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Abstract

Estimation of spatially-varying parameters for computationally expensive forward models

governed by partial differential equations is addressed. A novel multiscale Bayesian infer-

ence approach is introduced based on deep probabilistic generative models. Such generative

models provide a flexible representation by inferring on each scale a low-dimensional latent

encoding while allowing hierarchical parameter generation from coarse- to fine-scales. Com-

bining the multiscale generative model with Markov Chain Monte Carlo (MCMC), inference

across scales is achieved enabling us to efficiently obtain posterior parameter samples at

various scales. The estimation of coarse-scale parameters using a low-dimensional latent em-

bedding captures global and notable parameter features using an inexpensive but inaccurate

solver. MCMC sampling of the fine-scale parameters is enabled by utilizing the posterior

information in the immediate coarser-scale. In this way, the global features are identified in

the coarse-scale with inference of low-dimensional variables and inexpensive forward com-

putation, and the local features are refined and corrected in the fine-scale. The developed

method is demonstrated with two types of permeability estimation for flow in heteroge-

neous media. One is a Gaussian random field (GRF) with uncertain length scales, and the

other is channelized permeability with the two regions defined by different GRFs. The ob-
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tained results indicate that the method allows high-dimensional parameter estimation while

exhibiting stability, efficiency and accuracy.

Keywords: Bayesian Inference, Inverse Problems, Deep Generative Model,

High-dimensionality, Multiscale Estimation, Markov Chain Monte Carlo

1. Introduction

Inverse problems are important but challenging in many fields like geophysics, medical

imaging, groundwater flows, and other. They address the estimation of model parameters

from partial and noisy observations [1]. Two approaches for addressing inverse problems

are typically employed. The deterministic methods convert parameter identification to an

optimization problem that involves minimizing the misfit between model predictions and ob-

servations. Since limited observations are insufficient to identify the underlying parameters,

regularization methods [2, 3, 4] are used to address this ill-posed problem. On the other

hand, Bayesian inference approaches play a fundamental role in inverse problems allowing

us to quantify the uncertainty of the solution and providing natural regularization via prior

knowledge [5]. They treat parameters as random variables to highlight the uncertainty in

their estimation. The non-uniqueness of the solution is addressed by computing the posterior

of the parameters rather than a single point estimate. Variational inference (VI) and Monte

Carlo (MC) methods are two main approximation methods to deal with the computation

of the intractable posterior distribution. VI [6, 7, 8, 9] is easy to implement but limited by

the family of variational distributions. Most Bayesian approaches emphasize Markov Chain

Monte Carlo (MCMC) methods that aim to generate samples from the posterior distribution

that subsequently are used to produce statistics of the quantities of interest.

MCMC methods have the appealing property that they are asymptotically exact. Thus,

many previous works have studied the MCMC method or its variants for Bayesian inverse

problems (BIPs). However, there are two main difficulties for these methods. First, the

dimensionality of the spatially-varying parameters can be high (e.g. equal to the number of

grid points) leading to the so called curse of dimensionality. Second, these sampling-based

approaches require multiple evaluations of the forward model (likelihood evaluation). Each

evaluation involves a full forward simulation, which is computationally prohibiting for many
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practical problems governed by partial differential equations (PDEs).

For the first problem identified above, given prior information, parameterization methods

are often used to provide a low-dimensional embedding of the unknown spatially-varying

parameter. The common method in BIPs is the truncated Karhunen-Loève expansion (KLE)

for the estimation of Gaussian random fields (GRFs) [10, 11], where inference is performed

over a small number of expansion coefficients. With limitations and strong assumptions on

the mean and covariance functions, the KLE cannot reflect the true prior information, and

is not a good choice for fields with nontrivial correlation structure. To address this, sparse

grid interpolation [12, 13] and wavelet-based [14] methods have been proposed. However,

such methods still have difficulties in the parameterization of complex parameters such as

multi-modal or non-Gaussian random fields [15, 16].

Deep generative models (DGM) [17, 18, 19] provide a good choice for parameterization.

DGMs are much more flexible and scalable, where the prior information is naturally incor-

porated into the training data without strong assumptions. Once the DGM is trained, one

can sample latent variables from a low-dimensional simple distribution (like a Gaussian),

and then generate the spatially-varying parameter using the pre-trained neural network.

Many recent studies integrated the DGM-based parameterization method with various infer-

ence methods to tackle non-Gaussian parameter estimation problems, including conditional

invertible neural networks [20], variational autoencoder (VAE) with MCMC or ensemble

smoother [15, 21], generative adversarial network (GAN) with MCMC or Metropolis-adjusted

Langevin algorithm (MALA) [22, 23], adversarial autoencoder (AAE) with iterative local up-

dating ensemble smoother (ILUES) [16] and so on.

A potential remedy of the requirement of MCMC methods for multiple calls to the for-

ward model solver is to build a surrogate forward model, such as polynomial chaos [24, 25],

Gaussian process [26, 27], or deep neural networks [28, 29, 30]. However, the surrogate

model often introduces epistemic uncertainty that will result in broadening of the poste-

rior for parameter estimation [31]. Furthermore, it is still a difficult task to construct an

accurate surrogate for forward models with high-dimensional input using limited data. To

reduce the computational burden of the simulation, multiscale [32, 33, 34] and multi-fidelity

methods [35, 36] have been applied to accelerate the Bayesian computation without sacri-
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ficing accuracy. The two-stage MCMC [37] designed a preconditioned Metropolis-Hastings

algorithm to improve the acceptance rate in the fine-scale model. Inspired by the multilevel

Monte Carlo, Multilevel MCMC methods [38, 39, 40, 41] are proposed for BIPs to accelerate

the estimation of the posterior distribution. All these methods are indeed promising for

BIPs by leveraging the advantages of the accurate fine-scale model and the efficiency of the

coarse-scale model.

In this work, we propose a multiscale deep generative model (MDGM) exploiting the

multiscale nature of the parameter of interest. This extends existing DGMs and allows

us to generate parameters on various scales with different discretization/resolution. Since

GANs are notorious on training stability and mode collapse, and flow-based models [42, 43]

require an identical-dimensional latent space to the parameter, we derive the MDGM based

on VAE. In the MDGM, we design a specific latent space that includes two latent variables,

a low-dimensional latent variable that controls global and salient features and a higher-

dimensional latent variable that defines local and detailed features. Utilizing the hierarchical

representation of the parameter and latent spaces, the multiscale inference is performed in

the low-dimensional latent space rather than the original parameter space. This allows

us to explore the posterior of the parameter from coarse- to fine-scales with a significant

computational saving. Once most of the salient features are identified in the coarse-scale

using a computationally inexpensive coarse-solver, the fine-scale estimation requires only few

fine-scale simulations to refine the coarse-scale parameter estimation.

The main contributions of this work are summarized as follows. (1) Based on the vanilla

VAE, we extend and derive the MDGM, which can generate spatial parameters at various

scales with an appropriately designed latent space. (2) The proposed multiscale inference

method performs efficiently inference across scales based on the MDGM. (3) A flexible scheme

allows efficient estimation of rough/global parameter features with coarse-scale inference and

parameter refinement with fine-scale inference. (4) The proposed method is demonstrated

in Gaussian and non-Gaussian inversion tasks.

The rest of the paper is organized as follows. Section 2 provides the definition of the in-

verse problem and addresses the limitations of standard Bayesian approaches for distributed

parameter estimation. Section 3.1 introduces the generation of the multiscale training
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datasets. The big picture of the multiscale estimation problem using hierarchical genera-

tive models is addressed in Section 3.2. The one-scale and multiscale generative models are

derived in Sections 3.3 and 3.4, respectively. The Bayesian inversion using the multiscale

generative model is discussed in Sections 3.5 and 3.6. Section 4 presents the results of various

numerical examples in the estimation of Gaussian and channelized permeability in porous

media flows and Section 5 summarizes this work.

2. Problem Definition

2.1. Bayesian inverse problems

In this section, we introduce the inverse problems of interest and briefly discuss the

limitations of standard Bayesian inference approaches to inverse problems. We consider a

spatially-varying parameter x(s) usually represented as a random field x(s, ω), where s

is spatial location in the domain S and ω is a random event in the sample space Ω. This

random field is discretized by a random vector x ∈ RM using standard finite element or finite

difference discretization approaches. In our inverse problem setting, x(s), will be considered

as our primary quantity of interest.

Let us consider a physical system governed by PDEs in a given spatial domain. We assume

x(s, ω) to be an input parameter (e.g. material property) of this model. Of interest to this

work are distributed properties with multiscale features. The forward model concerning this

physical system is usually considered as a function F : RM → RD, which maps the unknown

parameters x to the observable output Dobs ∈ RD with a measurement noise ξ ∈ RD:

Dobs = F(x) + ξ. (1)

The inverse problem is to infer the unknown parameters x based on these noisy data Dobs.

In the particular problem we will focus in Section 4, our goal is to estimate the permeability

field in a porous media flow using pressure measurements.

Without prior information about the measurement system and/or model evaluation, we

assume that ξ is a zero-mean Gaussian noise with covariance matrix Σ, i.e., ξ ∼ N (0,Σ).

Since often dim(RD)� dim(RM), the inverse problem is highly ill-posed and identification
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of the parameter x is highly-sensitive to this noise. The Bayesian paradigm [5] provides a

general and natural way to treat the unknown parameter x as random variable to highlight

the uncertainty in the inference process. Given the observation data Dobs, one calculates the

posterior probability π(x|Dobs) via Bayes’ formula as follows:

π(x|Dobs) =
Le(Dobs|x)π(x)∫
Le(Dobs|x)π(x)dx

, (2)

where π(x) is the prior distribution, and Le(Dobs|x) is the likelihood function which evaluates

the discrepancy between the forward predictions and observations. For the assumed case of

Gaussian noise, we can define the likelihood function as

Le(Dobs|x) ∝ exp

(
−1

2
(Dobs −F(x))T Σ−1 (Dobs −F(x))

)
. (3)

As the parameter x of interest is high-dimensional, the normalization constant in Eq. (2)

involves computing a high-dimensional integral that is often an intractable process. Thus ap-

proximate inference for the posterior π(x|Dobs) is performed using the unnormalized density,

i.e.,

π(x|Dobs) ∝ Le(Dobs|x)π(x). (4)

2.2. Multiscale inference with MDGM

Without a closed-form expression, the posterior distribution in Eq. (4) must be computed

numerically. To this end, MCMC [10, 44] or other approximation methods like Ensemble

Kalman filter (EnKF) [16, 30] are often employed. However, there are still two main dif-

ficulties for these methods. MCMC and EnKF implementations will often fail to directly

approximate the posterior of the high-dimensional spatially-varying parameter x. Moreover,

for complex parameters (e.g. channelized permeability), the prior information cannot be eas-

ily cast as an explicit probability distribution. However, one often has access to a historical

dataset X ≡ {x(i)}Ni=1 [16, 45, 46] where x(i) can be seen as samples from the underlying

prior distribution π(x). One could use X to approximate π(x) with its empirical measure.

However, in this work, we will use this dataset to approximate the prior distribution with a
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generative model as follows:

p(x|θ) =

∫
pθ(x|z)p(z)dz, (5)

where p(z) is a simple distribution (e.g. Gaussian) for the latent variable z ∈ Rd, and

pθ(x|z) is a generative model parameterized by θ (decoder). In a DGM like a VAE, one

can choose a Gaussian distribution N (0, I) for p(z), and N (µθ(z), σ2I) for pθ(x|z), where

µθ(z) is the output of the decoder neural network, and σ is a hyperparameter that does not

depend on the latent variable z. It is common practice in the literature [15, 16, 47, 48] to

ignore the noise and approximate the density pθ(x|z) with the point estimate µθ(z). Once

the model is trained, we can thus define a mapping from the latent space to the original

parameter space, i.e. x = µθ(z).

The parameters θ of the generative model pθ(x|z) can be computed using the given train-

ing datasetX by minimizing the Kullback-–Leibler (KL) divergence DKL (π(x)||p(x|θ)) [49],

where x(i) i.i.d∼ π(x). This leads to the equivalent problem of maximizing the marginal log-

likelihood:

log p(X|θ) =
N∑
i=1

log p(x(i)|θ)

=
N∑
i=1

log

∫
pθ(x

(i)|z(i))p(z(i))dz(i). (6)

The above marginalization is potentially very difficult to compute involving an intractable

integration. Using Expectation-Maximization is also intractable as that will require the

posterior pθ(z|x) that is also computationally intractable. The marginal likelihood for the

dataset {x(i)}Ni=1 can be reformulated using a variational density qφ(z(i)|x(i)) (encoder) pa-

rameterized by φ. The details of these calculations will be given in Section 3.3.

