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Abstract

This paper studies a class of linear unconditionally energy stable schemes for the gradient

flows. Such schemes are built on the SAV technique and the general linear time discretization

(GLTD) as well as the linearization based on the extrapolation for the nonlinear term, and may

be arbitrarily high-order accurate and very general, containing many existing SAV schemes and

new SAV schemes. It is shown that the semi-discrete-in-time schemes are unconditionally energy

stable when the GLTD is algebraically stable, and are convergent with the order of min{q̂, ν}

under the diagonal stability and some suitable regularity and accurate starting values, where

q̂ is the generalized stage order of the GLTD and ν denotes the number of the extrapolation

points in time. The energy stability results can be easily extended to the fully discrete schemes,

for example, if the Fourier spectral method is employed in space when the periodic boundary

conditions are specified. Some numerical experiments on the Allen-Cahn, Cahn-Hilliard, and

phase field crystal models are conducted to validate those theories as well as the effectiveness,

the energy stability and the accuracy of our schemes.
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1. Introduction

Many physical problems arisen in science and engineering can be modeled by partial differ-

ential equations in the form of gradient flows, for example, the interface dynamics [3, 31, 79],

the crystal growth [8, 44, 63], the tumor growth [54, 69], the thin film [43, 66], the polymers

[26, 27, 53], the solidification [7, 42, 65] and so on. The gradient flows are dynamics determined

by not only the driving free energy, but also the dissipation mechanism. For a given free energy

F(u), the gradient flows can be written as

∂u

∂t
= Gµ, (1.1)

supplemented with suitable boundary conditions (e.g. with periodic or homogeneous Neumann

boundary conditions) [60], where µ = δF/δu denotes the variational derivative of F(u) and the

operator G is non-positive symmetric so that the free energy is monotonically decreasing

dF(u)

dt
=

(
δF
δu
,
∂u

∂t

)
= (µ,Gµ) ≤ 0, (1.2)

here (·, ·) denotes the inner product in L2(Ω). If G = −I (resp. ∆), then one has the so-called

L2 (resp. H−1) gradient flow.

Most of gradient flow equations are nonlinear so that it is hard to obtain their analytical

solutions. Hence, studying them numerically is the primary approach. Recently, designing effi-

cient and energy stable numerical schemes for the gradient flows has attracted much attention.

There exist several efficient and popular techniques to design energy stable schemes for the

gradient flows. The first is the convex splitting [23, 24]. Based on it, one can design uncondi-

tionally energy stable and uniquely solvable schemes, but should solve a nonlinear system at

each time step generally. Although the convex splitting technique has been developed case-by-

case for some problems [5, 57, 71], it is not available to give an unified formulation. The second

technique is the stabilization [56, 62, 64], which treats the nonlinear terms explicitly and adds

a stabilization term to relax the time step constraint. It is simple and efficient since the linear

equations with constant coefficients are solved at each time step. However, it is very challenging

to design high-order unconditionally energy stable schemes. Some progresses can be found in
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[47]. The third technique is the invariant energy quadratization (IEQ) [73–75, 77]. It allows

one to construct the linear and second-order unconditionally energy stable schemes for a large

class of the gradient flows, but needs to solve the linear equations with variable coefficients,

and requires that the free energy density is bounded from below so that its applications are

limited for some physically interesting models, such as the molecular beam epitaxial (MBE)

model without slope selection [46]. The fourth technique is the scalar auxiliary variable (SAV)

[58–60]. With the help of introducing some SAVs, the gradient flow model is reformulated into

an equivalent form, then some linear and unconditionally energy stable schemes can be devel-

oped by approximating the reformulated system instead of the original gradient flow model.

It is convenient to construct second-order or higher-order unconditionally energy stable SAV

schemes, which need to solve several linear systems with constant coefficients at each time step.

In addition to the above, there are some other interesting techniques, including but not limited

to the exponential time differencing (ETD) [22, 67], the Lagrange multiplier [4, 30], the energy

factorization [45, 68], and the averaged vector field [33] etc.

Up to now, the SAV technique may result in more robust schemes with less restrictions on

the energy functionals and has been successfully applied to many existing gradient flow models

[1, 17, 18, 29, 34, 36, 51, 52, 72, 78, 80]. However, in those existing works, the time discretizations

are the backward Euler, the Crank-Nicolson (CN), or the second-order backward differentiation

formula (BDF2), except the high-order SAV-RK (Runge-Kutta) [1, 29]. The aim of this paper is

to study a general class of arbitrarily high-order linear unconditionally energy stable schemes for

the gradient flows. Such schemes, abbreviated as the SAV-GL schemes below for convenience,

are based on the SAV technique and the general linear time discretization (GLTD) as well

as the linearization based on the extrapolation for the nonlinear term. It is worth noting

that our studied SAV-GL schemes contain most of the time integration schemes (e.g. SAV-

BDF1, SAV-CN, SAV-BDF2, SAV-RK etc.) for the gradient flows in literature and many new

schemes. The GLTDs, as multistage multivalue schemes proposed in [9], can be considered as

a natural generalization of the Runge-Kutta (RK) and linear multistep time discretizations,

and are flexible in developing numerical methods with better stability and accuracy, except

slightly complexity. Two special examples provided later are the so-called one-leg [19, 20] and
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multistep Runge-Kutta (MRK) [10, 49] time integration schemes.

The rest of this paper is organized as follows. Section 2 briefly reviews the GLTDs for the

ordinary differential equations (ODEs) and extends them as a general class of semi-discrete-

in-time linear schemes for the gradient flow equations by using the SAV and the linearization

based on extrapolation. Specifically, the gradient flow equation is first changed as an equivalent

form by using the SAV, and then the reformulated equation is approximated by the GLTDs, in

which the linear part is implicitly discretized while the nonlinear part is explicitly and linearly

dealt with the extrapolation. The energy stability and the convergence of the SAV-GL schemes

are addressed in Sections 3 and 4, respectively. A discrete energy dissipation law is obtained

in the sense of the weighted inner product and the norm if the GLTDs are algebraically stable,

and the convergence order in time of min{q̂, ν} is derived under some suitable regularity and

accurate starting values, if the GLTDs are diagonal stable, where q̂ is the generalized stage

order of the GLTDs and ν denotes the number of the extrapolation points in time. Section 5

introduces the Fourier spectral discretization for the gradient flows with the periodic boundary

conditions in order to conduct our numerical validation. Section 6 numerically tests the fully

discrete SAV-GL schemes against three widely concerned gradient flow equations (which are the

Allen-Cahn, Cahn-Hilliard, and phase field crystal models) in order to validate the effectiveness,

energy stability and accuracy of our schemes. Some concluding remarks are given in Section 7.

