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Abstract

In this work we investigate the use of the Analytical Discrete Ordinates (ADO) method when solv-
ing the spectral approximation of the nonclassical transport equation. The spectral approximation
is a recently developed method based on the representation of the nonclassical angular flux as a
series of Laguerre polynomials. This representation generates, as outcome, a system of equations
that have the form of classical transport equations and can therefore be solved by current determin-
istic algorithms. Thus, the investigation of efficient approaches to solve the nonclassical transport
equation is of interest and shall be pursued. This is the case of the ADO method which has been
successfully used to solve a wide class of problems in the general area of particle transport. Numer-
ical results are presented for two nonclassical test problems in slab geometry. These nonclassical
transport problems are chosen in such way that their solution exactly reproduces the solution of the
classical diffusion problem. Very accurate results are obtained for both test problems. However,
the use of high precision arithmetic is sometimes required as illustrated in the second test problem.
Limitations of the spectral approximation are also analyzed and discussed.

Keywords: Nonclassical transport, slab geometry, spectral approach, analytical discrete ordinates
method.

1. Introduction

The Nonclassical Theory of linear particle transport was developed to model transport processes
in which the particle flux is not exponentially attenuated. In the nuclear engineering community,
the interest for this type of nonclassical process originated in 2004 during a multidisciplinary confer-
ence in Computational Methods in Transport [1]. At this conference, the mathematical similarities
between radiative transfer through atmospheric clouds [2] and neutron transport in pebble-bed
reactors (PBRs) [3H5] became apparent; specifically, the fact that correlations between scatterers
and/or unresolved spatial fluctuations in the system lead to nonexponential decay of the parti-
cle flux. Since classical linear transport models inherently assume an exponential attenuation in
the system, a nonclassical theory capable of addressing these issues needed to be derived, which
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prompted a generalization of the linear Boltzmann equation [6} [7].

Let & = (x,y, 2) describe the location of a particle in space and £ = (£, Q,,2.) represent the
particle’s direction of flight, with [€2| = 1. We define s as the distance traveled by the particle since
its last interaction (birth or scattering), such that s = 0 at the interaction point. The steady state,
one-speed nonclassical linear Boltzmann equation with angular-dependent free-paths, as derived in
[§], is given by

82\11(3:, Q,5)+Q-VU(x,Q,s) + 2(Q,5)¥(x,Q,s) = (1.1a)

S
oo
8(s) |:C/4 /0 P - Q)X (Y, U (x, Q8" )ds'dY + Ci(:) , xeV, Qedr, 0<s,
vy

where V¥ is the nonclassical angular flux; () is an isotropic source; ¥ is the macroscopic total cross
section; ¢ is the scattering ratio; and P(£2 - )dQQ represents the probability that when a particle
traveling with direction €' scatters, its outgoing direction of flight will lie in a differential surface
dS) about €.

The appropriate way to define boundary conditions to Eq. is not universally agreed upon,
due to the boundaries not being correlated with the positions of the scatterers (detailed discussion
can be found in [9]). Nevertheless, a compelling case has been made [10] to use

U(x,Q,s) = V(x,Q)i(s), zcdV,n-Q<0,0<s. (1.1b)

The Dirac delta function d(s) in Egs. is used to “reset” the value of s for particles that have
just scattered or been born in the system through @ or W’ since at that moment their distance
from the event is s = 0.

We remark that the macroscopic total cross section Y; in the nonclassical formulation is a
function of both s and €2. Specifically, ¥;(£2, s)ds describes the probability that a particle, born or
scattered at any position  and with direction of flight given by €2, will experience its next collision
between x + s and x + (s + ds)Q2. It satisfies [§]

E]

p(, 5) = $,(Q, s)e Jo Ze(s)ds” (1.2)

where p(€2, s) is the free-path conditional distribution function in a given direction €2.

If the macroscopic total cross section is independent of s and €2, then classical transport takes
place, and Eq. reduces to the exponential distribution. In this case, Egs. (1.1)) reduce to the
classical steady state, one-speed linear Boltzmann equations

Q- VI(x, Q)+ 0,9 (x, Q) = CA P(Q - Q)0 ¥(x, Q)dQ + %Sf), xeV, Qecdn, (1.3a)
U(x, Q) =0(x,Q), zcdV,n-Q<0, (1.3b)

where ¥ is the classical angular flux given by
U(x, Q) = /Ooo U(x, Q, s)ds. (1.3c)

In Eq. we represent the macroscopic total cross section by the variable oy instead of ;.
This distinction is made to emphasize the classical meaning of the macroscopic total cross section
when is independent of both € and s. Moving forward, we use these two notations, ¥; and oy, to
represent the macroscopic total cross section in the nonclassical and classical senses, respectively.



