relative error =

√∫
Ω
|u(Tf )− uh(Tf )|2dx∫

Ω
|u(Tf )|2dx

.
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Comparing the methods, for implicit Euler the core method (upper row
of Figure 4) pre- and post-filtered implicit Euler and EIS3 are by far the
most accurate. EIS3 requires 2 implicit Euler solves per step compared to
1 solve/step for pre & post-filtered IE. Both attain their the O(∆t3) rate of
convergence, as predicted by the theory. The middle row treats the midpoint
rule plus filters. The result here is entire consistent: higher accuracy (in the
sense of consistency error) produces a more accurate approximation. We note
that in the right side figure the 4th order approximation hits an error plateau
of 10−7 where the spacial errors are no longer negligible. In the bottom row
the second BDF2 filtered method performed far better, attaining its expected
rate of convergence. In all tests, run times depended on the number of core
method solves, independent of the number of filter steps, as expected.

5.2. Benchmark test: Flow past a cylinder

This next test is a commonly used benchmark described in [ST96]. Fluid
flows into a channel from the left and flows around slightly off center cylin-
drical obstacle. The fluid starts at rest and the inflow velocity is ramped
up from zero. When the inflow velocity is high enough, vortices shed off
the obstacle (see Figure 5). The data monitored are the lift and drag due
to the cylinder, and the pressure difference before and after the cylinder.
The geometry and flow profile is given by [ST96]; we compare our results to
benchmark lift and drag values obtained in a DNS study from [J04].

Time dependent boundary conditions present questions for both multi-
step and multi-stage methods. Here it also means that the numerical solution
will satisfy filtered BCs rather than their exact values since we applied the
filtering steps as written with no special treatment of the inflow. The error
committed at the boundaries is still consistent up to the order of the method
and no problem was observed.

The flow configuration, [ST96], [J04], is as follows. The kinematic viscos-
ity ν = 10−3, the final time is Tf = 8, and the domain is

Ω = {(x, y) | 0 < x < 2.2, 0 < y < 0.41 and (x− 0.2)2 + (y − 0.2)2 > 0.052}.

The external body force f is set to zero. The inflow and outflow velocities
are parabolic:

u|(0,y) = u|(2.2,y) = 0.41−2(6y(0.41− y), 0).
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We use (P2
2 ,P1

1 ) elements with a well resolved, static mesh with 479,026
degrees of freedom with 1000 edges on the interior cylinder boundary. This
is the same mesh used in [DLZ18] and was generated by adaptive refinement
from solving the steady problem.

We measure the maximum drag cd,max, the time of maximum drag t(cd,max),
maximum lift cl,max, time of maximum lift t(cl,max) and the pressure drop
at the final time between the front and back of the cylinder, ∆p(8) =
ph(0.15, 0.2) − ph(0.25, 0.2). We run the tests for the same ∆t′s in [J04],
which have a largest value of ∆t = 0.04, and are successively halved until
the smallest value of ∆t = 0.00125. The stepsizes are doubled for IE-EIS-
3 for a fair comparison since it requires two implicit Euler solves for one
timestep. If a simulation failed, the missing values are filled in with dashes
in the tables. Failure only happened for IE-Pre-Post-3 and MP-Pre-Post-4
when the energy of the solution grew which was followed by both Newton
and fixed-point iterations failing in the nonlinear solve.

The results for the methods based on IE are shown in Table 1, results
for methods based on BDF2 are shown in Table 2, and results for methods
based on MP are shown in Table 3.

For the IE based methods, every method shows improvement over IE
in the prediction of the maximum lift with the exception IE-Pre-Post-3 for
the larger stepsizes. IE-Pre-Post-3 was the only IE based method to show
instability, and the simulation failed to run to completion for larger step-
sizes. IE-EIS-3 showed superior accuracy at the smallest stepsize in the lift
coefficient and pressure drop.

For the BDF2 based methods, both BDF2-Post-3 and BDF2-Pre-Post-
3 show a dramatic improvement in predicting the final pressure drop over
BDF2. Interestingly, BDF2-Pre-Post-3 exhibits better convergence of pres-
sure than was suggested by the test in Section 5.1.