To approximate the posterior distribution in Eq. (4) using the MCMC method, we are

interested to generate realizations sampled from the underlying prior distribution π(x). To

sample realizations from π(x) using the generative model, one can sample zi from the sim-

ple and low-dimensional distribution p(z) and then obtain the realization x(i) using the

decoder model µθ(z). Alternatively, instead of approximating the posterior π(x|Dobs) in

Eq. (4), one can instead evaluate the low-dimensional posterior p(z|Dobs) using the following

7



unnormalized density:

p(z|Dobs) ∝ Le(Dobs|z)p(z), (7)

where p(z) is an explicit distribution, and the likelihood can be evaluated using the decoder

model µθ(z) and the forward model F(x). The evaluation of the posterior of the low-

dimensional latent variable z using MCMC or EnKF is computationally tractable [15, 16].

To further improve the efficiency of the inference process, we will introduce a multiscale

version of the above highlighted generative model to perform inference in each scale l =

1, 2, . . . , L from the coarsest-scale (l = 1) to the desired finest-scale (l = L). This multiscale

scheme based on the MDGM contains a hierarchical simple distribution p(zl) at each scale

l and a conditional distribution pθl(xl|zl) that can generate the spatially-varying parameter

x in each scale. Correspondingly, one can assess the posterior p(zl|Dobs) using MCMC with

p(zl), µθl(zl), and Fl(xl). The details of this multiscale model are given next.

3. Methodology

3.1. Multiscale dataset

Our physical systems of interest are governed by a system of PDEs, and the spatially-

varying property of interest is a material property appearing e.g. in the constitutive equa-

tions. The forward problem defines the well-posed solution of the PDEs (with some bound-

ary conditions) given appropriate material properties. Such problems are often solved in

a discretized fashion with finite element or finite difference or spectral approximations for

different levels of discretization of the spatial domain S. In this work, we are interested in

a hierarchical parameterization of the spatially-varying parameters xl with different spatial

discretization or resolutions at each scale l. If the forward model is performed in the 2-D

space, the parameter random fields xl at the l-th scale are treated as images, e.g. xl ∈ RHl×Wl

(Ml = Hl×Wl), where Hl,Wl denote the number of the pixels in the horizontal and vertical

directions, respectively.

For notational convenience, we assume that the finest scale parameters xL represent our

“true parameter model”. The noisy observations Dobs in our numerical studies are taken from
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this discretization level. In the inverse problem of interest, our task is to compute xL given

a finite number of observations. For the solution of this inverse problem, prior knowledge

can provide useful information for xL before any observations. As prior information for our

model, we assume that we are given a dataset X = {x(i)
L }Ni=1. To obtain images for training

the generative model at different discretization levels, we will need to obtain a multiscale

training dataset.

This can be accomplished by upscaling the fine-scale training dataset [50, 51, 52]. For

example, with an upscaling (deterministic) operator U : RMl → RMl−1 (Ml−1 � Ml), where

Ml and Ml−1 are the dimensions of xl and xl−1, respectively. The dataset {x(i)
l−1}Ni=1 in the

coarse-scale (l − 1) is obtained by

x
(i)
l−1 = U(x

(i)
l ). (8)

The datasets {x(i)
l }Ni=1, l = 1, 2, . . . , L in different scales are obtained by adopting recursively

U in Eq. (8) starting with the finest-scale l = L. we assume x
(i)
l is sampled from l-th scale

underlying prior distribution πl(xl). The operator U used in this paper is deterministic,

which leads to a one-to-one correspondence between the elements in {x(i)
1 , . . . ,x

(i)
L−1,x

(i)
L }Ni=1.

One can choose different operators U depending on the particular parameter of interest. In

this paper, we employ the arithmetic average1:

xl−1(e) =
1

ne

ne∑
i=1

xl(ei), (9)

where ne denotes the number of elements in the fine-scale l corresponding to one element

in the coarse-scale (l − 1). The value at the coarse-grid element e is the mean of the values

in the spatially corresponding elements ei in the fine-scale. Spatial correspondence between

two adjacent scales with 50% coarsening in each direction is illustrated in Fig. 1.

An example illustrating this deterministic upscaling for channelized permeability using

Eq. (9) is given in Fig. 2. The coarse-scale image provides a blurry representation of the

fine-scale image but overall its features are consistent with those of the fine-scale image. It

can be noticed that the coarse-scale image manifests itself with a checkerboard pattern that

1http://www.epgeology.com/static-modeling-f39/how-upscale-permeability-t6045.html
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Figure 1: Illustration of the spatial correspondence in deterministic upscaling [32]. The parameter xl−1(e) in

the coarse-scale element e is equal to U (xl(ei)), where ei are the spatially corresponding fine-scale elements

to the coarse-element e. The number of fine- to coarse-elements in each direction is proportional to hl−1

hl
,

where hl−1, hl are the mesh sizes in the coarse- and fine-scales, respectively.

misses a lots of local information.

2

0

2

4

2

0

2

4

2

0

2

4

Figure 2: Upscaling channelized log-permeability samples (3 scales) using the upscaling technique in Fig. 1

and Eq. (9). From left to right: (a) original and the finest-grid x3 ∈ R64×64 realization with resolution

64× 64, (b) the coarser-scale x2 with resolution 32× 32 after applying the operator in Eq. (9) with ne = 4

on x3, (c) the coarsest-scale x1 with resolution 16 × 16 after applying the operator in Eq. (9) with ne = 4

on x2.

With the scales of interest pre-determined and the training dataset defined at each scale,

we are ready to train the MDGM and perform inference on each scale using the proposed

hierarchical multiscale framework.

3.2. Model specification

Given the training dataset {x(i)}Ni=1, we seek to learn a DGM that can approximate π(x)

with Eq. (5). The DGM involves the original parameter space and the latent space and the

mappings between these spaces. For any x sampled from the underlying distribution π(x),
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the corresponding z is sampled from the conditional distribution qφ(z|x), where qφ(z|x) is

called the recognition model or probabilistic encoder model, and φ are its model parameters.

In the reverse direction, one can sample a z from a simple and low-dimensional distribution

p(z), and obtain the corresponding x from the generative model or probabilistic decoder

model pθ(x|z).

Definition 3.1 (Probabilistic Generative Model). Given a set of training input data {x(i)}Ni=1,

where x(i) ∼ π(x), select an appropriate distribution p(z) for the latent variable z and learn

the models pθ(x|z) and qφ(z|x), respectively, such that π(x) can be approximated using

Eq. (5), where θ and φ denote the parameters of the generative and recognition models,

respectively.

For high-dimensional inversion tasks, direct inference in the fine-scale is prohibited due to

the computational cost of the forward model. In addition, inference of the latent parameters

z that lead to good estimates of x through a generative model requires a high-dimensional

z. This will lead to long exploration costs for MCMC and requires a large number of forward

model evaluations. To this end, given the multiscale dataset as discussed in Section 3.1, we

propose a multiscale scheme for posterior estimation by introducing a hierarchy of generative

models from coarse- to fine-scales. In this scheme, the coarse-scale generative models have

low-dimensional latent spaces. This together with inexpensive forward model evaluations

in the coarse-scales would allow MCMC to explore the posterior in coarse-scales with much

reduced cost. The computational savings can be even higher if the latent representation on a

given scale utilizes the latent information that was inferred in the immediately coarser-scale.

In our construct, the latent variables zl at level l of the hierarchy are given as zl =

(zl−1, z
?
l ), where the latent variables zl−1 and z?l are encoded from the coarse-scale parameter

xl−1 and the fine-scale parameter xl, respectively. The latent variable zl−1 can generate xl−1

through the generative model at scale (l − 1). It also impacts the generation of xl in the

fine-scale l by way of dominating its salient features since zl−1 captured the information from

the immediately coarser-scale. In this setting with zl−1 encoded from xl−1, it is anticipated

that xl generated by pθl(xl|zl−1, z?l ) would sustain most of the features of xl−1. We extend

the Definition 3.1 to a multiscale scenario as follows.
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Definition 3.2 (Multiscale Deep Generative Model). Given a set of training input data

{x(i)
l }Ni=1, l = 1, 2, . . . , L, select appropriate distributions p(zl), where zl = (zl−1, z

?
l ) are the

latent variables at scale l, and learn the models pθ1(x1|z1), pθ2(x2|z1, z?2), . . . , pθl(xl|zl−1, z?l )

and qφ1(z1|x1), qφ2(z1, z
?
2 |x2), . . . , qφl

(zl−1, z
?
l |xl) recursively, such that πl(xl) can be ap-

proximated using Eq. (5) in each scale. Here, θl and φl denote the parameters of the gener-

ative and recognition models at scale l, respectively.

Once the MDGM is established, the parameters xl are encoded by the latent variable

zl so that one can perform inference of zl. Given the prior distribution p(zl), the decoder

model µθ(zl), the forward model Fl, and observations Dobs, inference of the posterior of zl

is performed as follows:

p(zl|Dobs) ∝ Le(Dobs|zl)p(zl). (10)

Note that MCMC converges and captures prominent and valuable features quickly in

the coarse-scale (l − 1) since zl−1 is low-dimensional and the forward model Fl−1 is less

expensive in comparison to Fl. For an efficient Bayesian inference at each scale l, we are

interested in using the posterior distribution at coarse-scale (l−1) to provide an informative

prior information or improve sampling efficiency in the next finer-scale. This avoids relying

completely on inference in a high-dimensional latent space where direct computation of fine-

scale details would increase the model complexity. The purpose of inference on fine-scale is

to correct the details rather than run long exploration for capturing all appropriate features.

A related idea was implemented earlier using hierarchical structured sparse grids in [13].

In summary, the inverse problem is divided into a multiscale posterior estimation, with the

inference of parameters proceeding from coarse- to fine-scale. The definition of the multiscale

posterior estimation problem is given next.

Definition 3.3 (Multiscale Posterior Estimation). Given observations Dobs, forward models

Fl, probabilistic encoder model pφl
(zl|xl), decoder models µθ(zl), and prior distributions

p(zl) on different scales l (l = 1, 2, . . . , L), explore the posterior distribution p(zl|Dobs) in

Eq. (10) recursively from coarse- to fine-scales by using MCMC or other posterior modeling

techniques.
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3.3. Probabilistic generative model

The MDGM is used to generate parameters with different discretization/resolution. We

construct such a model based on the variational autoenoder (VAE). The coarsest generative

model that involves a single-scale (l = 1) is vanilla VAE. It employs the dataset {x(i)
1 }Ni=1

(generated as discussed in Section 3.1) sampled from the underlying distribution π(x1), i.e.

x
(i)
1

i.i.d∼ π(x1). We consider below the probabilistic generative model on a single-scale before

deriving the multiscale formulation in Section 3.4. For simplicity of the notation, we drop

the subscript 1 in the equations below even though this model will be used in the scale l = 1.

Given the training dataset {x(i)}Ni=1, one can introduce a variational family qφ(z|x) to

convert the intractable computation of maximizing the marginal log-likelihood in Eq. (6)

into an optimization problem, where φ denotes the model parameters. It can be written as

follows:

log p(X|θ) =
N∑
i=1

log p(x(i)|θ)

=
N∑
i=1

log

∫
pθ(x

(i)|z(i))pθ(z(i)) dz(i)

=
N∑
i=1

log

∫
qφ(z(i)|x(i))

pθ(x
(i)|z(i))pθ(z(i))
qφ(z(i)|x(i))

dz(i)

≥
N∑
i=1

∫
qφ(z(i)|x(i)) log

pθ(x
(i)|z(i))pθ(z(i))
qφ(z(i)|x(i))

dz(i)︸ ︷︷ ︸
L(θ,φ;x(i))

, (11)

where the last step is the application of Jensen’s inequality. The above lower bound is called

the variational lower bound. For a given training dataset, one can maximize the variational

lower bound rather than the marginal log-likelihood. This is an optimization problem with

respect to model parameter θ and φ. The variational lower bound in Eq. (11) can be written

as follows,
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L(θ,φ;X) =
N∑
i=1

Eqφ(z(i)|x(i))[log pθ(x
(i), z(i))− log qφ(z(i)|x(i))]

=
N∑
i=1

Eqφ(z(i)|x(i))[log pθ(x
(i)|z(i))]−

N∑
i=1

DKL

(
qφ(z(i)|x(i))||pθ(z(i))

)
. (12)

The minimization of the −L(θ,φ) balances the optimization of both the recognition and

generative models. Thus the recognition model parameters φ are learned jointly with the

generative model parameters θ [18]. The graphical model is shown in Fig. 3.

x(i)z(i)

φ

θ

N

Figure 3: The directed graphical model for the probabilistic model [18]. The latent variable z(i) of each con-

figuration x(i) is obtained by the probabilistic recognition model qφ(z(i)|x(i)). The variational approximation

is indicated with dashed edges and the generative model pθ(x|z)p(z) with solid edges.

