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Abstract

This paper develops high-order accurate entropy stable (ES) adaptive moving mesh finite difference

schemes for the two- and three-dimensional special relativistic hydrodynamic (RHD) and magne-

tohydrodynamic (RMHD) equations, which is the high-order accurate extension of [J.M. Duan

and H.Z. Tang, Entropy stable adaptive moving mesh schemes for 2D and 3D special relativistic

hydrodynamics, J. Comput. Phys., 426(2021), 109949]. The key point is the derivation of the

higher-order accurate entropy conservative (EC) and ES finite difference schemes in the curvilinear

coordinates by carefully dealing with the discretization of the temporal and spatial metrics and the

Jacobian of the coordinate transformation and constructing the high-order EC and ES fluxes with

the discrete metrics. The spatial derivatives in the source terms of the symmetrizable RMHD equa-

tions and the geometric conservation laws are discretized by using the linear combinations of the

corresponding second-order case to obtain high-order accuracy. Based on the proposed high-order

accurate EC schemes and the high-order accurate dissipation terms built on the WENO recon-

struction, the high-order accurate ES schemes are obtained for the RHD and RMHD equations in

the curvilinear coordinates. The mesh iteration redistribution or adaptive moving mesh strategy is

built on the minimization of the mesh adaption functional. Several numerical tests are conducted

to validate the shock-capturing ability and high efficiency of our high-order accurate ES adaptive

moving mesh methods on the parallel computer system with the MPI communication. The numer-

ical results show that the high-order accurate ES adaptive moving mesh schemes outperform both

their counterparts on the uniform mesh and the second-order ES adaptive moving mesh schemes.
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1. Introduction

This paper is concerned with the high-order accurate numerical schemes for the special rela-

tivistic hydrodynamic (RHD) and magnetohydrodynamic (RMHD) equations, which consider the

relativistic description for the dynamics of the fluid (gas) at nearly the speed of light when the

astrophysical phenomena are investigated from stellar to galactic scales, e.g. the core collapse

supernovae, the coalescing neutron stars, the active galactic nuclei, the formation of black holes,

the gamma-ray bursts, and the superluminal jets etc. In the covariant form, the four-dimensional

space-time RMHD equations can be written as follows [1]

∂α(ρuα) = 0, ∂α(Tαβ) = 0, ∂α(Ψαβ) = 0, (1.1)

where the Einstein summation convention has been used, ρ and uα denote the rest-mass density

and the four-velocity vector, respectively, ∂α denotes the covariant derivative operator with respect

to the four-dimensional space-time coordinates (t, x1, x2, x3), the Greek indices α, β run from 0 to

3. In (1.1), the tensor Ψαβ can be expressed by uα and four-dimensional magnetic field bα as

Ψαβ = uαbβ − uβbα, (1.2)

and the energy-momentum tensor Tαβ can be decomposed into the fluid part Tαβ
f and the electro-

magnetic part Tαβ
m , defined by

Tαβ
f = ρhuαuβ + pgαβ, (1.3)

Tαβ
m = |b|2(uαuβ + gαβ/2)− bαbβ, (1.4)

where p and h = 1 + e + p/ρ are respectively the pressure and specific enthalpy, with e the

specific internal energy. Throughout this paper, the metric tensor gαβ is taken as the Minkowski

tensor, i.e. gαβ = ±diag{−1, 1, 1, 1}, and units in which the speed of light is equal to one will be

used. The relations between the four-vectors uα and bα and the spatial components of the velocity

v = (v1, v2, v3) and the laboratory magnetic field B = (B1, B2, B3) are

uα = W (1,v), (1.5)

bα = W

(
v ·B, B

W 2
+ v(v ·B)

)
, (1.6)

where W = 1/
√

1− |v|2 is the Lorentz factor. It is easy to verify the following relations

uαuα = −1, uαbα = 0, |b|2 ≡ bαbα =
|B|2

W 2
+ (v ·B)2.

To close the system (1.1)-(1.4), this paper considers the equation of state (EOS) for the perfect gas

p = (Γ− 1)ρe, (1.7)
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with the adiabatic index Γ ∈ (1, 2]. The RHD case can be obtained by setting B ≡ 0.

Numerical simulation is a powerful way to help us better understand the physical mechanisms

in the RHDs and RMHDs. For the computational purpose, the system (1.1)-(1.7) is rewritten in a

lab frame as follows

∂U

∂t
+

d∑
k=1

∂Fk(U)

∂xk
= 0, (1.8)

with the divergence-free constraint on the magnetic field

d∑
k=1

∂Bk
∂xk

= 0, (1.9)

where U and Fk are respectively the conservative variable vector and the flux vector in the xk-

direction, and defined by

U = (D,m, E,B)T,

Fk = (Dvk,mvk −Bk(B/W 2 + (v ·B)v) + ptotek,mk, vkB −Bkv)T,
(1.10)

with the mass density D = ρW , the momentum density m = (ρhW 2 + |B|2)v− (v ·B)B, and the

energy density E = DhW − ptot + |B|2. Here ek denotes the k-th row of the d×d unit matrix, and

ptot denotes the total pressure containing the gas pressure p and the magnetic pressure pm = 1
2 |b|

2.

Due to no explicit expression for the primitive variables (ρ,v, p,B)T and the flux Fk in terms of

U , a nonlinear algebraic equation, see e.g. [37], has to be solved in order to recover the values

of the primitive variables and the flux from the given U . It is obvious that the nonlinearity of

(1.8)-(1.10) becomes much stronger than the non-relativistic case due to the relativistic effect, thus

its analytical treatment is very challenging. The first numerical work may date back to the artificial

viscosity method for the RHD equations in the Lagrangian coordinates [44, 45] and the Eulerian

coordinates [61]. Since the early 1990s, the modern shock-capturing methods were extended to the

RHD and RMHD equations, such as the Roe-type scheme [2, 22], the Harten-Lax-van Leer (HLL)

method [15, 16, 55], the Harten-Lax-van Leer-Contact (HLLC) method [39, 46, 47], the Harten-Lax-

van Leer-Discontinuities (HLLD) method [50], the essentially non-oscillatory (ENO) and weighted

ENO (WENO) methods [17, 15, 16], the piecewise parabolic methods [41, 49], the Runge-Kutta

discontinuous Galerkin (DG) methods with WENO limiter [75, 76], the direct Eulerian generalized

Riemann problem schemes [71, 72, 70, 66], the gas kinetics schemes [12, 13], the two-stage fourth-

order time discretization [73], the adaptive moving mesh methods [31, 32], and so on. Recently, the

properties of the admissible state set and the physical-constraints-preserving (both the rest-mass

density and the kinetic pressure of the numerical solutions are positive and the magnitude of the

fluid velocity is less than the speed of light) numerical schemes were well studied for the RHD and
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RMHD equations, see [39, 40, 65, 67, 68, 69, 63]. The readers are also referred to the early review

articles [25, 42, 43] for more references.

For the RHD and RMHD equations, the entropy condition is an important property which

should be respected according to the second law of thermodynamics. On the other hand, it is

well known that the weak solution of the quasi-linear hyperbolic conservation laws nay not be

unique so that the entropy condition is needed to single out the unique physical relevant solution

among all the weak solutions. Thus it is of great significance to seek the entropy stable (ES)

schemes (satisfying some discrete or semi-discrete entropy conditions) for the quasi-linear system

of hyperbolic conservation laws. For the scalar conservation laws, the fully-discrete conservative

monotone schemes were nonlinearly stable and satisfied the entropy conditions, thus they could

converge to the entropy solution [30, 14]. A class of the so-called E-schemes satisfying the semi-

discrete entropy conditions for any convex entropy was studied in [51, 52], but they were restricted

to the first-order accuracy. Generally, it is difficult to show that the high-order schemes of the

scalar conservation laws and the schemes for the system of hyperbolic conservation laws satisfy

the entropy inequality for any convex entropy function. In [6], a second-order accurate scheme

is shown to satisfy all the entropy conditions, which evolves not only the cell averages but also

the solution values at half nodes. Many researchers are trying to study the high-order accurate

ES schemes, which satisfy the entropy inequality for a given entropy pair. The two-point entropy

conservative (EC) flux and corresponding second-order EC schemes (satisfying the semi-discrete

entropy identity) were proposed in [56, 57], and their higher-order extension was studied in [38].

It is known that the EC schemes may become oscillatory near the shock waves so that some

additional dissipation terms have to be added to obtain the ES schemes. Combining the EC flux

with the “sign” property of the ENO reconstruction, the arbitrary high-order ES schemes were

constructed by using high-order dissipation terms [24]. The ES schemes were then extended to

the finite difference schemes based on summation-by-parts (SBP) operators [23]. Some ES schemes

were also studied in the DG framework, such as the space-time DG formulation [34, 33], the DG

spectral element methods [26, 8], and the nodal DG schemes on the simplex meshes [10]. More ES

DG methods can be found in the review articles [11, 27].

Recently, the high-order accurate ES finite difference schemes for the RHD equations were firstly

studied in [19], in which the dissipation terms built on the fifth-order WENO reconstruction and

the switch function in [5] was of the fifth-order accuracy and the “sign” property simultaneously.

Later, the TeCNO scheme [24] was extended to the RHD equations [4], where the dissipation terms

were based on the ENO reconstruction. For the ideal RMHDs, the high-order accurate ES finite

difference schemes were proposed in [64] and the ES DG schemes were studied in [20] by using the
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symmetrizable RMHD equations and the suitable discretization of the source terms.

In view of the fact that the solutions of the RHD equations often exhibit localized structures,

e.g. containing sharp transitions or discontinuities in relatively localized regions, the second-order

accurate ES adaptive moving mesh schemes for the RHD equations are proposed in [21] to improve

the efficiency and quality of numerical simulation. This paper is devoted to extend such ES adaptive

moving mesh schemes as the high-order (greater than second-order) accurate schemes for the RHD

and RMHD equations. The key point is the derivation of the higher-order accurate EC and ES

finite difference schemes in the curvilinear coordinates. For such purpose, one should carefully

deal with the discretization of the temporal and spatial metrics and the Jacobian introduced by

the coordinate transformation and construct the high-order EC and ES fluxes with the discrete

metrics. We prove that the suitable linear combinations of the two-point EC flux in the curvilinear

coordinates give the high-order EC fluxes, which can be regarded as a refinement of the arbitrarily

high-order accurate EC fluxes in the Cartesian coordinates in [38]. The spatial derivatives in

the source terms of the symmetrizable RMHD equations and the geometric conservation laws

are discretized by using the linear combinations of the corresponding second-order case to obtain

high-order accuracy. Based on the proposed high-order accurate EC schemes and the high-order

accurate dissipation terms built on the WENO reconstruction, the high-order accurate ES schemes

are obtained for the RHD and RMHD equations in the curvilinear coordinates. Several two- and

three-dimensional numerical tests are conducted to validate the shock-capturing ability and high

efficiency of our high-order accurate ES adaptive moving mesh methods on the parallel computer

system with the MPI communication. The numerical results show that the high-order accurate ES

adaptive moving mesh schemes outperform both their counterparts on the uniform mesh and the

second-order ES adaptive moving mesh schemes [21].

The paper is organized as follows. Section 2 gives the symmetrizable RMHD equations in

the curvilinear coordinates and corresponding entropy conditions. It involves the special case of

the RHD equations, i.e. (1.8)-(1.10) with B ≡ 0. Section 3 presents the high-order accurate

EC finite difference schemes in the curvilinear coordinates, while Section 4 gives the high-order

accurate ES finite difference schemes by adding suitable dissipation terms based on the WENO

reconstruction. The adaptive moving mesh strategy is introduced in Section 5. Several numerical

tests are conducted in Section 6 to validate the high-order accuracy, the shock-capturing ability

and the efficiency of the proposed schemes. Section 7 concludes the work with further remarks.
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2. Entropy conditions for symmetrizable RMHD equations

This section introduces some basic notations and the entropy conditions for the symmetrizable

RMHD equations.

Definition 2.1. A strictly convex scalar function η(U) is called an entropy function of the system

(1.8) if there exists associated entropy fluxes qk(U) such that

q′k(U) = V TF ′k(U), k = 1, 2, · · · , d, (2.1)

where V = η′(U)T is called the entropy variables, and (η, qk) is an entropy pair.

For the smooth solutions of (1.8)-(1.10), multiplying (1.8) by V T gives the entropy identity

∂η(U)

∂t
+

d∑
k=1

∂qk(U)

∂xk
= 0.

However, if the solutions contain discontinuities, then the above identity does not hold and the

weak solutions should be considered.