2. SAV-GL schemes for gradient flows

This section briefly reviews the GLTDs [9, 12, 40] for the ODEs and extends them to the

gradient flows by using the SAV technique [58–60] as a general class of linear numerical schemes,

which will be abbreviated as “SAV-GL” below for convenience.

2.1. A brief review to GLTDs

For the first-order ODE

du

dt
= u′(t) = f(u(t)), t ∈ (0, T ], (2.1)

4



subject to the initial data u(0) = u0, the GLTD is a large family of multistage multivalue

schemes for ODEs, which includes the linear multistep, predictor-corrector and Runge-Kutta

schemes as special cases. Many peoples have tried their best to search for the useful GLTDs

which do not exist within the standard special cases, but possess as many of the advantages

and as few of the disadvantages as possible. The readers are referred to the review paper [12]

and the monograph [40] as well as references therein.

Assume that the time interval [0, T ] is divided into K equal parts with the time stepsize

τ= T
K

, K∈Z+. The GLTDs can be defined by


Un,i = τ

s∑
j=1

d11
ij f(Un,i) +

r∑
j=1

d12
ij u

[n]
j , i = 1, 2, · · · , s,

u
[n+1]
i = τ

s∑
j=1

d21
ij f(Un,i) +

r∑
j=1

d22
ij u

[n]
j , i = 1, 2, · · · , r,

(2.2)

where dıij ∈ R, ı,  = 1, 2, Un,i is an approximation of stage order q to u(tn + ciτ), ci ∈ R,

i = 1, · · · , s, and each of r import quantities {u[n]
i } is an approximation of order p ≥ q to the

linear combination of the scaled derivatives of the solution u to (2.1) at tn, i.e.

u
[n]
i =

p∑
j=0

wijτ
ju(j)(tn) +O(hp+1), i = 1, · · · , r,

with some scalars wij and u(j) = dju
dtj

. Such time discretizations are characterized by four

integers p, q, r, s (being respectively the method order, the stage order, the number of external

approximations, and the number of stages or internal approximations), the abscissa vector

c = (c1, c2, · · · , cs)T ∈ Rs, the vectors wj = (w1j, w2j, . . . , wrj)
T ∈ Rr, j = 0, 1, . . . , p, and four

coefficient matrices Dı = (dıij) for ı,  = 1, 2, where D11 ∈ Rs×s,D12 ∈ Rs×r,D21 ∈ Rr×s and

D22 ∈ Rr×r. Obviously, the GLTDs (2.2) are consistent with (2.1) if

D21e+D22w1 = w0 +w1, D12w0 = e, D22w0 = w0,

where e = (1, 1, · · · , 1)T ∈ Rs. Moreover, for the stage consistency, one needs

D11e+D12w1 = c.
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For the self completeness, we introduce the definitions of the algebraical and diagonal sta-

bilities and the generalized stage order, which will be used later.

Definition 2.1 ([40, Def. 2.9.8]). A GLTD is algebraically stable (also called G-stable), if

there exists a symmetric and positive definite matrix G ∈ Rr×r and a non-negative definite

diagonal matrix H ∈ Rs×s such that the matrix

M =

 G−DT
22GD22 DT

12H −DT
22GD21

HD12 −DT
21GD22 DT

11H +HD11 −DT
21GD21


(r+s)×(r+s)

,

is non-negative definite.

The algebraical stability is an important property, and the algebraically stable GLTDs can

preserve the long time dynamics of dissipative ODEs [9]. Next section will show that the

algebraically stable GLTDs with SAV may be unconditionally energy stable for the gradient

flows (1.1).

Definition 2.2 ([49, Def. 1.2]). A GLTD is diagonally stable if there exists a positive definite

diagonal matrix H̃ ∈ Rs×s such that the matrix H̃D11 +DT
11H̃ ∈ Rs×s is positive definite.

The condition in this definition implies the coefficient matrix D11 is nonsingular [48] so

that the diagonally stable GLTD is uniquely solvable. The diagonal stability will provide us

convenience to derive the error estimates of the GLTDs.

Definition 2.3 ([49, Def. 1.5]). The generalized stage order of the GLTD is q̂, if q̂ is the largest

integer and there exist ûi(tn), i = 1, 2, · · · , r, such that

ρn,i=O(τ q̂+1), i=1, 2, · · · , s; ρ
[n]
i =O(τ q̂+1), ui(tn)−ûi(tn)=O(τ q̂), i=1, 2, · · · , r,

where ui(tn) :=
p∑
j=0

wijτ
ju(j)(tn), ρn,i and ρ

[n]
i are the local truncation errors given by


u(tn,i) = τ

s∑
j=1

d11
ij u
′(tn,j) +

r∑
j=1

d12
ij ûj(tn) + ρn,i, i = 1, 2, · · · , s,

ûi(tn+1) = τ
s∑
j=1

d21
ij u
′(tn,j) +

r∑
j=1

d22
ij ûj(tn) + ρ

[n]
i , i = 1, 2, · · · , r,

(2.3)
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here tn,j = tn + cjτ , and u(t) is the smooth solution of (2.1).

The generalized stage order of a GLTD is related to the stage order q and the method order p

of the GLTD. Specifically, when a GLTD has the stage order q and the method order p = q,

taking ûi(tn) = ui(tn) yields that the generalized stage order q̂ is at least equal to q.

Remark 2.1. The generalized stage order of some GLTDs is one higher than the stage order

so that it can be used to obtain a sharper error estimate [49]. In fact, when a GLTD has the

stage order q and the method order p = q + 1, it means that

ρn,i = O(τ q+1), i = 1, 2, · · · , s; ρ
[n]
i = O(τ q+2), i = 1, 2, · · · , r,

which are defined by (2.3) with ûi(tn) = ui(tn). If there exists a constant κ such that

ρn,i − κτ q+1u(q+1)(tn) = O(τ q+2), i = 1, 2, · · · , s, (2.4)

and one chooses

ûi(tn) = ui(tn) + wi0κτ
q+1u(q+1)(tn),

then using the consistency condition yields that the generalized stage order of the GLTD is

q̂ = q + 1.

Before ending this subsection, we introduce two typical examples of the GLTDs.

Example 2.1. The first is the r-step one-leg time discretization [19, 20], which has the following

form for (2.1)

r∑
j=0

αju
n+1−j = τf

(
r∑
j=0

βju
n+1−j

)
, (2.5)

where un+1−j ≈ u(tn+1−j), αj, βj ∈ R satisfy α0β0 6= 0 and the consistency conditions

r∑
j=0

αj = 0,
r∑
j=0

(1−j)αj =
r∑
j=0

βj = 1.

