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Abstract

In this paper, a thermal-dynamical consistent model for mass transfer across permeable moving
interfaces is proposed by using energy variation method. We consider a restricted diffusion problem
where the flux across the interface depends on its conductance and the difference of the concentration
on each side. The diffusive interface phase-field framework used in here has several advantages
over the sharp interface method. First of all, explicit tracking of the interface is no longer necessary.
Secondly, the interfacial condition can be incorporated with a variable diffusion coefficient. A detailed
asymptotic analysis confirms the diffusive interface model converges to the existing sharp interface
model as the interface thickness goes to zero. A decoupled energy stable numerical scheme is developed
to solve this system efficiently. Numerical simulations first illustrate the consistency of theoretical
results on the sharp interface limit. Then a convergence study and energy decay test are conducted
to ensure the efficiency and stability of the numerical scheme. To illustrate the effectiveness of our
phase-field approach, several examples are provided, including a study of a two-phase mass transfer
problem where drops with deformable interfaces are suspended in a moving fluid.

1 Introduction

Mass transfer through a semi-permeable or conducting interface is a common phenomenon in biology
[12, 9] and material science [8, 13]. A representative example is that cell membranes are permeable to
oxygen [26], ATP [33] and ions [17]. In this case, the domain consists of intracellular space denoted by Ω+

and extracellular space denoted by Ω− with a cell membrane Γ in between (see Figure 1 ). The diffusion
of concentration can be described by the following diffusion equation in the bulk [30],

∂c±

∂t
+∇ · (u±c±) = ∇ · (D±∇c±), (1.1)

Figure 1: Schematic of mass transport across the membrane.
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where c±,u± represent the concentration of the molecule and velocity of fluid in Ω± and D± is the
diffusion coefficient in Ω±. Here c± may be discontinuous cross the boundary, like the ion concentrations
in [23]. At the interface Γ, the trans-membrane flux is set to be continuous

−D+∇c+ · n = −D−∇c− · n = K[[Q(c)]], (1.2)

where K is the permeability, [[f ]] = f+ − f− denotes the jump of concentration across the interface and
n is the unit normal vector of the interface. Here Q(c) could have different formats, like Q(c) = c in [9]
or Q(c) = ln c in [30].

There are numerous papers investigating for mass transfer. As a matter of fact, the mass transfer
phenomenon can be attributed to diffusive process in binary flows involving free boundaries. For the
standard fluid-structure interaction problems, a variety of methods are developed over the past decades.
There are two most popular classes of technique, the sharp interface methods, like level set methods
[1], immerse boundary methods [18], immerse interface methods [15], front tracking methods [24], and
diffuse interface methods [32]. For mass-transfer across liquid–gas interface, volume of fluid methods
are proposed to solve the phase change problem [27, 6] and bubble behaviours with CO2/N2−water
system [16]. The immersed interface method is extended to study water transport accross a deformable
membrane by Layton [14].

The immerse boundary method, due to its simplicity, has been applied to many fluid flow problems
and has become one of the main numerical techniques for scientific computation. Gong and Huang et al.
[9, 26] developed a series of work to understand oxygen transport across permeable membrane by using
immerse interface method. In order to ensure the restrict diffusion on the membrane (1.2), an additional
equation is introduced to describe the temporal evolution of diffusive flux.

Unlike sharp interface methods, where the interface are handled separately by using δ function or local
reconstruction, the diffusive interface method models the two phase flow and the interface in a uniform
way by a label function φ [3, 2, 4]. The basic idea can be dated back to van der Waals in the late 19th
century[25]. The main advantage of diffusive interface method is that follows the energy dissipation law
such that the obtained model is thermal-dynamical consistent. It makes it possible to design efficient
energy stable schemes for long time simulation. However, to our best knowledge, there is not a diffusive
interface model for mass transport through a semi-permeable membrane. The main challenge is how
to impose the restricted diffusion near interface such that as interface thickness goes to zero, the sharp
interface limit is consistent with boundary condition (1.2).

In this paper, a thermal-dynamical consistent diffusive model is first proposed by using energy vari-
ational method [22], which starts from two functionals for the total energy and dissipation, together
with the kinematic equations based on physical laws of conservation. The key is to modify the diffusion
coefficient as a function of φ and interface permeability K. The restricted diffusion only means that the
changing rate of energy near the interface follows a specific dissipation rate functional. Then following
the results of Xu et al. [31], a detailed asymptotic analysis is presented to confirm the proposed diffusive
interface model converges to the existing sharp interface model (1.1) and (1.2) as the interface thickness
goes to zero. In the next, based on the energy dissipation law, an efficient energy stable decoupled scheme
is proposed to solve the obtained system.

The structure of the paper is as follows. In section 2, the phase field model for mass transport
through a semi-permable interface is proposed by using energy variational method. In section 3, the
sharp interface limits of the phase field model are presented by asymptotic analysis. A decoupled, linear
and unconditional energy stable numerical scheme is developed in section 4 by means of the stabilization
method and pressure correction method. In section 5, numerical experiments are carried out to verify
our theoretically results and study the membrane permeability effect. Finally, conclusions are drawn in
section 6.

2 Phase field model for mass transfer with hydrodynamics

In this section, energy variation method is used to derive a diffusive interface model for mass transport
through a semi-permeable membrane with restrict diffusion.

2.1 Model derivation

First, phase field variable φ is introduced to label the different domain,

φ(x, t) =

{
1, in Ω+,
−1, in Ω−.