Definition 2.2. A weak solution U of (1.8)-(1.10) is called an entropy solution if for all entropy

functions η, the inequality

∂η(U)

∂t
+

d∑
k=1

∂qk(U)

∂xk
6 0, (2.2)

holds in the sense of distributions.

For the system (1.8)-(1.10) with zero magnetic field (B ≡ 0), the entropy pair can be defined

by the thermodynamic entropy [19, 54] as follows

η(U) = − ρWs

Γ− 1
, qk(U) = ηvk, (2.3)

where s = ln(p/ρΓ) is the thermodynamic entropy, η is a convex function of U and (η, qk) satisfies

the consistent condition (2.1). However, when B 6≡ 0, the function pair in (2.3) does not satisfy

(2.1), and it can be verified that in general the system (1.8)-(1.10) cannot be symmetrized [20, 64].

Motivated by the symmetrization of the non-relativistic magnetohydrodynamics [28, 53], some

source terms can be added to get a symmetrizable RMHD system as follows [64]

∂U

∂t
+

d∑
k=1

∂Fk
∂xk

= −Φ′(V )T
d∑

k=1

∂Bk
∂xk

, V := η′(U)T, (2.4)

where Φ(V ) is a homogeneous function of degree one, i.e. Φ = Φ′(V )V , with

Φ =
ρW (v ·B)

p
, Φ′(V ) =

(
0,B/W 2 + v(v ·B), v ·B, v

)
, (2.5)
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that is to say, the function pair in (2.3) can symmetrize the modified RMHD system (2.4) so that

it is an entropy pair of (2.4). The entropy variable V can be explicit expressed as

V = η′(U)T =

(
Γ− s
Γ− 1

+
ρ

p
,
ρWvT

p
,−ρW

p
,
ρ(B +W 2v(v ·B))

pW

)T

.

For the smooth solutions, taking the dot product of V with (2.4) yields the entropy identity

∂η(U)

∂t
+

d∑
k=1

∂qk(U)

∂xk
= 0,

while for the discontinuous solutions, it is replaced with the entropy inequality

∂η(U)

∂t
+

d∑
k=1

∂qk(U)

∂xk
6 0,

which holds in the sense of distributions. One can further define the entropy potential φ and entropy

flux potential ψk from the given (η(U), qk(U)) and Φ(V ) by

φ : = V TU − η(U) = ρW +
ρW |b|2

2p
, (2.6a)

ψk : = V TFk(U) + Φ(V )Bk − qk(U) = ρvkW +
ρvkW |b|2

2p
, (2.6b)

which are important in obtaining the sufficient condition for the two-point EC flux.

Similar to [21], let us derive the curvilinear coordinate form of the symmetrizable RMHD equa-

tions (2.4) and corresponding entropy conditions. Let Ωp be the physical domain with coordinates

x = (x1, · · · , xd), in which (2.4) is specified, and Ωc be the computational domain with coordinates

ξ = (ξ1, · · · , ξd) that is artificially chosen for the sake of the mesh redistribution or movement. Our

adaptive moving meshes for Ωp can be generated as the images of a reference mesh in Ωc by a time

dependent, differentiable, one-to-one coordinate mapping x = x(τ, ξ), which can be written as

t = τ, x = x(τ, ξ), ξ = (ξ1, · · · , ξd) ∈ Ωc. (2.7)

Under this transformation, the system (2.4) in the coordinates (τ, ξ) reads

∂U
∂τ

+

d∑
k=1

∂Fk

∂ξk
= −Φ′(V )T

d∑
k=1

∂Bk
∂ξk

, (2.8)

with

U = JU , Fk =

(
J
∂ξk
∂t
U

)
+

d∑
j=1

(
J
∂ξk
∂xj

Fj

)
, Bk =

d∑
j=1

(
J
∂ξk
∂xj

Bj

)
,
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where J denotes the determinant of the Jacobian matrix and its 3D version is explicitly given by

J = det

(
∂(t,x)

∂(τ, ξ)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0
∂x1

∂τ

∂x1

∂ξ1

∂x1

∂ξ2

∂x1

∂ξ3
∂x2

∂τ

∂x2

∂ξ1

∂x2

∂ξ2

∂x2

∂ξ3
∂x3

∂τ

∂x3

∂ξ1

∂x3

∂ξ2

∂x3

∂ξ3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The metrics should satisfy the following geometric conservation laws (GCLs) consisting of the

volume conservation law (VCL) and the surface conservation laws (SCLs)

VCL:
∂J

∂τ
+

d∑
k=1

∂

∂ξk

(
J
∂ξk
∂t

)
= 0, (2.9a)

SCLs:
d∑

k=1

∂

∂ξk

(
J
∂ξk
∂xj

)
= 0, j = 1, · · · , d. (2.9b)

The former indicates that the volumetric increment of a moving cell must be equal to the sum of the

changes along the surfaces that enclose the volume, while the latter indicates that the cell volumes

must be closed by its surfaces [74]. Those GCLs imply that free-stream solution is preserved by

(2.8), in other words, a physical constant state is an exact solution of (2.8). Finally, by using the

GCLs (2.9), see [21], the entropy identity for (2.8) in the coordinates (τ, ξ) is

∂(Jη)

∂τ
+

d∑
k=1

∂qk
∂ξk

= 0, (2.10)

with

qk =

(
J
∂ξk
∂t

η

)
+

d∑
j=1

(
J
∂ξk
∂xj

qj

)
,

but when the solutions are not smooth, it is replaced with the entropy inequality

∂(Jη)

∂τ
+

d∑
k=1

∂qk
∂ξk

6 0, (2.11)

which holds in the sense of distribution.

Remark 2.1. The continuous GCLs (2.9) are crucial in deriving the governing equations (2.8),

the entropy identity (2.10) and the entropy inequality (2.11). Corresponding discrete GCLs will be

important in proving the EC property of our schemes, see Section 3.

Remark 2.2. For the RHD case, the entropy variable V , the entropy potential φ, and the entropy

flux potential ψk can be obtained by setting B ≡ 0.
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3. High-order accurate EC schemes

This section presents the 3D high-order accurate EC finite difference schemes for the RMHD

system (2.8), which gives corresponding schemes for the RHD equations by setting B ≡ 0. The

1D and 2D schemes in the curvilinear coordinates are given in Appendix A and Appendix B,

respectively. For simplicity, only 3D adaptive moving mesh schemes for the RMHD equations in

curvilinear coordinates (2.8) on structured meshes are presented hereafter.

3.1. Two-point EC flux

To develop the high-order accurate EC schemes, one of the main ingredient is the so-called

two-point EC flux.

Definition 3.1. For the RMHD system (2.8), a numerical flux F̃k

(
Ul,Ur,

(
J
∂ξk
∂ζ

)
l
,
(
J
∂ξk
∂ζ

)
r

)
is

called two-point EC flux, ζ = t, x1, x2, x3, if it is consistent with Fk and satisfies

(V (Ur)− V (Ul))
TF̃k =

1

2

((
J
∂ξk
∂t

)
l

+

(
J
∂ξk
∂t

)
r

)
(φ(Ur)− φ(Ul))

+
3∑
j=1

1

2

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)
(ψj(Ur)− ψj(Ul))

−
3∑
j=1

1

4

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)
(Bj(Ul) +Bj(Ur)) (Φ(Ur)− Φ(Ul)) , (3.1)

where Φ and φ, ψj are defined in (2.5) and (2.6), respectively.

Remark 3.1. If B ≡ 0, then (3.1) reduces to the RHD case [21], while, if (t,x) ≡ (τ, ξ), then

(3.1) reduces to the Cartesian coordinate case [64].

What follows is to find such a two-point EC flux satisfying (3.1). Similar to [21], the EC flux

can be chosen as follows

F̃k

(
Ul,Ur,

(
J
∂ξk
∂ζ

)
l
,
(
J
∂ξk
∂ζ

)
r

)
= Ů(l; r) +

3∑
j=1

F̊ j(l; r), (3.2)

where ζ = t, x1, x2, x3, and

Ů(l; r) =
1

2

((
J
∂ξk
∂t

)
l

+

(
J
∂ξk
∂t

)
r

)
Ũ , F̊ j(l; r) =

1

2

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)
F̃j , (3.3)

with Ũ and F̃j satisfying

(Vr − Vl)T Ũ = φr − φl,

(Vr − Vl)T F̃j = [(ψj)r − (ψj)l]−
1

2
[(Bj)l + (Bj)r] (Φr − Φl) .
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For the RMHD system (2.8), F̃RMHD
j in [20] is used, while ŨRMHD can be given by following the

derivation of F̃RMHD
j and reads

ŨRMHD =



{{ρ}}ln{{W}}

{{ux}}ŨRMHD
5 /{{W}}+R2/{{β}}

{{uy}}ŨRMHD
5 /{{W}}+R3/{{β}}

{{uz}}ŨRMHD
5 /{{W}}+R4/{{β}}

D−1 [{{ux}}R2 + {{uy}}R3 + {{uz}}R4 − {{β}}R1](
{{W}}2{{bx}} − {{Wb0}}{{ux}}

)
/{{W}}(

{{W}}2{{by}} − {{Wb0}}{{uy}}
)
/{{W}}(

{{W}}2{{bz}} − {{Wb0}}{{uz}}
)
/{{W}}



,

where

D = {{β}}({{W}}2 −
3∑

k=1

{{uk}}2)/{{W}}, β = ρ/p,

R1 = −α0Ũ
RMHD
1 − 1

2
{{W (b0)2}}+

2∑
k=1

[
1

2
{{W}}{{(bk)2}} − {{bk}}ŨRMHD

k+5

]
,

R2 =
(
α1{{ux}} − {{β}}{{Wb0}}{{bx}}

)
/{{W}},

R3 =
(
α1{{uy}} − {{β}}{{Wb0}}{{by}}

)
/{{W}},

R4 =
(
α1{{uz}} − {{β}}{{Wb0}}{{bz}}

)
/{{W}},

α0 = 1 + 1/(Γ− 1)/{{β}}ln,

α1 = {{ρ}}+
1

2
{{β}}

3∑
k=1

{{(bk)2}}+
1

2
{{β}}{{W (b0)2}}/{{W}},

here {{a}}ln = JaK/Jln aK is the logarithmic mean, see [35], and ŨRMHD
n denotes the nth component

of ŨRMHD. For the RHD equations, a two-point EC flux in curvilinear coordinates can be found

in [21].

3.2. Discretization of RMHD system and VCL

Assume that the 3D computational domain Ωc is chosen as a cuboid for convenience, e.g.

[a1, b1]× [a2, b2]× [a3, b3], and divided into a fixed orthogonal mesh {(ξ1,i1 , ξ2,i2 , ξ3,i3):

ak = ξk,0 < ξk,1 < · · · < ξk,ik < · · · < ξk,Nk−1 = bk, k = 1, 2, 3} with the constant step-size

∆ξk = ξk,ik+1 − ξk,ik . For the sake of brevity, the index i = (i1, i2, i3) is used to denote the point

(ξ1,i1 , ξ2,i2 , ξ3,i3), and the subscript {i, k, n} denotes the index i increases n in the ik-direction, e.g.,

{i, 3, 1
2} denotes (i1, i2, i3 + 1

2).

10



Based on the above notations, consider the following 2pth-order (p ≥ 1) semi-discrete conser-

vative finite difference schemes for the RMHD system (2.8) and the VCL (2.9)

d

dt
U i = −

3∑
k=1

1

∆ξk

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)
− Φ′(Vi)

T
3∑

k=1

1

∆ξk

(
(B̃k)2pth

i,k,+ 1
2

− (B̃k)2pth

i,k,− 1
2

)
,

(3.4)

d

dt
Ji = −

3∑
k=1

1

∆ξk

((
˜
J
∂ξk
∂t

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂t

)2pth

i,k,− 1
2

)
, (3.5)

where Ji(t) and U i(t) approximate the point values of J (t, ξ) and U(t, ξ) at i, respectively, and

(F̃k)
2pth

i,k,± 1
2

, (B̃k)2pth

i,k,± 1
2

,

(
˜
J
∂ξk
∂t

)2pth

i,k,± 1
2

are the numerical fluxes used in the approximations of the

flux derivative, source terms, and spatial derivatives in the VCL, respectively.

The high-order (p > 1) accurate EC schemes (3.4) for the system (2.8) are mainly built on the

following parts.