If setting u
[n]
i = un+1−i for i = 1, 2, . . . , r, which can be viewed as an approximation to ui(tn)
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with w0 = (1, 1, . . . , 1)T ∈ Rr and wj = 1
j!

(
0, (−1)j, (−2)j, . . . , (1−r)j

)T ∈ Rr for j = 1, 2, . . . , p,

and using

Un,1 =
r∑
j=0

βju
n+1−j =

r∑
j=1

(
βj−

β0

α0

αj

)
un+1−j +

τβ0

α0

f (Un,1) ,

to approximate u(tn + c1τ) with the consistency condition c1 =
r∑
j=0

(1−j)βj, then the scheme

(2.5) has been reformulated as a GLTD form (2.2) with the coefficient matrices Dı, ı,  = 1, 2,

defined by

D11 =

[
β0

α0

]
1×1

, D12 =

[
β1−

β0

α0

α1, β2−
β0

α0

α2, · · · , βr−
β0

α0

αr

]
1×r

,

D21 =



1

0

...

0

0


r×1

, D22 =



−α1

α0
−α2

α0
· · · −αr−1

α0
−αr

α0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


r×r

.

The one-leg time discretization (2.5) is algebraically stable if and only if it is A-stable, see [20,

Theorem 3.3]. Besides, if (2.5) is A-stable, then β0/α0>0 so that (2.5) is diagonally stable. In

our numerical experiments, we will use two special one-leg time discretizations. The first is

un+1 = un + f
(
θun+1 + (1− θ)un

)
, (2.6)

where θ is a parameter. When 1
2
≤ θ ≤ 1, (2.6) is A-stable, and thus is algebraically stable

and diagonally stable [19]. When (2.6) is written as a GLTD, the four parameters {p, q, r, s} =

{1, 1, 1, 1} for 1
2
< θ ≤ 1 and {p, q, r, s} = {2, 1, 1, 1} for (2.6) with θ = 1

2
. The second is a class

of two-step schemes

1+γ

2
un+1 = γun − γ−1

2
un−1 + f

(
1+γ+δ

4
un+1 +

1−δ
2
un +

1−γ+δ

4
un−1

)
, (2.7)

where γ and δ are two parameters. If γ ≥ 0 and δ > 0, then (2.7) is A-stable [19], and thus is

algebraically stable and diagonally stable. Four integers {p, q, r, s} = {2, 1, 2, 1} for (2.7) as a
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GLTD.

Example 2.2. Another important subclass of the GLTDs (2.2) are the multistep Runge-Kutta

(MRK) time discretizations, see e.g. [10, 49]. The s-stage and r-step MRK schemes for (2.1)

can be given by


Un,i = τ

s∑
j=1

aijf(Un,j) +
r∑
j=1

âiju
n+1−j, i = 1, 2, · · · , s,

un+1 = τ
s∑
j=1

bjf(Un,j) +
r∑
j=1

b̂ju
n+1−j,

(2.8)

where the coefficients should satisfy the consistency conditions

r∑
j=1

b̂j = 1,
r∑
j=1

âij = 1, for i = 1, 2, · · · , s,
s∑
j=1

bj +
r∑
j=1

b̂j(1−j) = 1,

and the stage consistence condition

ci =
s∑
j=1

aij +
r∑
j=1

(1−j)âij, for i = 1, 2, · · · , s.

If letting u
[n]
i = un+1−i (i = 1, 2, · · · , r), which implies that the vectors wj for (2.8) have the

same form as that of the one-leg time discretization (2.5), then (2.8) can be written as the form

of (2.2) with the coefficient matrices Dı, ı,  = 1, 2, given by

D11 =A=(aij)s×s , D12 =Â=(âij)s×r , D21 =

 b

0


r×s

, D22 =

 b̂

Ir−1 0


r×r

,

where 0 denotes the zero matrix or vector with appropriate dimensions, Ir−1 ∈ Rr−1×r−1 is the

identity matrix, b = (b1, b2, . . . , bs) ∈ Rs and b̂ = (b̂1, b̂2, . . . , b̂r) ∈ Rr. There are six classes

of the MRK time discretizations, which are algebraically stable and diagonally stable with

G = diag
(
b̂1, b̂1 + b̂2, · · · ,

r∑
i=1

b̂i
)
∈ Rr×r and H = diag(b) ∈ Rs×s, see [49]. Particularly, when

r = 1, (2.8) reduces to the standard RK time discretization (see e.g. [32]), and is algebraically

stable if and only if bi ≥ 0, i = 1, 2, . . . , s, and the matrix M̄ = (biaij + bjaji − bibj) ∈ Rs×s is

nonnegative definite. Popular families of the MRK schemes are the Gauss and Radau IIA time
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integrations (four integers {p, q, r, s} are {2s, s, 1, s} and {2s−1, s, 1, s}, respectively), which

are algebraically stable and diagonally stable. Moreover, the MRK time discretization (2.8) has

the stage q and the method order p, when the following simplified conditions [32, pp. 363–364]

B(p) : l
s∑
j=1

bjc
l−1
j +

r∑
j=1

b̂j(1−j)l = 1, l = 1, 2, · · · , p; (2.9)

C(q) : l
s∑
j=1

aijc
l−1
j +

r∑
j=1

âij(1−j)l = cli, l = 1, 2, · · · , q, i = 1, 2, · · · , s, (2.10)

hold.

2.2. Semi-discrete SAV-GL schemes

Generally, the free energy F(u) can be split as

F(u) =
1

2
(Lu, u) + F1(u), F1(u) =

∫
Ω

F (u)dx, (2.11)

where Ω is a bounded open domain, L is a symmetric non-negative linear self-adjoint elliptic

operator, F (u) is a nonlinear potential function, and F1(u) is bounded from below, i.e., F1(u) ≥

−C0 > 0. If introducing the SAV z(t) :=
√
F1(u) + C0, then one can rewrite the gradient flow

equation (1.1) as follows

∂u

∂t
= Gµ, µ = Lu+ zW (u),

dz

dt
=

1

2

(
W (u),

∂u

∂t

)
, W (u) :=

1

z(t)

δF1

δu
,

(2.12)

with periodic or homogeneous Neumann boundary conditions. It is easy to check that (2.12)

satisfies the energy dissipation law

dE

dt
=

(
Lu, ∂u

∂t

)
+ 2z

dz

dt
=

(
Lu+ zW (u),

∂u

∂t

)
= (µ,Gµ) ≤ 0,

where the reformulated free energy E(u) is given by

E(u) =
1

2
(Lu, u) + z2 − C0 ≡

1

2
(Lu, u) + F1(u).
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The energy splitting (2.11) is not unique, so is the SAV z(t). For example, another energy

splitting with a linear and self-adjoint operator was considered in [29].