Recently, a spectral method has been developed [11] to represent the nonclassical angular flux
as a series of Laguerre polynomials in s. This method produces a system of equations that have
the form of classical transport equations and can therefore be solved by current deterministic
algorithms. In short, we define v such that

U(x,Q,s) =Y(x,Q,s)e” Jo =u(@.)ds" (1.4a)

and expand it as a series of Laguerre polynomials in s

(z,€,s) Z U (2, Q) L (), (1.4b)

where L,,(s) is the Laguerre polynomial of order m. As shown in [I1], we can use this along with
Eqgs. (1.1) to obtain a system of equations for i,

Q- Vi, (x, Q) + ij(w, Q) = c/ Zwk (x, )L (2)dQ + Qi:), (1.5a)
j=0 4
Vm(2, Q) =0 (2, Q), z€dV,n-Q<0, (1.5b)
with m =0,1,2,..., and
Lu(Q) = / (9, 5) Lu(s')ds'. (1.50)
0

Once the series expansion is truncated, these equations can be solved through traditional deter-

ministic approaches. The classical angular flux can be recovered using Eq. and Eqgs. (1.4).
Assuming isotropic scattering and an angular-independent free-path distribution, we can write

P(Y - Q) =1/4m, p(, s) = p(s), and (R, s) = 3¢(s). In this case, Eq. simplifies to

0

P —U(x,Q,5)+ Q- VU (x,Q,5)+ 2(s)¥(x, €, s) = (1.6)

4 {// Si(8 U (x, Y, 8 )ds'dY + Q(z)|, eV, Qedn, 0<s.
4 4m

It has been shown [9, 12, I3] that certain diffusion-based approximations to the classical and
nonclassical linear Boltzmann equations can be represented exactly by Eq. (1.6) when ¥;(s) is
appropriately chosen. If we define the collision-rate density f(x) such that

z) = /47r /Ooo ()0, ¥, §')ds'dY, (1.7)

then Eq. (1.6) can be manipulated into the following integral equation [9]:

/// cf(x') + Q(x )]4(‘| - m||)2dV’. (1.8)

Here, p(|z’ — x|) is the free-path distribution function. We can derive a similar expression for
diffusion. The one-speed, classical diffusion equation with isotropic scattering is given by

5o V(@) + 010(e) = con(@) + Qla) (L9)



where @ is the classical scalar flux
O(x) = / U (x, Q)d2. (1.10)
4
Applying Green’s function analysis to Eq. (1.9), one can obtain the collision-rate density [9]

wt(@) = @)= [ [ [ler@)+ Q@)

Comparing Eq. (1.8) with Eq. (L.11]), we see that they are the same if and only if

302 |x — m’|e*\/§”t|w*wl|

dv’. 1.11
4|z — '|? (1.11)
p(s) = A2se™, (1.12a)
where
A =30, (1.12b)
In this case, the nonclassical function ¥ (s) is given by

B s
14 )\s

2i(s) (1.12¢)

In this work we present a detailed study of the spectral approach for solving the nonclassical
transport equation applied to diffusion. We have opted to focus on the classical diffusion problem
for three reasons: (i) its theory has been greatly explored and well-documented by several authors
[14HI7], (ii) its solution can be represented exactly by solving the appropriate nonclassical transport
equation [12][I8], as detailed in the previous discussion; and (iii) the functions £ can be calculated
analytically considering the free-path distribution function as given in Eq. .

There are two main original contributions in this paper. The first one is a convergence analysis
of the L functions when p(s) is given by Eq. , which throws new light on the numerical
limitations of the spectral approach. The second is an investigation of the use of the Analytical
Discrete Ordinates (ADO) method [19] to solve the slab geometry representation of the nonclassical
problem described by Eqgs. . As the spectral method produces a system of equations that are
suitable to the use of current deterministic methods, the exploration of efficient approaches to solve
this problem is of interest and this work is a first step in this direction. In reference [I1], the
classical Diamond Difference method [20] was used along with this spectral decomposition, and
numerical challenges pointed out the need of further investigation. To our knowledge, this is the
first time the ADO method is applied to obtain solutions for the nonclassical transport equations.

The ADO method has been successfully used to solve a wide class of problems in the general area
of particle transport [19, 2TH25]. Its main features include the generation of an explicit solution in
the spatial variable and the use of arbitrary angular quadrature schemes, defined in the half-range
interval, which determine an eigenvalue problem whose order is half the number of discrete angles.

The remainder of this paper is organized as follows. In Section |2 we present the convergence
analysis of the L; functions for the classical diffusion problem. In Section (3| we give a detailed
description of the ADO method as it is used to solve the nonclassical transport problem in slab
geometry. Section [4] introduces two test problems and presents numerical results. We discuss and
analyze the accuracy and precision of these results, describing some challenges that may arise from
the use of the spectral approximation, and the application of the ADO method as well. Finally, in
Section [, we conclude the paper with a brief discussion of the results and the prospects of future
work.



2. Convergence of the £ functions for the diffusion problem

As mentioned in the previous Section, classical diffusion modeled by Eq. (1.9)) can be represented
exactly by Eq. (1.6) if X¢(s) is given by Eq. (1.12¢). (This result is discussed in greater detail in
[9]). Therefore, using Eqs. (1.7)) and ([1.11))) we obtain

1 [oe)
b(a) = - / / ()0 (x, ¥, §')ds <Y, (2.1)
Ot Jan JO

which allows us to calculate the scalar flux solution of the classical diffusion equation using the
solution of the nonclassical transport equation.
Using the spectral approach discussed in Egs. ([1.4]), we can rewrite Eq. (2.1]) as

@(x)zalthk [ e a0, (2.22)
k=0 4

Here, 9 (x,€2) is obtained by solving Eqgs. (1.5)) while considering p(s) as given by Eq. (L.12al),
such that

Ek:/ A2se M Ly (s)ds . (2.2b)
0

In summary, it is necessary to solve the improper integral on the right-hand side of this equation
in order to obtain the scalar flux.