1. For the given entropy pair, the two-point EC flux F̃k is first derived from (3.1), and then the

high-order EC flux (F̃k)
2pth

i,k,± 1
2

is gotten by some linear combination of the two-point EC flux

F̃k in (3.2), such that the approximation of the flux derivative
∂Fk

∂ξk
is 2pth-order accurate.

It is considered as an extension of the high-order accurate EC schemes in the Cartesian

coordinates [38] to the curvilinear coordinates.

2. Compute (B̃k)2pth

i,k,± 1
2

and
(˜
J
∂ξk
∂t

)2pth

i,k,± 1
2

by the same linear combinations of corresponding

2nd-order case as that of the 2pth-order EC flux, so that the approximations of the spatial

derivatives in source terms and the VCL are also 2pth-order accurate. The discretization of

the latter degenerates to the 2pth-order accurate central difference.

3. The metrics
(˜
J
∂ξk
∂xj

)
i

used in the above two parts are discretized by the 2pth-order central

difference based on the conservative metrics method (CMM) [60] such that the SCLs hold in

the discrete level.

4. The schemes (3.4)-(3.5) can be proved to be 2pth-order accurate and EC by combing the

above three parts, which mimics the derivation of the continuous entropy identity (2.10) in

the curvilinear coordinates.

The first two parts are given in Proposition 3.1, the third is addressed in Section 3.3, and the last

one is summarized in Theorem 3.2.

Proposition 3.1. If the 2pth-order fluxes (F̃k)
2pth

i,k,± 1
2

, (B̃k)2pth

i,k,± 1
2

and
(˜
J
∂ξk
∂t

)2pth

i,k,± 1
2

are chosen as

11



follows

(F̃k)
2pth

i,k,+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

F̃k

(
Ui,k,−s,Ui,k,−s+n,

(
J
∂ξk
∂ζ

)
i,k,−s

,

(
J
∂ξk
∂ζ

)
i,k,−s+n

)
, (3.6)

(B̃k)2pth

i,k,+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

B̃k

(
Bi,k,−s, Bi,k,−s+n,

(
J
∂ξk
∂xj

)
i,k,−s

,

(
J
∂ξk
∂xj

)
i,k,−s+n

)
, (3.7)

(
˜
J
∂ξk
∂ζ

)2pth

i,k,+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

(
˜
J
∂ξk
∂ζ

)((
J
∂ξk
∂ζ

)
i,k,−s

,

(
J
∂ξk
∂ζ

)
i,k,−s+n

)
, (3.8)

where ζ = t, x1, x2, x3, B̃k and

(
˜
J
∂ξk
∂ζ

)
are corresponding 2nd-order case as follows

B̃k
(

(Bj)l, (Bj)r,

(
J
∂ξk
∂xj

)
l

,

(
J
∂ξk
∂xj

)
r

)
=

3∑
j=1

1

4

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)
((Bj)l + (Bj)r) ,

(3.9)(
˜
J
∂ξk
∂ζ

)((
J
∂ξk
∂ζ

)
l

,

(
J
∂ξk
∂ζ

)
r

)
=

1

2

((
J
∂ξk
∂ζ

)
l

+

(
J
∂ξk
∂ζ

)
r

)
, (3.10)

and the coefficients in the linear combinations satisfy the constraints [38]

p∑
n=1

nαp,n = 1,

p∑
n=1

n2s−1αp,n = 0, s = 2, · · · , p, (3.11)

then the approximation of the flux derivative
∂Fk

∂ξk
is 2pth-order accurate, i.e.

1

∆ξk

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)
=
∂Fk

∂ξk

∣∣∣∣∣
i

+O
(

∆ξ2p
k

)
, k = 1, 2, 3. (3.12)

Similarly, the approximations of the source terms and the spatial derivatives in the VCL are also

2pth-order accurate.

To prove such proposition, let us first consider the following Lemma.

Lemma 3.1. If the smooth two-parameter scalar function f̃(u(ζl), u(ζr)) and vector-value function

F̃ (U(ζl),U(ζr)) satisfy

Consistency f̃(u, u) = f(u), F̃ (U ,U) = F (U),

Symmetry f̃(u(ζl), u(ζr)) = f̃(u(ζr), u(ζl)), F̃ (U(ζl),U(ζr)) = F̃ (U(ζr),U(ζl)),

then the following identities hold

2
∂

∂ζr
f̃(u(ζl), u(ζr))

∣∣∣
ζr=ζl

=
∂

∂ζ
f(u(ζ))

∣∣∣
ζ=ζl

,
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2
∂

∂ζr
F̃ (U(ζl),U(ζr))

∣∣∣
ζr=ζl

=
∂

∂ζ
F (U(ζ))

∣∣∣
ζ=ζl

,

2
∂

∂ζr

[
f̃(u(ζl), u(ζr))F̃ (U(ζl),U(ζr))

] ∣∣∣
ζr=ζl

=
∂

∂ζ
[f(u(ζ))F (U(ζ))]

∣∣∣
ζ=ζl

.

Proof. The first identity is a special case of the second, which comes from [9]. Utilizing the sym-

metry and the consistency of F̃ gives

2
∂F̃ (Ul,Ur)

∂Ur

∣∣∣
Ur=Ul

=

(
∂F̃ (Ul,Ur)

∂Ul
+
∂F̃ (Ul,Ur)

∂Ur

)∣∣∣
Ur=Ul

=
∂F̃ (U ,U)

∂U

∣∣∣
U=Ul

=
∂F (U)

∂U

∣∣∣
U=Ul

.

Letting Ul = U(ζl),Ur = U(ζr) and using the chain rule gives

2
∂

∂ζr
F̃ (U(ζl),U(ζr))

∣∣∣
ζr=ζl

=
∂

∂ζ
F (U(ζ))

∣∣∣
ζ=ζl

.

The third identity can be obtained as follows

2
∂

∂ζr

[
f̃(u(ζl), u(ζr))F̃ (U(ζl),U(ζr))

] ∣∣∣
ζr=ζl

= 2
∂

∂ζr
f̃(u(ζl), u(ζr))

∣∣∣
ζr=ζl

F (U(ζl)) + 2f(u(ζl))
∂

∂ζr
F̃ (U(ζl),U(ζr))

∣∣∣
ζr=ζl

=
∂

∂ζ
f(u(ζ))

∣∣∣
ζ=ζl

F (U(ζl)) + f(u(ζl))
∂

∂ζ
F (U(ζ))

∣∣∣
ζ=ζl

=
∂

∂ζ
[f(u(ζ))F (U(ζ))]

∣∣∣
ζ=ζl

,

where the first equality uses the product rule.

Based on the above Lemma, it is ready to prove Proposition 3.1.

Proof. It suffices to consider the ik-direction and to assume the other two independent variables to

be fixed and omitted in the following expressions by using “· · · ”. If taking ζl = ξ̂k, ζr = ξ̃k, and

f̃ =
1

2

((
J
∂ξk
∂xj

)
(· · · , ξ̂k, · · · ) +

(
J
∂ξk
∂xj

)
(· · · , ξ̃k, · · · )

)
,

F̃ = F̃j(U(· · · , ξ̂k, · · · ),U(· · · , ξ̃k, · · · )),

in Proposition 3.1, then one has

∂

∂ξ̃k

[
1

2

((
J
∂ξk
∂xj

)
(· · · , ξ̂k, · · · ) +

(
J
∂ξk
∂xj

)
(· · · , ξ̃k, · · · )

)
F̃j(U(· · · , ξ̂k, · · · ),U(· · · , ξ̃k, · · · ))

] ∣∣∣
ξ̃k=ξ̂k

=
1

2

∂

∂ξk

[(
J
∂ξk
∂xj

)
(· · · , ξk, · · · )Fj(U(. . . , ξk, . . . ))

] ∣∣∣
ξk=ξ̂k

. (3.14)
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If utilizing (3.14), then one can expand F̊ j(i; i, k,±n) defined in (3.3) at ξk,ik by using Taylor series

as follows

F̊ j(i; i, k,±n) =

[(
J
∂ξk
∂xj

)
Fj

]
i

± n∆ξk
2

∂

∂ξk

[(
J
∂ξk
∂xj

)
Fj

]
i

+

2p∑
s=2

(±n∆ξk)
s

s!
∂sξkF̊ j(i; i) +O

(
∆ξ2p+1

k

)
,

so that their difference becomes

F̊ j(i; i, k,+n)− F̊ j(i; i, k,−n) = n∆ξk
∂

∂ξk

[(
J
∂ξk
∂xj

)
Fj

]
i

+ 2

p∑
s=2

(n∆ξk)
2s−1

(2s− 1)!
∂2s−1
ξk

F̊ j(i; i) +O
(

∆ξ2p+1
k

)
.

Similarly, it can be verified that

Ů(i; i, k,+n)− Ů(i; i, k,−n) = n∆ξk
∂

∂ξk

[(
J
∂ξk
∂t

)
U

]
i

+ 2

p∑
s=2

(n∆ξk)
2s−1

(2s− 1)!
∂2s−1
ξk

Ů(i; i) +O
(

∆ξ2p+1
k

)
.

Based on those, one gets

1

∆ξk

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)

=

p∑
n=1

αp,n

Ů(i; i, k,+n) +
3∑
j=1

F̊ j(i; i, k,+n)− Ů(i; i, k,−n)−
3∑
j=1

F̊ j(i; i, k,−n)


=

(
p∑

n=1

nαp,n

)
∂Fk

∂ξk

∣∣∣
i

+
2∆ξ2s−2

k

(2s− 1)!

p∑
s=2

(
p∑

n=1

n2s−1αp,n

)
∂2s−1

(
Ů(i; i) +

∑3
j=1 F̊ j(i; i)

)
∂ξ2s−1

k

+O
(

∆ξ2p
k

)
=
∂Fk

∂ξk

∣∣∣∣∣
i

+O
(

∆ξ2p
k

)
, k = 1, 2, 3,

where the last equality uses the constraints (3.11). Similarly it can be proved that the approxima-

tions of the source terms and the spatial derivatives in the VCL are also 2pth-order accurate.

3.3. Discrete GCLs

This section introduces some appropriate discretizations of the spatial metrics

(
J
∂ξk
∂xj

)
i

and

the temporal metrics

(
J
∂ξk
∂t

)
i

in order to get the discrete SCLs

3∑
k=1

1

∆ξk

(˜
J
∂ξk
∂xj

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂xj

)2pth

i,k,− 1
2

 = 0, j = 1, 2, 3. (3.15)
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and the discrete VCL.

For the smooth transformation (2.7), the following identities hold

J
∂ξ1

∂x1
=
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2
, J

∂ξ1

∂x2
=
∂x3

∂ξ2

∂x1

∂ξ3
− ∂x3

∂ξ3

∂x1

∂ξ2
, J

∂ξ1

∂x3
=
∂x1

∂ξ2

∂x2

∂ξ3
− ∂x1

∂ξ3

∂x2

∂ξ2
,

J
∂ξ2

∂x1
=
∂x2

∂ξ3

∂x3

∂ξ1
− ∂x2

∂ξ1

∂x3

∂ξ3
, J

∂ξ2

∂x2
=
∂x3

∂ξ3

∂x1

∂ξ1
− ∂x3

∂ξ1

∂x1

∂ξ3
, J

∂ξ2

∂x3
=
∂x1

∂ξ3

∂x2

∂ξ1
− ∂x1

∂ξ1

∂x2

∂ξ3
,

J
∂ξ3

∂x1
=
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1
, J

∂ξ3

∂x2
=
∂x3

∂ξ1

∂x1

∂ξ2
− ∂x3

∂ξ2

∂x1

∂ξ1
, J

∂ξ3

∂x3
=
∂x1

∂ξ1

∂x2

∂ξ2
− ∂x1

∂ξ2

∂x2

∂ξ1
,

which can be reformulated into the divergence form

J
∂ξ1

∂x1
=

∂

∂ξ3

(
∂x2

∂ξ2
x3

)
− ∂

∂ξ2

(
∂x2

∂ξ3
x3

)
, J

∂ξ1

∂x2
=

∂

∂ξ3

(
∂x3

∂ξ2
x1

)
− ∂

∂ξ2

(
∂x3

∂ξ3
x1

)
,

J
∂ξ1

∂x3
=

∂

∂ξ3

(
∂x1

∂ξ2
x2

)
− ∂

∂ξ2

(
∂x1

∂ξ3
x2

)
,

J
∂ξ2

∂x1
=

∂

∂ξ1

(
∂x2

∂ξ3
x3

)
− ∂

∂ξ3

(
∂x2

∂ξ1
x3

)
, J

∂ξ2

∂x2
=

∂

∂ξ1

(
∂x3

∂ξ3
x1

)
− ∂

∂ξ3

(
∂x3

∂ξ1
x1

)
,

J
∂ξ2

∂x3
=

∂

∂ξ1

(
∂x1

∂ξ3
x2

)
− ∂

∂ξ3

(
∂x1

∂ξ1
x2

)
,

J
∂ξ3

∂x1
=

∂

∂ξ2

(
∂x2

∂ξ1
x3

)
− ∂

∂ξ1

(
∂x2

∂ξ2
x3

)
, J

∂ξ3

∂x2
=

∂

∂ξ2

(
∂x3

∂ξ1
x1

)
− ∂

∂ξ1

(
∂x3

∂ξ2
x1

)
,

J
∂ξ3

∂x3
=

∂

∂ξ2

(
∂x1

∂ξ1
x2

)
− ∂

∂ξ1

(
∂x1

∂ξ2
x2

)
.