For convenience, the gradient flows in this paper are assumed to satisfy suitable boundary

conditions so that all boundary terms vanish when integration by parts is performed, such as

the periodic boundary conditions or homogeneous Neumann boundary conditions. For any u, v

satisfying that kind of boundary conditions on the boundary ∂Ω, the property (Lu, v) = (u,Lv)

holds. Specifically, for the case of L = −∆, a simple calculation shows (−∆u, v) = (u,−∆v)

when u, v are periodic or ∂u
∂n = ∂v

∂n = 0, where n is the unit outward normal vector on ∂Ω.

The semi-discrete SAV-GL schemes are built on discretizing the reformulated gradient flow

equations (2.12) by using the GLTDs (2.2) in time, and we will show that the positive semi-

definiteness of L plays an important role to derive their energy stability. Assume that the

quantities u
[n]
i and z

[n]
i are given, i = 1, 2, · · · , r. Extending the GLTDs (2.2) to the system

(2.12) yields


Un,i = τ

s∑
j=1

d11
ij U̇n,j +

r∑
j=1

d12
ij u

[n]
j ,

Zn,i = τ
s∑
j=1

d11
ij Żn,j +

r∑
j=1

d12
ij z

[n]
j , i = 1, 2, · · · , s,

(2.13)


u

[n+1]
i = τ

s∑
j=1

d21
ij U̇n,j +

r∑
j=1

d22
ij u

[n]
j ,

z
[n+1]
i = τ

s∑
j=1

d21
ij Żn,j +

r∑
j=1

d22
ij z

[n]
j , i = 1, 2, · · · , r.

(2.14)

where

U̇n,i := Gµn,i, µn,i = LUn,i+Zn,iW (Ūn,i), Żn,i :=
1

2

(
W (Ūn,i), U̇n,i

)
, i = 1, 2, · · · , s, (2.15)

and Ūn,i denotes an explicit approximation to u(·, tn,i). Since W (Ūn,i) are explicitly evaluated,

(2.13) forms a system of linear equations for the unknown variables Un,i and Zn,i, i = 1, 2, · · · , s,

so that the SAV-GL schemes (2.13)-(2.14) can be efficiently implemented.

Remark 2.2. The schemes (2.13)-(2.14) are built on the original SAV technique (cf. [58–60]).
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Up to now, there exist some extensions of the SAV technique, such as the E-SAV [51, 52], the

G-SAV [37], the relaxed SAV [41], and the relaxed generalized SAV techniques [82] etc. One

can combine the GLTDs with those techniques for solving the gradients flows (1.1).

Remark 2.3. We derive Ūn,i by using a ν-point extrapolation with the possibly known values

Un−1,i, i = 1, 2, · · · , s, and u
[n]
i , i = 1, 2, · · · , r, where ν ≤ s + r and n > 1, and get U0,i,

i = 1, 2, · · · , s, and u
[1]
i , z

[1]
i , i = 1, 2, · · · , r, by using the nonlinear version of the SAV-GL

schemes, that is, (2.13)-(2.14) with specifying Ū1,i = U1,i. Several specific ν-point extrapolations

will be given in Section 3.2.

3. Unconditional energy stability

This section studies the energy stability of the semi-discrete SAV-GL schemes (2.13)-(2.14).

To fix our discussion, similar to [60] etc., we assume from here to the hereafter that the boundary

conditions are either periodic or such that it allows for integration by parts without introducing

additional boundary terms.

3.1. Unconditional energy stability of SAV-GL schemes

Theorem 3.1. If the GLTDs (2.2) are algebraically stable with a symmetric and positive defi-

nite matrix G= (gij)∈Rr×r, then the schemes (2.13)-(2.14) satisfy the following energy decay

property

1

2

(
Lu[n+1],u[n+1]

)
G +

∥∥z[n+1]
∥∥2

G ≤
1

2

(
Lu[n],u[n]

)
G +

∥∥z[n]
∥∥2

G , (3.1)

where u[n] =
(
u

[n]
1 , u

[n]
2 , · · · , u[n]

r

)T
, z[n] =

(
z

[n]
1 , z

[n]
2 , · · · , z[n]

r

)T
, and

(LΦ,Ψ)G :=
r∑

i,j=1

gij(Lφi, ψj), ‖Φ‖G :=(Φ,Ψ)
1/2

G =

(
r∑

i,j=1

gij(φi, ψj)

)1/2

, ‖σ‖G :=

(
r∑

i,j=1

gijσiσj

)1/2

,

for any Φ=(φ1, φ2, · · · , φr)T , Ψ=(ψ1, ψ2, · · · , ψr)T ∈
(
L2(Ω)

)r
, and σ=(σ1, σ2, · · · , σr)T ∈Rr.

Proof. Because the GLTDs are algebraically stable in the sense of Definition 2.1, there ex-

ist a symmetric positive definite matrix G and a non-negative definite diagonal matrix H =
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diag([h1, h2, · · · , hs]) ∈ Rs×s such that the matrix M = (mij) ∈ R(r+s)×(r+s) is non-negative

definite. Using both the first equations in (2.13) and (2.14) gives

(
Lu[n+1],u[n+1]

)
G −

(
Lu[n],u[n]

)
G − 2τ

s∑
i=1

hi

(
LUn,i, U̇n,i

)
=

r∑
i,j

gij

(
Lu[n+1]

i , u
[n+1]
j

)
−

r∑
i,j

gij

(
Lu[n]

i , u
[n]
j

)
− 2τ

s∑
i=1

hi

(
LUn,i, U̇n,i

)
= −

r∑
i,j

gij

(
Lu[n]

i , u
[n]
j

)
+

r∑
i,j

gij

(
r∑

k=1

d22
ikLu

[n]
k ,

r∑
k=1

d22
jku

[n]
k

)

− 2τ
s∑
i=1

hi

(
r∑

k=1

d12
ikLu

[n]
k , U̇n,i

)
+ 2τ

r∑
i,j

gij

(
r∑

k=1

d22
ikLu

[n]
k ,

s∑
k=1

d21
jkU̇n,k

)

− 2τ 2

s∑
i=1

hi

(
s∑

k=1

d11
ikLU̇n,k, U̇n,i

)
+ τ 2

r∑
i,j

gij

(
s∑

k=1

d21
ikLU̇n,k,

s∑
k=1

d21
jkU̇n,k

)

= −
r∑
i,j

pij

(
Lu[n]

i , u
[n]
j

)
− 2τ

r∑
i=1

s∑
j=1

sij

(
Lu[n]

i , U̇n,j

)
− τ 2

s∑
i,j

qij

(
LU̇n,i, U̇n,j

)
, (3.2)

where the property
(
Lu[n]

i , U̇n,j

)
=
(
u

[n]
i ,LU̇n,j

)
has been used in the second equality, pij, sij

and qij form the matrices P ,S and Q, respectively, and satisfy

P = G−DT
22GD22, S = DT

12H −DT
22GD12, Q = DT

11H +HD11 −DT
21GD21.