To evaluate L(θ,φ) in Eq. (12), there are three probability distributions to be iden-

tified. As mentioned in Definition 3.1, we shall select appropriate simple distributions

for the latent variables z. For example, in this paper, we let p(z) ∼ N (0, I). The

Ez(i)∼qφ(z(i)|x(i))[log pθ(x
(i)|z(i))] in Eq. (12) is the expected log-likelihood. It encourages

the reconstructed data x̂ by the decoder to approximate the original data x. We assume

pθ(x|z) is modeled by a Gaussian distribution N (µ(z), σ2I), where the mean µ(z) is the

output of a decoder neural network and σ is a constant hyperparameter that does not depend

on the decoder so that it can be ignored during optimization. Let Σ̂ = σ2I, the first term

in Eq. (12) then takes the form based on the minibatches:
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N∑
i=1

Ez(i)∼qφ(z(i)|x(i))(log pθ(x
(i)|z(i)))

=
N∑
i=1

Ez(i)∼qφ(z(i)|x(i))

[
−1

2

(
x(i) − µ(z(i))

)T
Σ̂−1

(
x(i) − µ(z(i))

)]
+ constant

∝ −
N∑
i=1

Ez(i)∼qφ(z(i)|x(i))

[(
x(i) − µ(z(i))

)T (
x(i) − µ(z(i))

)]
≈ −N

n

1

m

n∑
i=1

m∑
j=1

∥∥x(i) − µ(z(i,j))
∥∥2 , z(i,j) ∼ qφ(z(i,j)|x(i)), (13)

where n denotes the number of training samples of x (also referred to as the batch size in

the training of deep neural networks). For each epoch, there are N
n

minibatches, each batch

uniformly sampled from the dataset {x(i)}Ni=1. m is the number of z samples from qφ(z|x)

for an expectation approximation using the Monte Carlo method. One can also refer to

Eq. (13) as the reconstruction error.

For the DKL(qφ(z(i)|x(i))‖p(z(i))) in Eq. (12), qφ(z(i)|x(i)) is taken as a Gaussian distri-

bution, where the mean µ̂(x) and the variance σ̂2(x) are outputs of the encoder network.

The KL-divergence can be analytically computed when both distributions are Gaussian [18].

The KL-divergence works as an objective function for the optimization problem with respect

to the encoder parameters φ. Based on the minibatches, it can be written as:

N∑
i=1

DKL(qφ(z(i)|x(i))‖p(z)) =
N

2n

n∑
i=1

d∑
k=1

(
µ̂2
k(x

(i)) + σ̂2
k(x

(i))− log σ̂2
k(x

(i))− 1
)
, (14)

where µ̂k(x) and σ̂k(x) denote the k-th element of the mean and standard deviation, respec-

tively, which are outputs of the encoder network. The results of Eqs. (13) and (14) summarize

the objective function for optimization of the encoder and decoder neural networks.

Inspired from β-VAE [53], we slightly modify the underlying loss function. This mod-

ification of the VAE results by adding an extra hyperparameter β to the KL divergence.

This hyperparamter can constrict the capacity of the latent bottleneck and encourage a

disentangled representation. We would like the individual dimensions of the latent variable

z to be interpretable or to correspond to some features of parameters thus disentangling
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the true variation of data [53, 54]. A good interpretability and factorized representation

for the latent variable will facilitate the feature exploration in MCMC. Note that [55] has

shown that β-VAE is an important method in disentangled representation for learning the

compositional and hierarchical visual concept. Choosing an appropriate hyperparameter β̃

for loss function is important in MDGM. We can define the loss function L̃ ≡ − n
N
L(θ,φ) in

each training iteration, the loss function for the single-scale probabilistic generative model

as follows:

L̃(θ,φ) =
β̃

2

n∑
i=1

d∑
k=1

(
µ̂2
k(x

(i)) + σ̂2
k(x

(i))− log σ̂2
k(x

(i))− 1
)

+
1

m

n∑
i=1

m∑
j=1

∥∥x(i) − µ(z(i,j))
∥∥2 .
(15)

Remark 1. In the vanilla VAE, the objective function considers the reconstruction error

and the KL-divergence to be of equivalent importance. The hyperparameter β is introduced

to break this balance. More specifically, high values of β put more emphasis on the latent space

approximation than on the reconstruction, expediting the learning of notable feature variations

but bringing blurred minutiae. For example, in the channelized permeability experiment, we

noted that high β is conducive to capturing the continuous channel structures while losing

much fidelity in local variations.

To optimize the parameters θ and φ in neural networks, one could employ stochastic

gradient descent (SGD) or other gradient-based optimization algorithms related to back

propagation. Note that the second term in Eq. (15) is an expectation approximation using the

Monte Carlo method that samples z(i,j) from qφ(z(i,j)|x(i)). But the expectation computation

involving sampling with a high variance will reflect on the gradient estimation, which leads

to an unfavorable influence on optimization. To make it trainable and back propagate

the gradient correctly, the reparameterization trick is introduced. The latent variables z are

expressed by a differentiable transformation gφ(ε,x) with respect to an auxiliary independent

random variable ε. In the Gaussian distribution case, we let ε ∼ N (0, I), sampling z via

such a gφ(ε,x):

z = µ̂(x) + σ̂(x)� ε, (16)
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where � refers to an element-wise product. The illustration of forward and back propagation

computation with the reparameterization trick is shown in Fig. 4.

Encoder Decoder

backpropagation
forward

Figure 4: Illustration of the network architecture. The black arrows denote forward computation in the

encoder/decoder networks and the blue arrows indicate the feasible implementation of back propagation

under the reparameterization trick.

Remark 2. The reparameterization trick makes the random variable z to only depend on

two deterministic variables by introducing an auxiliary random variable ε sampled from the

standard Gaussian distribution. It scales ε by the variance σ̂(x) and shifts it by the mean

µ̂(x). The operators + and � in Eq. (16) are differentiable, which makes the gradient

computation achievable. Numerical experiments indicate that m in Eq. (15) can be set to 1

when n is large enough.

As discussed in Definition 3.1, we constructed the probabilistic models pθ(x|z) and

qφ(z|x) to sample x given its corresponding latent variable z and to map the parameters

x to the latent space, respectively. Based on the objective function in Eq. (15) and neural

network in Fig. 4 (detailed architecture see Appendix A), one can optimize the network

parameters φ and θ. The implementation procedure is summarized in Algorithm 1.

This model only involves a single-scale parameter representation learning, while MDGM

is a multi-stage and recursive training procedure from coarse to fine, i.e. the training output

in the coarse-scale model is the input to the next finer-scale model. The coarsest-scale

probabilistic models pθ1(x1|z1) and qφ1(z1|x1) are outputs of Algorithm 1. The generative

model pθ1(x1|z1) is used for the estimation of the posterior π(x1|Dobs) in the coarsest-scale

by standard MCMC (see Section 3.5). The recognition model qφ1(z1|x1) is the input (as a

pre-trained model) to the second-scale (l = 2) generative model training (see Section 3.4).
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Algorithm 1 Training probabilistic generative model

Input: Dataset {x(i)}Ni=1, training epoch E, batch size n, learning rate η, hyperparameter

β̃, m = 1.

1: Initialize φ,θ ← Initialize parameters

2: while epoch < E do

3: xn ← Sample minibatch n datapoints from {x(i)}Ni=1

4: εn ← Sample n noise from Gaussian distribution N (0, I)

5: zn ← Compute by encoder network with Eq. (16)

6: ∇θL̃,∇φL̃ ← Calculate gradients of L̃
(
θ,φ; zn,xn, β̃,m

)
in Eq. (15)

7: θ = θ − η∇θL̃ ← update θ using gradient-based optimization algorithm (e.g. SGD

or Adam)

8: φ = φ− η∇φL̃ ← update φ using gradient-based optimization algorithm (e.g. SGD

or Adam)

9: end while

Output: probabilistic encoder qφ(z|x), probabilistic decoder pθ(x|z).

3.4. Multiscale deep generative model (MDGM)

In Section 3.3, we presented the single-scale parameter generative model in a probabilis-

tic perspective and discussed how to use deep neural networks for its implementation. In

this section, we enhance this model to a multiscale framework. Based on the parameter

data generation procedure in Section 3.1, we start from the training data in the finest-scale

and coarse grain them recursively to represent the training data in the coarsest-scale. We

demonstrate the MDGM by explaining how to train it in the l-th scale as an example based

on the assumption that we obtained the pre-trained encoder and decoder networks in the

(l − 1)-th scale.

To construct the connection among various scales, we design a special latent space for

the finer-scale. In particular, its latent variable zl inherits the latent variable zl−1 of the

previous scale and augments it with an additional latent variable z?l . These two variables

are independent. This is in principle similar to the Bayesian approach followed in [13] where

a hierarchical sparse grid approximation was used to represent an unknown parameter field
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at different scales.

As we discussed in Definition 3.2, we also need to train the recognition model qφ(zl|xl)

and generative model pθ(xl|zl) in scale l with the same objective function as in Eq. (6). The

difference with standard generative models is that the recognition model is divided into two

parts in order to encode the parameter x with the independent latent variables zl−1 and

z?l . As shown in Fig. 5, the encoder network includes a pre-trained encoder network and an

augmented encoder network. qφ(zl−1|xl) is computed by adopting the upscaling operator

over xl firstly and then using the previous scale encoder network. It can be modeled by

Figure 5: Schematic illustration of the probabilistic generative model in the l-th scale. Black arrows above de-

note the forward computation, and blue arrows in reverse direction denote the back propagation in gradient-

based optimization. q(zl−1|xl−1) as an input is a pre-trained network, whereas the model parameters in

q(z?l |xl) and p(xl|zl) need to be learned. For details on how to concatenate zl−1 with z?l to obtain the latent

variable zl refer to Appendix B.

qφ(zl−1|xl) =

∫
qφ(zl−1|xl−1)π(xl−1|xl)dxl−1. (17)

Since the upscaling operator U is deterministic, we can write the following:

qφ(zl−1|xl) = qφ(zl−1|xl−1). (18)

As in the single-scale probabilistic generative model in the last section, the variational lower

bound L(θ,φ;x) consists of two parts as described in Eq. (12), i.e. Eqφ(z(i)|x(i))[log pθ(x
(i)|z(i))]

and DKL

(
qφ(z(i)|x(i))||pθ(z(i))

)
. The first part in the l-th scale is formulated as the recon-

struction error introduced in Eq. (13), which involves the decoder model pθl(xl|zl) and its

model parameter θl. The second part is much distinct with p(zl) being the target distri-

bution in the KL-divergence. It is an isotropic multivariate Gaussian distribution as well,
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but it can be viewed as the joint distribution of (zl−1, z
?
l ), where zl−1, z

?
l are independent.