(3.16)

Those are useful to compute the discrete metrics and to obtain the discrete SCLs by the CMM

[60]. Using the same discretizations for the first-order spatial derivatives in (3.16) gives(
J
∂ξ1

∂x1

)
i

=
1

∆ξ2∆ξ3
(δ3 [δ2 [x2]x3]− δ2 [δ3 [x2]x3]) ,

(
J
∂ξ1

∂x2

)
i

=
1

∆ξ2∆ξ3
(δ3 [δ2 [x3]x1]− δ2 [δ3 [x3]x1]) ,(

J
∂ξ1

∂x3

)
i

=
1

∆ξ2∆ξ3
(δ3 [δ2 [x1]x2]− δ2 [δ3 [x1]x2]) ,(

J
∂ξ2

∂x1

)
i

=
1

∆ξ3∆ξ1
(δ1 [δ3 [x2]x3]− δ3 [δ1 [x2]x3]) ,

(
J
∂ξ2

∂x2

)
i

=
1

∆ξ3∆ξ1
(δ1 [δ3 [x3]x1]− δ3 [δ1 [x3]x1]) ,(

J
∂ξ2

∂x3

)
i

=
1

∆ξ3∆ξ1
(δ1 [δ3 [x1]x2]− δ3 [δ1 [x1]x2]) ,(

J
∂ξ3

∂x1

)
i

=
1

∆ξ1∆ξ2
(δ2 [δ1 [x2]x3]− δ1 [δ2 [x2]x3]) ,

(
J
∂ξ3

∂x2

)
i

=
1

∆ξ1∆ξ2
(δ2 [δ1 [x3]x1]− δ1 [δ2 [x3]x1]) ,(

J
∂ξ3

∂x3

)
i

=
1

∆ξ1∆ξ2
(δ2 [δ1 [x1]x2]− δ1 [δ2 [x1]x2]) ,

(3.17)

where

δk[ai] =
1

2

p∑
n=1

αp,n (ai,k,+n − ai,k,−n)
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is the 2pth-order central difference operator in the ik-direction. Combing the above discretizations

with the fluxes (3.8), one can verify that the discrete SCLs (3.15) are satisfied. For example, for

j = 1, one has

3∑
k=1

1

∆ξk

(˜
J
∂ξk
∂x1

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂x1

)2pth

i,k,− 1
2

 =
3∑

k=1

1

∆ξk
δk

[(
J
∂ξk
∂x1

)]

=
1

∆ξ1
δ1

[(
J
∂ξ1

∂x1

)]
+

1

∆ξ2
δ2

[(
J
∂ξ2

∂x1

)]
+

1

∆ξ3
δ3

[(
J
∂ξ3

∂x1

)]
=

1

∆ξ1∆ξ2∆ξ3

(
δ1δ3 [δ2 [x2]x3]− δ1δ2 [δ3 [x2]x3] + δ2δ1 [δ3 [x2]x3]

− δ2δ3 [δ1 [x2]x3] + δ3δ2 [δ1 [x2]x3]− δ3δ1 [δ2 [x2]x3]
)

= 0,

since δj and δk are commutative, i.e. δjδk = δkδj .

The temporal metrics (J∂tξk) satisfy

J
∂ξk
∂t

= −
3∑
j=1

∂xj
∂t

(
J
∂ξk
∂xj

)
, k = 1, 2, 3,

so that one has the following approximation(
J
∂ξk
∂t

)
i

= −
3∑
j=1

(ẋj)i

(
J
∂ξk
∂xj

)
i

, (3.18)

where (ẋj)i, j = 1, 2, 3 are the grid velocities at i, which will be provided by some given expressions

or solving the mesh equations in Section 5. Since the quantities

(
J
∂ξk
∂xj

)
i

have been obtained

in (3.17), the implementation of (3.18) is simple and cheap. Combining (3.18) with (3.5) and

(3.8) gives the semi-discrete VCL. Moreover, it can be verified the following free-stream preserving

property.

Proposition 3.2. If the semi-discrete schemes (3.4)-(3.5) are integrated in time with the explicit

SSP RK scheme from t = tn to tn+1 = tn + ∆tn, with the time step size ∆tn, then the resulting

fully-discrete schemes preserve the free-stream states.

Proof. The forward Euler time discretization is considered here, since the explicit SSP RK schemes

are a convex combination of the forward Euler time discretizations. Assuming that Un
i = U0 is a

physical constant state, rewrite the update of the metric Jacobian Ji and the solution Ui as follows

Jn+1
i = Jni −

3∑
k=1

∆tn

∆ξk

(˜J ∂ξk
∂t

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂t

)2pth

i,k,− 1
2

 = Jni −
3∑

k=1

∆tn

∆ξk
δk

[(
J
∂ξk
∂t

)]
,

(JU)n+1
i = (JU)ni −

3∑
k=1

∆tn

∆ξk

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)
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= Jni U0 −
3∑

k=1

∆tn

∆ξk

p∑
n=1

αp,n

[

+
1

2

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)
U0 +

3∑
j=1

1

2

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)
Fj(U0)

− 1

2

((
J
∂ξk
∂t

)
i,k,−n

+

(
J
∂ξk
∂t

)
i

)
U0 −

3∑
j=1

1

2

((
J
∂ξk
∂xj

)
i,k,−n

+

(
J
∂ξk
∂xj

)
i

)
Fj(U0)

]

=

(
Jni −

3∑
k=1

∆tn

∆ξk
δk

[(
J
∂ξk
∂t

)])
U0 −

3∑
j=1

(
3∑

k=1

∆tn

∆ξk
δk

[(
J
∂ξk
∂xj

)])
Fj(U0)

= Jn+1
i U0,

where the discrete GCLs have been used in the last equality. Thus Un+1
i = (JU)n+1

i /Jn+1
i = U0.

The proof is completed.

3.4. Proof of high-order accuracy and EC property

This section is devoted to present the high-order accurate EC schemes based on the previous

results.

Theorem 3.2. The semi-discrete schemes (3.4)-(3.5) with the fluxes (3.6)-(3.8) are 2pth-order

accurate and EC in the sense that

d

dt
Jiη(Ui(t)) +

3∑
k=1

1

∆ξk

(
(q̃k)

2pth

i,k,+ 1
2

− (q̃k)
2pth

i,k,− 1
2

)
= 0, (3.19)

with the consistent numerical entropy fluxes

(q̃k)
2pth

i,k,+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

q̃k

(
Ui,k,−s,Ui,k,−s+n,

(
J
∂ξk
∂ζ

)
i,k,−s

,

(
J
∂ξk
∂ζ

)
i,k,−s+n

)
, (3.20)

where

q̃k

(
Ul,Ur,

(
J
∂ξk
∂ζ

)
l

,

(
J
∂ξk
∂ζ

)
r

)
=

1

2
(V (Ul) + V (Ur))

T F̃k

(
Ul,Ur,

(
J
∂ξk
∂ζ

)
l

,

(
J
∂ξk
∂ζ

)
r

)
− 1

4

((
J
∂ξk
∂t

)
l

+

(
J
∂ξk
∂t

)
r

)
(φ(Ul) + φ(Ur))

−
3∑
j=1

1

4

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)
(ψj(Ul) + ψj(Ur))

+

3∑
j=1

1

8

((
J
∂ξk
∂xj

)
l

+

(
J
∂ξk
∂xj

)
r

)(
(Bj)l + (Bj)r

)
(Φ(Ul) + Φ(Ur)) . (3.21)
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Proof. From Proposition 3.1 and the discretizations of the metrics

(
J
∂ξk
∂ζ

)
i

in (3.17) and (3.18),

ζ = t, x1, x2, x3, it is obvious that the semi-discrete schemes (3.4)-(3.5) are 2pth-order accurate in

space.

Taking the dot product of (3.4) with Vi and using the chain rule and the semi-discrete VCL

(3.5) gives

d

dt
(Jiηi) =−

3∑
k=1

1

∆ξk

{
V T
i

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)
− φi

((
˜
J
∂ξk
∂t

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂t

)2pth

i,k,− 1
2

)

+ Φi

(
(B̃k)2pth

i,k,+ 1
2

− (B̃k)2pth

i,k,− 1
2

)}
.

Further utilizing the discrete SCLs (3.15) can get

d

dt
(Jiηi) =−

3∑
k=1

1

∆ξk

{
V T
i

(
(F̃k)

2pth

i,k,+ 1
2

− (F̃k)
2pth

i,k,− 1
2

)
− φi

(˜J ∂ξk
∂t

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂t

)2pth

i,k,− 1
2


−

3∑
j=1

(ψj)i

((
˜
J
∂ξk
∂xj

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂xj

)2pth

i,k,− 1
2

)
+ Φi

(
(B̃k)2pth

i,k,+ 1
2

− (B̃k)2pth

i,k,− 1
2

)}

= −
3∑

k=1

p∑
n=1

αp,n
∆ξk

(I1 − I2 − I3 + I4) , (3.22)

where

I1 = V T
i

[
F̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)
− F̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)]
,

I2 = φi

[
1

2

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)
− 1

2

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,−n

)]
,

I3 =
3∑
j=1

(ψj)i

[
1

2

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)
− 1

2

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)]
,

I4 =
3∑
j=1

Φi

[
1

4

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)(
(Bj)i + (Bj)i,k,+n

)

− 1

4

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)(
(Bj)i + (Bj)i,k,−n

)]
.

If splitting Vi as
1

2
(Vi + Vi,k,+n)− 1

2
(Vi,k,+n − Vi) or

1

2
(Vi,k,−n + Vi) +

1

2
(Vi − Vi,k,−n), then I1

goes to

I1 = +
1

2
(Vi + Vi,k,+n)T F̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)
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− 1

2
(Vi,k,+n − Vi)T F̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)

− 1

2
(Vi + Vi,k,−n)T F̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)

− 1

2
(Vi − Vi,k,−n)T F̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)
. (3.23)

Similarly, treating φi, (ψj)i and Φi gives

I2 = +
1

4
(φi + φi,k,+n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)
− 1

4
(φi,k,+n − φi)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)

− 1

4
(φi + φi,k,−n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,−n

)
− 1

4
(φi − φi,k,−n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,−n

)
,

(3.24)

I3 = +
3∑
j=1

[
1

4
((ψj)i + (ψj)i,k,+n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)

− 1

4
((ψj)i,k,+n − (ψj)i)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)

− 1

4
((ψj)i + (ψj)i,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)

− 1

4
((ψj)i − (ψj)i,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)]
, (3.25)

I4 = +

3∑
j=1

[
1

8
(Φi + Φi,k,+n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)(
(Bj)i + (Bj)i,k,+n

)

− 1

8
(Φi,k,+n − Φi)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)(
(Bj)i + (Bj)i,k,+n

)

− 1

8
(Φi + Φi,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)(
(Bj)i + (Bj)i,k,−n

)

− 1

8
(Φi − Φi,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)(
(Bj)i + (Bj)i,k,−n

)]
. (3.26)

Substituting the sufficient condition (3.1) into (3.23) yields

I1 = +
1

2
(Vi + Vi,k,+n)T F̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)

− 1

2
(Vi + Vi,k,−n)T F̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)

− 1

4

[
(φi,k,+n − φi)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)
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+
3∑
j=1

((ψj)i,k,+n − (ψj)i)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)]

+
1

8
(Φi,k,+n − Φi)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)(
(Bj)i + (Bj)i,k,+n

)

− 1

4

[
(φi − φi,k,−n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,−n

)

+
3∑
j=1

((ψj)i − (ψj)i,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)]

+
1

8
(Φi − Φi,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)(
(Bj)i + (Bj)i,k,−n

)
. (3.27)