If setting

Ũn =
(
u

[n]
1 , u

[n]
2 , · · · , u[n]

r , τ U̇n,1, τ U̇n,2, · · · , τ U̇n,s
)T

,

then the identity (3.2) can be rewritten as

(
Lu[n+1],u[n+1]

)
G −

(
Lu[n],u[n]

)
G = 2τ

s∑
i=1

hi

(
LUn,i, U̇n,i

)
−

r+s∑
i,j

mij

(
LŨn,i, Ũn,j

)
. (3.3)

Since the matrix M is non-negative definite and the operator L is positive semi-definite, it

holds from (3.3) that

(
Lu[n+1],u[n+1]

)
G ≤

(
Lu[n],u[n]

)
G + 2τ

s∑
i=1

hi

(
LUn,i, U̇n,i

)
. (3.4)
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Similarly, from both the second equations in (2.13) and (2.14), one can obtain

∥∥z[n+1]
∥∥2

G ≤
∥∥z[n]

∥∥2

G + 2τ
s∑
i=1

hiZn,iŻn,i.

Inserting the third equation of (2.15) into it gives

∥∥z[n+1]
∥∥2

G ≤
∥∥z[n]

∥∥2

G + τ

s∑
i=1

hiZn,i

(
W (Ūn,i), U̇n,i

)
. (3.5)

Moreover, taking the L2 inner product of the second equation in (2.15) with U̇n,i gives

(
LUn,i, U̇n,i

)
=
(
µn,i − Zn,iW (Ūn,i), U̇n,i

)
.

Substituting it into (3.4) yields

(
Lu[n+1],u[n+1]

)
G ≤

(
Lu[n],u[n]

)
G + 2τ

s∑
i=1

hi

(
µn,i−Zn,iW (Ūn,i), U̇n,i

)
. (3.6)

Combining (3.5) with (3.6) and using U̇n,i = Gµn,i yields

1

2

(
Lu[n+1],u[n+1]

)
G +

∥∥z[n+1]
∥∥2

G ≤
1

2

(
Lu[n],u[n]

)
G +

∥∥z[n]
∥∥2

G + τ
s∑
i=1

hi

(
µn,i, U̇n,i

)
≤ 1

2

(
Lu[n],u[n]

)
G +

∥∥z[n]
∥∥2

G + τ

s∑
i=1

hi (µn,i,Gµn,i) .

Since hi > 0 for i = 1, 2, · · · , s and the operator G is non-positive, we can deduce that the

schemes (2.13)-(2.14) satisfy the desired energy decay property (3.1). The proof is completed.

Remark 3.1. The G-weighted norm of Φ = (φ1, φ2, · · · , φr)T ∈
(
L2(Ω)

)r
is equivalent to its

L2 norm, since λmin
r∑
i=1

‖φi‖2 ≤ ‖Φ‖2
G ≤ λmax

r∑
i=1

‖φi‖2, where λmin and λmax are the minimum

and maximum eigenvalues of the matrix G, respectively.

Remark 3.2. The discrete energy decay property does still hold for the nonlinear version of

the SAV-GL schemes, i.e. (2.13)-(2.14) with the unknown stage values Un,i instead of the

extrapolated values Ūn,i.
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3.2. Applications to the one-leg and MRK methods

This subsection discusses the one-leg and MRK time discretizations for the gradient flows.

First of all, applying the one-step one-leg time discretization (2.6) with θ ∈ [1
2
, 1] to the

reformulated equation (2.12) gives the following semi-discrete SAV-GL scheme



un+1 − un = τGµn+θ,

µn+θ = L [θun+1+(1−θ)un] + [θzn+1+(1−θ)zn]W (ūn+θ),

zn+1−zn = 1
2

(
W (ūn+θ), un+1−un

)
,

(3.7)

where ūn+θ := (2−θ)un−(1−θ)un−1 approximating explicitly u(·, tn+θ). As mentioned in Section

2, the one-leg time discretization (2.6) can be rewritten as a GLTD, and is algebraically stable

with G=1 and H=1 for any θ ∈ [1
2
, 1], see [19, Th. 3.3], so that (3.7) is unconditionally energy

stable by Theorem 3.1. in the sense of that

1

2

(
Lun+1, un+1

)
+
(
zn+1

)2 ≤ 1

2
(Lun, un) + (zn)2 ,

which can also be directly deduced by taking the L2 inner product of the first and second

equations in (3.7) with µn+θ and un+1− un, respectively, and multiplying the third equation in

(3.7) with 2 [θzn+1 + (1−θ)zn], and then using the inequality −ab ≥ −1
2
(a2 + b2).

Remark 3.3. When θ = 1 and 1
2
, (3.7) becomes the SAV-BDF1 and SAV-CN scheme in [60],

respectively.

Next, applying the two-step one-leg time discretization (2.7) with γ ≥ 0 and δ > 0 to the

reformulated equation (2.12) yields the following SAV-GL scheme



1+γ
2
un+1 − γun + γ−1

2
un−1 = τGµn+γ−1,

µn+γ−1 = L
[

1+γ+δ
4

un+1 + 1−δ
2
un + 1−γ+δ

4
un−1

]
+
[

1+γ+δ
4

zn+1 + 1−δ
2
zn + 1−γ+δ

4
zn−1

]
W (ūn+γ−1),

1+γ
2
zn+1 − γzn + γ−1

2
zn−1 = 1

2

(
W (ūn+γ−1), 1+γ

2
un+1 − γun + γ−1

2
un−1

)
,

(3.8)
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where ūn+γ−1 :=
(
1 + γ

2

)
un − γ

2
un−1 approximating u(·, tn+γ−1). As far as we know, there is

no result on the energy stability of the general scheme (3.8) in the literature except for some

special cases. Here, it may be conveniently obtained by using Theorem 3.1 and the fact [19,