Thus p(zl−1) and p(z?l ) are also isotropic multivariate Gaussian distributions. Combining

with Eq. (18), we rewrite the KL-divergence as follows:

DKL(qφ(zl|xl)‖p(zl)) =

∫
qφ(zl|xl) log

qφ(zl|xl)
p(zl)

dzl

=

∫ ∫
qφ(zl−1|xl)qφ(z?l |xl) log

qφ(zl−1|xl)qφ(z?l |xl)
p(zl−1)p(z?l )

dzl−1dz
?
l

=

∫ ∫
qφ(zl−1|xl−1)qφ(z?l |xl)

[
log

qφ(zl−1|xl−1)
p(zl−1)

+ log
qφ(z?l |xl)
p(z?l )

]
dzl−1dz

?
l

=

∫
qφ(zl−1|xl−1) log

qφ(zl−1|xl−1)
p(zl−1)

dzl−1

∫
qφ(z?l |xl)dz?l

+

∫
qφ(z?l |xl) log

qφ(z?l |xl)
p(z?l )

dz?l

∫
qφ(zl−1|xl−1)dzl−1

= DKL(qφ(zl−1|xl−1)‖p(zl−1)) +DKL(qφ(z?l |xl)‖p(z?l )), (19)

where φ in the l-th scale is φl containing φl−1 and φ?l , where φl−1 denotes the parameters

of the encoder network q(zl−1|xl−1) in the (l − 1)-th scale and φ?l denotes the parameters

of the augmented encoder network q(z?l |xl) in the l-th scale. Recall that we need to employ

the pre-trained encoder network qφl−1
(zl−1|xl−1) directly in the l-th scale training because

it should ensure that the finer-scale generative model shares common latent variables zl−1

with the coarser-scale, so

DKL(qφ (zl|xl)‖p(zl)) = DKL

(
qφ?

l
(z?l |xl

)
‖p(z?l )) + constant. (20)

We also use gradient-based optimization algorithm to train the MDGM where the back

propagation is only applied in the decoder network and augmented encoder network as blue

arrows illustrated in Fig. 5. We can formulate the loss function for each training iteration

like Eq. (15) as follows:

L̃(θl,φ
?
l ) =

β̃

2

n∑
i=1

d?l∑
k=1

(
µ̂2
lk(x

(i)
l ) + σ̂2

lk(x
(i)
l )− log σ̂2

lk(x
(i)
l )− 1

)
+

1

m

n∑
i=1

m∑
j=1

∥∥∥x(i)
l − µl(z

(i,j)
l )

∥∥∥2 , (21)
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where µ̂lk(·) and σ̂lk(·) denote the k-th element in the mean and standard deviation, re-

spectively, which are outputs of the l-th scale augmented encoder network, and µl(·) is the

output of the l-th scale decoder network. Here, m is still set to be 1 when the batch size

n is large enough. d?l is the dimension of the latent variable z?l . The hyperparameter β̃ is

determined by balancing the disentanglement of the parameter features and reconstruction.

In summary, assume that we obtained the probabilistic encoder and decoder models in

the previous (l − 1) level. We can then train the augmented encoder network and decoder

networks using the objective function in Eq. (21) so that the probabilistic encoder qφl(zl|xl)

and the probabilistic decoder pθl(xl|zl) in the l-th scale are acquired. For details see Algo-

rithm 2. The architectures of the augmented encoder and decoder networks are the same as

those in the encoder and decoder networks for the single-scale model (refer to Appendix A).

We have introduced so far the probabilistic generative model in a single-scale in the last

section and the concept of generative modeling across two scales in this section. Since these

unsupervised learning models only need the unlabeled data, we only provide the finest-

scale dataset {x(i)
L }Ni=1 sampled from the underlying prior distribution π(xL) and adopt

the deterministic upscaling operator U to generate the dataset in the scale of interest. The

training of the generative models proceeds from the coarsest- to the finest-scale. The coarsest-

scale generative model is trained by Algorithm 1. From the second- to the finest-scale, the

generative model is trained recursively by Algorithm 2. Once the generative models are

trained in the scales of interest, they can be integrated with MCMC to estimate the posterior

of the parameters in each scale.

Remark 3. The training of the l-th scale generative model employs the (l − 1)-th scale

encoder network, where zl−1 is sampled from qφl−1
(zl−1|xl−1) using the reparameterization

trick. A zl−1 with high-variance will impact the training stability and convergence inflicting

big noise in the latent variable zl. We address this problem in the training procedure by

replacing zl−1 with its mean µ̂l−1(xl−1).

3.5. Bayesian inversion with the DGM

In Bayesian inversion, the Metropolis-Hastings (MH) algorithm [56, 57] is a popular

MCMC method to approximate the posterior distribution [58]. As discussed in Definition 3.3,
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Algorithm 2 Training of the multiscale probabilistic generative model in the l-th scale

Input: {xi}Ni=1, pre-trained encoder qφl−1
(zl−1|xl−1), training epoch E, batch size n, learn-

ing rate η, hyperparameter β̃, m = 1

1: Initialize φl,θ
?
l ← Initialize parameters

2: while epoch < E do

3: xn ← Sample minibatch M datapoints from {xi}Ni=1

4: znl−1 ← Compute by qφl−1
(zl−1|xl−1) for each data

5: ε← Sample n noise variables from the Gaussian distribution p(ε)

6: znl ← Compute z?l by the augmented encoder network in Eq. (16), and concatenate

with zl−1 for each data

7: ∇θ?l L̃,∇φl
L̃ ← Calculate gradients of L̃

(
θ?l ,φl; z

n
l ,x

n, β̃,m
)

in Eq. (21) with re-

spect to θ?l and φl

8: θ?l = θ−η∇θ?l L̃ ← using gradient-based optimization algorithm (e.g. SGD or Adam)

9: φl = φ−η∇φl
L̃ ← using gradient-based optimization algorithm (e.g. SGD or Adam)

10: end while

11: qφl
(zl|xl)← combine the pre-trained encoder qφl−1

(zl−1|xl−1) with qφ?
l
(z?l |xl)

Output: probabilistic encoder qφl
(zl|xl), probabilistic decoder pθl(xl|zl).

we design a multiscale scheme aimed to realize the high-dimensional parameter estimation

in inverse problems where the posterior distribution is approximated recursively. We uti-

lize the previous coarser-scale estimation information as we proceed with inference in the

next immediate finer-scale. Note that the coarsest-scale inference only involves single-scale

information in which the parameterization employs the DGM given in Algorithm 1.

For the coarsest-scale posterior distribution, we are interested in combining the standard

MH algorithm with the single-scale generative model to estimate the parameters x1 ∈ RM1

using the low-dimensional latent variable z1 ∈ Rd1 , whereM1 is the dimension of the coarsest-

scale parameter x1 that also determines the spatial discretization of the coarsest-scale for-

ward model F1, and d1 is the dimension of the coarsest-scale latent space. MCMC based

on the pre-trained model pθ1(x1|z1) allows us to explore the posterior approximation of z1.

Recall that the model pθ1(x1|z1) is a Gaussian distribution with mean µθ1(z1) and standard
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derivation σ, where µθ1(z1) is the output of the decoder network in Algorithm 1 and σ is a

hyperparameter that determines the noise level. In the test procedure, we can thus define

x1 = µθ1(z1) as a mapping from the latent space to the original parameter space. Then

one can sample in the continuous latent space to produce various parameters x1 using this

mapping. In this way, the problem of inferring x1 becomes equivalent to the one of inferring

z1.

Given the observed data Dobs, the forward function F1, the decoder model x1 = µθ1(z1),

and the prior distribution p(z1), the unnormalized posterior distribution in the coarsest-scale

is as follows:

π(z1|Dobs) ∝ Le(Dobs|z1)p(z1), (22)

where the prior distribution p(z1) is N (0, I).

For the above target distribution in the coarsest-scale, we only need to create a Markov

chain with length Nite for the latent variable z1. The proposal distribution πq(z
′
1|z

(j)
1 )

can be the simple random walk [59] or a preconditioned Crank-Nicholson (pCN) algo-

rithm [38, 60, 61]. To initialize the first state z
(1)
1 for this Markov chain, one can sample z

(1)
1

from the prior distribution p(z1). For each j ≥ 1, we first sample a candidate z′1 from the

proposal distribution πq(·|z(j)1 ) and then reconstruct the spatially-varying parameter x1 by

the decoder model x1 = µφ1(z1). One can compute the likelihood function and the Metropo-

lis acceptance ratio α using the forward model F1(x1). The acceptance ratio α is defined as

in MH algorithm:

α = min

(
1,

π(z′1|Dobs)πq(z
(j)
1 |z′1)

π(z
(j)
1 |Dobs)πq(z′1|z

(j)
1 )

)
. (23)

With probability α, the candidate sample z′1 is accepted, otherwise rejected. Specifically, in

each iteration, the state includes not only the latent variable z1 but also its corresponding

spatially-varying parameter x1. The Markov chain typically takes some iterations to reach

its stationary distribution, which depends on the target distribution. The first nb states of

the Markov chain (burn-in stage) are thrown-away to ensure a valid approximation of the

target distribution. Once the latent variable z1 is estimated, its corresponding parameter
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samples {x(j)
1 }

Nite
j=nb

can be viewed as samples from the posterior distribution π(x1|Dobs). A

summary of the MH algorithm for Bayesian inverse modeling based on the deep generative

model is given in Algorithm 3. This algorithm can be applied to solve any high-dimensional

parameter estimation in the single-scale.

In the multiscale context, the coarsest posterior was approximated by Algorithm 3. But

there are still two main problems to be resolved by invoking a finer-scale model. One is that

the high-resolution parameter estimation that can present richer details is desired; the other

is the inaccurate forward model introduces an epistemic uncertainty or model error, which

will reflect on the parameter estimation. The model error δl in the l-th scale is defined by

δl = FL(xL)−Fl(xl). (24)

This model error δl will be zero if and only if we adopt the “true model” FL. The posterior

distribution π(xL|Dobs) is the ultimate goal of our inverse problem.

3.6. Multiscale Bayesian inversion with the MDGM

To eliminate the model error and estimate the fine-scale parameter, we integrate the

MDGM with the MH algorithm. We refer to this algorithm as MH-MDGM. Such a pro-

cedure involves inference across scales and allows us to generate samples on each scale for

estimating the unknown parameter proceeding from the coarsest- to the finest-scale. Lever-

aging the latent space construction in the MDGM, the difference with the single-scale method

is that the fine-scale estimation integrated with the MDGM method can inherit the coarse

estimation resulting in a highly-efficient sampling procedure. This approach is applied from

the second-coarsest to the finest-scale where inference in each scale proceeds recursively

utilizing information at the previous coarser-scale.

For any 2 ≤ l ≤ L, let us suppose that the approximate posterior distribution π(zl−1|Dobs)

in the (l − 1)-th scale has been obtained. We thus have obtained the posterior samples

{z(i)l−1}
Nl−1

i=nl−1
and their corresponding parameter samples {x(i)

l−1}
Nl−1

i=nl−1
. As defined in Eqs. (7)

and (22), we are concerned about the finer-scale π(zl|Dobs) posterior estimation. Using the

MCMC method, one can sample zl to generate the parameter xl by the decoder model

xl = µθl(zl) in MDGM, and then solve the forward model Fl(xl) to evaluate the likelihood
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Algorithm 3 The Metropolis-Hastings with Deep Generative Model (MH-DGM) Algorithm

for the first-scale posterior distribution approximation

Input: unnormalized distribution π(z|Dobs), proposal distribution πq(·), iteration number

Nite, decoder model µ(z), burn-in length nb

1: Initialize z(1), z(1) ∼ N (0, I)

2: for j = 1 : N do

3: Draw z′ ∼ πq(·|z(j))

4: Compute the spatially-varying parameter x′ = µ(z′) by the decoder model

5: Compute the likelihood function by solving the forward model F(x′)

6: Compute the acceptance ratio

α = min

(
1,

π(z′|Dobs)πq(z(j)|z′)
π(z(j)|Dobs)πq(z′|z(j))

)
7: Draw ρ from uniform distribution U [0, 1]

8: if ρ < α then

9: Let z(j+1) = z′,x(j+1) = x′

10: else

11: Let z(j+1) = zj,x(j+1) = x(j)

12: end if

13: end for

Output: posterior samples {x(i)}Nite
i=nb

function and the acceptance ratio.

Suppose that the j-th state of the Markov chain in the l-th scale is z
(j)
l . The acceptance

ratio of the reject/accept scheme for the (j + 1)-th state in the MH-MDGM is still the same

as that in the single-scale MH algorithm, i.e.

α = min

(
1,

π(z′l|Dobs)πq(z
(j)
l |z′l)

π(z
(j)
l |Dobs)πq(z′l|z

(j)
l )

)
, (25)

where the proposal πq(z
′
l|z

(j)
l ) is a particular distribution since zl = (zl−1, z

?
l ) contains two

independent random variables, which have different connotation in the MH-MDGM. The
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proposal is taken to have a factorized form as follows [38, 62]:

πq(z
′
l|z

(j)
l ) = πq(z

′
l−1|z

(j)
l−1, z

?(j)
l )πq(z

?′
l |z

(j)
l−1, z

?(j)
l ). (26)

In the MDGM, z?l is sampled from an isotropic Gaussian distribution, which is independent

of zl−1. The proposal distribution for z
?(j)
l can be simplified as

πq(z
?′
l |z

(j)
l−1, z

?(j)
l ) = πq(z

?′
l |z

?(j)
l ). (27)

This can be a simple random walk or the pCN algorithm. Exploring z?l provides additional

information to that obtained at the (l−1)-scale allowing us to enrich the obtained local details

and correct global features. One can set a big step size for z?l in the proposal distribution

to explore and detect various local patterns. In the MH-MDGM, the initial state z?l can be

sampled from the prior distribution p(z?l ).