Combining (3.24)-(3.27) with (3.21) gives

I1 − I2 − I3 + I4 = +
1

2
(Vi + Vi,k,+n)T F̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)

− 1

2
(Vi,k,−n + Vi)

T F̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)

− 1

4
(φi + φi,k,+n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,+n

)

+
1

4
(φi + φi,k,−n)

((
J
∂ξk
∂t

)
i

+

(
J
∂ξk
∂t

)
i,k,−n

)

−
3∑
j=1

[
1

4
((ψj)i + (ψj)i,k,+n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)

− 1

4
((ψj)i + (ψj)i,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)]

+
3∑
j=1

[
1

8
(Φi + Φi,k,+n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,+n

)(
(Bj)i + (Bj)i,k,+n

)

− 1

8
(Φi + Φi,k,−n)

((
J
∂ξk
∂xj

)
i

+

(
J
∂ξk
∂xj

)
i,k,−n

)(
(Bj)i + (Bj)i,k,−n

)]

= q̃k

(
Ui,Ui,k,+n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,+n

)
− q̃k

(
Ui,Ui,k,−n,

(
J
∂ξk
∂ζ

)
i

,

(
J
∂ξk
∂ζ

)
i,k,−n

)
,

thus (3.22) becomes the numerical entropy identity (3.19). Moreover, it is easy to check the

consistency of the numerical entropy flux (q̃k)
2pth

i,k,± 1
2

with qk. The proof is completed.
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4. High-order accurate ES schemes

It is known that for the quasi-linear hyperbolic conservation laws, the entropy identity is avail-

able only if the solution is smooth. For the discontinuous solutions, one should consider the entropy

inequality. Meanwhile, the EC schemes may produce serious nonphysical oscillations near the dis-

continuities. Those motivate us to construct the high-order accurate ES schemes (satisfying the

entropy inequality for the given entropy pair). It can be achieved by adding suitable high-order

dissipation to the EC flux (3.6) to obtain the wth-order (w = 2p− 1 ≥ 3) accurate ES flux

(F̂k)
wth
i,k,+ 1

2

= (F̃k)
2pth

i,k,+ 1
2

− 1

2
Di,k,+ 1

2
Yi,k,+ 1

2
〈〈Ṽ 〉〉WENO

i,k,+ 1
2

, (4.1)

where the matrix Di,k,+ 1
2

is obtained by evaluating D := λ̂T−1R(TU) at i, k,+1
2 , and T is the

“rotational” matrix, which is defined by T = diag{1,T0, 1} and T = diag{1,T0, 1,T0} in the RHD

and RMHD case, respectively, with

T0 =


cosϕ cos θ cosϕ sin θ sinϕ

− sin θ cos θ 0

− sinϕ cos θ − sinϕ sin θ cosϕ

 ,
θ = arctan

((
J
∂ξk
∂x2

)/(
J
∂ξk
∂x1

))
,

ϕ = arctan

(J ∂ξk
∂x3

)/√(
J
∂ξk
∂x1

)2

+

(
J
∂ξk
∂x2

)2
 .

Here λ̂ is taken as the spectral radius

λ̂ := max
m

{∣∣∣∣J ∂ξk∂t + Lkλm(TU)

∣∣∣∣} ,
with Lk =

√
3∑
j=1

(
J
∂ξk
∂xj

)2

, and R is a set of scaled eigenvectors such that

∂U

∂V
= RRT,

∂F1

∂U
= RΛR−1, Λ = diag{λ1, . . . , λm},

where λ1, · · · , λm are the eigenvalues and m is the equation number (e.g. m = 5 and 8 for the

RHD and RMHD cases respectively when d = 3). The detailed computation of the eigenvalues

and eigenvectors has been given in [21, 20]. To obtain high-order accuracy, the high-order WENO

reconstruction is performed in the scaled entropy variables. More specifically, the wth-order (w =

2p−1) WENO reconstruction [36] is performed on {Ṽ = RT
i,k,+ 1

2

(TU)Ti,k,+ 1
2
V } in the ik-direction

to obtain the left and right limit values denoted by Ṽ WENO,−
i,k,+ 1

2

and Ṽ WENO,+

i,k,+ 1
2

, and then define

〈〈Ṽ 〉〉WENO
i,k,+ 1

2

= Ṽ WENO,+

i,k,+ 1
2

− Ṽ WENO,−
i,k,+ 1

2

.

21



In (4.1), the diagonal matrix Yi,k,+ 1
2

is used to enforce the “sign” property, see [5], with the diagonal

component given by

(Yi,k,+ 1
2
)l,l =

1, sign(〈〈Ṽl〉〉i,k,+ 1
2
) = sign(JṼlKi,k,+ 1

2
),

0, otherwise,

where JaKi,k,+ 1
2

= ai,k,+1 − ai.

Theorem 4.1. By replacing the 2pth-order EC flux with wth-order ES flux (4.1), the following

schemes

d

dt
U i = −

3∑
k=1

1

∆ξk

(
(F̂k)

wth
i,k,+ 1

2

− (F̂k)
wth
i,k,− 1

2

)
− Φ′(Vi)

T
3∑

k=1

1

∆ξk

(
(B̃k)2pth

i,k,+ 1
2

− (B̃k)2pth

i,k,− 1
2

)
,

(4.2)

d

dt
Ji = −

3∑
k=1

1

∆ξk

((
˜
J
∂ξk
∂t

)2pth

i,k,+ 1
2

−

(
˜
J
∂ξk
∂t

)2pth

i,k,− 1
2

)
, (4.3)

are ES. Specially, they satisfy the entropy inequality

d

dt
Jiη(Ui(t)) +

3∑
k=1

1

∆ξk

(
(q̂k)

wth
i,k,+ 1

2

− (q̂k)
wth
i,k,− 1

2

)
6 0,

with the consistent numerical entropy fluxes

(q̂k)
wth
i,k,+ 1

2

= (q̃k)
2pth

i,k,+ 1
2

− 1

2
λ̂i,k,+ 1

2
{{Ṽ }}T

i,k,+ 1
2

Yi,k,+ 1
2
〈〈Ṽ 〉〉WENO

i,k,+ 1
2

, (4.4)

where {{a}}i,k,+ 1
2

= 1
2(ai,k,+1 + ai).

Proof. Taking the dot product of Vi and (4.2) gives

d

dt
(Jiηi) =−

3∑
k=1

1

∆ξk

(
(q̃k)

2pth

i,k,+ 1
2

− (q̃k)
2pth

i,k,− 1
2

)

+

3∑
k=1

1

2∆ξk

(
λ̂i,k,+ 1

2
V T
i T

−1
i,k,+ 1

2

Ri,k,+ 1
2
(TU)Yi,k,+ 1

2
〈〈Ṽ 〉〉WENO

i,k,+ 1
2

− λ̂i,k,− 1
2
V T
i T

−1
i,k,− 1

2

Ri,k,− 1
2
(TU)Yi,k,− 1

2
〈〈Ṽ 〉〉WENO

i,k,− 1
2

)
=−

3∑
k=1

1

∆ξk

(
(q̂k)

wth
i,k,+ 1

2

− (q̂k)
wth
i,k,− 1

2

)
−

3∑
k=1

1

4∆ξk

(
λ̂i,k,+ 1

2
JV KT

i,k,+ 1
2

T−1
i,k,+ 1

2

Ri,k,+ 1
2
(TU)Yi,k,+ 1

2
〈〈Ṽ 〉〉WENO

i,k,+ 1
2

+ λ̂i,k,− 1
2
JV KT

i,k,− 1
2

T−1
i,k,− 1

2

Ri,k,− 1
2
(TU)Yi,k,− 1

2
〈〈Ṽ 〉〉WENO

i,k,− 1
2

)
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=−
3∑

k=1

1

∆ξk

(
(q̂k)

wth
i,k,+ 1

2

− (q̂k)
wth
i,k,− 1

2

)
−

3∑
k=1

1

4∆ξk

(
λ̂i,k,+ 1

2
JṼ KT

i,k,+ 1
2

Yi,k,+ 1
2
〈〈Ṽ 〉〉WENO

i,k,+ 1
2

+ λ̂i,k,− 1
2
JṼ KT

i,k,− 1
2

Yi,k,− 1
2
〈〈Ṽ 〉〉WENO

i,k,− 1
2

)
,

where the 1st equality uses the entropy identity satisfied by the 2pth-order EC scheme (3.19), the

2nd equality uses (4.4). From the definition of Yi,k,± 1
2
, one can get

JṼ KT
i,k,± 1

2

Yi,k,± 1
2
〈〈Ṽ 〉〉WENO

i,k,± 1
2

> 0,

therefore, it holds

d

dt
Jiη(Ui(t)) +

3∑
k=1

1

∆ξk

(
(q̂k)

wth
i,k,+ 1

2

− (q̂k)
wth
i,k,− 1

2

)
6 0.

Remark 4.1. When the solution is a constant state, the dissipation terms vanish, so that the ES

schemes preserve the free-stream state.

5. Adaptive moving mesh strategy

This section presents our adaptive moving mesh strategy at time t = tn for the completeness of

the paper, but focuses on the mesh iteration redistribution with the solution obtained by the finite

difference scheme. It is similar to that used in [21], where the mesh iteration redistribution depends

on the solution obtained by the second-order accurate finite volume scheme. Unless otherwise

stated, the dependence of the variables on t will be omitted.

Consider the mesh adaption functional

Ẽ(x) =
1

2

3∑
k=1

∫
Ωl

(∇ξxk)TGk (∇ξxk) dξ, (5.1)

where Gk is the given symmetric positive definite matrix, depending on the solution U . Solving

the Euler-Lagrange equations of (5.1)

∇ξ · (Gk∇ξxk) = 0, ξ ∈ Ωc, k = 1, 2, 3, (5.2)

will give directly a coordinate transformation x = x(ξ) from the computational domain Ωc to the

physical domain Ωp. The concentration of the mesh points is controlled by Gk, which in general

depends on the solutions or their derivatives of the underlying governing equations and is one of

the most important elements in the adaptive moving mesh method. Different problems may be

equipped with different Gk. For example, the Winslow variable diffusion method [62] is considering

the simplest choice of Gk defined by

Gk = ωI3,
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where ω is a positive weight function, called the monitor function, and may be taken as

ω =
√

1 + α|∇ξσ|/max|∇ξσ|, (5.3)

here σ is some physical variable and α is a positive parameter. There are several other choices of

the monitor functions, see [7, 29, 31, 58, 59].

Remark 5.1. The monitor function is computed from the solutions of the underlying physical

equations (2.8), thus is not smooth in general. To get a smoother (adaptive) mesh, the following

low pass filter

ωi1,i2,i3 ←
∑

j1,j2,j3=0,±1

(
1

2

)|j1|+|j2|+|j3|+3

ωi1+j1,i2+j2,i3+j3 ,

is applied 3 ∼ 5 times in this work.

The mesh equations (5.2) are approximated by the central difference scheme on the computa-

tional mesh and then solved by using the Jacobi iteration method

3∑
k=1

[
(ωi + ωi,k,+1)

(
x

[ν]
i,k,+1 − x

[ν+1]
i

)
− (ωi + ωi,k,−1)

(
x

[ν+1]
i − x[ν]

i,k,−1

)]
= 0, ν = 0, 1, · · · , µ,

in parallel, where x
[0]
i := xni , and ω is computed by using the solution U at tn. In our numerical

tests, the total iteration number µ is taken as 10, unless otherwise stated.

Once the mesh {x[µ]
i } is obtained, the final adaptive mesh is given by

xn+1
i := xni + ∆τ (δτx)ni , (δτx)ni := x

[µ]
i − x

n
i ,

where the parameter ∆τ is used to limit the mesh point movement

∆τ 6

−
1

2(δτxk)i

[
(xk)

n
i − (x1)ni,k,−1

]
, (δτxk)i < 0,

+ 1
2(δτxk)i

[
(xk)

n
i,k,+1 − (x1)ni

]
, (δτxk)i > 0.

Finally, the mesh velocity in (3.18) is defined by ẋni := ∆τ (δτx)ni /∆t
n, where the time step size

∆tn is determined by (6.1).

6. Numerical results

This section conducts several 2D and 3D numerical tests in the RHDs and RMHDs to validate

the convergence orders of our sixth-order accurate EC schemes on moving meshes (denoted by

MM-O6), and the convergence orders and the shock-capturing ability of our fifth-order accurate ES

schemes on moving meshes (denoted by MM-O5). The numerical results are also compared to those
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obtained by the fifth-order accurate ES schemes on the static uniform mesh (denoted by UM-O5)

[19], and the second-order accurate ES adaptive moving mesh schemes (denoted by MM-O2) [21].