(2.1)
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The interface between the two domains is described by the zero level set Γt = {x : φ(x, t) = 0}. We will
omit the subscript t in the following, i.e. we use Γ to instead Γt.

We start from the following kinematic assumptions on the laws of conservation: in domain Ω

Dφ

Dt
= −∇ · jφ, (2.2a)

Dc

Dt
= −∇ · jc, (2.2b)

ρ
Du

Dt
= ∇ · σν +∇ · σφ, (2.2c)

∇ · u = 0, (2.2d)

where ρ is the density, φ is the phase label function, c is the concentration of a substance, u is the fluid
velocity, and Df

Dt = ∂f
∂t + (u · ∇)f is the material derivative.

Here Eq. (2.2a) is the conservation of label function with unknown flux jφ; Eq. (2.2b) is the conser-
vation of mass with unknown mass flux jc; Eq. (2.2c) is the conservation of momentum with unknown
stress induced by viscosity of fluid σν and stress induced by two-phase flow interface σφ.

On the boundary of the domain, the boundary conditions can be given as

jφ · n|∂Ω = 0, jc · n|∂Ω = 0, ∇φ · n|∂Ω = 0, u|∂Ω = 0, (2.3)

where n is the outward normal on the domain boundary ∂Ω. Then the system (2.2) conserves the local
mass density, i.e. d

dt

∫
Ω
cdx = 0 and d

dt

∫
Ω
φdx = 0.

The total energy consists of kinetic energy, mix entropy and the phase mixing energy

Etotal = Ekin + Eent + Emix =
1

2

∫
Ω

ρ|u|2dx +

∫
Ω

RTc(ln
c

c0
− 1)dx +

∫
Ω

λ(G(φ) +
γ2

2
|∇φ|2)dx, (2.4)

where G(φ) = 1
4 (1 − φ2)2 is the double well potential. R is the gas constant number, T is the thermo-

dynamic temperature, c0 is the reference concentration, λ is the energy density, γ is the thickness of the
interface.

Then according to the total energy, we could define the chemical potentials

µc =
δE

δc
= RT ln

c

c0
, (2.5)

µφ =
δE

δφ
= −λγ2∆φ+ λG′(φ). (2.6)

The dissipative functional is composed of the dissipation due to fluid friction, irreversible mixing of
the substance and irreversible mixing of two phases in bulk

∆ =

∫
Ω

2ν(φ)|Dν |2dx︸ ︷︷ ︸
friction

+

∫
Ω

Deff c

RT
|∇µc|2dx︸ ︷︷ ︸

diffusion

+

∫
Ω

M|∇µφ|2dx︸ ︷︷ ︸
mixing

. (2.7)

where ν(φ) is the viscosity for the fluid, Dν = ∇u+(∇u)T

2 is the strain rate, M is the phenomenological
mobility.

In order to model the restricted diffusion due to the permeability of the interface, the diffusion
coefficient Deff is modelled in the following way

1

Deff
=

(1− φ2)2

AKqγ
+

1− φ
2D−

+
1 + φ

2D+
, (2.8)

where K is the permeability for the membrane, A is a constant to be determined, q = dQ
dc and D+ and

D− are the diffusion coefficients in domain Ω+ and Ω− respectively.
The energy dissipative law [7, 30, 22] states that without external force acting on the system, the

changing rate of total energy equals the dissipation

d

dt
Etotal = −∆. (2.9)
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Then the definition of total energy functional (2.4) yields

dEtot
dt

=
dEent
dt

+
dEkin
dt

+
dEmix
dt

= I1 + I2 + I3. (2.10)

By using the definitions of chemical potential (2.5) and conservation law (2.2b), the first part yields

I1 =

∫
Ω

µc(
∂c

∂t
+ u · ∇c)dx

= −
∫

Ω

µc∇ · jcdx

= −
∫
∂Ω

µcjc · ndx +

∫
Ω

∇µc · jcdx

=

∫
Ω

∇µc · jcdx, (2.11)

where the nonflux boundary condition for jc is used here.
For the second term, by using Eqs.(2.2c) and (2.2d), we have

d

dt
Ekin =

d

dt
(
1

2

∫
Ω

ρ|u|2dx)

=
1

2

∫
Ω

∂ρ

∂t
|u|2dx +

∫
Ω

ρu · ∂u
∂t

dx

=
1

2

∫
Ω

∂ρ

∂t
|u|2dx +

∫
Ω

ρu · Du

Dt
dx +

∫
Ω

∇ · (ρu)
|u|2

2
dx

=

∫
Ω

u · (∇ · ση +∇ · σφ)dx−
∫

Ω

p∇ · udx

=−
∫

Ω

∇u : (ση + σφ)dx−
∫

Ω

p∇ · udx. (2.12)

where pressure is induced as a Lagrange multiplier for incompressibility.
The last term is calculated with Eqs(2.2a) and (2.6)