Based on the independence assumption, one can define a proposal distribution in the l-th

scale for the latent variable zl−1 that connects adjacent scales as follows:

πq(z
′
l−1|z

(j)
l−1, z

?(j)
l ) = πq(z

′
l−1|z

(j)
l−1). (28)

Once zl−1 has been estimated in the previous-scale, some multiscale estimation methods

like [13] will not correct and estimate it again in the finer-scale. However, note that the

model error that resulted from the coarse-scale solver can impact the posterior estimation.

We treat the latent variable zl−1 as a random variable in the l-th scale estimation and update

it invoking the accurate forward model. To exploit the (l − 1)-th scale posterior result, we

assign an initial state for zl−1 in the l-th scale estimation, which can inherit the (l − 1)-th

scale Markov state, greatly reducing the time to obtain the stationary distribution. The

obvious approach is to use the last state in the (l − 1)-th scale, while another reasonable

choice is the mean of the (l− 1)-th posterior estimation. Note that we use a set of posterior

samples {x(i)
l−1}

Nl−1

i=nl−1
to approximate the posterior distribution π(xl−1|Dobs), where nl−1, Nl−1

denote the lengths of burn-in and Markov chain, respectively. zl−1 encodes the coarse-scale

estimation information via the encoder network πθl−1
(zl−1|xl−1). We can assign the initial

state z
(1)
l−1 in the l-th scale estimation to be z

(1)
l−1 = arg maxπθl−1

(zl−1|xl−1), where xl−1 is the
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mean of the posterior samples {x(i)
l−1}

Nl−1

i=nl−1
. Since the latent variable zl−1 has been estimated

and can impact the crucial global features of the parameter xl generation using the decoder

model xl = µθl(zl), it should be assigned a small step size in the proposal distribution.

Combining Eq. (28) with Eq. (27), we obtain the conclusion in Proposition 1. The MH-

MDGM algorithm for the l-th scale posterior distribution approximation is presented in

Algorithm 4.

Remark 4. In the (l − 1)-th scale posterior approximation, the Markov chain generates

samples {z(i)l−1}
Nl−1

i=nl−1
and their corresponding parameter samples {x(i)

l−1}
Nl−1

i=nl−1
. One cannot

directly use the posterior samples z
(i)
l−1 in the l-th fine-scale inference. The reason is that these

samples are only related to the decoder model µθl−1
(zl−1), which can generate parameters xl−1

to evaluate the likelihood function for the coarse-scale posterior approximation. Note that the

training of the MDGM in the l-th scale only uses xl and xl−1 rather than the latent variables.

Message passing across scales depends on the encoder network πθl−1
(zl−1|xl−1). In order

to generate xl for the fine-scale inference, we need to use {x(i)
l−1}

Nl−1

i=nl−1
as the approximate

(l − 1)-th scale posterior result and then encode them into the latent variables zl−1, rather

than directly using the samples {z(i)l−1}
Nl−1

i=nl−1
.

Proposition 1. For any 2 ≤ l ≤ L, the acceptance ratio α(z′l, z
(j)
l ) for the (j + 1)-th state

in the l-th scale MH-MDGM algorithm with the factorized proposal is

α(z′l, z
(j)
l ) = min

(
1,

π(z′l|Dobs)πq(z
(j)
l−1|z′l−1)πq(z

?(j)
l |z?′l )

π(z
(j)
l |Dobs)πq(z′l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l )

)
, (29)

which satisfies the detailed balance condition.

Proof. The transition kernel K(z′l, z
(j)
l ) with the proposal distribution πq(z

′
l|z

(j)
l ) in the MH

algorithm is:

K(z′l, z
(j)
l ) = πq(z

′
l|z

(j)
l )α(z′l, z

(j)
l ) + δ(z′l, z

(j)
l )

∫
πq(zl|z(j)l )(1− α(zl, z

(j)
l ))dzl, (30)

where δ(z′l, z
(j)
l ) is the Dirac delta function. When z′l = z

(j)
l , it is obvious that the below
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detailed balance condition is satisfied:

π(z
(j)
l |Dobs)K(z′l, z

(j)
l ) = π(z′l|Dobs)K(z

(j)
l , z′l). (31)

When z′l 6= z
(j)
l , δ(z′l, z

(j)
l ) = 0, we obtain K(z′l, z

(j)
l ) = πq(z

′
l|z

(j)
l )α(z′l, z

(j)
l ). Based on

Eqs. (27) and (28), the proposal distribution can be written as πq(z
′
l|z

(j)
l ) = πq(z

′
l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l ).

Then we can write the following:

π(z
(j)
l |Dobs)K(z′l, z

(j)
l )

= π(z
(j)
l |Dobs)πq(z

′
l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l ) min

(
1,

π(z′l|Dobs)πq(z
(j)
l−1|z′l−1)πq(z

?(j)
l |z?′l )

π(z
(j)
l |Dobs)πq(z′l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l )

)
= min

(
π(z

(j)
l |Dobs)πq(z

′
l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l ), π(z′l|Dobs)πq(z

(j)
l−1|z

′
l−1)πq(z

?(j)
l |z

?′
l )
)

= π(z′l|Dobs)πq(z
(j)
l−1|z

′
l−1)πq(z

?(j)
l |z

?′
l ) min

(
1,
π(z

(j)
l |Dobs)πq(z′l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l )

π(z′l|Dobs)πq(z
(j)
l−1|z′l−1)πq(z

?(j)
l |z?′l )

)
= π(z′l|Dobs)K(z

(j)
l , z′l), (32)

and the detailed balance condition is satisfied.

4. Numerical Examples

The code and data for reproducing all examples reported in this paper can be found at

https://github.com/zabaras/MH-MDGM. In this section, we discuss and compare the per-

formance of the proposed multiscale method with that of the single-scale inference method.

Our focus is on the estimation of the permeability field in a single phase, steady-state Darcy

flow. For any permeability field K on a 2D unit square domain S = [0, 1]2, the pressure field

p and velocity field v are governed by the following equations:

v(s) = −K(s)∇p(s), s ∈ S, (33)

∇ · v(s) = f(s), s ∈ S, (34)

with boundary conditions

v(s) · n̂ = 0, s ∈ ΓN , (35)

p(s) = 0, s ∈ ΓD, (36)
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Algorithm 4 The Metropolis-Hastings with Multiscale Deep Generative Model (MH-

MDGM) Algorithm for the l-th scale posterior distribution approximation

Input: unnormalized distribution π(zl|Dobs), proposal distribution πq(·|zl−1) and πq(·|z?l ),

decoder model µθl(zl), recognition model πθl−1
(zl−1|xl−1), (l−1)-th scale posterior sam-

ples {x(j)
l−1}

Nl−1

j=nl−1
, iteration number Nl, burn-in length nl.

1: Compute the mean of (l − 1)-th scale posterior estimation xl−1

2: Initialize z
(1)
l−1, z

(1)
l−1 = arg maxπθl−1

(zl−1|xl−1).

3: Initialize z
?(1)
l , z

?(1)
l ∼ N (0, I).

4: for j = 1 : N do

5: Draw z′l−1 ∼ πq(·|z(j)l−1).

6: Draw z?′l ∼ πq(·|z?(j)l ), then z′l = (z′l−1, z
?′
l )

7: Compute the spatially-varying parameter x′l = µθl(z
′
l) by the decoder model

8: Compute the likelihood function by solving the forward model Fl(x′l)

9: Compute the acceptance ratio

α = min

(
1,

π(z′l|Dobs)πq(z
(j)
l−1|z′l−1)πq(z

?(j)
l |z?′l )

π(z
(j)
l |Dobs)πq(z′l−1|z

(j)
l−1)πq(z

?′
l |z

?(j)
l )

)

10: Draw ρ from uniform distribution U [0, 1]

11: if ρ < α then

12: Let z
(j+1)
l−1 = z′l−1 and z

?(j+1)
l = z?′l ,x

(j+1)
l = x′l

13: else

14: Let z
(j+1)
l−1 = z

(j)
l−1 and z

?(j+1)
l = z

?(j)
l ,x

(j+1)
l = x

(j)
l

15: end if

16: end for

Output: posterior samples {x(i)
l }

Nl
i=nl
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where n̂ is the unit normal vector to the Neumann boundary ΓN . The Neumann boundary

ΓN consists of the top and bottom boundaries and the Dirichlet boundary ΓD consists of

the right and left walls. We consider a source term f(s) = 3. For the forward model F ,

given any permeability field K, Eqs. (33) and (34) are solved by a mixed finite element

formulation implemented in FEniCS [63] with third-order Raviart-Thomas elements for the

velocity v, and forth-order discontinuous elements for the pressure p. The computational

cost for solving this forward model with different discretizations is reported in Table 1.

Table 1: Computational cost of solving the forward model in Eqs. (33) and (34) with different discretizations.

Discretization Output dimension Seconds Normalized time

64× 64 3× 4096 3.10 23.85

32× 32 3× 1024 0.67 5.15

16× 16 3× 256 0.13 1.0

To enforce the non-negative permeability constraint, we consider the log-permeability

as the main parameter of interest in the inverse problem with x = log(K). The inverse

problem for the above model is to infer the unknown log-permeability field given noisy

pressure measurements at some sensor locations. In this paper, the exact log-permeability

field xexact is defined in a 64× 64 uniform grid. The generated data by the generative model

are usually smooth and blurry compared to the original data due to information compression.

We consider 64 pressure observations that are uniformly located in [0.0625+0.125i, 0.0625+

0.125i], i = 0, 1, 2, . . . , 7. A 5% independent additive Gaussian random noise is considered

on these 64 pressure observations which are obtained by the above forward model given the

exact log-permeability field.

4.1. Test problem 1: Gaussian Random Field (GRF)

For GRF based log-permeability data, one can adopt the KLE method for a reduced-

order representation. Bayesian inference often works well on such low-dimensional inversion

tasks. However, the KLE expansion requires a-priori knowledge of the length scale in the

GRF covariance function. This information is of course not available in most practical
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applications. Data-driven methods like DGM do not require such restrictive assumptions.

The only prior knowledge available is based on the given training dataset.

In this section, we apply the proposed method on a two-scales scenario and provide a

comparison with the reference case of the single-scale method. In the two-scales test case,

we consider the 16 × 16 uniform grid as the coarsest-scale and the 64 × 64 uniform grid as

the finest-scale. The finest-scale is the same with the scale of the exact log-permeability

field. Using the proposed method, the generative models are trained on 16× 16 and 64× 64

(16 − 64) resolutions. We use the pre-trained MDGM with MCMC for Bayesian inference

from coarse to fine, and compare the results with the single scale (64×64 grid) method with

focus of our investigation on computational efficiency, accuracy and convergence.

4.1.1. Multiscale dataset

As discussed in Section 3.4, we adopt an unsupervised learning method for parameter

representation before addressing the solution of the inverse problem. In particular, one can

train a generative model for the sampling of log-permeability fields. For such an unsupervised

learning problem, we only need to obtain the dataset {x(i)}Ni=1 based on historical sample

information or the underlying prior distribution π(x). In this example, we assume that the

log-permeability field is a Gaussian random field, i.e. x(s) ∼ GP (m(s), k (s1, s2)), where

m(s) and k(s1, s2) are the mean and covariance functions, respectively. s1 = (x1, y1) and

s2 = (x2, y2) denote two arbitrary spatial locations. The covariance function k(s1, s2) in this

paper is taken as:

k(s1, s2) = σ2
log(K) exp

−
√(

x1 − x2
l1

)2

+

(
y1 − y2
l2

)2
 , (37)

where σ2
log(K) is the variance, and l1 and l2 are the length scales along the x and y axes,

respectively. In this example, we set m(s) = 1 and σ2
log(K) = 0.5. As discussed earlier, it is

hard to tackle the multiple length scales setup using the KLE method, while the deep gen-

erative model has a distinct superiority on the prior assumption since the dataset embodies

these assumptions or information in a natural way. We assume that the length scales are not

fixed in the prior distribution. Let the length scales be l1 = l2 = 0.2+0.01i, i = 0, 1, 2, . . . , 9.