Our schemes are implemented in parallel based on the data structure of the PLUTO code [48], and

all simulations are performed with the CPU nodes of the High-performance Computing Platform

of Peking University (Linux Red Hat environment, two Intel Xeon E5-2697A V4 (16 cores ×2) per

node, and core frequency of 2.6GHz). Unless otherwise stated, the adiabatic index Γ is taken as

5/3 and the time step size ∆tn is determined by the following CFL condition

∆tn =
CFL

d∑
k=1

max
i
%nk,i/∆ξk

, (6.1)

where %nk,i is the spectral radius of ∂Fk/∂U + Φ′(V )∂Bk/∂U evaluated at i and tn, and the CFL

number is taken as 0.4 and 0.3 for the 2D and 3D tests, respectively.

6.1. 2D tests

Example 6.1 (2D RMHD isentropic vortex problem). It describes a 2D vortex moving with a

constant speed (−0.5,−0.5) and is solved to test the convergence orders and the change of the total

entropy. Specifically, the physical domain Ωp is taken as [−R,R]× [−R,R] with R = 5 and periodic

boundary conditions. The explicit analytical solutions at time t and the spatial point (x1, x2) given

first in [18] are

ρ = (1− σ exp(1− r2))
1

Γ−1 , p = ρΓ,

v =
1

4− 2(ṽ1 + ṽ2)
((2 +

√
2)ṽ1 + (2−

√
2)ṽ2 − 2, (2 +

√
2)ṽ2 + (2−

√
2)ṽ1 − 2, 0),

B =
1

2

(
(
√

2 + 1)B̃1 − (
√

2− 1)B̃2, (
√

2 + 1)B̃2 − (
√

2− 1)B̃1, 0
)
,

where

Γ = 5/3, σ = 0.2, B0 = 0.05, r =
√
x̃2

1 + x̃2
2,

x̃k = x̂k + (
√

2− 1)(x̂1 + x̂2)/2, k = 1, 2,

(x̂1, x̂2) = (2k1R+ x1 + t/2− 1, 2k2R+ x2 + t/2− 1), (x̂1, x̂2) ∈ [−R,R]× [−R,R], k1, k2 ∈ Z,

(ṽ1, ṽ2) = (−x̃2, x̃1)f, f =

√
κ exp(1− r2)

κr2 exp(1− r2) + (Γ− 1)ρ+ Γp
, κ = 2Γσρ+ (Γ− 1)B2

0(2− r2),

(B̃1, B̃2) = B0 exp(1− r2)(−x̃2, x̃1).

The problem is solved with a series of N ×N meshes until t = 4.
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First, we test the sixth-order EC scheme on moving meshes (MM-O6) with the following moving

mesh strategy

(x1)i1,i2 = x̊1 + 0.2 cos(πt/4) sin(3πx̊2/R), (x2)i1,i2 = x̊2 + 0.2 cos(πt/4) sin(3πx̊1/R),

x̊1 = 2i1R/(N − 1), x̊2 = 2i2R/(N − 1), i1, i2 = 0, 1, · · · , N − 1.
(6.2)

The time step size is chosen as ∆tn = CFL∆ξ2
1 to make the spatial error dominant. Figure 6.1

gives the 10 equally spaced contours of the rest-mass density and the moving meshes with N = 40

at different times. One can see that the shape of the vortex is preserved well.

Next, the problem is resolved by using the fifth-order ES scheme with the adaptive moving

mesh (MM-O5) and the following monitor function

ω =
√

1 + 20|∇ξρ|/max |∇ξρ|+ 10|∆ξρ|/max |∆ξρ|. (6.3)

The time step size is chosen as ∆tn = CFL∆ξ
5/3
1 to make the spatial error dominant. Figure 6.2

plots the adaptive meshes of N = 40 at different times, which show that the concentration of the

mesh points follows the propagation of the vortex well.

Figure 6.3 plots corresponding errors in the rest-mass density ρ and convergence orders of

MM-O6 and MM-O5. One can see that MM-O6 and MM-O5 can achieve sixth- and fifth-order accuracies

respectively.

Finally, we examine the EC and ES property of our schemes. Figure 6.4 presents the evolution

of the discrete total entropy
∑

i1,i2
Ji1,i2η(Ui1,i2)/N2 with respect to time obtained by MM-O6 and

MM-O5 with N = 160. We can see that the total entropy of the EC scheme almost keeps unchanged,

while the total entropy of the ES scheme decays as expected.

It should be noted that MM-O5 with the moving mesh (6.2) and MM-O6 with the adaptive moving

mesh and the monitor (6.3) can also respectively get fifth-order and sixth-order. Their results are

omitted here due to limited space.

Example 6.2 (RHD Riemann problem I). This example considers the 2D RHD Riemann problem

with the initial data

(ρ, v1, v2, p) =



(0.5, 0.5,−0.5, 5), x1 > 0.5, x2 > 0.5,

(1, 0.5, 0.5, 5), x1 < 0.5, x2 > 0.5,

(3,−0.5, 0.5, 5), x1 < 0.5, x2 < 0.5,

(1.5,−0.5,−0.5, 5), x1 > 0.5, x2 < 0.5.

It describes the interaction of four contact discontinuities (vortex sheets) with the same sign (the

negative sign).
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(a) t = 0 (b) t = 2 (c) t = 4

Figure 6.1: Example 6.1: Adaptive meshes and rest-mass density contours at different times obtained by MM-O6 with

the moving mesh (6.2). N = 40 and 10 equally spaced contour lines.

(a) t = 0 (b) t = 2 (c) t = 4

Figure 6.2: Example 6.1: Adaptive meshes and rest-mass density contours at different times obtained by MM-O5 with

adaptive mesh velocity and the monitor (6.3). N = 40 and 10 equally spaced contour lines.

The monitor function is chosen as (5.3) with α = 1200 and σ = ln ρ. Figure 6.5 shows the

adaptive mesh of MM-O5, 40 equally spaced contour lines of ln ρ, and the cut lines of ln ρ along

x2 = x1 at t = 0.4 obtained by using our ES schemes with N×N meshes. As time increases, a spiral

with the low rest-mass density around the point (0.5,0.5) emerges, and the adaptive concentration

of the mesh points follows the spiral formation well, see Figure 6.5(a), so that some important

features are well-captured. Figure 6.5(f) shows the solution of MM-O5 with N = 200 is very close

to that of UM-O5 with N = 500, and MM-05 does not cause spurious oscillations near (0.86, 0.86),

see the small box in the upper right corner in Figure 6.5(f). The CPU times (see the parentheses

in the captions of Figures 6.5(b) and 6.5(c)) clearly highlight the efficiency of the adaptive moving

mesh scheme, since it takes only 17.8% CPU time of the latter. Figures 6.5(d) and 6.5(e) show that

the fifth-order scheme MM-O5 gives better results with comparable CPU time than the second-order
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(a) EC, MM-O6 (b) ES, MM-O5

Figure 6.3: Example 6.1: The errors and convergence orders in ρ at t = 4.

0 0.5 1 1.5 2 2.5 3 3.5 4

-3

-2.5

-2

-1.5

-1

-0.5

0

10
-6

Figure 6.4: Example 6.1: The evolution of the discrete total entropy with 160 × 160 meshes. The line and symbols

aare obtained by using the EC scheme MM-O6, and the ES scheme MM-O5, respectively.

scheme MM-O2 [21], thus MM-O5 outperforms MM-O2.

Example 6.3 (RHD Riemann problem II). The initial data of this 2D RHD Riemann problem are

(ρ, v1, v2, p) =



(1, 0, 0, 1), x1 > 0.5, x2 > 0.5,

(0.5771,−0.3529, 0, 0.4), x1 < 0.5, x2 > 0.5,

(1,−0.3529,−0.3529, 1), x1 < 0.5, x2 < 0.5,

(0.5771, 0,−0.3529, 0.4), x1 > 0.5, x2 < 0.5,

which is about the interaction of four rarefaction waves.
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(a) MM-O5 with N = 200

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) MM-O5 with N = 200 (1m02s)
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(c) UM-O5 with N = 500 (5m49s)
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(d) MM-O5 with N = 150 (29s)
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(e) MM-O2 with N = 200 (30s)
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-0.55

(f) ln ρ along x2 = x1

Figure 6.5: Example 6.2. Adaptive mesh of MM-O5 with N = 200, 40 equally spaced contour lines of ln ρ, and cut

lines of ln ρ along x2 = x1 obtained by using ES schemes. CPU times are listed in parentheses.

The monitor function is the same as that in the last example. Figure 6.6 presents the adaptive

mesh of MM-O5, the contours of the density logarithms ln ρ with 40 equally spaced lines, and ln ρ

along x2 = x1 at t = 0.4. The results show that those four initial discontinuities first evolve as

four rarefaction waves and then interact each other and form two (almost parallel) curved shock

waves perpendicular to the line x2 = x1 as time increases. It is seen that the adaptive moving mesh

schemes capture the rarefaction waves and the shock waves well. Figure 6.6(f) compares the results

of MM-O5 with N = 200 to UM-O5 with N = 500, which are very close to each other, but the former

takes about 30.6% CPU time. One can also find from Figure 6.6(f) that MM-O5 with N = 150 gives

better results than MM-O2 with N = 200 when using comparable CPU time.

Example 6.4 (RHD Riemann problem III). The initial data of the third 2D RHD Riemann
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(a) MM-O5 with N = 200
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(b) MM-O5 with N = 200 (1m25s)
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(c) UM-O5 with N = 500 (4m38s)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(d) MM-O5 with N = 150 (35s)
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(e) MM-O2 with N = 200 (38s)
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(f) ln ρ along x2 = x1

Figure 6.6: Example 6.3. Adaptive mesh of MM-O5 with N = 200, 40 equally spaced contour lines of ln ρ, and the cut

lines of ln ρ along x2 = x1. CPU times are listed in parentheses.

problem are

(ρ, v1, v2, p) =



(0.035145216124503, 0, 0, 0.162931056509027), x1 > 0.5, x2 > 0.5,

(0.1, 0.7, 0, 1), x1 < 0.5, x2 > 0.5,

(0.5, 0, 0, 1), x1 < 0.5, x2 < 0.5,

(0.1, 0, 0.7, 1), x1 > 0.5, x2 < 0.5,

where the left and bottom discontinuities are two contact discontinuities and the top and right are

two shock waves.

The monitor function is the same as above. The adaptive mesh of MM-O5 with N = 200, the

contours of the density logarithms ln ρ with 40 equally spaced lines, and ln ρ cut along x2 = x1

at t = 0.4 are shown in Figure 6.7. Similar to the last two examples, from Figure 6.7(d) and

6.7(e), one can see that MM-O5 gives better results than MM-O2 when using comparable CPU time,

especially around the central “mushroom cloud”, which forms after the interaction of the initial
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discontinuities. The solution obtained by MM-O5 with N = 200 is much better than UM-O5 with

N = 200, see Figure 6.7(f), and agrees well with that of UM-O5 with N = 600, while the adaptive

moving mesh scheme only takes 13.7% CPU time, verifying the high efficiency of our high-order

accurate ES adaptive moving mesh schemes.
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(a) MM-O5 with N = 200
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(b) MM-O5 with N = 200 (1m16s)
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(c) UM-O5 with N = 600 (9m16s)
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(d) MM-O5 with N = 150 (32s)
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(e) MM-O2 with N = 200 (39s)
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(f) ln ρ along x2 = x1

Figure 6.7: Example 6.4. Adaptive mesh of MM-O5 with N = 200, 40 equally spaced contour lines of ln ρ, and cut

lines of ln ρ along x2 = x1. CPU times are listed in parentheses.

Example 6.5 (2D RMHD blast problem). It is a benchmark test problem for the RMHD, and

the initial setup in [3, 16, 47] is adopted. The physical domain is [−6, 6]2 with outflow boundary

conditions, and divided into three parts at initial time. The inner part is the explosion zone with

a radius of 0.8, and ρ = 0.01, p = 1; and the outer part is the ambient medium with the radius

larger than 1, and ρ = 10−4, p = 5 × 10−4; while the intermediate part is a linear taper applied

to the density and the pressure from the radius 0.8 to 1. The magnetic field is only initialized in

the x1-direction as B1 = 0.1 and the adiabatic index Γ = 4/3. This problem is solved by using the

fifth-order ES adaptive moving mesh scheme with N ×N meshes until t = 4.