For the MP based methods, MP and MP-Pre-Post-2 yielded essentially
identical results. The most noticable improvement over the base method is
MP-Pre-Post-3’s pressure drop which matches all four digits of the reference
values for the smallest three ∆ts. For all the methods, the maximum lift co-
efficient appears to be converging to a value slightly higher than the reference
value. MP-Pre-Post-4 did not finish for ∆ts higher than 0.0025.
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IE based methods.
∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)

Reference Values
— 3.93625 2.950921575 5.693125 0.47795 -0.1116

IE
0.005 3.93 2.950301672 6.28 0.17604 -0.1005
0.0025 3.9325 2.950371110 6.215 0.30336 -0.1070
0.00125 3.93375 2.950529384 5.7175 0.38229 -0.1114

IE-Pre-2 (one IE solve and one filter per timestep)
0.005 3.935 2.950802171 5.72 0.45978 -0.1111
0.0025 3.935 2.950872330 5.7 0.47413 -0.1120
0.00125 3.93625 2.950889791 5.695 0.47728 -0.1117

IE-Filt(3−
√

3
3 ) (one IE solve and two filters per timestep)

0.005 3.93 2.950839424 5.71 0.46722 -0.1127
0.0025 3.9325 2.950880844 5.695 0.47567 -0.1124
0.00125 3.935 2.950891744 5.6925 0.47762 -0.1120

IE-Pre-Post-3 (one IE solve and two filter per timestep)
0.005 7.825 435.1275230 7.84 205.33324 -5.1966
0.0025 3.935 2.950897874 5.6925 0.47895 -0.1116
0.00125 3.93625 2.950895596 5.6925 0.47833 -0.1116

IE-EIS-3 (two IE solves and two filters per timestep)
0.01 3.93667 2.950816639 5.69667 0.46183 -0.1119
0.005 3.935 2.950884378 5.69333 0.47608 -0.1117
0.0025 3.93667 2.950893844 5.6925 0.47797 -0.1116

Table 1: For the smallest stepsize, the lift calculated by IE does not have any digits
agreement for the smallest ∆t, but the methods based on it have at least two digits of
accuracy. IE-EIS-3 has the best agreement with the reference lift and pressure drop values
for the smallest ∆t. IE-Pre-Post-3 is unstable and/or did not finish for several stepsizes.

BDF2 based methods.
∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)

Reference Values
— 3.93625 2.950921575 5.693125 0.47795 -0.1116

BDF2
0.02 3.94 2.950423752 5.86 0.34749 -0.1063
0.005 3.935 2.950858401 5.705 0.47141 -0.1120
0.00125 3.93625 2.950893074 5.69375 0.47787 -0.1117

BDF2-Post-3 (one BDF2 solve and one filter per timestep)
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0.02 3.94 2.951551390 5.7 0.56819 -0.1119
0.005 3.935 2.950905566 5.695 0.48028 -0.1116
0.00125 3.93625 2.950895363 5.6925 0.47828 -0.1116

BDF2-Pre-Post-3 (one BDF2 solve and two filters per timestep)
0.02 3.94 2.950855922 5.86 0.44850 -0.1028
0.005 3.935 2.950932030 5.695 0.48538 -0.1116
0.00125 3.93625 2.950896341 5.6925 0.47845 -0.1116

Table 2: BDF2-Post-3 and BDF2-Pre-Post-3 have better agreement with the reference
pressure drop than BDF2. BDF2-Post-3 tends to overestimate the lift coefficient for larger
stepsizes.

Methods based on the implicit midpoint rule
∆t t(cd,max) cd,max t(cl,max) cl,max ∆p(8)

Reference Values
— 3.93625 2.950921575 5.693125 0.47795 −0.1116

MP
0.005 3.935 2.950893884 5.695 0.47780 -0.1118
0.0025 3.9375 2.950894329 5.6925 0.47809 -0.1117
0.00125 3.93625 2.950895120 5.6925 0.47821 -0.1116

MP-Pre-Post-2 (one MP solve and two filters per timestep)
0.005 3.935 2.950886785 5.695 0.47683 -0.1118
0.0025 3.935 2.950892638 5.6925 0.47785 -0.1117
0.00125 3.93625 2.950894681 5.6925 0.47815 -0.1116

MP-Pre-Post-3 (one MP solve and two filters per timestep)
0.005 3.935 2.950896750 5.695 0.47840 -0.1116
0.0025 3.935 2.950894895 5.6925 0.47830 -0.1116
0.00125 3.93625 2.950895215 5.6925 0.47825 -0.1116

MP-Pre-Post-4 (one MP solve and two filters per timestep)
0.005 — — — — —
0.0025 3.935 2.950894654 5.6925 0.47824 -0.1116
0.00125 3.93625 2.950895183 5.6925 0.47824 -0.1116

Table 3: MP-Pre-Post-3 has exact agreement with the reference pressure drop for the
smallest three stepsizes. MP and MP-Pre-Post-2 give nearly identical values. MP-Pre-
Post-4 was unstable for ∆t larger than 0.0025.