Th. 3.3] that the time discretization (2.7) with γ ≥ 0 and δ > 0 is algebraically stable with

H = 1 and

G =
1

4

 (1 + γ)2 + δ 1− δ − γ2

1− δ − γ2 (γ − 1)2 + δ

 .
Theorem 3.2. The semi-discrete SAV-GL scheme (3.8) is unconditionally energy stable in the

sense that

F̃
(
un+1, un, zn+1, zn

)
≤ F̃

(
un, un−1, zn, zn−1

)
, (3.9)

where

F̃
(
un+1, un, zn+1, zn

)
:=

δ

2(γ−1)2+2δ

(
Lun+1, un+1

)
+

δ

(γ−1)2+δ

(
zn+1

)2

+
(γ−1)2+δ

8

(
L
(
γ2+δ−1

(γ−1)2+δ
un+1−un

)
,

(
γ2+δ−1

(γ−1)2+δ
un+1−un

))
+

(γ−1)2+δ

4

(
γ2+δ−1

(γ−1)2+δ
zn+1−zn

)2

.

Remark 3.4. When γ = 2 and δ = 1, the scheme (3.8) reduces to the SAV-BDF2 in [60],

and the energy inequality (3.9) is the same as that in [60], deduced with a different technique.

When γ=2θ and δ=1−4(1−θ)2, the scheme (3.8) reduces to that in [78] for the Cahn-Hilliard

equation, where the energy stability is analyzed by using some identities.

Remark 3.5. Since the highest method order of the A-stable (algebraically stable) one-leg time

discretizations is 2, this paper only considers the first- and second-order one-leg schemes. It

is interesting to explore higher-order one-leg schemes for the gradient flows with the aid of the

novel SAV approach [36].

Finally, the high-order algebraically stable MRK time discretizations (2.8) with the stage

order q = s and the method order p = s are applied to the reformulated equation (2.12). We
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first evaluate the stage quantities Un,i, Zn,i, i = 1, 2, · · · , s, by the coupled linear system


Un,i = τ

s∑
j=1

aijU̇n,j +
r∑
j=1

âiju
n+1−j,

Zn,i = τ
s∑
j=1

aijŻn,j +
r∑
j=1

âijz
n+1−j, i = 1, 2, · · · , s,

(3.10)

and then calculate the output quantities un+1, zn+1 by


un+1 = τ

s∑
j=1

bjU̇n,j +
r∑
j=1

b̂ju
n+1−j,

zn+1 = τ
s∑
j=1

bjŻn,j +
r∑
j=1

b̂jz
n+1−j.

(3.11)

where

U̇n,i = Gµn,i, µn,i = LUn,i + Zn,iW (Ūn,i), Żn,i =
1

2

(
W (Ūn,i), U̇n,i

)
,

and Ūn,i is evaluated by using the following Lagrange interpolation

Ūn,i =
s∑
j=1

Lj(1 + ci)Un−1,j, Lj(x) =
s∏

l=1,l 6=j

x− cl
cj − cl

, for s ≥ 2,

and

Ūn,1 = (1 + c1)un − c1u
n−1, for s = 1.

As mentioned in Section 2, the MRK time discretizations (2.8) belong to the GLTDs so

that using Theorem 3.1 can give the energy stability of the schemes (3.10)-(3.11).

Theorem 3.3. If the MRK time discretizations (2.8) are algebraically stable, then the SAV-GL

schemes (3.10)-(3.11) satisfy

F̄
(
un+1, · · · , un+2−r, zn+1, · · · , zn+2−r) ≤ F̄(un, · · · , un+1−r, zn, · · · , zn+1−r), (3.12)

where

F̄
(
un, · · · , un+1−r, zn, · · · , zn+1−r)
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=
1

2

r∑
j=1

b̂j (Lun, un) + · · ·+ b̂1

2

(
Lun+1−r, un+1−r)+

r∑
j=1

b̂j (zn)2 + · · ·+ b̂1

(
zn+1−r)2

.

In particular, the SAV-RK schemes (3.10)-(3.11) satisfy

1

2

(
Lun+1, un+1

)
+
(
zn+1

)2 ≤ 1

2
(Lun, un) + (zn)2 . (3.13)

Remark 3.6. The schemes (3.10)-(3.11) contain the arbitrarily high-order (in time) schemes

in [29], which were derived by combining the structure-preserving Gaussian collocation time

discretization with the SAV approach. Also, the extrapolated RK-SAV schemes derived in [1]

for solving Allen-Cahn and Cahn-Hilliard equations were covered by the schemes (3.10)-(3.11).

4. Error estimates of the SAV-GL methods

This section establishes the error estimates of the SAV-GL schemes (2.13)-(2.14) for the L2

gradient flow, i.e., G = −I with the free energy density F (u) in polynomial. The analysis for

the H−1 gradient flow is quite similar and omitted here to avoid a repetitive discussion. Our

analyses will be based on the following hypothesises:

H1: The exact solutions u, z of the reformulated equation (2.12) is bounded and smooth enough,

and W (u) are locally Lipschitz continuous;

H2: The starting values U0,i, Z0,i, u
[1]
i and z

[1]
i are sufficiently accurate with the generalized stage

order q.

The readers are referred to [59] for some discussions on the smoothness and bound of u, z

of (2.12) in the hypothesis H1. The polynomial F (u) is local Lipschitz continuous, so is W (u).

The hypothesis H2 is reasonable, since the nonlinear arbitrarily high order SAV-RK schemes

can be used to compute the starting values, see also Remark 3.2.
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4.1. Local error analysis

This subsection estimates the local errors of the SAV-GL scheme (2.13)-(2.14), where the

local errors ηn,i, η
[n]
i , σn,i and σ

[n]
i are determined by


un,i = τ

s∑
j=1

d11
ij u̇n,j +

r∑
j=1

d12
ij ûj(tn) + ηn,i,

zn,i = τ
s∑
j=1

d11
ij żn,j +

r∑
j=1

d12
ij ẑj(tn) + σn,i, i = 1, 2, · · · , s,

(4.1)

and


ûi(tn+1) = τ

s∑
j=1

d21
ij u̇n,j +

r∑
j=1

d22
ij ûj(tn) + η

[n]
i ,

ẑi(tn+1) = τ
s∑
j=1

d21
ij żn,j +

r∑
j=1

d22
ij ẑj(tn) + σ

[n]
i , i = 1, 2, · · · , r,

(4.2)

here

u̇n,i = −Lun,i − zn,iW (ūn,i), żn,i =
1

2
(W (ūn,i), u̇n,i) , (4.3)

and un,i = u(·, tn,i), zn,i = z(tn,i), ûi(tn) and ẑi(tn) are abstract functions and may be equal to

ui(·, tn) and zi(tn), respectively, which denote the linear combination of the scaled derivatives

of u, z of (2.12), and ūn,i is the ν-point extrapolation with the quantity un−1,i and ûi(tn).