The monitor is the same as that in the last example except for α = 800. Figure 6.8 shows
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the adaptive mesh and 40 equally spaced contour lines obtained by using MM-O5 with 150 × 150

mesh at t = 4. One can see that the mesh points adaptively concentrate near the large gradient

of ln ρ due to the choice of the monitor function, and increase the resolution of the shock waves.

To compare the results of the fifth-order ES schemes on the adaptive moving mesh and the static

uniform mesh, the cut lines of p and W are plotted in Figure 6.9. It is seen that the results obtained

by using MM-O5 with N = 150 are much better than those of UM-O5 with the same grid number,

and comparable to those of UM-O5 with N = 600. From Table 6.1, one can see that MM-O5 is more

efficient than UM-O5, since the former takes only 7.26% CPU time of the latter, highlighting the

high efficiency of our high-order accurate ES adaptive moving mesh schemes.

Example 6.6 (2D RMHD shock-cloud interaction). It is about a strong shock wave interacts with a

high density cloud [32]. The physical domain is [−0.2, 1.2]×[0, 1] with the inflow boundary condition

specified on the left boundary, and the outflow boundary conditions on the other boundaries. A

planar shock wave moves from x1 = 0.05 to the right with the left and right states

(ρ,v, p,B) =

(3.86859, 0.68, 0, 0, 1.25115, 0, 0.84981,−0.84981), x1 < 0.05,

(1, 0, 0, 0, 0, 0.16106, 0.16106, 0.05), otherwise.

The circular cloud of radius 0.15 with a high density ρ = 30 is centered at (0.25, 0.5). This problem

is solved by using the fifth-order ES adaptive moving mesh scheme until t = 1.2.

The monitor is the same as that in the last example. Figure 6.10 shows the 210× 150 adaptive

mesh obtain by MM-O5, where the mesh points adaptively concentrate near the cloud. To give

comparable results presented in [32], the numerical schlieren images generated by using φ1 =

exp(−50|∇ ln ρ|/|∇ ln ρ|max) and φ2 = exp(−50|∇|B||/|∇|B||max) are presented in Figures 6.11-

6.12. The results obtained by MM-O5 with 210× 150 mesh are shown in the upper half parts, while

UM-O5 with 210 × 150 and 560 × 400 meshes are respectively shown in the lower half parts of the

left and right plots, so that one can compare the results more clearly. Similar to the last example,

MM-O5 gives the comparable results to UM-O5 with a finer mesh, while takes only 10.5% CPU time,

see Table 6.1.

Scheme Example 6.5 Example 6.6

MM-O5 2m03s (150× 150) 4m16s (210× 150)

UM-O5 30s (150× 150) 2m05s (210× 150)

UM-O5 28m14s (600× 600) 40m28s (560× 400)

Table 6.1: CPU times of Examples 6.5-6.6 (4 cores are used).
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Figure 6.8: Example 6.5. Adaptive mesh and 40 equally spaced contour lines obtained by MM-O5 with 150×150 mesh.

6.2. 3D tests

Example 6.7 (3D RMHD isentropic vortex problem). It is given in [18] and used here to verify

the accuracy of the 3D EC and ES moving mesh schemes. The analytical solutions at time t and

the spatial point (x1, x2, x3) in the physical domain [−R,R]× [−R,R]× [−5R, 5R] with R = 5 and
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Figure 6.9: Example 6.5. Cut lines of p and W along x1 = 0 (x2 ∈ [0, 6]).

Figure 6.10: Example 6.6. 210× 150 adaptive mesh obtained by MM-O5 at t = 1.2.

the periodic boundary conditions can be given by

ρ = (1− σ exp(1− r2))
1

Γ−1 , p = ρΓ,

v =
1

6− 3(ṽ1 + ṽ2)
(4ṽ1 + ṽ2 − 3, 4ṽ2 + ṽ1 − 3, ṽ1 + ṽ2 − 3),

B =
1

3

(
5B̃1 − B̃2, 5B̃2 − B̃1, − B̃1 − B̃2

)
,
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Figure 6.11: Example 6.6. Numerical schlieren images of φ1 at t = 1.2. Left: MM-O5 with 210 × 150 mesh (upper

half) and UM-O5 with 210 × 150 mesh (lower half). Right: MM-O5 with 210 × 150 mesh (upper half) and UM-O5 with

560× 400 mesh (lower half).

Figure 6.12: Same as Figure 6.11 except for φ2.
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where

Γ = 5/3, σ = 0.2, B0 = 0.05, r =
√
x̃2

1 + x̃2
2,

(x̃1, x̃2) = (40/3k1 + 10/3k2 + x̂1, 10/3k1 + 40/3k2 + x̂2), (x̃1, x̃2) ∈ Ω0, k1, k2 ∈ Z,

x̂k = xk + (x1 + x2 + x3)/3 + t, k = 1, 2, 3,

(ṽ1, ṽ2) = (−x̃2, x̃1)f, f =

√
κ exp(1− r2)

κr2 exp(1− r2) + (Γ− 1)ρ+ Γp
, κ = 2Γσρ+ (Γ− 1)B2

0(2− r2),

(B̃1, B̃2) = B0 exp(1− r2)(−x̃2, x̃1).

The problem is solved until t = 0.1 with a series of N ×N × 5N meshes.

Similar to the 2D isentropic vortex problem, two mesh movements are used. The first is gener-

ated by using the adaptive moving mesh strategy in Section 5 based on the monitor being similar

to the 2D case (6.3), while the second is given by the following expressions

(x1)i = x̊1 + 0.2 cos(πt/4) sin(3πx̊2/R) sin(3πx̊3/5R),

(x2)i = x̊2 + 0.2 cos(πt/4) sin(3πx̊3/5R) sin(3πx̊1/R),

(x3)i = x̊3 + 0.2 cos(πt/4) sin(3πx̊1/R) sin(3πx̊2/R),

x̊1 = 2i1R/(N − 1), x̊2 = 2i2R/(N − 1), i1, i2 = 0, 1, · · · , N − 1,

x̊3 = 10i3R/(5N − 1), i3 = 0, 1, · · · , 5N − 1.

(6.4)

Figure 6.13 plots the errors and convergence orders in ρ, from which one can see that MM-O5 with the

adaptive moving mesh gets fifth-order, while MM-O6 with the moving mesh (6.4) achieves sixth-order

accuracy. Figure 6.14 presents the time evolution of the discrete total entropy
∑
i Jiη(Ui)/5/N

3

obtained by MM-O6 and MM-O5 with N = 160, verifying the EC and ES property of our schemes.

Figure 6.13: Example 6.7. Errors and convergence orders in ρ at t = 0.1.
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Figure 6.14: Example 6.7. Discrete total entropy obtained by EC and ES schemes with N = 160.

Example 6.8 (3D RHD spherical symmetric Riemann problem). This problem has a reference

solution so that it is suitable to serve as the first example to verify our 3D high-order accurate ES

adaptive moving mesh schemes. The reference solution is obtained by using a second-order TVD

scheme to solve the RHD equations in the 1D spherical coordinates. The initial data are

(ρ,v, p) =

(10, 0, 0, 0, 40/3), r =
√
x2

1 + x2
2 + x2

3 < 0.5,

(1, 0, 0, 0, 10−2), otherwise,

and N ×N ×N meshes are used.

The monitor function is chosen as (5.3) with α = 800 and σ = ln ρ. Figure 6.15 gives the

100 × 100 × 100 adaptive mesh obtained by MM-O5, and the comparison of ρ along the volume

diagonal connecting (0, 0, 0) and (1, 1, 1) at t = 0.4. Table 6.2 lists the CPU times of different

cases. It is obvious that all the schemes give correct solutions, and the mesh points adaptively

concentrate near where the large gradient in ln ρ occurs, increasing the discontinuity resolution.

MM-O5 gives better results than MM-O2 near the head and tail of the rarefaction wave, indicating

that the present high-order accurate scheme outperforms the second-order scheme. The results of

MM-O5 with N = 100 and UM-O5 with N = 200 are comparable, while the former costs 13.8% CPU

time, verifying the efficiency of our high-order accurate ES adaptive moving mesh scheme.

Example 6.9 (3D RHD shock-bubble interaction). This example considers a moving planar shock

wave interacts with a light bubble within the physical domain [0, 325]× [−45, 45]× [−45, 45], which
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(a) Adaptive mesh of MM-O5 with N = 100
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(b) ρ along the line connecting (0, 0, 0) and (1, 1, 1)

Figure 6.15: Example 6.8. Adaptive mesh and cut lines of ρ at t = 0.4.

Scheme Example 6.8 Example 6.9 Example 6.10

MM-O5 5m40s (100× 100× 100) 2h14m44s (325× 90× 90) 3h9m57s (210× 150× 150)

MM-O2 2m51s (100× 100× 100) 1h10m29s (325× 90× 90) -

UM-O5 3m08s (100× 100× 100) 51m18s (325× 90× 90) 2h8m44s (210× 150× 150)

UM-O5 41m08s (200× 200× 200) 12h34m43s (650× 180× 180) 34h46m49s (420× 300× 300)

Table 6.2: CPU times of Examples 6.8-6.10 (32 cores are used).

is extended from the 2D case [31], and also used in [21]. The initial pre- and post-shock states are

(ρ,v, p) =

(1, 0, 0, 0, 0.05), x1 < 265,

(1.865225080631180,−0.196781107378299, 0, 0, 0.15), x1 > 265,

and the state in the bubble is

(ρ,v, p) = (0.1358, 0, 0, 0, 0.05),
√

(x1 − 215)2 + x2
2 + x2

3 6 25.

The output times are t = 90, 180, 270, 360, 450.

The monitor is the same as that in the last example. Figure 6.16 presents the iso-surfaces of

ρ = 0.7, the close-up of the adaptive mesh and two surface meshes near the bubble at t = 450. One

can see that the mesh points concentrate near the shock wave and the bubble according to the choice

of the monitor function, which helps to obtain the sharp interfaces. Figure 6.17 gives the adaptive
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meshes and numerical schlieren images generated by φ = exp(−10|∇ρ|/|∇ρ|max) on the slice x2 = 0

at t = 90, 180, 270, 360, 450 (from top to bottom). The results obtained by MM-O5 with 325×90×90

meshes are shown in the upper half parts in each row, while the adaptive meshes and numerical

schlieren images obtained by MM-O2 with 325 × 90 × 90 meshes are shown in the left and middle

lower half parts in each row, respectively, and those obtained by UM-O5 with 650×180×180 meshes

are shown in the right lower half parts. Those plots clearly show the dynamics of the interaction

between the shock wave and the bubble, and our high-order accurate ES adaptive moving mesh

schemes well capture the sharp interfaces of the bubble at different output times. One can see that

as time increases, the fifth-order scheme gives sharper interfaces than the second-order scheme,

since the high-order accurate scheme has lower dissipation. From the CPU times listed in Table

6.2, MM-O5 is more efficient than UM-O5, because it takes only 17.8% CPU time to give comparable

results.

Example 6.10 (3D RMHD shock-cloud interaction). It is a 3D extension of Example 6.6. The

physical domain is [−0.2, 1.2]× [0, 1]× [0, 1], and the circular cloud is modified as a spherical cloud

of radius 0.15 centered at (0.25, 0.5, 0.5) with invariant density. The initial data of the pre- and

post-shock remain unchanged. This problem is solved by using the fifth-order ES adaptive moving

mesh scheme until t = 1.2.

The monitor is the same as the last example. The iso-surfaces of ρ = 1.52, the close-up of the

adaptive mesh and two surface meshes near the bubble at t = 1.2 are given in Figure 6.18. The

mesh points adaptively concentrate near the complicated structures formed after the interaction

of the shock wave and the cloud, improving the nearby resolution. Figures 6.19-6.20 show the

numerical schlieren images of φ1 and φ2 defined in Example 6.6 on the slice x2 = 0. The results

obtained by MM-O5 with 210 × 150 × 150 meshes are plotted in the upper half parts, while those

obtained by UM-O5 with 210×150×150 and 420×300×300 meshes are shown in the left and right

lower half parts, respectively. One can see that MM-O5 gives better results than UM-O5 with the

same grid number, and the former takes only 9.06% CPU time to give comparable results when the

latter uses finer mesh, which again shows the high efficiency of our high-order accurate ES adaptive

moving mesh schemes.