To analyze the convergence of the £ functions, we begin with representing the Laguerre poly-
nomials Lg(s) as [26]

k .
(k) s
1) = () (2.3
Substituting Eq. (2.3]) into Eq. (2.2b]), we obtain

k
, 1 [ .
Lr =\ Z(—l)’ <I;> “/0 stle (s . (2.4)

1=0

Using the change of variables ¢ = As and integrating by parts, we find that the improper integral
above yields [27]

oo i+ 1)!
/0 sitle A5 ds = (2)\—;2 . (2.5)

Substituting this result into Eq. (2.4)), we obtain

Ly = Zk:T (f) (i+1), (2.6a)

where

T=—-1/\ (2.6b)



Now we rewrite Eq. (2.6a)) as the sum of two terms, I; and I3, such that
k

Lp=) 7 <I;> +sz;w (f) : (2.7)

1=0

v~

11 12

Using the binomial theorem [28], we see that
L=(1+7)k. (2.8)

For the second term, we define i = n + 1 and write

k—1
I, = Z(n +1) <n—]T- 1>T"+1, (2.9)

n=0

since the term ¢ = 0 (or n = —1) is 0. Using the binomial property

which is 0 when n = k, Eq. (2.9) appear as

I = T;:(k —n) (i) ” (2.10)

From the binomial theorem, we have

L=tk(1+7)—7 [Ek:m”(z)] (2.11)

n=0
I
and hence
I =7k(1+71)F L (2.12)
Equations and allow us to rewrite Eq. as
Lp=0+7*+7k@1+7)k". (2.13)

Finally, using Egs. (2.6b)) and ((1.12b)), we obtain

L = (1 - \/;U)k - \/]gat (1 - J;)Ut)k_l. (2.14)

We see that as k — oo, the functions £y converge (to zero) only if oy > %. This introduces a

limitation in the numerical procedure for problems in which o < %, since the £ functions will

diverge and the solution will not be attainable. This is further discussed within the context of the
specific test problems in Section [4.2



3. An analytical discrete ordinates solution

In this section, we discuss the application of the ADO method to solve Egs. (1.5 for prob-
lems in slab geometry, with isotropic scattering and vacuum boundary conditions. Under these
assumptions, and taking M as the truncation order for the Laguerre series, we write Eqs. (1.5]) as

9 m M 1
V) + e =53 [ nle st 2t + @) (3.10)
p= -
¢m(07ﬂ) =0, p>0, (31b)
¢m(X’ :U’) =0, pn<0, (3'1C)

where m = 0,1,..., M. As the problem stated by Eqgs. (3.1)) is linear, we write its general solution
as a superposition of the homogeneous and particular solutions of Eq. (3.1a]) [19] 211 24 25] 29| [30].

3.1. Homogeneous solution

To begin, we write the homogeneous version of Eq. (3.1al) in a convenient matrix form as
0 c 1
") + T ) = § [ LG ) + Dl W), (320
where d)h(:c, ) is a M-dimensional vector composed of the homogeneous solutions, such that,

W) = [0 ), W), et p)] (3.20)

T is a lower triangular matrix of order M whose non-zero entries are equal to one and L(u) is a
square matrix of order M defined as

L(p) = [Lo(p), L1(p); .-, Lar(p)], (3.2¢)

with L£,,() being an M-dimensional vector whose entries are L£,,(p). The superscript 7' in
Eq. (3.2b)) is used in this work to indicate the vector transpose. Furthermore, following the
ADO procedure [19] we consider a quadrature scheme defined in the semi-interval [0, 1], formed
by N nodes u, and corresponding weights w,, to write Eq. as a linear system composed of
2MN =2 x M x N ordinary differential equations. That is,

d N
i g ¥ o)+ T (@) = 5 3 | Lt (o) + L[ (3.30)
and
d h c al h
_Mn%’lp (z, —pin) + T"/’ T, _Mn = 5 Z [ :C :U’l) + L( )1/) (z, _:u’i)} Wi (3'3b)
i=1

wheren =1,2,...,N.
Following the literature [19, 21], we seek homogeneous solutions of the form

x

wh(%ﬂ) - ¢(197M)€757 (34)



where 9 is a constant and ¢(¥, 1) is an M-dimensional vector defined as

¢(19’ :U’) = [qu(ﬁ) :U’)7 ¢1(Q97 :U‘)7 sy QSM(’&? N)]T
Substituting Eq. (3.4) into Egs. (3.3) we obtain

N
Z [L(p:) (0, i) + L(—ps)d(V, —pi)] w

=0

(7~ 1) i) = &

and

N
(7‘_|_ %IM) (0, —pn) = gz (1) d(V, pi) + L(—pi) p(0, — )] wi,
=0

(3.5)

(3.6a)

(3.6b)

where I is the identity matrix of order M. By varying n from 1 to N in Egs. (3.6) we obtain

1

(D M) #00) = § (K@) + K- (0)

l\')\(‘:

and

(D + 119M> B_(9) = = [K. B (9) + K_®_(9)].

N)\Q

In Eqgs. (3.7a) and (3.7b]) ® (1)) represent M N-dimensional vectors

B.(9) = [¢7 (9, 1), ¢TI, £p2), ..., 70, tun)]

D and M are diagonal matrices of order M N, such that,

N times
—_——
D =diag |T,7T,....,T|,
M = diag [pa Iy, podn, -y pnInl,

and K are square matrices of order M N defined as
Ky = [L*(£pm), L*(+p2), ..., L (£pn)],
where L*(uy) is a M N x M matrix in the form

N times

L*(:Um) = LT(ﬂn)an LT(Nn)Wna s LT(Nn)Wn

(3.7a)

(3.7b)

(3.7¢)

(3.7d)

(3.7e)

(3.7f)

(3.7g)

As described in Section [I], we can reproduce the solution of the classical diffusion equation consid-
ering in the solution of the nonclassical transport equation the free-path distribution function as

described in Eq. (1.12a]). In this case, we have
K, -K =K,

since L (p) = Lix(—p) = L.