d

dt
Emix =

d

dt

∫
Ω

(G(φ) +
γ2

2
|∇φ|2)dx

=

∫
Ω

(G′(φ)
∂φ

∂t
+ γ2∇φ · ∇∂φ

∂t
)dx

=

∫
Ω

G′(φ)
∂φ

∂t
dx +

∫
∂Ω

γ2 ∂φ

∂n

∂φ

∂t
ds−

∫
Ω

∇ · (γ2∇φ)
∂φ

∂t
dx

=

∫
Ω

(G′(φ)−∇ · (γ2∇φ))
∂φ

∂t
dx

=

∫
Ω

µφ(
∂φ

∂t
+ u · ∇φ)dx−

∫
Ω

µφu · ∇φdx

=−
∫

Ω

µφ∇ · jφdx−
∫

Ω

µφu · ∇φdx

=

∫
Ω

∇µφ · jφdx−
∫
∂Ω

µφjφ · nds−
∫

Ω

(G(φ)−∇ · (γ2∇φ))u · ∇φdx

=

∫
Ω

∇µφ · jφdx−
∫

Ω

u · ∇G(φ)dx +

∫
Ω

γ2∆φ∇φ · udx

=

∫
Ω

∇µφ · jφdx−
∫

Ω

u · ∇G(φ)dx +

∫
Ω

γ2(∇ · (∇φ⊗∇φ)− 1

2
∇|∇φ|2) · udx

=

∫
Ω

∇µφ · jφdx−
∫

Ω

u · ∇(G(φ) +
γ2

2
|∇φ|2)dx +

∫
Ω

γ2∇ · (∇φ⊗∇φ) · udx

=

∫
Ω

∇µφ · jφdx−
∫

Ω

∇ · (u(G(φ) +
γ2

2
|∇φ|2))dx +

∫
Ω

(G(φ) +
γ2

2
|∇φ|2)∇ · udx
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+

∫
Ω

γ2∇ · (∇φ⊗∇φ) · udx

=

∫
Ω

∇µφ · jφdx−
∫
∂Ω

(G(φ) +
γ2

2
|∇φ|2))u · nds+

∫
Ω

γ2∇ · (∇φ⊗∇φ) · udx

=

∫
Ω

∇µφ · jφdx−
∫

Ω

γ2(∇φ⊗∇φ) : ∇udx, (2.13)

where the nonflux boundary of jφ is used.
Then substituting above three equations to Eq. (2.10) yields

d

dt
Etotal =

d

dt
Eent +

d

dt
Ekin +

d

dt
Emix

=

∫
Ω

∇µc · jcdx−
∫

Ω

∇u : (σν + σφ)dx−
∫

Ω

p∇ · udx +

∫
Ω

∇µφ · jφdx−
∫

Ω

γ2(∇φ⊗∇φ) : ∇udx

=−
∫

Ω

Deff c

RT
|∇µc|2dx−

∫
Ω

M|∇µφ|2dx−
∫

Ω

2ν|Dν |2dx. (2.14)

Comparing two sides of the above equation (2.14) and calculating the functional deriative, we obtain

jφ = −M∇µφ, (2.15a)

jc = −Deff c

RT
∇µc, (2.15b)

σν = 2νDν − pI, (2.15c)

σφ = −λγ2(∇φ⊗∇φ). (2.15d)

Then the diffusive interface model for mass transport through semi-permeable membrane with re-
stricted diffusion is summarized as follows

Dφ

Dt
= −∇ ·M∇µ, (2.16a)

Dc

Dt
= −∇ · j, (2.16b)

ρ
Du

Dt
= ∇ · (ν∇u)−∇p− λγ2∇ · (∇φ⊗∇φ), (2.16c)

∇ · u = 0, (2.16d)

µ = −λγ2∇2φ+ λG′(φ), (2.16e)

j = −Deff∇c, (2.16f)

D−1
eff =

(1− φ2)2

AKqγ
+

1− φ
2D−

+
1 + φ

2D+
, (2.16g)

with boundary conditions

∇φ · n|∂Ω = 0, ∇c · n|∂Ω = 0, ∇µ · n|∂Ω = 0, u|∂Ω = 0. (2.17)

2.2 Non-dimensionalization

Now we introduce the dimensionless variables

x̃ =
x

L
, ũ =

u

U
, t̃ =

t

T
, c̃ =

c

c0
, K̃ =

KL

D0
, D̃ =

D

D0
, T =

L

U
. (2.18)

Here L, T, c0, U D0 are the characteristic length, time, concentration velocity and diffusion constant.
For convenience, the tilde symbol will be removed in the dimensionless quantities, and the dimensionless
system of (2.16) is given by

Re
(∂u
∂t

+ (u · ∇)u
)

+∇p = ∇2u +
1

Ca
µ∇φ, (2.19a)

∇ · u = 0, (2.19b)
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∂φ

∂t
+ (u · ∇)φ = ∇ · (M∇µ), (2.19c)

µ = −ε∇2φ+
1

ε
φ(φ2 − 1), (2.19d)

∂c

∂t
+ (u · ∇)c = − 1

Pe
∇ · j, (2.19e)

j = −Deff∇c, (2.19f)

D−1
eff =

(1− φ2)2

AKqε
+

1− φ
2D−

+
1 + φ

2D+
, (2.19g)

with the boundary condition

u|∂Ω = 0, ∇φ · n|∂Ω = 0, ∇µ · n|∂Ω = 0, ∇c · n|∂Ω = 0. (2.20)

with the dimensionless parameters

Re =
ρUL

ν
, Ca =

νU

λγ
, Pe =

UL

D0
. (2.21)

Remark 2.1. During the dimensionless, we use the fact that

∇ · (∇φ⊗∇φ)

=∇2φ∇φ+
1

2
∇|∇φ|2

=− µ∇φ+
1

2
∇
(
|∇φ|2 +

1

ε
G(φ)

)
,

and redefine pressure function

p = p+
ε

2Ca
|∇φ|2 +

1

2Ca
G(φ).