The finest-scale parameter x2 is uniformly discretized into an H ×W = 64 × 64 grid. For
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each length scale, we generate 2500 samples for the training dataset {x(i)
2 }Ni=1, where N is

25000. The exact log-permeability field xexact for the Bayesian inversion has never been seen

in the training procedure. We set the 16 × 16 grid as the coarsest-scale in the parameter

estimation. We adopt the upscaling operator in Eq. (9) with ne = 16 for each realization in

{x(i)
2 }Ni=1, and then obtain the 16 × 16 grid dataset {x(i)

1 }Ni=1. This constitutes the training

dataset for the generative model in the coarse-scale.

4.1.2. Training and results of the MDGM

With the training datasets available on each scale, we can train the generative model

from coarse- to fine-scale. The coarsest-scale generative model only involves the single-scale

parameters x1. The training procedure of the single-scale generative model is illustrated in

Algorithm 1. The schematic network architecture is shown in Fig. 4. The detailed encoder

and decoder networks can be seen in Appendix A. All of the encoder and decoder neural

networks in this paper are trained on a NVIDIA GeForce GTX 1080 Ti GPU card. The loss

function is defined in Eq. (15) for training the single-scale generative model. For all training

procedures in this paper, we set the batch size n in the loss function to 64, and the sampling

size m to 1. For the optimization of all neural networks, the Adam optimizer [64] was

adopted with a learning rate of 2× 10−4. The above setup is kept consistent for all training

models in this paper. The only differences are the training epochs and hyperparameters β̃

in the loss functions, which will be specified in the remaining cases. All the models in the

GRF case are trained with 30 epoches, and the hyperparameter β̃ is 0.5. It takes about 24

minutes and 73 minutes for the training of a single-scale generative model on 16 × 16 and

64× 64 resolutions, respectively.

For the 64 × 64 single-scale generative model, we use the pre-trained model pθ(x|z) for

MCMC exploration to estimate directly the parameter in the 64×64 resolution with z ∈ R256.

For the 16×16 single-scale generative model, the latent variables z1 ∈ R16 serve as the bridge

to the fine-scale estimation. We use the pre-trained model pθ1(x1|z1) for MCMC exploration

of the posterior in the coarse-scale. For the training of the MDGM, the pre-trained model

qφ1(z1|x1) is part of the encoder network as illustrated in Fig. 5, and an input to Algorithm 2.

The loss function in Eq. (21) is used for training the models qφ?
2
(z?2 |x2) and pθ2(x2|z1, z?2),
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where z?2 ∈ R256. The training time for the models qφ?
2
(z?2 |x2) and pθ2(x2|z1, z?2) is about 78

minutes.

Once the generative models are obtained in the different scales, the parameters can

be generated in each scale by first sampling the corresponding latent variable, and then

by decoding it using the corresponding generative model. Here, we illustrate the MDGM

results in Fig. 6. For the pre-trained generative model pθ1(x1|z1), we can sample the latent

variables z1 from N (0, I), and use these latent variables as input to the model pθ1(x1|z1).

The first row of Fig. 6 shows 4 realizations with 16 × 16 resolution that are output of this

decoder network. It is apparent that all of these images have distinct features in the spatial

distribution of high- and low-value regions. However, they are very smooth so that one cannot

capture any local information. Fortunately, this is a good choice to highlight the obvious

global features, which are of great importance in Bayesian inversion. It is a fundamental

and necessary requirement for spatially-varying parameter estimates to be consistent with

the exact parameter in capturing global features.

The performance of the 64 × 64 resolution generative model pθ2(x2|z1, z?2) in this two-

scales MDGM is shown in the second row of Fig. 6. The latent variable z1 is the mean

of the distribution qφ1(z1|x1), i.e. z1 = arg max qφ1(z1|x1), where x1 ∈ R16×16 is the first

image in this row. The latent variable z?2 is sampled from the Gaussian distribution N (0, I).

We observe that that the three samples generated by the model pθ2(x2|z1, z?2) have some

particularities. Unlike samples in the first row, they keep similar spatial distribution of high-

and low-value regions that inherit from the first 16 × 16 resolution image x1 while they

are refined locally in a diverse manner. The model qφ1(z1|x1) acts as a messenger in the

MDGM. The information of low-resolution x1 that captures global features is encoded by

z1, which together with the random variables z?2 that is used to supplement local details

are decoded by the generative model pθ2(x2|z1, z?2). This demonstrates that these two latent

variables have different missions in the generative model, in particular z1 plays an important

role in the global feature generation, while z?2 contributes to local details. This disentangled

representation [65, 53, 66, 67] for local and global features assists in an accurate and efficient

Bayesian multiscale estimation.
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Figure 6: First row: 16 × 16 resolution random samples using the generative model pθ1(x1|z1), where

z1 ∈ R16 is sampled from N (0, I). Second row: 64 × 64 resolution random samples using the generative

model pθ2
(x2|z2), where z2 = (z1, z

?
2). We let z1 = arg max qφ1

(z1|x1), where x1 is the first image in this

row and z?2 ∈ R256 is sampled from N (0, I).

4.1.3. The inversion results and discussion

The reference experiment considered is the single-scale method. We use Algorithm 3

with the pre-trained model x = µθ(z) to estimate directly π(z|Dobs), where x ∈ R64×64

and z ∈ R256. All the implementations using MCMC treat the latent variables as random

variables, and use the pre-trained model to generate x for evaluating the likelihood function.

The proposal distribution for the random variables applied in this paper is preconditioned

Crank-Nicolson (pCN) that is defined below:

z′ =
√

1− γ2z + γζ, (38)

where z and z′ are current and proposed next states, respectively, and ζ ∼ N (0, I). The

step size of the random movement from the current state to a new position is controlled by

the free parameter γ. We set γ be 0.08 for the first 50% and 0.04 for the last 50% states

in the Markov chain for all implementations using Algorithm 3. We run 10000 iterations

in MCMC to ensure its convergence. For all implementations of the MCMC algorithm, we

collected the last 2000 states as the posterior samples. Fig. 7 shows the estimation results
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using the reference method. It can be seen that the integration of the deep generative model

with MCMC leads to a reasonable estimation of the spatially varying parameter.
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Figure 7: The reference single-scale estimation result with the desired 64× 64 grid. The mean and standard

deviation of the estimated posterior distribution that are computed using the posterior samples are shown

in the first row. Realizations from the posterior are shown in the second row. Inference with respect to

z ∈ R256 is performed using Algorithm 3.

The multiscale parameter estimation is implemented next from coarse- to fine-scale. We

use Algorithm 3 with pre-trained model x1 = µθ1(z1) to estimate π(z1|Dobs), where x1 ∈

R16×16 and z1 ∈ R16. A Markov chain with length 7000 is constructed for z1 to estimate

the coarse-scale Gaussian log-permeability field. This result explores various global patterns

of the log-permeability. Fig. 8 shows that the estimation result is as expected. It is clear

that the global spatial distribution of low- or high-values is located at three different regions,

consistent with the exact log-permeability field. The estimated log-permeability with 16×16

grid captures the important features efficiently since it uses the forward model with only a

16 × 16 grid. However, this occurs at the sacrifice of local information. In addition, the

coarse-scale forward model introduces computational error. To resolve these issues, one

needs to infer the fine-scale parameter using the high-resolution generative model and the

corresponding precise forward solver.
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Figure 8: The two-scale estimation result with 16 × 16 coarse-grid and 64 × 64 fine-grid. The coarse-scale

results are shown here. Inference with respect to z1 ∈ R16 is performed using Algorithm 3.

To correct and refine the parameter estimation, we use Algorithm 4 with the pre-trained

model x2 = µθ2(z2) to estimate π(z2|Dobs), where x2 ∈ R64×64, z2 = (z1, z
?
2), and z1 ∈

R16, and z?2 ∈ R256. Since we have obtained the posterior samples in the coarse-scale, the

estimation in the fine-scale takes advantage of the coarse estimation. We need to assign two

proposal distributions for z1 and z?2 . The two proposal distributions we used in this paper

for Algorithm 4 are the pCN in Eq. (38) with different step sizes. The fixed step size γ

for the low-dimensional latent variable zl−1 is 0.01, while the adaptive step size γ for the

high-dimensional latent variable z?l is 0.08 for the first 50% and 0.04 for the last 50% of

the states in the Markov chain. The results in Fig. 9 indicate that the estimated parameter

with 64×64 grid using the proposed method has even better performance than the reference

single-scale results in Fig. 7. The details of the low-value region are closer to the exact

log-permeability field.

To compare the estimation result with the exact field, we provide an illustration in

Fig. 10 that shows the values of the log-parameter field from the left top corner to the

right bottom corner. We notice that the true values curve (black line) is very sharp while

the posterior mean is much smoother. Compared to other deep generative models [17, 42],
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Figure 9: The two-scale estimation result with 16×16 coarse-grid and 64×64 fine-grid. The fine-scale results

are shown here. Inference with respect to two latent variables z1 ∈ R16 and z?2 ∈ R256 is performed using

Algorithm 4.

the shortcoming of VAE [18] is that it generates blurry samples since the bottleneck layer

captures a compressed latent encoding. However, we note that the result obtained from the

proposed method is better than the reference method as its mean is much closer to the exact

solution.

The main cost of the Bayesian inference using MCMC comes from the forward model

evaluation. The forward model’s computational cost in Table 2 suggests that the single-scale

method takes about 1.9 times the computational cost of the proposed two-scale method. The

acceptance rate of MCMC for all implementations is shown in Table 3. We can note that

the proposed method has a much higher acceptance rate than the single-scale method in the

desired scale with 64× 64 grid. The reason is that the inference for the fine-scale parameter

is facilitated from the designed latent space of the MDGM that has two latent variables

with different influences in the fine-scale parameter generation. The low-dimensional latent

variable impacts the global features observed in the fine-scale. We assigned a small step

size for its pCN proposal distribution since the global features that are inherited from the

coarse-scale estimation only need slight adaption, while the high-dimensional latent variable
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Figure 10: The log-permeability from the left top corner to the right bottom corner on a 64 × 64 grid.

The results from left to right are obtained by (a) reference (64) and (b) two scales (16 − 64) estimation,

respectively. The black and red lines show the true and the posterior mean log-permeability, respectively.

The shaded region shows values within two standard deviations of the mean.

estimated for the local refinement is assigned with a big step size. The reference method

often rejects the proposed samples and gets trapped in local modes. However, in the fine-

scale estimation in the proposed method, the main changes in the local features will lead to

small changes in the likelihood function so that most of the proposed samples are accepted.

Table 2: The iterations (its) and approximated cpu time in seconds(s) for solving the forward model in

different experiments for the GRF test problem.

Experiment 16× 16 64× 64 Total

one scale (64)?
- 10000 its 10000 its

- 31000 s 31000 s

two scales (16− 64)
7000 its 5000 its 12000 its

910 15500 s 16410 s

The convergence of the Markov chain used to estimate parameters with a 64 × 64 grid

is of concern since the forward evaluation on such a scale is very expensive. To assess the

convergence in the desired scale with a 64× 64 grid, we employ three metrics using variables

available in the iterative process. Since the observation data (noisy pressure measurements)

is the only basis for parameter estimation, we compute the misfit between the observation
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Table 3: The acceptance ratio of the MH algorithm in different experiments for the GRF test problem.

Experiment 16× 16 64× 64

one scale (64) - 30.6%

two scales (16− 64) 37.5% 67.8%

data and its corresponding prediction using the sum of squared residuals of observations

(SSRobs) as the iteration proceeds:

SSRobs =

Nobs∑
i=1

(
F(µ(z))(i) −D(i)

obs

)2
, (39)

where Nobs = 64 in this paper, and F(µ(z))(i) and D(i)
obs are the i–th predicted pressure

value and its corresponding true observation, respectively. Ideally, we expect that the value

of SSRobs is close to 0, which suggests there is no discrepancy between the predictions

and observations. But this cannot be realized even using the exact input for F due to

measurements noise. To remove the impact of noise, we use an enhanced metric i.e. the

normalized sum of squared weighted residual (NSSWR) [16, 68]:

NSSWR =
1

SSWRref

Nobs∑
i=1

(
F(µ(z))(i) −D(i)

obs)

σ
(i)
n

)2

, (40)

where SSWRref =
∑Nobs

i=1 (
F(xexact)(i)−D(i)

obs)

σ
(i)
n

)2, xexact is the exact log-permeability field, and

σ
(i)
n is the standard deviation of Gaussian random noise imposed in the i–th observation. The

SSWR metric is normalized by the SSWRref . Thus, the inversion process has converged

when the NSSWR value is close to 1. Since the target is to estimate the log-permeability

field based on the given observations, we also consider the evaluation of the mismatch between

the predicted and the exact log-permeability fields using the sum of squared residuals of

parameter (SSRpara) as shown below:

SSRpara =
M∑
i=1

(
µ(z)(i) − x(i)

exact

)2
, (41)

where M = 4096, since the desired scale is discretized to 64× 64, and µ(z)(i) and x
(i)
exact are

the i–th value of the predicted and the exact log-permeability fields, respectively.
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Fig. 11 shows the convergence results in the GRF case. The comparison of the proposed

method with the single-scale method is also given in Fig. 11. It can be seen that better

performance in all evaluation metrics is produced by the proposed method. A big distinction

takes place in the decrease of SSRpara illustrated in Fig. 11(c). We show the sampled log-

permeability field with 64 × 64 grid at different iterations in the Markov chain in Fig. 12.