(3.8)



Now, we substitute Eq. (3.8]) into Eqgs. (3.7a]) and (3.7b]) to obtain

(D - ;M) B.(9) = SK [@4(9) + ()] (3.99)
and
<D + ;M> _(9) = gK (@, (0) + ®_(9)]. (3.9b)

At this point, we follow two independent distinct procedures: (i) we sum up Egs. (3.9a) and (3.9b));
and (ii) we subtract Eq. (3.9b]) from Eq. (3.9a)). By doing these operations, we obtain

(D — cK)U(®) = %MV(@?) (3.10a)
and
DV(9) = %MU(@), (3.10D)

where U (9) and V' (¥) are M N-dimensional vectors described as
UW) =®L(9)+P_(V) (3.10c)
and
V() =®,L(9) — P_(V). (3.10d)
Defining the M N-dimensional vectors X () and Y (¢) as
X (W) = MU (V) (3.11a)
and
Y (¥) = MV (9), (3.11Db)

we can obtain from Egs. (3.10]) the relations

AX (D) = %Y(z?) (3.12a)
and
BY (9) %X(ﬁ), (3.12D)

where A and B are square matrices of order M N, such that,
A=(D-cK)M™! (3.12¢)
and

B=DM™ ! (3.12d)



Finally, we use Eq. (3.12b)) to remove Y (¢) from Eq. (3.12a]), generating the equation
1
BAX () = @X(ﬁ), (3.13)
which defines an eigenvalue problem of order M N. Solving Eq. (3.13|) we obtain M N eigenvalues

(1/9?) and M N eigenvectors X () of order M N. Thus, from an eigenvalue problem of order M N
we obtain 2M N constants +¢. The eigenfunctions ¢ can be calculated by the following relations

1

o, (V) = §M—l (Inn +9A) X(9) (3.14a)
and
& _(¥) = %M*l (Iyny —Y9A) X (9), (3.14b)

where Insn represents the identity matrix of order M N.
Therefore, we can build the solution of Eq. (3.2al) in the discrete ordinates formulation as a
superposition of the solution proposed by Eq. (3.4). In other words, we have

h MN _ (z—zq) _(zp—=)
U (z) = Z [aj'Ibr(ﬂj)e i+ Bi®_(V5)e Vi ] (3.15a)
j=1
and
MN 7(1—10‘) 7(1'1)71')
‘I’E(IL‘) = Z {O@‘@_(ﬁj)e Y+ 5j‘1>+(19j)6 v :| , (315b)
j=1
where ; e 3; are arbitrary constants and ¥/ are M N-dimensional vectors defined as
h h T h T h e
W) = | (¥ @ tm)) | (Wh@n)) o (¥ ) | (3.16)

In Egs. (3.15) we have applied the exponential shift procedure [21I] in order to avoid numerical
overflows due to finite computational arithmetic. Thus, z, and z; represent the boundaries of the
interval in which the homogeneous solution is defined.

3.2. Complex eigenvalues and eigenvectors

For complex eigenvalues it is convenient to write Egs. (3.15)) as presented in reference [30} 31].
Therefore, let us initially consider ¢{L as the homogeneous solution proposed in Eq. |D with
¥; = a; + bj i, where a; and b; are positive numbers, such that,

b; b; 1
Wb (@, 1) = [Re {05, 1)} + i Im {$(0;, 1)) ( ( ””) tisin ( w)) e U, (317a)
U0, ;05
where Re and I'm are the real and imaginary parts of ¢ and E is the complex conjugate of ¥;. In
Eq. 3.175]) we used the Euler’s formula to represent the complex exponential. As matrix BA in
Eq. :3.13) is real, complex eigenvalues always appear in conjugate pairs. This means that

WhGo) = [Re (0T} +i 1 {8(T;.00}] cos ; ’;) —isin (;’Z)) e (317h)

10



is also a homogeneous solution.
Analyzing the structure of the eigenfunctions presented in Eqs. (3.14]) we note that

D0, 11) = P(V;, 1) (3.17c)
Thus, we rewrite Eq. (3.17b]) using the property presented in Eq. (3.17¢])

Whosn) = [Re (005000} — 1 19005} cos ; ’;) ~isin ; Z)) e (311d)

P

As z,b{b and 1/13 are homogeneous solutions, a superposition of these solutions is also a homogeneous
solution. Therefore, we can build two real and linear independent solutions 7. and 1%, from the

complex 'z,b{l and wg. Hence,

n = |Re j cos | —=L b _ m j sin | — bi e ’;J'ujj
P (z, p) = [R {p(Vj, 1)} ( jj) Im{ep(V;, 1)} ( jj)] (3.18a)
and
Wl (x, 1) = | Re {9, )} sin bi' +Im{p(Vj, 1)} cos —bi e ’:J'QJJ' b
2*( ) ) |: { ( 79 )} <9J 9]) I { ( R )} <93 9J>:| . (318 )