Theorem 2.1. If φ, c, u and p are smooth solutions of the system (2.19) with boundary condition (2.20),
then the following energy law is satisfied:

d

dt
Etotal = −

∫
Ω

(
|∇u|2 +

M
Ca
|∇µ|2 +Deff c|∇µc|2

)
dx, (2.22)

where

Etotal =

∫
Ω

(Re
2
|u|2 +

1

Ca

( ε
2
|∇φ|2 +

1

4ε
(1− φ2)2

)
+ c ln c

)
dx. (2.23)

Proof. By taking the L2 inner product of (2.19a), (2.19c), (2.19d), (2.19e) and (2.19f) with u, µ, ∂φ
∂t , µc

and∂c∂t respectively, one obtains immediately (2.22).

3 Sharp interface limit

In this section, a detailed asymptotic analysis is presented by using the results in [31] to show the sharp
interface limits of the obtained system (2.19). Here we assume the viscosity is constant and M = αε,
where α is a constant independent of ε.

3.1 Outer expansions

Far from the two-phase interface Γ, we use the following ansatz:

u±ε = u±0 + εu±1 + ε2u±2 + o(ε2), (3.1a)

p±ε = p±0 + εp±1 + ε2p±2 + o(ε2), (3.1b)

φ±ε = φ±0 + εφ±1 + ε2φ±2 + o(ε2), (3.1c)

µ±ε = ε−1µ±0 + µ±1 + εµ±2 + o(ε). (3.1d)

c±ε = c±0 + εc±1 + ε2c±2 + o(ε2), (3.1e)
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j±ε = j±0 + εj±1 + ε2j±2 + o(ε2), (3.1f)

Sine the concentration c±ε does not effect equations of φ and u , we directly call the results in [31],

φ±0 = C±0 , in Ω±, (3.2a)

µ±0 = (C±0 )3 − C±0 , (3.2b)

∇ · u±0 = 0, (3.2c)

Re
(∂u±0
∂t

+ (u±0 · ∇)u±0
)

+∇p±0 = ∇2u±0 +
1

Ca
µ±0 ∇φ

±
1 . (3.2d)

Substituting (3.1e),(3.1f) into Eq. (2.19e) yields we have

[2D+D−(1− (φ±0 + εφ±1 + ε2φ±2 + o(ε2))2)2 +AKqε(D+ +D−)

+AKqε(D− −D+)(φ±0 + εφ±1 + ε2φ±2 + o(ε2))](j±0 + εj±1 + ε2j±2 + o(ε2))

= −2AKεD+D−[q(c±0 ) + εq′(c±0 )c±1 + ε2(
1

2
q′′(c±0 )(c±1 )2 + q′(c±0 )c±2 ) + o(ε2)]∇(c±0 + εc±1 + ε2c±2 + o(ε2)),

(3.3)

The leading order term of the above equation is

(1− (φ±0 )2)2j±0 = 0, (3.4)

and the next order term is

AKq(c±0 )[(D+ +D−) + (D− −D+)φ±0 ]j±0 + 2D+D−(1− (φ±0 )2)2j±1 = −2AKD+D−q(c±0 )∇c±0 . (3.5)

The leading order of (2.19e) gives us that

∂c±0
∂t

+ u±0 · ∇c
±
0 = − 1

Pe
∇ · j±0 . (3.6)

3.2 Inner expansions

We first introduce the signed distance function d (x) to the interface Γ. Immediately, we have ∇d = n.
After defining a new rescaled variable

ξ =
d (x)

ε
, (3.7)

for any scalar function f (x), we can rewrite it as

f (x) = f̃ (x, ξ) , (3.8)

and the relevant operators are

∇f (x) = ∇xf̃ + ε−1∂ξ f̃n, (3.9a)

∇2f (x) = ∇2
xf̃ + ε−1∂ξ f̃K + 2ε−1 (n · ∇x) ∂ξ f̃ + ε−2∂ξξ f̃ , (3.9b)

∂tf = ∂tf̃ + ε−1∂ξ f̃∂td, (3.9c)

and for a vector function g̃ (x), we have

∇ · g̃ (x) = ∇x · g̃ + ε−1∂ξg̃ · n, (3.10)

Here the ∇x and ∇2
x stand for the gradient and Laplace with respect to x, respectively. And we use

the fact that ∇x · n = κ. κ (x) for x ∈ Γ (t) is the mean curvature of the interface. In the inner region,
we assume that

ũε = ũ0 + εũ1 + ε2ũ2 + o
(
ε2
)
, (3.11a)

φ̃ε = φ̃0 + εφ̃1 + ε2φ̃2 + o
(
ε2
)
, (3.11b)

p̃ε = p̃0 + εp̃1 + ε2p̃2 + o
(
ε2
)
, (3.11c)

c̃ε = c̃0 + εc̃1 + ε2c̃2 + o
(
ε2
)
, (3.11d)
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j̃ε = j̃0 + εj̃1 + ε2j̃2 + o
(
ε2
)
, (3.11e)

µ̃ε = ε−1µ̃0 + µ̃1 + εµ̃2 + o (ε) . (3.11f)

And we have

q(c̃±ε ) = q(c̃±0 ) + εq′(c̃±0 )c̃±1 + ε2(
1

2
q′′(c̃±0 )(c̃±1 )2 + q′(c̃±0 )c̃±2 ) + o(ε2). (3.12)

Then the results in [31] show that

φ̃0 = tanh
ξ√
2
. (3.13)

By the matching condition lim
ξ→±∞

φ̃0 = φ±0 , we have

φ±0 = ±1, in Ω±. (3.14)