5.3. Offset cylinder test

We now consider a body forced internal flow between two offset cylinders
inspired by e.g. [EP00]. This flow is transitional between periodic and tur-
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bulent. Similar tests have been used in, e.g., [J15]. The domain is a unit
cylinder centered at the origin, minus a smaller cylinder of radius 0.1 centered
at (0, 0.5). The flow is forced by

f(t, x, y) = 4 min(1, t)(1− x2 − y2) 〈−y, x〉 .
The kinematic viscosity is set to ν = 1

150
. The flow is started at rest with an

initial condition is u ≡ 0. The simulation is run from t ∈ [0, 30]. We first
obtain accurate reference data using the implicit midpoint rule for several
mesh refinements and step sizes, with a fine mesh refinement of 255,870
degrees of freedom using (P2

2 ,P1
1 ) elements, and a smallest stepsize of ∆t =

0.000625. We capture the evolution of the kinetic energy, several snapshots,
and probe each component of velocity at several points.

For timesteps where the base methods fail to capture the correct dynamics
the filtered methods capture the reference solution better. Solution snapshots
for IE based methods are shown in Figure 10, and the snapshots for BDF2
and MP based methods are shown in Figure 11.

For a quantitative comparison, we measure the error of the x-component
of the velocity vector at the point (0.5, 0.2), which is in the wake of the ob-
stacle. Since the solution is quasi-periodic, we normalize the error by the
difference between the maximum and minimum values taken on by the ref-
erence solution. To calculate the error, let u = u(t, x, y) be the reference
solution and uh(t, x, y) is the discrete solution, which has been linearly in-
terpolated in time. The absolute and relative error at time t is defined as
follows:

absolute error(t) = sup
s∈[0,t]

|u(s, 0.5, 0.2)− uh(s, 0.5, 0.2)|,

relative error(t) =
absolute error(t)

sups∈[0,T ] u(s, 0.5, 0.2)− infs∈[0,T ] u(t, 0.5, 0.2)
.

The reference x-component of the velocity is shown in Figure 6. The errors
of the IE, BDF2, and MP based methods are given in Figures 7, 8, and 9.

IE-Pre-Post-3, MP-Pre-Post-3 and MP-Pre-Post-4 were unstable for some
or all of the stepsizes shown. The solution exhibits the richness of scales
typical for higher Reynolds number flows. One consequence may be increased
importance of A-stability and instabilities seen in methods that are only A(α)
stable. We have derived the methods herein by optimization of accuracy.
Deriving methods by optimizing stability instead can be done using the tools
herein. Doing so is an important open question at higher Reynolds numbers.
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Figure 4: Convergence rates of velocity and pressure for different base methods. The
reference lines for the orders of the method are solid (first), dotted (second), dashed (third)
and dashed-dotted (fourth). The velocities of the methods converge at the expected rates
except. The errors in pressure for BDF2-Pre-Post-3 and MP-Pre-Post-2 either plateau or
converge sub-optimally. The reason is unknown and is the subject of future research.
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Figure 5: Snapshots of the flow past a cylinder solution, described in Section 5.2, at times
(from top to bottom) t =2, 4, 6, and 8.
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Figure 6: The x component of the reference solution shows quasi-periodic behavior.
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Figure 7: For ∆t = 0.0025, IE-Pre-Post-3 is unstable while IE-EIS-3 performs the best.
For ∆t = 0.00125, IE-Pre-Post-3 becomes stable and is the most accurate solution.
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Figure 8: The third order methods are more accurate than their base method, BDF2.

33



0 5 10 15 20 25 30
t

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

er
ro

r

MP - Cum. max error, Δt Δ 0.005
MP
MP-Pre-Post-2
MP-Pre-Post-3
MP-Pre-Post-4

0 5 10 15 20 25 30
t

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e 

er
ro

r

MP - Cum. max error, Δt Δ 0.0025
MP
MP-Pre-Post-2
MP-Pre-Post-3
MP-Pre-Post-4
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MP-Pre-Post-4 is unstable. For ∆t = 0.0025, MP-Pre-Post-3 is the most accurate, but