Lemma 4.1. Under the hypothesis H1, if the GLTDs (2.2) have the generalized stage order q̂,

then the local errors ηn,i, η
[n]
i , σn,i and σ

[n]
i satisfy

s∑
i=1

(‖ηn,i‖+ |σn,i|) ≤ Cτmin{q̂+1,ν+1},
r∑
i=1

(∥∥∥η[n]
i

∥∥∥+
∣∣∣σ[n]
i

∣∣∣) ≤ Cτmin{q̂+1,ν+1}, (4.4)

where C > 0 used above and hereafter is a constant independent on the time stepsize τ .

Proof. Using both the first relations in (4.1) and (2.12) gives

un,i−
r∑
j=1

d12
ij ûj(tn)−τ

s∑
j=1

d11
ij ut(tn,j)=τ

s∑
j=1

d11
ij zn,j [W (ūn,j)−W (un,j)]+ηn,i. (4.5)

Let us denote by η̃n,i the left hand side of (4.5). Since the generalized stage order of the GLTDs
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is q̂, we have

‖η̃n,i‖ ≤ Cτ q̂+1, i = 1, 2, · · · , s. (4.6)

Note that due to the ν-point extrapolation, the error un,i − ūn,i is at least O(τ ν), i.e.,

‖un,i − ūn,i‖ ≤ Cτ ν , i = 1, 2, · · · , s,

which implies that

‖W (ūn,i)−W (un,i)‖ ≤ Cτ ν , i = 1, 2, · · · , s. (4.7)

Combining (4.5) with (4.6) and (4.7) yields

‖ηn,i‖ ≤ Cτmin{q̂+1,ν+1}, i = 1, 2, · · · , s.

On the other hands, it follows from both the first relations in (4.2) and (2.12) that

ûi(tn+1)−
r∑
j=1

d22
ij ûj(tn)−τ

s∑
j=1

d21
ij ut(tn,j)=τ

s∑
j=1

d21
ij zn,j [W (ūn,j)−W (un,j)]+η

[n]
i . (4.8)

If setting the quantity at the left hand side of (4.8) as η̃
[n]
i , then one can derive from the

definition of the generalized stage order q̂ that

∥∥∥η̃[n]
i

∥∥∥ ≤ Cτ q̂+1, i = 1, 2, · · · , r. (4.9)

Combining (4.8) with (4.9) and (4.7) deduces

∥∥∥η[n]
i

∥∥∥ ≤ Cτmin{q̂+1,ν+1}, i = 1, 2, · · · , r. (4.10)

Similarly, the local errors σn,i and σ
[n]
i can be derived. Therefore, the estimates (4.4) hold and

the proof is completed.
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4.2. Global error analysis

This subsection focuses on the global error analysis of the SAV-GL schemes (2.13)-(2.14).

To this end, define the intermediate values Un,i, Zn,i, U [n+1]
i and Z [n+1]

i by


Un,i = τ

s∑
j=1

d11
ij U̇n,j +

r∑
j=1

d12
ij ûj(tn),

Zn,i = τ
s∑
j=1

d11
ij Żn,j +

r∑
j=1

d12
ij ẑj(tn), i = 1, 2, · · · , s,

(4.11)

and


U [n+1]
i = τ

s∑
j=1

d21
ij U̇n,j +

r∑
j=1

d22
ij ûj(tn),

Z [n+1]
i = τ

s∑
j=1

d21
ij Żn,j +

r∑
j=1

d22
ij ẑj(tn), i = 1, 2, · · · , r,

(4.12)

where

U̇n,i = − [LUn,i + Zn,iW (ūn,i)] , Żn,i =
1

2

(
W (ūn,i), U̇n,i

)
. (4.13)

Those intermediate values will play an important role to derive the global error estimates of

the SAV-GL schemes (2.13)-(2.14). Such technique has been used to study the convergence

of the GLTDs for the ODEs, see e.g. [35, 48]. We first give the error estimates between the

intermediate values Un,i, Zn,i, U [n+1]
i , Z [n+1]

i and the values un,i, zn,i, ûi(tn+1), ẑi(tn+1).

Theorem 4.2. Under the hypothesis H1, if the GLTDs (2.2) are diagonally stable and have

the generalized stage order q̂, then the following estimates can be obtained

s∑
i=1

(‖un,i − Un,i‖+ |zn,i −Zn,i|) ≤ Cτmin{q̂+1,ν+1}, (4.14)

r∑
i=1

(∥∥∥ûi(tn+1)− U [n+1]
i

∥∥∥+
∣∣∣ẑi(tn+1)−Z [n+1]

i

∣∣∣) ≤ Cτmin{q̂+1,ν+1}, (4.15)

when the time stepsize τ is sufficiently small.
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Proof. Subtracting the first equation in (4.11) from that in (4.1) yields

un,i− Un,i = τ
s∑
j=1

d11
ij

[
u̇n,j− U̇n,j

]
+ ηn,i, (4.16)

where

u̇n,i− U̇n,i = −L (un,i− Un,i)−W (ūn,i) (zn,i−Zn,i) .

Since the GLTDs are diagonally stable, there exists a positive definite diagonal matrix H̃ =

diag([h̃1, h̃2, · · · , h̃s]) such that the matrix M̃ = (m̃ij) = H̃D11 +DT
11H̃ is positive definite.

Hence, the matrix D11 is nonsingular and there exists a positive constant l dependent only on

the method such that the matrix

M̃ l = (m̃
(l)
ij ) = D−T11 M̃D−1

11 − 2lH̃ = D−T11 H̃ + H̃D−1
11 − 2lH̃ (4.17)

is positive definite. Use m̃
(d)
ij to denote the entries of the matrix M̃d = H̃D−1

11 .