This will lead to µ±0 = 0. Therefore the equation (3.2d) is reduced to

Re
(∂u±0
∂t

+ (u±0 · ∇)u±0
)

+∇p±0 = ∇2u±0 . (3.15)

Also, thanks to Eq. (3.14), Eq. (3.5) yields

j±0 = −D±∇c±0 . (3.16)

with interface conditions

∂td+ u0 · n = 0 (3.17a)

Vn = u0 · n, (3.17b)

[[u0]] = 0, (3.17c)

[[−p0n + (n · ∇)u0]] =
1

Ca
σκn, (3.17d)

where Vn isthe normal velocity of the interface Γ, σ =
∫∞
−∞(∂ξφ̃0)2dξ = 2

√
2

3 is the surface tension.
The concentration function can be transformed into the following form:

∂tc̃ε + ε−1∂ξ c̃ε∂td+ ũε · (∇xc̃ε + ε−1n∂ξ c̃ε) = − 1

Pe
(∇x · j̃ε + ε−1∂ξ j̃ε · n), (3.18a)

j̃ε = − 2AKεD+D−q(c̃ε)

2D+D−(1− φ̃2
ε)

2 +AKqε(D+ +D−) +AKqε(D− −D+)φ̃ε
(∇xc̃ε + ε−1∂ξ c̃εn), (3.18b)

The leading order term of equation (3.18a) is

∂ξ c̃0∂td+ ũ0 · n∂ξ c̃0 = − 1

Pe
∂ξ j̃0 · n, (3.19)

with the application of equation (3.17a), we have

− ∂ξ j̃0 · n = 0 (3.20)

which means j̃0 · n = const.
Integrating the equation (3.20) in (−∞,∞) we have

[[j0 · n]] = −
∫ ∞
−∞

∂ξ j̃0dξ · n = 0. (3.21)

So the flux of concentration is continuous across the interface.
For the equation (3.18b), we have

(2D+D−(1− φ̃2
ε)

2 +AKqε(D+ +D−) +AKqε(D− −D+)φ̃ε)j̃ε = −2D+D−AKεq(c̃ε)(∇xc̃ε + ε−1∂ξ c̃ε).

and the leading order term gives us that

(1− φ̃2
0)2j̃0 · n = −AKq(c̃0)∂ξ c̃0. (3.22)
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Integrating this equation in (−∞,∞) we have

AK[[Q(c0)]] =AK

∫ +∞

−∞
q(c̃0)∂ξ c̃0dξ

=

∫ +∞

−∞
(1− φ̃2

0)2j̃0 · ndξ

=j0 · n
∫ +∞

−∞
(1− tanh2 ξ√

2
)2dξ. (3.23)

By defining

A =

∫ +∞

−∞
(1− tanh2 ξ√

2
)2dξ =

4
√

2

3
= 2σ. (3.24)

we obtain
j0 · n = K[[Q(c0)]]. (3.25)

Combining the above analysis, at the leading order, we obtain the following results:

Re
(∂u±0
∂t

+ (u±0 · ∇)u±0
)

+∇p±0 = ∇2u±0 , in Ω±, (3.26a)

∇ · u±0 = 0, in Ω±, (3.26b)

∂c±0
∂t

+ (u±0 · ∇)c±0 =
1

Pe
∇ · (D±∇c±), in Ω±, (3.26c)

[[u0]] = 0, on Γ, (3.26d)

−D+∇c+ · n = −D−∇c− · n = K[[Q(c0)]], on Γ, (3.26e)

[[−p0n + (n · ∇)u0]] =
1

Ca
σκn, on Γ, (3.26f)

Vn = u0 · n, on Γ. (3.26g)

This illustrates that our diffusive interface model converges to the sharp interface model for mass transport
with constrict diffusion condition (2.15b).

4 Numerical Method

The system (2.19) is a totally nonlinearly coupled model. In this section, we focus on developing an
unconditionally energy stable numerical scheme for our proposed mathematical model based on the
stabilization method [29, 20, 34, 21, 19].

In order to assure the conservation of volume of the numerical scheme, we need to rewrite some terms
of system (2.19), taking into account the following relations:{

µ∇φ = ∇(φµ)− φ∇µ,
u · ∇φ = ∇ · (φu).

(4.1)

Then, we redefine the pressure therm as

p̃ = p− 1

Ca
φµ. (4.2)

For simplicity of notation, we rewrite p instead of p̃.
Given initial conditions φ0, µ0, u0, p0 and c0, we compute (φn+1, µn+1, ũn+1, un+1, pn+1, cn+1) for

n ≥ 0 by the following steps.
Step 1. We solve phase field variable φn+1 by the following scheme with the help of Stabilization

method and Navier-Stokes equation by pressure correction method [5, 10]:

Re
( ũn+1 − un

δt
+ (un · ∇)ũn+1

)
+∇pn = ∆ũn+1 − 1

Ca
φn∇µn+1, (4.3a)

φn+1 − φn

δt
+∇ · (ũn+1φn) = ∇ · (M∇µn+1), (4.3b)
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µn+1 = −ε∆φn+1 +
s

ε
(φn+1 − φn) +

1

ε
G′(φn), (4.3c)

with the boundary condition

∇φn+1 · n|∂Ω = 0, ∇µn+1 · n|∂Ω = 0, ũn+1|∂Ω = 0. (4.4)

Step 2. Projection step:

Re
un+1 − ũn+1

δt
+∇(pn+1 − pn) = 0, (4.5a)