7. Conclusions

This paper presented the high-order accurate ES adaptive moving mesh schemes for the 2D

and 3D special RHD and RMHD equations. Our schemes were built on the ES finite difference

approximation in the curvilinear coordinates, the discrete GCLs, and the adaptive mesh redistri-
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(a) Iso-surface of ρ = 0.7 and three offset 2D slices taken at

x1 = 125, x2 = 0, x3 = 0

(b) Adaptive meshes on three surfaces of i1 = 125, i2 =

45, i3 = 45

X Y

Z

(c) Close-up of adaptive mesh on surface of i1 = 125

Y X

Z

(d) Close-up of adaptive mesh on surface of i2 = 45

Figure 6.16: Example 6.9. Adaptive meshes and ρ at t = 450.

bution built on the minimization of the mesh adaption functional, and consisted of the following

main parts.

1. The two-point EC flux F̃k for the modified RMHD equations (involving the RHD equations)

in the curvilinear coordinates for the given entropy pair was first derived, see (3.2), and then

the high-order EC flux (F̃k)
2pth

i,k,± 1
2

was proposed by using some linear combinations of the two-
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Figure 6.17: Example 6.9. From top to bottom: t = 90, 180, 270, 360, 450. Left: adaptive meshes on surface of

i2 = 45 obtained with MM-O5 (upper half) and MM-O2 (lower half) with 325 × 90 × 90 mesh. Middle: numerical

schlieren images of φ on slice x2 = 0 obtained with MM-O5 (upper half) and MM-O2 (lower half) with 325 × 90 × 90

mesh. Right: numerical schlieren images of φ on the slice x2 = 0, obtained with MM-O5 (upper half) with 325×90×90

mesh and UM-O5 (lower half) with 650× 180× 180 mesh.
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(a) Iso-surface of ln ρ = 1.52 and three offset 2D slices taken

at x1 = 0.58, x2 = 0.5, x3 = 0.5

(b) Adaptive meshes on three surfaces of i1 = 150, i2 =

75, i3 = 75

X Y

Z

(c) Close-up of adaptive mesh on surface of i1 = 150

Y X

Z

(d) Close-up of adaptive mesh on surface of i2 = 75

Figure 6.18: Example 6.10. Adaptive meshes and ln ρ at t = 1.2.

point EC flux F̃k, so that the approximation of the flux derivatives in space was 2pth-order

accurate, which was an extension of the high-order accurate EC schemes in the Cartesian

coordinates [38] to the curvilinear coordinates.

2. The 2pth-order accurate approximations of the spatial derivatives in the source terms and
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Figure 6.19: Example 6.10. Numerical schlieren images of φ1 at t = 1.2. Left: MM-O5 with 210 × 150 × 150 mesh

(upper half) and UM-O5 with 210 × 150 × 150 mesh (lower half). Right: MM-O5 with 210 × 150 × 150 mesh (upper

half) and UM-O5 with 420× 300× 300 mesh (lower half).

Figure 6.20: Same as Figure 6.19 except for φ2.
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the VCL were given by designing (B̃k)2pth

i,k,± 1
2

and

(
˜
J
∂ξk
∂t

)2pth

i,k,± 1
2

as the linear combination of

corresponding 2nd-order case with the same coefficients as above. The discretization of the

latter degenerated to the 2pth-order accurate central difference.

3. The spatial metrics

(
˜
J
∂ξk
∂xj

)
i

used in the above two parts were discretized by using the 2pth-

order central difference based on the conservative metrics method (CMM) [60], such that the

SCLs held in the discrete level.

4. The semi-discrete schemes built on the above three parts, see (3.4)-(3.5), were proved to be

2pth-order accurate in space and EC by mimicking the derivation of the continuous entropy

identity in the curvilinear coordinates.

5. Some suitable high-order dissipation term utilizing WENO reconstruction in the scaled en-

tropy variables was added to the EC flux to get the high-order accurate ES schemes satisfying

the semi-discrete entropy inequality, in order to avoid the numerical oscillation produced by

the EC scheme around the discontinuities.

6. The fully-discrete ES schemes were obtained by integrating the above semi-discrete ES schemes

in time by using the third-order accurate explicit strong-stability preserving Runge-Kutta

schemes, and proved to be free-stream preserving.

7. The mesh points were adaptively redistributed by solving the Euler-Lagrange equation of the

mesh adaption functional on the computational mesh at each time step with the suitably

chosen monitor functions.

Several 2D and 3D numerical results showed that the high-order accurate ES adaptive moving

mesh schemes effectively captured the localized structures, such as the sharp transitions or discon-

tinuities, and outperformed both their counterparts on the uniform mesh and the 2nd-order ES

adaptive moving mesh schemes.
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Appendix A. 1D EC schemes

This Appendix presents the semi-discrete 1D EC schemes. Consider the case of d = 1 and omit

the subscripts “1” denoting the ξ1-direction. The system (2.8) and the GCLs (2.9) reduce to

∂U
∂τ

+
∂F
∂ξ

= −Φ′(V )T∂B1

∂ξ
,

and

VCL:
∂J

∂τ
+

∂

∂ξ

(
∂x

∂t

)
= 0,

SCL:
∂

∂ξ

(
J
∂ξ

∂x

)
≡ 0,

where

J =
∂x

∂ξ
, U = JU , F =

(
J
∂ξ

∂t
U

)
+ F =

(
∂x

∂t
U

)
+ F .

It is easy to see that the SCL holds automatically in this case. If replacing i with i, then the

2pth-order EC schemes become

d

dt
U i = − 1

∆ξ

(
F̃

2pth

i+ 1
2
− F̃

2pth

i− 1
2

)
− Φ′(Vi)

T 1

∆ξ

(
(B̃1)2pth

i+ 1
2

− (B̃1)2pth

i− 1
2

)
,

d

dt
Ji = − 1

∆ξ

((
∂̃x

∂t

)2pth

i+ 1
2

−

(
∂̃x

∂t

)2pth

i− 1
2

)
,

where

F̃
2pth

i+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

[
1

2

((
∂x

∂t

)
i−s

+

(
∂x

∂t

)
i−s+n

)
Ũ (Ui−s,Ui−s+n) + F̃ (Ui−s,Ui−s+n)

]
,

(B̃1)2pth

i+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

1

2
((B1)i−s + (B1)i−s+n) ,

(
∂̃x

∂t

)2pth

i+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

1

2

((
∂x

∂t

)
i−s

+

(
∂x

∂t

)
i−s+n

)
,

and

(
∂x

∂t

) ∣∣∣
i

is the mesh velocity at ξi.

Appendix B. 2D EC schemes

This Appendix presents the semi-discrete 2D EC schemes. Consider the case of d = 2, and

replace (ξ1, ξ2) and (x1, x2) with (ξ, η) and (x, y), respectively. The system (2.8) and the GCLs

(2.9) reduce to
∂U
∂τ

+
∂F1

∂ξ
+
∂F2

∂η
= −Φ′(V )T

(
∂B1

∂ξ
+
∂B2

∂η

)
,
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and

VCL:
∂J

∂τ
+

∂

∂ξ

(
J
∂ξ

∂t

)
+

∂

∂η

(
J
∂η

∂t

)
= 0,

SCLs:
∂

∂ξ

(
J
∂ξ

∂x

)
+

∂

∂η

(
J
∂η

∂x

)
= 0,

∂

∂ξ

(
J
∂ξ

∂y

)
+

∂

∂η

(
J
∂η

∂y

)
= 0,

where

J =
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
, U = JU ,

F1 =

(
J
∂ξ

∂t
U

)
+

(
J
∂ξ

∂x

)
F1 +

(
J
∂ξ

∂y

)
F2, B1 =

(
J
∂ξ

∂x

)
B1 +

(
J
∂ξ

∂y

)
B2,

F2 =

(
J
∂η

∂t
U

)
+

(
J
∂η

∂x

)
F1 +

(
J
∂η

∂y

)
F2, B2 =

(
J
∂η

∂x

)
B1 +

(
J
∂η

∂y

)
B2.

If replacing i with {i, j}, then the 2pth-order EC schemes become

d

dt
U i,j =− 1

∆ξ

(
(F̃1)2pth

i+ 1
2
,j
− (F̃1)2pth

i− 1
2
,j

)
− 1

∆η

(
(F̃2)2pth

i,j+ 1
2

− (F̃2)2pth

i,j− 1
2

)
− Φ′(Vi,j)

T 1

∆ξ

(
(B̃1)2pth

i+ 1
2
,j
− (B̃1)2pth

i− 1
2
,j

)
− Φ′(Vi,j)

T 1

∆η

(
(B̃2)2pth

i,j+ 1
2

− (B̃2)2pth

i,j− 1
2

)
,

d

dt
Ji,j =− 1

∆ξ

((
J̃
∂ξ

∂t

)2pth

i+ 1
2
,j

−

(
J̃
∂ξ

∂t

)2pth

i− 1
2
,j

)
− 1

∆η

((
J̃
∂η

∂t

)2pth

i,j+ 1
2

−

(
J̃
∂η

∂t

)2pth

i,j− 1
2

)
,

where

(F̃1)2pth

i+ 1
2
,j

=

p∑
n=1

αp,n

n−1∑
s=0

[
1

2

((
J
∂ξ

∂t

)
i−s,j

+

(
J
∂ξ

∂t

)
i−s+n,j

)
Ũ (Ui−s,j ,Ui−s+n,j)

+
1

2

((
J
∂ξ

∂x

)
i−s,j

+

(
J
∂ξ

∂x

)
i−s+n,j

)
F̃1 (Ui−s,j ,Ui−s+n,j)

+
1

2

((
J
∂ξ

∂y

)
i−s,j

+

(
J
∂ξ

∂y

)
i−s+n,j

)
F̃2 (Ui−s,j ,Ui−s+n,j)

]
,

(F̃2)2pth

i,j+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

[
1

2

((
J
∂η

∂t

)
i,j−s

+

(
J
∂η

∂t

)
i,j−s+n

)
Ũ (Ui,j−s,Ui,j−s+n)

+
1

2

((
J
∂η

∂x

)
i,j−s

+

(
J
∂η

∂x

)
i,j−s+n

)
F̃1 (Ui,j−s,Ui,j−s+n)

+
1

2

((
J
∂η

∂y

)
i,j−s

+

(
J
∂η

∂y

)
i,j−s+n

)
F̃2 (Ui,j−s,Ui,j−s+n)

]
,

(B̃1)2pth

i+ 1
2
,j

=

p∑
n=1

αp,n

n−1∑
s=0

[
1

4

((
J
∂ξ

∂x

)
i−s,j

+

(
J
∂ξ

∂x

)
i−s+n,j

)
((B1)i−s,j + (B1)i−s+n,j)
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+
1

4

((
J
∂ξ

∂y

)
i−s,j

+

(
J
∂ξ

∂y

)
i−s+n,j

)
((B2)i−s,j + (B2)i−s+n,j)

]
,

(B̃2)2pth

i,j+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

[
1

4

((
J
∂η

∂x

)
i,j−s

+

(
J
∂η

∂x

)
i,j−s+n

)
((B1)i,j−s + (B1)i,j−s+n)

+
1

4

((
J
∂η

∂y

)
i,j−s

+

(
J
∂η

∂y

)
i,j−s+n

)
((B2)i,j−s + (B2)i,j−s+n)

]
,

(
J̃
∂ξ

∂t

)2pth

i+ 1
2
,j

=

p∑
n=1

αp,n

n−1∑
s=0

1

2

((
J
∂ξ

∂t

)
i−s,j

+

(
J
∂ξ

∂t

)
i−s+n,j

)
,

(
J̃
∂η

∂t

)2pth

i,j+ 1
2

=

p∑
n=1

αp,n

n−1∑
s=0

1

2

((
J
∂η

∂t

)
i,j−s

+

(
J
∂η

∂t

)
i,j−s+n

)
,

(
J
∂ξ

∂t

)
i,j

= −(ẋ)i,j

(
J
∂ξ

∂x

)
i,j

− (ẏ)i,j

(
J
∂ξ

∂y

)
i,j

,(
J
∂η

∂t

)
i,j

= −(ẋ)i,j

(
J
∂η

∂x

)
i,j

− (ẏ)i,j

(
J
∂η

∂y

)
i,j

,(
J
∂ξ

∂x

)
i,j

= +

p∑
n=1

αp,n
2

(yi,j+n − yi,j−n),

(
J
∂ξ

∂y

)
i,j

= −
p∑

n=1

αp,n
2

(xi,j+n − xi,j−n),

(
J
∂η

∂x

)
i,j

= −
p∑

n=1

αp,n
2

(yi+n,j − yi−n,j),(
J
∂η

∂y

)
i,j

= +

p∑
n=1

αp,n
2

(xi+n,j − xi−n,j).
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