is unstable when ∆t is doubled. IE-Filt( 3−
√
3

3 ) performs the best of the second order
methods. IE-Pre-2 and IE-Filt(0) are essentially the same.
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Figure 10: Snapshots of the IE based methods with ∆t = 0.0025 (and ∆t = 0.005 for
IE-EIS-3). All methods showed improvement over IE. IE-EIS-3 gave the closest results
to the reference solution, as observed, by smaller phase error at t = 30 (for example,
compare the detached vortex shown by IE-EIS-3 versus the attached vortex in the second
order methods.). The IE-Pre-Post-3 simulation failed before the first snapshot could be
generated.
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Figure 11: Snapshots of the BDF2 and MP based methods with an effective ∆t = 0.0025.
Both of the third order methods show better agreement with the reference solution than
BDF2. For the MP based methods, the MP snapshots (not shown) were nearly identical
to the MP-Pre-Post-2 snapshots. MP-Pre-Post-3 appears to most accurately capture the
reference solution out of the methods in this table. The MP-Pre-Post-4 simulation failed
before the first snapshot could be taken.
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6. Conclusions and future problems

This work presented new time discretization methods with attractive
properties and a new GLM framework for developing and analyzing time-
filtered methods. Using the tools of GLM analysis a number of interesting
new methods have been derived and tested. These methods are easy to
implement within existing codes, and can be used to improve the time ac-
curacy of legacy codes. The novel time-filtering methods have low cognitive
complexity, and are in some cases optimized for other application-specific cri-
teria. Among these new methods, the error inhibiting method shows special
promise in tests even adjusting results for its added complexity.

In this work, we presented (mostly) a linear stability analysis and tested
the methods for a nonlinearity dominated application. The development
of a general energy stability theory of any new method herein would be a
significant further advance. The new methods presented have an embedded
structure, so that step and order adaptivity are natural next steps. Our long
term goal is to develop self-adaptive, variable step, variable order methods
that are of low cognitive complexity and easily implemented in legacy codes
based on these embedded families.

Acknowledgements: The authors acknowledge support from AFOSR Grant
No. FA9550-18-1-0383 (S.G.) and NSF Grant No. DMS1817542 (W.L.).

Appendix A. Order Conditions

The order conditions are typically given in the form:

1. Consistency conditions (q = 0):

τ01 = Θek − 1 and τ02 = D̃ek − es+k−1.

2. First order condition (q = 1):

τ11 = b̃es+k−1 + Θ`− 1.

3. Second order condition (q = 2):

τ21 = b̃c +
1

2
Θ`2 − 1

2
.
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4. Third order conditions (q = 3):

τ31 = b̃c2 +
1

3
Θ`3 − 1

3
and τ32 = b̃tÃc +

1

2
b̃D̃`2 +

1

6
Θ`3 − 1

6
.

5. Fourth order conditions (q = 4):

τ41 = b̃c3 +
1

4
Θ`4 − 1

4
,

τ42 = b̃Ãc2 +
1

3
b̃D̃`3 +

1

12
Θ`4 − 1

12
,

τ43 = b̃ÃÃc +
1

2
b̃ÃD̃`2 +

1

6
b̃D̃`3 +

1

24
Θ`4 − 1

24

τ44 = b̃(c · Ãc) +
1

2
b̃(c · D̃`2) +

1

8
Θ`4 − 1

8
.

Appendix B. Energy stability Proof for the IE-Filt(d) methods

The d-filtered family of methods for Implicit Euler methods IE-Filt(d)
are given by

y(1) = dun−1 + (1− d)un

y(2) = y(1) + ∆tF (y(2))

un+1 =
1

3− 2d
(2y(2) + 2(1− d)un − un−1)

We consider the energy at the second stage and rewrite y(2) in terms of
un−1, un and un+1.

〈y(2), F (y(2)〉 = 〈y(2), y(2) − dun−1 + (1− d)un〉

where

y(2) =
3− 2d

2
un+1 + (d− 1)un +

1

2
un−1.

If the operator F is dissipative then the inner product is negative,

〈x, F (x)〉 ≤ 0

and so we have

〈3− 2d

2
un+1+(d−1)un+

1

2
un−1,

3− 2d

2
un+1+2(d−1)un+

1− 2d

2
un−1〉 ≤ 0.
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Expanding and re-arranging, we have

2d2 − 7d+ 6

4
‖un+1‖2 − (2d− 3)(d− 1)

2
〈un+1, un〉+

2d2 − 3d+ 2

4
‖un‖2

≤ 2d2 − 7d+ 6

4
‖un‖2 − (2d− 3)(d− 1)

2
〈un, un−1〉

+
2d2 − 3d+ 2

4
‖un−1‖2 − (2d− 3)(d− 1)

4
‖un+1 − 2un + un−1‖2. (B.1)

Let Xn =

(
un

un−1

)
, and so Xn+1 =

(
un+1

un

)
,

and define the G-norm, for any SPD matrix G:

‖X‖2
G = X tGX.