∇ · un+1 = 0, (4.5b)

with boundary condition
un+1|∂Ω = 0. (4.6)

Step 3. cn+1 will be updated by the following fully implicit Euler scheme:

cn+1 − cn

δt
+ (un+1 · ∇)cn+1 = −∇ · jn+1, (4.7a)

jn+1 = −Dn+1cn+1∇µn+1
c , (4.7b)

µn+1
c = ln cn+1, (4.7c)

1

Dn+1
=

(1− (φn+1)2)2

AKq(Cn)ε
+

1− φn+1

2D−
+

1 + φn+1

2D+
, (4.7d)

with boundary condtion
∇cn+1 · n|∂Ω = 0, ∇µn+1

c · n|∂Ω = 0. (4.8)

Theorem 4.1. System (4.3) − (4.8) is uniquely solvable, unconditionally stable and obey the following
discrete energy law:

Re

2
(‖un+1‖2 − ‖un‖2) +

δt2

2Re
(‖∇pn+1‖2 − ‖∇pn‖2)

+
1

Ca

( ε
2

(‖∇φn+1‖2 − ‖∇φn‖2) +
1

ε
(G(φn+1)−G(φn), 1)

)
+ (cn+1 ln cn+1 − cn ln cn, 1)

=− δt‖∇ũn+1‖2 − δtM
Ca
‖∇µn+1‖2 − δt

∫
Ω

Dn+1cn+1|∇µn+1
c |2dx, (4.9)

where ‖ · ‖ denotes the discrete L2 norm in domain Ω.

Remark 4.1. Numerical scheme (4.3) is a coupled system for φn+1 and ũn+1. Block Gauss iteration
method is used to compute this system efficiently.

5 Numerical results

In this section, some numerical experiments are conducted to illustrate validity of our model. We first
check the sharp interface limit results in Section 3 by choosing smaller ε and comparing with analytical
solutions of sharp interface models. Then we check the convergence rate and energy stability of the
numerical scheme in Section 4. Finally, the calibrated model and scheme are used to study the effect of
interface permeability.

Block-centered finite difference method based on stagger mesh is adopted to discretize equations (2.19)
in space. Variables φ, c and p are located in the center of mesh, however velocity variables u and v are
located on the center of edge. The main advantage of the block-centered finite difference method is it
approximates the phase function, concentration function and pressure function with Neumann boundary
condition to second-order accuracy, and also, it guarantees local mass conservation.
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5.1 Sharp interface limit test

In this example, we take the steady state in 1D case to verify sharp interface limit of concentration
function c. For simplicity, we first fixed the interface and only solve concentration equation (2.19e) where
interface is assumed at x0 = 0.5 in domain (0, 1). The diffusion coefficient is taken as D1 = D2 = 1
and Dirichlet boundary condition c0 = 1, c1 = 4 is used. Then in this case, the exact solution of sharp
interface model (1.1)-(1.2) is

c =

{
x+ 1, x < x0,

x+ 3, x ≥ x0.
(5.1)

In Figure 2, the exact solution of is shown in black solid line and the dash lines are the solutions of
Eq. (2.19e) where the phase field function is chosen as φ = tanh(x−x0√

2ε
) with different interface thickness

ε. In the bulk region, solutions of two methods fit very well. As ε → 0, the proposed diffusive model
solutions change much sharper near the interface and convergence to the sharp interface solution, which
is consistent with our analysis in Section 5.3.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

1

1.5

2

2.5

3

3.5

4

c

Exact solution

=0.1

=0.05

=0.025

=0.0125

=0.00625

Figure 2: Sharp interface limit

5.2 Comparison with sharp interface model

In this subsection, we conduct two numerical tests to compare with the results using immersed boundary
methods [11]. The first experiment is 1D steady state solution of Eqs. (1.1)-(1.2) with Q(c) = c,
K = 1/5. The locations of interfaces are chosen at x1 = 7/18 and x2 = 11/18, i.e. Ω+ = (x1, x2) and
Ω− = (0, x1) ∪ (x2, 1) and diffusion constants are D+ = D− = 1. In this case, the exact solution can be
obtained as

c =


− 1

11
x+ 2, x < x1,

− 1

11
x+

17

11
, x1 ≤ x < x2,

− 1

11
(x− 1) + 1, x ≥ x2.

(5.2)

In Figure 3, the solid black line is above exact solution, blue line with circle is the immerse boundary
method solution and the red line with square is the the diffusive interface solution with interface width
ε = 0.01.

We can see that the numerical solution is almost coincided with the exact solution and there is
indistinguishable difference between our results and the immerse boundary result in [11].

In the next, the 2D validation is conducted where the interface is fixed as a circle with radius r = 11/18
and center at x0 = (0.5, 0.5). The initial condition of concentration (see Fig. 4 (a)) and parameters are
set to be same as those in [11], c(t0,x) = G(t0,x− x0), where

G(t,x− x0) =
1

4πDt
exp (−x− x0

4Dt
). (5.3)
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Figure 3: Steady state solution with the linear law on the interfaces located at x1 = 7/18 and x2 = 11/18
with K = 0.2, D = 1, c0 = 2 and c1 = 1. The black solid line is the exact solution, and the red dash with
square is the numerical solution by phase field method, but the blue dash with circle is the numerical
solution by immersed boundary method.

with
t0 = 10−4, D = 1, K = 10. (5.4)

The computational domain is discretized by a uniform grid with size 1/128 and interface thickness ε =
0.01.