Taking Eqs. (3.18) into consideration, we can rewrite Eqgs. (3.15) for both real and complex
eigenvalues and eigenvectors. That is [30, 31],

Jr _ (z—zq) _ (zp—m)
W)=Y [aﬂw»e 5B (e D } " (3.190)
j=1
MN _(z—za)
b {0 o (om0 T
j=Jr+1
Aj=2
_(zp—)
+ [BiHy ((zp — x),95) + Bjy1Hy ((xp — x),95)] e "i%
and
Jr _(z—zq) _ (zp—m)
\I’}i(l') = I:Oéj@_(ﬂj)e i+ 53"1)_:,_(19]')6 vi ] + (3.19b)
j=1
MN _(z—za)
+ Z [ajH{ (z — 2q,9)) + aji1 Hy (x — 24,9j)] e "% +
j=Jr+1
=2

_ (zp—2)
+ [BHY (w0 — @,95) + B HY (2 — x,95)] e 737 },

where Jr represents the number of real and positive ¥; and HljE and Hzi are M N-dimensional

vectors defined as
xT bj

HiE(z,9;) = Re {®4(9)} cos <§Zj> — Im {®L(¥;)} sin <19j19j> (3.19¢)

Javi

11



and

. b

H (2,9;) = Re {®.(9;)} sin < xbﬂ) + Im {®(0;)} cos < x]) . (3.19d)
059 959

3.3. The general solution

After obtaining the homogeneous solution of Eq. , in the discrete ordinates formulation,
we seek to find the particular solution of this equation in order to obtain the general solution. Let
us then consider a source () uniform with respect to the spatial variable inside the domain. Thus,
we may assume that the particular solution will also be uniform with respect to the spatial variable.
Therefore, we write Eq. in convenient matrix form as

1

c
T =5 | (LG () + Lo (4)] ' + Q. (320)

0

where @ and P (1) are M-dimensional vectors whose entries are Q and b, (1) respectively, with

h, (1) representing the particular solution of Eq. (3.1a). As with the homogeneous solution, we

consider the same quadrature scheme defined in the semi-interval [0, 1], to rewrite Eq. (3.20) as a

linear system composed of 2M N equations. That is,

N
T () = 5 D (L) (1) + L(—pi)ep? (—pas)] i + Q (3.21a)
1=1
and
c N
Ty (—pn) = 5 > L) P () + L(—pa) P (— i) wi + Q, (3.21b)
i=1

where n =1,2,..., N. From Eqgs. (3.21)) we conclude
PP (pn) = PP (—pn)- (3.22)

Furthermore, varying n from 1 to N in Eq. (3.21al) and making use of the relations presented in
Eqgs. (3.8) and ({3.22)), we obtain

DUE = cKW + S, (3.23a)

where W4 is a vector of order M N defined as

W = [ (m))” @ () )T ] (3.23D)

and S is a vector of order M N composed by vector Q repeated N times. The particular solutions
can be obtained from Eq. (3.23a)) as

Uh = (D-cK)'S, (3.24)

provided matrix (D — cK) is non singular.

12



Having found the homogeneous and particular solutions, we can write the general solution in
the following closed form

JR

_(xfwa) _(:vbfz)
Ti(@) =) {%‘I’Nﬂj)e Y+ i@ (9y)e ] + (3.252)
=1
MN e
T Z [ Hyf (x — 34,9)) + 0y HY (# — x4, 9;)] e "i% +
J=Jr+1

j =

(zp—2)
+ [/BJHl_(fl?b —x,95) + By, Hy (xp — q;,ﬂj)} PET } 4 ‘Il;i

and
JR _(1*370,) _(mb—m)
T(@)=) {O‘j@(ﬁj)e Bt By (U)e T ] + (3.25b)

j=1
MN e

+ Z [ajH{ (z — 2q,9)) + aji1 Hy (x — 24,9;)] e "9 +

j=Jr+1

j=2

_ (zp—2)
+ [BiH{ (xp — x,95) + Bjp1 Hy (xp — x,95)] e 3% } + WP,

where WX are given by Eq. (3.24). In order to fully establish the general solution, we must
determine the constants a; and ;. The arbitrary constants are obtained through the solution of
a linear system of order 2M N generated by the boundary conditions (Egs. and ) and
Eqgs. .

In the next section we perform numerical experiments considering that the source ) can vary
its intensity along different regions of the domain. However, @ is still uniform with respect to the
spatial variable within these regions. In this case, we must apply the ADO method in each region to
obtain the general solution for the problem. Therefore, 2M N R arbitrary constants are generated,
where R represents the number of regions in which the source @) varies its intensity. To determine
the arbitrary constants and completely establish the solution of this problem, we generate and solve
a linear system of order 2M N R making use of the boundary conditions (Egs. and )
and the continuity conditions

Ymr(Tr) = Vi1 (zr), 7=1,2,...,R—1, (3.26)

where v, and ¥, r41 represent the local general solutions obtained in two adjacent regions with
x, being the intersection point of these regions.