For the single-scale method, each dimension of the estimated latent variable z ∈ R256 has

equivalent importance for the generation of the log-permeability. The random walk in such

a high-dimensional space has difficulty in efficiently exploring the space and identifying a

good estimate and its uncertainty. Together with a random initial state sampled from the

prior distribution, the exploration takes a long time to reach the stationary distribution. The

second row in Fig. 12 presents the state evolution for the two-scale method. The first-state

that inherited the coarse-scale estimation captures well most of the non-local features of the

exact log-permeability field. Thus with the iterations shown, we only need to correct the

local features to explore the posterior distribution.
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Figure 11: The convergence of the Markov chain used for the Gaussian log-permeability field estimation with

a 64× 64 grid. The evaluation metrics from left to right are (a) the SSR of observable pressure values, (b)

NSSWR values, and (c) the SSR of parameter field.

4.2. Test problem 2: Non-Gaussian Random Field

In the second test problem, we consider a channelized log-permeability field as the ex-

act parameter in the inversion experiment. For such a non-Gaussian permeability field is

often difficult to obtain a good parameterization using conventional methods such as sparse-

grid approximations [13], wavelets [14], or principal component analysis (PCA) [69, 70, 71].

40



initial state 1000-th state 3000-th state 5000-th state 10000-th state

initial state 499-th state 1000-th state 3000-th state 5000-th state

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

1

0

1

2

3

Figure 12: The states of the Gaussian log-permeability field with 64×64 grid during iterations in the Markov

chain. The results from top to bottom row are obtained from (a) reference (64) and (b) two scales (16− 64)

experiment, respectively.

Furthermore, the Bayesian inference using random walk MCMC based on recent reported

learning-based parameterization methods [16, 15, 46, 22] for high-dimensional non-Gaussian

parameters is not a good choice. We show the benefits of the multiscale method in the

parameterization of non-Gaussian random fields and Bayesian inference. In this test exam-

ple, we demonstrate the proposed method with two- and three-scales scenarios and provide

comparisons with the reference case of a single-scale method.

4.2.1. Multiscale dataset

Suppose that the prior information for the channel location before any measurement is

from the image [22] with size of 2500×2500 shown in Fig. 13(a). One can crop the large image

with a fixed stride. With a 16 stride in the horizontal and vertical directions, we obtained

23104 training samples of size of 64 × 64. To provide sufficient data for the training of the

generative model, we flip the entries in each row of the image in the left/right direction by the

fliplr operation 2 implemented in Numpy package to obtain a new image, and cropped this

image to obtain additional 23104 samples. A sample cropped by this procedure is illustrated

in Fig. 13(b). The binary image depicts channels with white regions. We assume that the

2https://numpy.org/doc/1.18/reference/generated/numpy.fliplr.html
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channelized regions have different log-permeabilities resulting in high- and low-permeability

values in white and black regions, respectively. We set the log-permeability values for each

region by independently sampling from two Gaussian Random Fields (GRFs). The means

of the GRFs for the high-permeability channelized regions and low-permeability regions are

4 and 0, respectively. The covariance function in Eq. (37) with length scales l1 and l2 equal

to 0.3 is applied. The variance is 0.5 for both GRFs. By imposing two GRFs for the binary

image samples, we can generate the training data as shown in Fig. 13(c). We assume the

generated samples are i.i.d. sampled from the underlying prior distribution π(x). We take

40000 samples from generated 46208 realizations as training data. The exact log-permeability

field xexact for Bayesian inversion is sampled from the remaining samples, which has never

been seen in the training procedure. The xexact we used in this test problem is the image

shown in Fig. 13(c).

(b)

(c)

(a)

Figure 13: (a) The large image contains the prior information of the channel location (b) cropped binary

image samples from the large image (c) A sample from the underlying prior distribution π(x) by assigning

two different GRFs to the binary image.

The training of MDGM needs data with different discretizations. In this test example,

we consider two types of MDGM, which are a two-scale model with 16× 16 grid and 64× 64

grid (16 − 64) and a three-scale model with 16 × 16 grid, 32 × 32 grid and 64 × 64 grid
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(16− 32− 64). To generate these datasets, one can adopt the upscaling operator in Eq. (9)

with ne = 4 over the original 64 × 64 grid data, and apply it again with ne = 4 in the

generated 32 × 32 grid data to obtain the 16 × 16 grid data. An example with different

discretizations has been illustrated in Fig. 2.

4.2.2. Training and results of the MDGM

Using the generated training datasets, we applied the same neural network used in the

GRF case to train the MDGM. We will discuss the training procedure and performance

below for the two- and three-scales cases. The reference single-scale generative model pθ(x|z)

requires 3.15 hours to train 50 epochs using the loss function in Eq. (15) and Algorithm 1,

where x ∈ R64×64, z ∈ R256, and β̃ = 0.5.

Two scales (16−64). In this example, the x1,x2 denote the parameters with 16×16 grid and

64×64 grid, respectively. For the x1, the generative model is trained using Algorithm 1 with

β̃ = 1 in Eq. (15). It takes about 37 minutes for 30 training epochs. We obtained pθ1(x1|z1)

and qφ1(z1|x1), where x1 ∈ R16×16 and z1 ∈ R16. The model qφ1(z1|x1) is the input to

Algorithm 2 used for training the finer-scale generative model. We use the pre-trained

model pθ1(x1|z1) to reconstruct the parameters to compute the likelihood function when

we use Algorithm 3 to estimate π(z1|Dobs), where z1 ∈ R16. The generated samples using

the model pθ1(x1|z1) are shown in the first row of Fig. 14(a). As expected, these samples

present the most important features i.e. the location of the channels without much local

information. The finer-scale generative model pθ2(x2|z1, z?2) is trained using Algorithm 2

with the loss function in Eq. (21) for the estimation refinement, where β̃ = 2.5, x2 ∈ R64×64,

and z?2 ∈ R256. Training 50 epochs takes about 3.3 hours. The performance of this is shown

in the second row of Fig. 14(a), where the first image in this row is a field with a 16 × 16

grid. Encoding this image into a certain z1 and together with three randomly sampled

latent variables z?2 ∼ N (0, I) generated the last three samples in this row. We can see that

the generated fine-scale samples keep similar channels with the given coarse-scale image,

while their local refinement shows sufficient diversity. This indicates that the coarse-scale

information can be captured by the latent variable z1 using the encoder model qφ1(z1|x1). As

before, in the finer-scale generative model, the low-dimensional latent variable z1 dominates
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the global features (channels in this example), while the high-dimensional latent variables

z?2 are used to capture local features.

Three scales (16 − 32 − 64). In the second example with three scales, the parameters with

16×16, 32×32 and 64×64 grids are denoted by x1,x2,x3, respectively. The model pθ1(x1|z1)

is the same as the above two-scales example as shown in the first row of Fig. 14(a). The first

row of Fig. 14(b) gives the results of the model pθ2(x2|z1, z?2), where x2 ∈ R32×32, z1 ∈ R16

is encoded from the first image in this row using the model qφ1(z1|x1), and z?2 ∈ R64 is

sampled from N (0, I). It takes about 1.3 hours to train 50 epochs with β̃ = 0.7 in Eq. (21).

Compared with the two-scales case, one can notice that the generated samples have highly

consistent channels that inherit from the first image but maintain local diversity. In order to

sample the desired parameters with 64× 64 grid, we also adopt Algorithm 2 with β̃ = 0.7 in

Eq. (21) to train the model pθ3(x3|z2, z?3), where z2 ∈ R80, z?3 ∈ R256, and the training time

is 3.75 hours. The pre-trained model qφ2(z2|x2) is the input to encode the given coarse-scale

training data, where z2 = (z1, z
?
2). The samples using the pre-trained model pθ3(x3|z2, z?3)

are the last three samples shown in the second row of Fig. 14(b), where z2 is encoded from

the first image in this row. As with the previous examples, the channels basically coincide

with those in the first image. However, the difference is that the generated samples not only

retain the global features of the encoded coarse-scale image but also discover local details.

In summary, both the two- and three-scales models can generate samples with the correct

spatial distribution of channels in the coarsest-scale with the 16 × 16 grid. For the fine-

scale parameter generation, the low-dimensional latent variables encode the information of

the coarse-scale parameter and define the global features of the fine-scale parameter. The

high-dimensional latent variables capture fine-details and provide diversity in the generated

samples.

4.2.3. The inversion results and discussion

Once all generative models are trained, we can use them in the Bayesian inversion process.

To assess the efficiency and accuracy of the proposed multiscale method, we first evaluate

the posterior distribution using the reference single-scale method. Algorithm 3 using the

pre-trained model x = µθ(z) as the input can perform the random walk in the latent space,
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Figure 14: (a) The 16−64 MDGM. First row: 16×16 resolution random samples using the generative model

pθ1
(x1|z1) by randomly sampling z1 ∈ R16 from N (0, I) as input. Second row: 64× 64 resolution random

samples using the model pθ2(x2|z1, z?2). We let z1 = arg max qφ1(z1|x1), and x1 is the first image in this

row, and z2 ∈ R256 is randomly sampled from N (0, I). (b) The 16− 32− 64 MDGM. The 16× 16 resolution

generative model is the same with the 16 − 64 MDGM, shown in the first row of (a). First row: 32 × 32

resolution random samples using the model pθ2
(x2|z1, z?2). We let z1 = arg max qφ1

(z1|x1), and x1 is the

first image in this row, and z2 ∈ R64 is randomly sampled from N (0, I). Second row: 64 × 64 resolution

random samples using the model pθ3(x3|z2, z?3). We let z2 = arg max qφ2(z2|x2), and x2 is the first image

in this row, and z3 ∈ R256 is randomly sampled from N (0, I).
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where x ∈ R64×64 and z ∈ R256. Although the dimension of the latent variable z is still high,

the convergence can be realized by constructing a Markov chain with the length of 30000.

The inferred results are depicted in Fig. 15. The estimated mean and samples mostly match

the exact channels and some important local details.
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Figure 15: The referenced single-scale estimation result in the desired 64 × 64 grid. Inference with respect

to z ∈ R256 is performed using Algorithm 3.

Two scales (16−64). For the two-scales inversion example, one needs to estimate successively

the parameter with the pre-trained generative model in the coarse-scale with a 16 × 16

grid and fine-scale with a 64 × 64 grid. The coarse-scale estimation uses Algorithm 3 and

the pre-trained model x1 = µθ1(z1), where x1 ∈ R16×16 and z1 ∈ R16. The length of

the Markov chain for z1 is 7000. The posterior log-permeability fields are illustrated in

Fig. 16. Obviously, the method identified all channel locations, which is the most important

information in channelized parameter estimation. Similar to the Gaussian case shown in

Fig. 8, the estimated variance in the coarse-scale is very low since slightly varying a global

feature of the log-permeability will greatly impact the value of the pressure field. Based on

the coarse-scale estimation, the refinement results with 64 × 64 grid are shown in Fig. 17.

This only needs to run 7000 iterations using Algorithm 4 with the pre-trained model x2 =

µθ2(z
?
2 , z1), where x2 ∈ R64×64, z?2 ∈ R256, and z1 ∈ R16. The fine-scale local details are
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similar to those in the exact log-permeability. However, benefited from the coarse-scale

estimation, the calculation saved a lots of computational cost requiring a reduced number of

forward model evaluations the 64× 64 grid.
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Figure 16: The estimation result with 16 × 16 grid. The results only involve inference in the coarsest scale

with 16 × 16 grid, which needs to be corrected and refined in the finer-scale. Inference is performed with

respect to z1 ∈ R16 using Algorithm 3.