Fig.4 (b) show the distribution of concentrations by using immerse boundary method (dash lines)
[11] and proposed diffusive interface method (solid lines) at time t = t0 + 10−2. It illustrates that our
diffusive interface model fits the immerse interface results very well for the concentration through the
semi-permeable interface with restrict diffusion.
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(a) Initial condition of concentration.
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(b) Snapshot of level curves of concentration at t = t0 + 10−2.

Figure 4: Comparison between phase field method and immersed boundary method for mass transfer.
The fixed interface is expressed with bold cure marked by 0. (a): The initial condition of concentration
that concentrates in the centre. (b): Snapshot of level curves of concentration t = t0 + 10−2 by using
different methods. The dashed lines are level curves obtained by immersed boundary method [11] and
the solid lines are the level curves obtained by proposed diffusive interface method.
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5.3 Convergence study and unconditional energy stability

In this section, we conduct the convergence test and unconditional energy stable test to illustrate the
effectiveness of our proposed numerical scheme. Here we use the uniform mesh, namely we use the mesh
size Nx = Ny = N , and if not specified, uniform mesh is always tenable.

5.3.1 Convergence rate test

In this subsection, we perform some numerical experiments to support the theoretical results. We use a
uniform Cartesian grid to discretize a square domain Ω = (0, 1)2 ⊂ R2. The initial condition is chosen as
follows, (see Fig. 5)

φ(x, 0) = 0.2 + 0.5 cos(2πx) cos(2πy), (5.5a)

c(x, 0) = 0.6 + 0.2 cos(2πx) cos(2πy), (5.5b)

u(x, 0) = −0.25 sin2(πx) cos(2πy), (5.5c)

v(x, 0) = 0.25 sin2(πy) cos(2πx). (5.5d)

Periodic boundary conditions are adopted for all variables. The parameters in model (2.19) are set as

ε = 0.08, Re = 1, Ca = 1, P e = 1, D+ = D− = 1, K = A−1, Q(c) = c. (5.6)

(a) c(x, 0). (b) φ(x, 0).

Figure 5: Initial conditions for convergence study. (a): concentration c(x, 0); (b): phase field function
φ(x, 0). 5.5.

The Cauchy error [28] is used to test the convergence rate. In this test method, error between two
different spacial mesh sizes h and h/2 is calculated by ‖eζ‖ = ‖ζh − ζh/2‖, where ζ is the function to
be solved. The mesh sizes are set to be h = 1/16, 1/32, 1/64, 1/128, 1/256 and time step is fixed as
δt = 10−4. The L2 and L∞ numerical errors and convergence rate at chosen time T = 0.1 are displayed
in Table 1 and Table 2, respectively. The second order spatial accuracy is apparently observed for all the
variables.

5.3.2 Unconditionally energy stable test

In this subsection, we carry out a numerical experiment to survey the unconditionally energy stability
about our numerical scheme with the same initial condition and boundary conditions. The result is listed
in Figure 6. Time steps are chosen from δt = 0.1 to δt = 0.1× 1

28 with fixed spacial mesh size h = 1/128.
The total energy dynamics over time with different time steps are shown in Fig. 6. It illustrates

that the energy is monotonic decrease with different time steps which confirms the unconditional energy
stability of the proposed scheme.

We utilize the result computed with time step δt = 0.1× 1
28 to give the conservation of volume about

our numerical scheme for φ as illustrated in Fig. 7. It demonstrates the volume of φ doesn’t change over
time.

13



Table 1: The discrete L2 error and convergence rate at t = 0.1 with initial data (5.5) and the given
parameters.

Grid sizes Error(φ) Rate Error(c) Rate Error(u) Rate Error(v) Rate Error(p) Rate

16× 16 4.01e-02 – 1.01e-02 – 1.15e-04 – 1.15e-04 – 1.57e-03 –
32× 32 8.90e-03 2.17 4.91e-03 1.90 3.23e-05 1.83 3.23e-05 1.83 1.24e-04 3.66
64× 64 2.22e-03 2.01 6.80e-04 1.99 8.06e-06 2.00 8.06e-06 2.00 3.00e-05 2.05
128× 128 5.54e-04 2.00 1.70e-04 2.00 2.01e-06 2.00 2.01e-06 2.00 7.46e-06 2.01
256× 256 1.38e-04 2.00 4.26e-05 2.00 5.04e-07 2.00 5.04e-07 2.00 1.86e-06 2.00

Table 2: The discrete L∞ error and convergence rate at t = 0.1 with initial data (5.5) and the given
parameters.

Grid sizes Error(φ) Rate Error(c) Rate Error(u) Rate Error(v) Rate Error(p) Rate

16× 16 7.64e-02 – 1.89e-02 – 1.83e-04 – 1.83e-04 – 3.99e-03 –
32× 32 1.69e-02 2.17 4.91e-03 1.95 5.00e-05 1.88 5.00e-05 1.88 2.53e-04 3.98
64× 64 4.18e-03 2.02 1.23e-03 1.99 1.25e-05 2.00 1.25e-05 2.00 5.89e-05 2.10
128× 128 1.03e-03 2.02 3.07e-04 2.01 3.12e-06 2.00 3.12e-06 2.00 1.50e-05 1.98
256× 256 2.55e-04 2.01 7.61e-05 2.01 7.80e-07 2.00 7.80e-07 2.00 3.71e-06 2.01
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Figure 6: Unconditional energy stability with different time steps represented by different markers and
colors.

5.4 Effect of interface permeability

In this subsection, the calibrated model and scheme are used to study the effect of interface permeability
on the diffusion of substance concentration.