In particular, we are interested in the matrix

G =
1

4

[
2d2 − 7d+ 6 −(2d− 3)(d− 1)
−(2d− 3)(d− 1) 2d2 − 3d+ 2

]
which is SPD for d ≤ 3

2
. Observe that eqn (B.1) becomes

‖Xn+1‖2
G ≤ ‖Xn‖2

G −
(2d− 3)(d− 1)

4
‖un+1 − 2un + un−1‖2

Clearly, then, the d-filtered Implicit Euler method is energy stable for 0 ≤
d ≤ 1.

Appendix C. Considerations for non-autonomous forces, time-dependent
boundary conditions, and pressure recovery

In this section, we list the abscissas and pressure recovery formulas for
the methods developed herein. While the methods were derived using au-
tonomous theory for simplicity, the extension to non-autonomous ODEs is
straightforward. The pre-processing steps can shift the abscissas of the data,
so non-autonomous sources (such as f(t) in (1) or externally applied time
dependent boundary conditions) must be adjusted accordingly.

For the incompressible Navier-Stokes equations, pressure is not solved via
an evolution equation, but the gradient of the pressure is a force in the evo-
lution equation for velocity. Thus, the resulting pressure of the fully discrete

38



methods are collocated at the same time as the non-autonomous forces. Some
quantities of interest, such as lift and drag, require velocity and pressure ap-
proximations at the same time level, so pressure must be interpolated or
extrapolated as necessary. All the methods presented herein produce veloc-
ity approximations at time t = tn+1 after post-processing. Thus, we explain
how to derive a pressure approximation such that pn+1 ≈ p(tn+1).

Let p̃n+1 denote the intermediate pressure from solving the coupled velocity-
pressure system for (un+1, p̃n+1). Note that p̃n+1 is not necessarily an approx-
imation at time level tn+1. Denote the abscissa for non-autonomous forces
by t̃.

The formulas for IE, IE-Pre-2, IE-Pre-Post-3, IE-Filt(0), BDF2, BDF2-
Post-3, and MP-Pre-Post-2/3/4 are

t̃ = tn + ∆t, pn+1 = p̃n+1,

the formulas for MP are

t̃ = tn +
1

2
∆t, pn+1 =

3

2
p̃n+1 − 1

2
p̃n.

the formulas for IE-Filt(d) are

t̃ = tn + (1− d)∆t, pn+1 = (1 + d)p̃n+1 − dp̃n,

and the formulas for BDF2-Pre-Post-3 are

t̃ = tn + c∆t, pn+1 = a3p̃
n+1 + a2p̃

n + a1p̃
n−1,

c = 3.930023404911324,

a1

a2

a3

 =

 2.827506874208412
−2.7249903435055

0.8974834692970881

 .
IE-EIS-3 contains two implicit Euler solves per timestep and yields pressure
approximations at both tn+2/3 and tn+1. There is a pair (t̃(2), p̃(2)) associated
with the intermediate solve in (17), and a pair (t̃, p̃n+1) associated with the
final solve in (18). The formulas are simple;

t̃(2) = tn +
2

3
∆t, pn+2/3 = p̃(2), t̃ = tn+1, pn+1 = p̃n+1.

39



References

[A72] R.A. Asselin, Frequency filter for time integration, Mon.
Weather Review 100(1972), 487-490.

[Al15] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B.
Kehlet, A. Logg, C. Richardson, J. Ring, M.E.
Rognes, G.N. Wells, The FEniCS project version 1.5,
Archive of Numerical Software 3 (2015), 9–23.

[B76] G.A. Baker, Galerkin approximations for the Navier-Stokes
equations, Technical Report,1976.

[BDK82] G.A. Baker, V.A. Dougalis, O.A. Karakashian, On a
higher order accurate fully discrete Galerkin approximation to
the Navier-Stokes equations, Math of Comp. 39 (1982), 339-375.

[B66] J.C. Butcher A multistep generalization of Runge-Kutta meth-
ods with four or five stages, J. Assoc. Comput. Mach. 14 (1967),
84-89.

[B06] J.C. Butcher General linear methods, Acta Numerica 15
(2006), 157–256

[CR78] M. Crouzeix and P.A. Raviart, 1978. Approximation
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