Three scales (16− 32− 64). To discuss the impact of the number of scales, we also studied

the three-scale estimation with pre-trained three-scale generative models. The coarsest scale

result was shown in Fig. 16. To refine the estimated results in the scale with 32 × 32 grid,

we run 7000 iterations in Algorithm 4 with the pre-trained model x2 = µθ2(z
?
2 , z1), where

x2 ∈ R32×32, z?2 ∈ R64, and z1 ∈ R16. Unlike the estimation in the coarsest-scale that can

only identify the location of the channels, the refined results with the 32× 32 grid can also

provide a good estimation regarding the spatial distribution of high- and low-values as shown

in Fig. 18. Since most salient features were captured in previous scales, the desired scale

estimation becomes much easier. We only need to perform 5000 iterations in Algorithm 4

with the pre-trained model x3 = µθ3(z
?
3 , z2) to guarantee its convergence, where x3 ∈ R64×64,

z?3 ∈ R256, and z2 ∈ R80. Fig. 19 summarizes the final three-scales inference results where

we can notice that the estimation is more accurate than the previous two experiments in

47



Exact Mean Standard deviation

Posterior sample 1 Posterior sample 2 Posterior sample 3

2

0

2

4

2

0

2

4

0.5

1.0

1.5

2.0

2

0

2

4

2

0

2

4

2

0

2

4

Figure 17: The two-scale estimation result with the desired 64×64 grid. The results involve inference across

scales. Inference is performed with respect to z1 ∈ R16 and z?2 ∈ R256 using Algorithm 4.

both capturing the channels and the local permeability details.

As with the previous examples, we are interested in the posterior estimation in the scale

of the 64 × 64 grid. The estimated results with uncertainty from the left bottom corner to

the right top corner of the log-permeability field are given in Fig. 20. It can be seen that

the posterior means of all experiments are close to the exact value, while the local features

estimation by the reference method is worse than the results by the multiscale method. For

a channelized log-permeability, the location of the channels will greatly impact the predicted

pressure values in the observation/sensor locations. Unlike the parameter only decoded

from one latent variable in the single scale method, the latent variables played different

roles in MDGM to exploit multiscale characteristics. The channels were identified from the

coarse-scale inference, whereas the fine-scale inference corrects and refines the coarse-scale

estimation while exploring and learning local features.

The computational cost of the forward model in each experiment is given in Table 4.

For non-Gaussian random fields, the superiority of the proposed method is more prominent

than the Gaussian random field case. The reference method takes about 2.9 and 4.4 more

CPU time than the two-scales and three-scales methods, respectively. The main difference
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Figure 18: The three-scale estimation result with 32 × 32 grid, which needs to be corrected and refined in

the finer-scale. The results involve inference across scales. Inference is performed with respect to z1 ∈ R16

and z?2 ∈ R64 using Algorithm 4.

among them is the computational cost in the desired scale. We designed the multiscale

scheme to reduce the computational cost in the fine-scale with some additional coarse-scale

forward evaluations. As a consequence, this leads to significant computational savings during

Bayesian inference. One can apply the proposed method to a computationally more intensive

model. Correspondingly, more reduced computational time can be expected. The acceptance

rate of each MCMC implementation is shown in Table 5. For the reference single-scale

experiment, each dimension of the latent variable has equivalent importance in the generation

of the log-permeability. At the same time, channels are the most salient features in this

Bayesian inversion example. To infer a high-dimensional latent variable one needs to explore

a high-dimensional state space, which will lead to a very low acceptance rate. For the

multiscale method, the acceptance rate in the coarsest-scale is still very low. Based on

the coarse-scale estimation, applying Algorithm 4 to refine and correct the estimation will

become much easier since two proposal distributions with different step sizes provide an

informed and efficient exploration. Using a small step size for the low-dimensional latent

variable to correct the global features and using a big step size for the high-dimensional latent
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Figure 19: The three-scale estimation result with the desired 64×64 grid. The results involve inference across

scales. Inference was performed with respect to z2 ∈ R80 and z?3 ∈ R256 is performed using Algorithm 4.

variable to explore local features is goal-oriented, which not only improves the acceptance

rate but also leads to a better estimation.

Table 4: The iterations (its) and approximated cpu time in seconds(s) for solving the forward model in

different experiments for the non-Gaussian random field test problem.

Experiment 16× 16 32× 32 64× 64 Total

one scale (64)?
- - 30000 its 30000 its

- - 93000 s 93000 s

two scales (16− 64)
7000 its - 10000 its 17000 its

910 s - 31000 s 31910 s

three scales (16− 32− 64)
7000 its 7000 its 5000 its 19000 its

910 s 4690 s 15500 s 21100 s

As with the Gaussian case, we use three evaluation metrics to assess the convergence

in the desired scale with the 64 × 64 grid. Fig. 21 indicates a better performance in the

channelized log-permeability estimation. It is obvious that the reference single-scale method

takes a long exploration to converge to the stationary distribution. As discussed earlier,
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Figure 20: The estimated log-permeability values in the line from the left bottom corner to the right top

corner on a 64 × 64 grid. The results from left to right are obtained by (a) reference (64), (b) two-scales

(16 − 64), (c) three-scales (16 − 32 − 64) experiment, respectively. The black and red lines show the true

and the posterior mean log-permeability, respectively. The shaded region shows values within two standard

deviations of the mean.

Table 5: The acceptance ratio of the MH algorithm in different experiments for the non-Gaussian random

field test problem.

Experiment 16× 16 32× 32 64× 64

one scale (64) - - 5.47%

two scales (16− 64) 2.13% - 12.07%

three scales (16− 32− 64) 2.13% 9.90% 40.28%

the inferred latent variable of the single-scale inference is still high-dimensional, and each

dimension keeps equivalent importance in the log-permeability generation. In such scenarios,

it is easy to get trapped in local modes. Fig. 22 provides the state evolution of the Markov

chain to infer the log-permeability on the 64 × 64 grid. The single-scale method captures

well the true solution at about the 15000–th iteration, while the multiscale method only

needs to refine the coarse-scale estimation for fine-scale inference. By greatly reducing the

fine-scale forward model evaluations, the computational burden in Bayesian inverse problems

is reduced. For a parameter like the channelized log-permeability with obvious multiscale

characteristics, it can readily be seen that the three-scales experiment performs better than

the two-scales experiment with respect to stability, efficiency and accuracy.
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Figure 21: The convergence of the Markov chain used for the non-Gaussian log-permeability field estimation

with a 64× 64 grid. The evaluation metrics from left to right are (a) the SSR of observable pressure values

(b) NSSWR values (c) the SSR of parameter field, respectively.

5. Conclusions

In this work, we introduced a novel multiscale parameter estimation framework for

Bayesian inverse problems based on a multiscale deep generative model. The deep generative

model has been proven to be promising for the characterization of complex spatially varying

parameters. To exploit the multiscale characteristics, we extended the existing VAE-based

deep generative model into a multiscale framework with multiple latent variables. Endowing

the latent variables with different missions using training data at various scales, the low-

dimensional latent variables can generate coarse-scales parameters and dominate the global

features in finer-scale parameter generation, while the high-dimensional latent variables can

enrich local details. We demonstrated the model with Gaussian and non-Gaussian parame-

ter estimation. Combining pre-trained multiscale deep generative models with a multiscale

inference strategy, we hierarchically performed inference from coarse- to fine-scale.

Benefited from the construction of the latent space in the multiscale generative model,

the coarse-scale estimation explores in the low-dimensional latent space and searches for all

possible global patterns by invoking the extremely cheap forward model. Using previous

estimation results, the fine-scale estimation refines the parameters by correcting the global

features and enriching the local features using the expensive fine-scale forward model. It

was demonstrated that coarse-scale estimation information could pass across scales via the

designed latent space, which plays an important role in accelerated convergence. In the two
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Figure 22: The states of the non-Gaussian log-permeability field with 64× 64 grid in the Markov chain. The

results from top to bottom row are obtained from (a) reference (64), (b) two scales (16−64), (c) three scales

(16− 32− 64) experiment, respectively.

test cases, the proposed method shows superior performance over the reference single-scale

method in computational cost and accuracy. We also discussed in the non-Gaussian case,

the importance of the number of scales considered in the generative model and parameter

estimation.

Some challenges and extensions are worthy to explore in the future. The fundamen-

tal requirement for the proposed method is to train a stable and desired multiscale deep

generative model, which involves different setups for various types of parameters, like the

number of training data, the number of scales, hyperparameter selection, and so on. Further

study of the multiscale generative model has promising applications on super resolution,

multiscale uncertainty quantification, and so on. In addition, note that we use the simple

Metropolis-–Hastings algorithm with pCN proposal distribution as the Bayesian inference

method. Enhanced sampling techniques like sequential MC (SMC) that can realize parallel

computation will result in accelerated exploration and high-efficiency.
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Appendix A. Neural network architectures for the encoder and decoder net-

works

In this work, we use convolutional neural networks (CNNs) [72] for the encoder and de-

coder models. CNNs are more effective in capturing multiscale features than fully-connected

neural networks and allow modeling of the hierarchical nature of the features [73]. The im-

plemented encoder and decoder neural networks [74, 75, 76, 16] are illustrated in Fig. A.23.

The batch size is 64 for all implementations.

Appendix B. Concatenation of latent variables

In the MDGM, the l-th scale encoder network includes two parts i.e. the augmented

encoder network and the (l − 1)-th scale encoder network (see Fig. 5). Since the training

is recursive, the (l − 1)-th encoder network also includes the augmented encoder network

and the (l − 2)-th scale encoder networks and so on. The latent variable in the l-th scale is

zl = (z1, z
?
2 , . . . ,z

?
l ). In this paper, all the augmented encoder and decoder networks employ

the same architectures described in Appendix A, so the elements (z1, z
?
2 , . . . ,z

?
l ) in zl have

proportional sizes depending on their input size. For example, we can obtain z1 = qφ1(z1|x1)

and z?2 = qφ?
2
(z?2 |x2) using the encoder model, where z1 ∈ R4×4, z?2 ∈ R8×8, x1 ∈ R16×16,

and x2 ∈ R32×32. The input size of the l-th scale decoder network should be C×H×W . For

example, in the previous example, the size of z2 is 2× 8× 8), where the number of channels

is equal to C = l since zl is stacked by the outputs of l encoders. Also, H ×W is the size of

z?l , and zl must be reshaped as a tensor in such size.
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Figure A.23: (a) Dense block with five layers. Its input consists of C feature maps/channels with size

H ×W . In each layer, its output is computed successively by three operators, i.e. Batch Normalization

(BN), Rectified Linear Units (ReLU), and Convolution (Conv), where C is specified above the arrows in the

encoder and decoder architectures in sub-figures (c) and (d). The output feature maps are concatenated

with the input feature maps. The concatenated feature maps are the input to the next layer. (b) A residual-

in-residual dense block (RRDB) using 3 residual dense blocks. In each block, the output is multiplied by a

constant β̂ and then is added to the input with the result serving as the input for the next dense block. We

let β̂ be 0.2 in this paper. (c) Encoder neural network architecture. The feature map size H ×W is halved

by Conv operator in O with a stride 2. (d) Decoder neural network architecture. The number of feature

maps of the input is equal to the scale number l. The feature map size H ×W is doubled by applying the

nearest upsampling (UP) operator.
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To make the other (l − 1) elements (i.e. z1, z
?
2 , . . . ,z

?
l−1) in zl to be of consistent size

with z?l , we use the Upsample operator 3 in the Pytorch library [77] over these elements and

then concatenate4 all of them as input zl ∈ RC×H×W for the l-th scale decoder networks.

The scale factor in the Upsample operator depends on the output and input sizes. Their

sizes satisfy the following relationship:

Hout = Hin × scale factor,

Wout = Win × scale factor,
(B.1)

where [Hin ×Win] and [Hout ×Wout] are the input and output sizes, respectively. We used

the nearest mode in Upsample operator. A simple example is given in Fig. B.24 to illustrate

this process (the scale factor here is 2).

1 2
3 4

Input Ouput

upsample

4 4
4 4

3 3
3 3

2 2
2 2

1 1
1 1

Figure B.24: The Upsample operator example with nearest mode, where the input image size is 2 × 2 and

the output size is 4× 4.
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