We first consider a single drop with high (K = 1
2σδ ), medium (K = 1

2σ ) and low ((K = δ
2σ ) perme-

ability with δ = 0.02, is suspended in a shear flow. The initial profiles of concentration and interface are
given as follows (see Fig. 8),

φ(x, t) = tanh
0.25−

√
(x− 0.5)2 + (y − 0.5)2

√
2ε

, (5.7a)

c(x, 0) = 0.6y + 0.2. (5.7b)

with boundary condition

∇φ · n|y=0 = ∇φ · n|y=1 = 0, φ(0, y, t) = φ(1, y, t),

∇µ · n|y=0 = ∇µ · n|y=1 = 0, µ(0, y, t) = µ(1, y, t),
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Figure 7: Conservation of volume of the numerical scheme with time step δt = 0.1× 2−8.

∇c · n|y=0 = ∇c · n|y=1 = 0, c(0, y, t) = c(1, y, t),

u|y=0 = (−1, 0)T , u|y=1 = (1, 0)T ,

and periodic boundary conditions are used on the left and right boundaries. The parameters read as

Re = 100, Ca = 1, P e = 1, D+ = 1, D− = 1, ε = 0.02, M = 0.02. (5.8)

(a) Initial condition of c. (b) Initial condition of φ.

Figure 8: Initial condition for example 5.7. We set the concentration is a linear function with y-direction.
The phase field function is a circle with a diffuse interface. The velocity is a shear flow.

The 2D and 3D profiles of concentration at steady states are shown in Figs. 9-10. When the interface
with large permeability, the distribution of concentration is close to the linear solution where no interface
is presented. This could also be observed by the direction of flux in Fig. 11 (a) and magnitude of flux in
Fig. 12(a). When the permeability decreases, the flux across the interface decreases (see Fig. 12(b-c)),
and are close to nonflux boundary condition such that the straight flux is disturbed around the boundary
as shown in Fig. 11(b-c) and trans-membrane flux is restricted. At the steady state, due to limited flux
on the interface, the inner region Ω+ is almost a constant (see Figs. 9-10 (c)) due to the diffusion inside
and very limit flux , while the profile of concentration in the out region Ω− is close to the diffusion in a
perforated domain.
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(a) Higher permeability (b) Medium permeability (c) Lower permeability

Figure 9: Snapshots of c at steady state with different permeability: K = 1
2σδ ,

1
2σ and δ

2σ .

(a) Higher permeability (b) Medium permeability (c) Lower permeability

Figure 10: 3D profile of c at steady state with different permeabilities K = 1
2σδ ,

1
2σ and δ

2σ .
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Figure 11: Snapshot of the magnitude for flux at steady state with different permeabilities K = 1
2σδ ,

1
2σ

and δ
2σ .
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(a) Higher permeability (b) Medium permeability (c) Lower permeability

Figure 12: Snapshot of the magnitude for flux at steady state with different permeabilities K = 1
2σδ ,

1
2σ

and δ
2σ

In the next, we consider there are two droplets in the shear flow in a rectangular area Ω = [0, 2]× [0, 1].
The initial condition for φ is considered as

φ(x, 0) = tanh
(0.2−

√
(x− 0.5)2 + (y − 0.7)2

√
2ε

)
+ tanh

(0.2−
√

(x− 1.5)2 + (y − 0.3)2

√
2ε

)
+ 1.0. (5.9)

The permeability K is chosen as K = 1
2σ . The initial conditions of c and u and all the parameters are

chosen the same as in the former example (5.7). As shown in Fig. 13, the initial profiles of concentration
and droplets are shown in Fig. 13

(a) c(x, 0). (b) φ(x, 0).

Figure 13: Profile of initial condition.

In Fig. 14, the magnitude of flux overtime are presented. Due the counter flow, two droplets move
closer and the merge into one droplet around time t = 1.2. Before t = 1.2, the restrict diffusion are
observed on two interface and the concentrations in two droplets are two distinct constants as shown in
Fig. 15 a-b. After the merge time, the droplet achieves new equilibrium of concentration (see Fig. 15 d),
where the inner region flux is close to zero 14d.

6 Conclusions

In this paper, we are devoted to develop a new mathematical model for mass transfer through a semi-
permeable membrane with the restricted diffusion by using diffusive interface method. The model is
thermal dynamically consistent derived based on energy variation method. It turns out that the restrict
diffusion on the interface could be modeled by modifying the diffusion coefficient as a function of interface
permeability in the dissipation functional. The sharp interface limit for the concentration function is
conducted by using the asymptotic analysis. It confirms that as the interface thickness goes to zero,
the diffusive interface model converges to the sharp interface model. Besides, we establish a linear
and unconditional energy stable numerical scheme to solve the obtained nonlinear coupled system. The
centered-block finite difference method with stagger mesh is used for spacial discretization. The numerical
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Figure 14: Evolution of the magnitude for flux at different time t = 0.5,t = 1.1, t = 1.2 and t = 5.0. The
red circles show the location of membrane.

Figure 15: Evolution of the concentration at different time t = 0.5,t = 1.1, t = 1.2 and t = 5.0. The black
circles show the location of membrane.
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simulations ensure the asymptotic analysis results of the model and energy stability of numerical scheme.
Finally, the validated model is used to study to interface permeability. It shows that our diffusive interface
model could handle the restrict diffusion problem successfully and efficiently. Especially, it could deal
with the case when two droplets with semipermeable interface merge together easily.
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