4. Numerical results

In this section we present numerical results for two test problems, with the aim of describing
in detail some challenges that may arise from the use of the spectral approximation, and analyzing
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the performance of the ADO method in solving Eq. (3.1a)). To achieve this goal, we reproduce the
solution of the one-dimensional classical diffusion equation

1 d?
3Jt dl’2

() + (1 - Jord(x) = Qa) (4.1)

by solving the equivalent nonclassical transport problem

1 M N
k=0 n=1

where the functions £ are given by Eq. . We consider vacuum boundary conditions as given
by Egs. and , and (when needed) continuity conditions as described in Eq. .
Moreover, Gauss-Legendre angular quadratures, mapped to the half-range [0,1], are considered.
The nonclassical solution given in Eq. is compared with the solution of Eq. with Mark
(Vacuum) boundary conditions. The solution of Eq. was implemented following the procedure
described in reference [32]. Thus, we calculate the homogeneous and particular solutions that
compose the analytic general solution of Eq. , and then use the boundary conditions and
(when needed) continuity conditions to determine the arbitrary constants.

As discussed in Section[l], the appropriate way to define boundary conditions to the nonclassical
transport equation is not universally agreed upon. Therefore, the exact correlation between the
boundary conditions considered for the solutions of Eqgs. and is not completely clear,
and need further investigation. We chose to use Mark boundary conditions due to its greater
performance, for the discrete ordinates models considered in this work, compared to other standard
diffusion boundary conditions.

4.1. Test Problem 1

Let us consider a slab of length X = 20 ¢m, with o; = 0.578 em™!. In this system, we introduce
an isotropic source (), such that

]-a z1 S X S €2,
0, otherwise

Q) - { (1.3)
The choice of 1 and x9 will define the interval upon which the source emits particles.

Tables [1| to |3| present solutions of Eqs. (4.1) and (4.2)) for scattering ratios ¢ = 0.3, ¢ = 0.9, and
c = 0.99, respectively. The relative errors of the nonclassical transport solution with respect to the
analytical solution of the diffusion problem are also given. In all cases, the source @), as defined by

Eq. (4.3)), is located at the center of the slab, with boundaries 1 = 9.5 ¢m and z9 = 10.5 cm.
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Table 1: Neutron scalar flux for Test Problem 1, with ¢ = 0.3, 1 = 9.5¢m, and x2 = 10.5cm.
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Table 2: Neutron scalar flux for Test Problem 1, with ¢ = 0.9, 1 = 9.5¢m, and x2 = 10.5cm.
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Table 3: Neutron scalar flux for Test Problem 1, with ¢ = 0.99, 1 = 9.5¢cm, and z2 = 10.5 cm.
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As can be seen in Tables [1| to [3, the ADO method produces accurate results for Test Problem
1, with precision increasing as N and M increase. As expected, the best results are obtained when
using NV = 80 and M = 3, since this choice of parameters offers a better representation of the scalar
flux generated by using Eq. . For all the cases, there is agreement up to at least 5 decimal
places when varying N from 60 to 80, and up to at least 6 decimal places when varying M from
2 to 3. Thus, to obtain a solution accurate to 5 decimal places, the choice of parameters N = 60
and M = 2 would suffice for this model problem. This is confirmed when analyzing the maximum
relative errors displayed in Tables [1| to [3| for these choices of N and M, which is 3.2 x 107%. We
remark that, in order to obtain results with higher precision, the values of N and M in Eq.
would need to be larger.

It is also noticeable that the ADO method does not seem to be too sensitive to changes in
the scattering ratio c¢. For instance, when analyzing the absolute relative deviations obtained with
N = 60 and M = 2, the loss in accuracy observed when c increases is very small. This indicates,
in this case, that the matrices built by the ADO method are well-conditioned.

Next, we will allow the isotropic source ) to emit neutrons in the whole domain. Using the
same choices of cross section oy and scattering ratios ¢ used in the previous examples, Tables [4] to [6]
display the solutions of Egs. and for Test Problem 1 as the scattering ratio ¢ increases,
with 1 = 0cm and z9 = 20cm in Eq. . We also show the relative errors of the nonclassical
transport solution obtained with the ADO method when compared to the analytical solution of
Eq. .

The ADO method also generates accurate results for problems with a uniform source in the
whole domain. Once again, as expected, the best results occur when N = 80 and M = 3, with
agreement between 5 and 7 decimal places with respect to the analytical solution of Eq. . As
in the previous results for Test Problem 1, solutions of Eq. obtained when varying N from 60
to 80 show agreement between 5 and 6 decimal places. Similarly, there is agreement between 6 and
7 decimal places in the solutions of Eq. attained when varying M from 2 to 3. This follows the
trend of the observation made previously for the results presented in Tables [I] to 3| that choosing
N =60 and M = 2 should suffice when searching for a solution of Eq. that is accurate to 5
decimal places.
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Table 4: Neutron scalar flux for Test Problem 1, with ¢ = 0.3, 1 = 0.0 cm, and x2 = 20.0 cm.
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Table 5: Neutron scalar flux for Test Problem 1, with ¢ = 0.9, 1 = 0.0 cm, and x2 = 20.0 cm.
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Table 6: Neutron scalar flux for Test Problem 1, with ¢ = 0.99, 1 = 0.0 cm, and z2 = 20.0 cm.
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4.2. Test Problem 2

In the second test problem, we again consider a slab of length X = 20c¢m, and an isotropic
interior source () as defined in Eq. . However, this time we define o; = 1.0 cm ™', which means
that neutrons now have a shorter mean free path than the one considered in Test Problem 1.

Although Test Problems 1 and 2 are very similar in their choices of parameters, the numerical
challenges arising in each problem are quite different. As seen in Section 2] the functions L
depend on the choice of o;. This choice affects both the profile and the convergence rate of these
functions, and consequently of the whole numerical scheme. Values of o; that produce a sinusoidal
profile and/or a low convergence rate will necessarily need a larger value for M in order to generate
accurate results. The behavior of the £ functions for different choices of o; can be seen in Fig.
Since these functions are discrete with respect to k, the values depicted in Fig. [1| were interpolated
to facilitate the visualization of the functions’ profiles.

Figure 1: Profiles of the functions £ for different values of o;.

We observe that function £;, for oy = 0.578 em ™! converges rapidly to zero, which explains why
the method generates accurate results for Test Problem 1 with a small value of M.

In order to produce accurate solutions for problems with different values of oy, it is necessary to
increase the values of M and N. However, in the case of the ADO method, this increase produces
ill-conditioned matrices for both the eigenvalue problem and the linear system of constants o and
[ as described in Section [3] Therefore, due to the sensitivity of the L£; functions to variations in
o, increasing M and N with the hopes of obtaining more accurate results may have the opposite
effect; that is, the precision of the solution may be negatively affected due to the computational
finite precision arithmetic.

This effect is more clearly depicted in Tables[7]and [§] Considering Test Problem 2 with ¢ = 0.5,
x1 = 9.5¢m, and x9 = 10.5 cm, Table [7| presents solutions of Egs. and , and the relative
errors, similarly to what was done for Test Problem 1. On the other hand, Table [§| displays
condition numbers that help shed more light on the overall numerical scheme. Namely: (i) the
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largest condition number obtained among the generated eigenvalues in the eigenvalue problem,
which illustrates the sensitivity of the eigenvalues with respect to small perturbations in the matrix
BA (Eq. (3.13))); and (ii) the condition number of the linear system produced in the calculation
of constants a and [, which gives insight into the accuracy of the constants calculated in these
problems.

As can be seen in Table [7] increasing M decreases accuracy in the solutions for all values of
N. Moreover, for M = 30, the solutions degenerate when N is increased. This can be explained
by analyzing the data in Table 8} considering M = 20 and M = 30, we see a clear increase in the
condition number of the linear systems built to calculate the constants o and 5. This indicates that,
from a numerical standpoint, the solutions shown in Table [7] do not represent the true solutions of
the problem, since the condition number of the matrices is larger than the precision of the variables
in which the algebraic and matrix operations are being performed (double precision, i.e. 16 digits).
Therefore, in order to obtain numerical results that represent a more accurate solution of this
problem, it is not sufficient to choose appropriate values of NV and M. One also needs to ensure
that the algebraic and matrix operations are performed taking into consideration an appropriate
amount of precision digits.

In Table @ we present solutions of Egs. and , and corresponding relative errors.
We consider scattering ratio ¢ = 0.5, M = 30, and a positive interior source ¢ in the center of
the system, with 1 = 9.5¢m and xo2 = 10.5¢m. These results are presented for two different
precisions: 16 and 40. As expected, the solutions obtained with 16 digits of precision become
worse as IV increases. On the other hand, the solutions generated when using 40 digits of precision
maintain their accuracy when increasing N.
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Table 7: Neutron scalar flux for Test Problem 2, with ¢ = 0.5, x1 = 9.5 ¢m, and x2 = 10.5cm.
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Table 8: Condition numbers for Test Problem 2.

Matrices Eigenvalue problem?® Linear system”

N =30 6.699423E+15¢  3.108575E+26
M =20 N =40 4.6253121E+15  9.171583E+25
N =50 1.0877720E+16  1.553950E+26

N =30 1.619260E416 2.081604E+29
M =30 N =40 8.324544E+15 3.816123E+29
N =50 3.450098E+16 1.191783E430

# Largest condition number among the generated eigenvalues; cal-
culated by the condeig(z) function in MATLAB [33].

" Calculated by the cond(x) function in MATLAB [33].

° Read as 6.699423x 101",

5. Discussion

In this work we have presented a detailed study of the application of the ADO method in ob-
taining a numerical solution for the spectral approximation of the nonclassical transport equations.
In this approximation the nonclassical angular flux is expanded in a series of Laguerre polynomials,
resulting in a system of equations that have the same form of the classical transport equations.
These can be solved through classical deterministic methods, whose performance needs to be an-
alyzed for a better understanding of their behavior when addressing nonclassical problems. We
have elected in this paper to use the ADO method, which produces explicit solutions in the spatial
variable. Moreover, the ADO method generates an eigenvalue problem whose order is half of those
obtained with other conventional spectral approaches [19, 21].

In using the spectral approximation of the nonclassical transport equations, we need to deal
with the L£; functions, introduced in Eq. . These functions play an important role in the
solution of the nonclassical problem. In Section [2] we have analytically calculated these functions,
observing that as kK — oo they will only converge if oy > ?. This indicates that the numerical
solution as generated by using the spectral approximation will diverge for the cases with o, < %,
regardless of the deterministic method used to obtain the solution. Therefore, modifications to
the spectral approach must be explored in order to tackle problems in which the functions L
diverge. This was first suggested in [I1], and now we have shown substantial evidence supporting
that suggestion. Such modifications shall be pursued in future work.

It is important to point out that the nonclassical transport equation depends upon the free-path
variable s. This implies that the integral that defines the functions £; may be approximated, and
evaluated only on the finite interval upon which the problem is being solved, since the particle
cannot travel a distance between collisions that is larger than the domain itself. Thus, there is the
chance that the functions £; may diverge for a specific choice of parameters in a certain domain,
and converge for the same choice of parameters when considering a smaller domain. However, this
does not change the need to explore improvements to the spectral approach to treat diverging Ly
functions.

In Section [4] we presented numerical results for two test problems, illustrating the precision of
the ADO method. In Test Problem 1, we observed that the ADO method presented high precision
when solving the nonclassical problem. Two sets of problems were investigated, with different

25



T00+0TXIVLIERT SB Peay ¢
'0'g] = T pue ('8 = T 10J pI[eA oIe pajuasald symsal oy ‘O'g = T JT ‘ojdurexs 10 ‘00T + LF =T ,

G0-H9°¢ G0-U88 G0-H9'G | GO-HOPGGEO'T GO-HELGGEO'T GO-HOPSGEO'T GO-HI8VSEDT 00T

L0-HY'T LO-HC'G LO-HLT | VO-HEL8STY'T  VO-HOEL8SGTY'T  VO-HEL8STT'T Y0-HO88GTT'T 08
60-HT'T 60-HZ'T L0-HOC | €0-H6089L9'T €0-H6089.9'T €0-H6089.9°T €0-H608929°T 09
TT-H6'T TI-H8C LO-HI'T | CO-HCLICV6'T CO-HCLICV6'T CO-HCLICVE'T CO-HCLICV6'T 0%
0T-HV'€ 60-HV'S 80-UT¥ | T0-H80S6¥¢'C T0-H80S6VC'C TO-H80S6VCC T10-U804%67¢'C 0¢

L0-HS9°6 90-H9'8 L0-HL'6 | 00+HSVLIES' T 00+HTCILTER'T 00+HSVLIER'T 00+HIVLIES'T 00

uorsaId Jo SHSIp juedyIuUsIS ()

GOUV'T v0-HL'C G0-HG'8 | G0-HIEIY0CO'T GO-HCOIGEO'T  G0-HOLSGEO'T GO-HI8VSEDT 00T

COUV'T vO-HGV G0-HEG | VO-HISGTICY' T VO-HCEeSHI' T ¥O-HCO8SGHT'T Y0-HO8RGTT' T 08
COUV'T VO-HGV GO0-HEG | €0O-HFIGIGO'T €0-HLV09L9'T €0-HOTLILI'T €0-H608929°T 09
COUV'T V0-HGV G0-HE'G | CO-HS6EET6'T CO-HO6K8CIV6 T  ¢0-H690CV6'T G0-HCLICV6 T (UN7%
COUV'T VO-HGT GO-HE'G | TOHLLIIICC TO-HESY8YE'C TO-H8YEGVC ¢ T10-U80G67¢'C 0°¢

¢0-HL'T ¥0-H6'6 S0-HC L | 00+HC0T66L T 00+HSIG6CS T 00+HETITES' T  qO0+HITLIES'T 00

uotsoald Jo SHSIP JuUROYIUSIS 9T

=N 0F=N 0E=N| 0¢=N v =N 0§ = N
0=
Ameo\w:o,ﬁSw:v Ameo\wzctzw:v (wo)
IOIIG] 9ATYR[Y As "b3) uormog [eoIsseOUON - ‘b Jo uonIN[Og 4, T

Table 9: Neutron scalar flux for Test Problem 2, with ¢ = 0.5, M = 30, 1 = 9.5¢m, and z2 = 10.5cm.
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choices of scattering ratios and interior source intervals. The ADO method showed low sensitivity
to changes in the scattering ratio, and its accuracy increased as M and N became larger. Moreover,
when the source interval was increased, the accuracy of the ADO method also improved.

In the second test problem we investigated the influence of the choice of oy on the behavior
of the L functions, and consequently on its effect on the ADO formulation. We found that the
truncation order M of the Laguerre polynomials, needed for the generation of accurate results in
the spectral approximation approach, varies with the choice of total cross section. This has a direct
effect on the efficiency of the ADO method since the increase of N and M contributes to an increase
in the condition number of the matrices built for this method. It becomes necessary, for certain
cases, to use arbitrary precision libraries in order to generate numerical results that represent the
true solution of the problem. This is showcased in Table in which we present the execution
time and RAM allocation (Resident Set Size) for the solutions given in Table [9|

Table 10: Data on the ADO method’s efficiency when applied to Test Problem 2.

Significant digits of precision = Experiments  Time of execution (sec) RAM allocation*(kB)

N =30 7.388625E+00P 2.622930E4-05

16 N =40 1.770191E+01 4.542840E4-05
M — 30 N =50 3.807081E4-01 5.193640E4-05

N =30 4.148346E4-03 9.480600E4-05

40 N =40 9.944762E4-03 1.679036E+06
N =50 1.925917E+04 2.146800E4-06

2 Resident Set Size.
b Read as 7.388625x107%°,

¢ All calculations were performed on a notebook with the following configuration: Intel(R) Core(TM) i5-5200U
CPU@ 2.20GHz, 8GB RAM.

As future work, we intend to study approaches that yield a smaller condition number of the
matrices built to solve these problems, such as to explore a potential hybrid algorithm that combines
the ADO method with the Response Matrix method [34,[35]. In addition, we aim to explore different
representations of the nonclassical angular flux currently given by Eq. , in order to attain
modified forms of the £ functions with a better convergence rate. This would prevent, in some
cases, the need to work with high values of M, in a similar fashion to what we have seen in Test
problem 1. In other words, £; functions with a faster convergence rate will prevent the need to use
high precision algebraic and matrix calculations, improving the overall efficiency of the computer
code.
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