It holds

0 ≤ 2l
s∑
i=1

h̃i ‖un,i− Un,i‖2 − 2τ
s∑
i=1

h̃i (−L (un,i− Un,i) , un,i− Un,i)

(4.17)
= −

s∑
i,j=1

m̃
(l)
ij (un,i− Un,i, un,j− Un,j) + 2

s∑
i,j=1

m̃
(d)
ij (un,i− Un,i, un,j− Un,j)

− 2τ
s∑
i=1

h̃i (−L (un,i− Un,i) , un,i− Un,i)

(4.16)
= −

s∑
i,j=1

m̃
(l)
ij (un,i− Un,i, un,j− Un,j) + 2

s∑
i,j=1

m̃
(d)
ij (un,i− Un,i, ηn,j)

− 2τ
s∑
i=1

h̃i (W (ūn,i) (zn,i−Zn,i) , un,i− Un,i)

≤ − λl
s∑
i=1

‖un,i − Un,i‖2 + C

s∑
i=1

‖un,i − Un,i‖
s∑
i=1

‖ηn,i‖

+ τC
s∑
i=1

‖un,i − Un,i‖
s∑
i=1

|zn,i −Zn,i| , (4.18)

where the hypothesis H1 has been used in the last inequality, and λl is the minimum eigenvalue
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of M̃ l. Therefore, one can obtain

s∑
i=1

‖un,i − Un,i‖ ≤ τC

s∑
i=1

|zn,i −Zn,i|+ C

s∑
i=1

‖ηn,i‖ . (4.19)

Combining it with (4.16) gives

s∑
i=1

∥∥∥u̇n,i − U̇n,i∥∥∥ ≤ C
s∑
i=1

|zn,i −Zn,i|+ τ−1C

s∑
i=1

‖ηn,i‖ . (4.20)

Using both the second equations in (4.1) and (4.11) gives

zn,i−Zn,i=τ
s∑
i=1

d11
ij

(
żn,i− Żn,i

)
+ σn,i=

τ

2

s∑
i=1

d11
ij

(
W (ūn,i), u̇n,i− U̇n,i

)
+ σn,i, (4.21)

and then further using (4.20) gets

s∑
i=1

|zn,i −Zn,i| ≤ τC
s∑
i=1

∥∥∥u̇n,i − U̇n,i∥∥∥+ C
s∑
i=1

|σn,i|

(4.20)

≤ C
s∑
i=1

(‖ηn,i‖+ τ |zn,i −Zn,i|) + C
s∑
i=1

|σn,i| .

When τ is sufficiently small, the above inequality infers

s∑
i=1

|zn,i −Zn,i| ≤ C
s∑
i=1

(‖ηn,i‖+ |σn,i|) . (4.22)

Combining (4.22) with the first equality in (4.21) yields

s∑
i=1

∣∣∣żn,i − Żn,i∣∣∣ ≤ Cτ−1

s∑
i=1

(‖ηn,i‖+ |σn,i|) . (4.23)

On the other hands, it follows from both the first equations in (4.2) and (4.12) and the inequality

(4.20) that

r∑
i=1

∥∥∥ûi(tn+1)− U [n+1]
i

∥∥∥ ≤ τC
s∑
i=1

∥∥∥u̇n,i − U̇n,i∥∥∥+ C
r∑
i=1

∥∥∥η[n]
i

∥∥∥
(4.20)

≤ C
s∑
i=1

(‖ηn,i‖+ τ |zn,i −Zn,i|) + C
r∑
i=1

∥∥∥η[n]
i

∥∥∥
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(4.22)

≤ C
s∑
i=1

(‖ηn,i‖+ |σn,i|) + C

r∑
i=1

∥∥∥η[n]
i

∥∥∥ . (4.24)

Also, by both the second equations in (4.2) and (4.12) and the inequality (4.23), one can

conclude

r∑
i=1

∣∣∣ẑi(tn+1)−Z [n+1]
i

∣∣∣ ≤ τC
s∑
i=1

∣∣∣żn,i− Żn,i∣∣∣+ C
r∑
i=1

∣∣∣σ[n]
i

∣∣∣
(4.23)

≤ C

s∑
i=1

(‖ηn,i‖+ |σn,i|) + C

r∑
i=1

∣∣∣σ[n]
i

∣∣∣ . (4.25)

Finally, in terms of (4.19), (4.22), (4.24) and (4.25), and using Lemma 4.1, we can obtain the

estimates (4.14) and (4.15) so that the proof is completed.

Denote the “errors” by

En,i = Un,i − Un,i, E [n]
i = U [n]

i − u
[n]
i , Dn,i = Zn,i − Zn,i, D[n]

i = Z [n]
i − z

[n]
i ,

En,i = un,i − Un,i, E
[n]
i = ui(tn)− u[n]

i , Dn,i = zn,i − Zn,i, D
[n]
i = zi(tn)− z[n]

i .

The errors for the SAV-GL schemes (2.13)-(2.14) can be estimated as follows.

Theorem 4.3. Under the hypothesises H1 and H2, if the GLTDs (2.2) are algebraically stable

and diagonally stable and their generalized stage order is q̂, then the SAV-GL schemes (2.13)-

(2.14) have the following error estimates

r∑
i=1

(∥∥∥E[n+1]
i

∥∥∥2

+
∣∣∣D[n+1]

i

∣∣∣2)+ τ

s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ Cτmin{2q̂,2ν}, (4.26)

when the time stepsize τ is sufficiently small.

Proof. Subtracting (2.13)-(2.14) from (4.11)-(4.13) yields


En,i = τ

s∑
j=1

d11
ij Ėn,i +

r∑
j=1

d12
ij Ê

[n]
j ,

Dn,i = τ
s∑
j=1

d11
ij Ḋn,i +

r∑
j=1

d12
ij D̂

[n]
j , i = 1, 2, · · · , s,

(4.27)
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and


E [n+1]
i = τ

s∑
j=1

d21
ij Ėn,i +

r∑
j=1

d22
ij Ê

[n]
j ,

D[n+1]
i = τ

s∑
j=1

d21
ij Ḋn,i +

r∑
j=1

d22
ij D̂

[n]
j , i = 1, 2, · · · , k,

(4.28)

where Ê
[n]
i = ûi(tn)− u[n]

i , D̂
[n]
i = ẑi(tn)− z[n]

i and

Ėn,i = −LEn,i −Dn,iW (Ū
(n)
i )−Zn,i

[
W (ū

(n)
i )−W (Ū

(n)
i )
]
, (4.29)

Ḋn,i =
1

2

(
W (ū

(n)
i )−W (Ū

(n)
i ), U̇n,i

)
+

1

2

(
W (Ū

(n)
i ), Ėn,i

)
. (4.30)

Since the GLTDs (2.2) are algebraically stable, there exist a symmetric positive definite matrix

G ∈ Rr×r and a non-negative definite diagonal matrix H ∈ Rs×s such that the matrix M =

(mij) ∈ R(r+s)×(r+s) is non-negative definite. Hence, from both the first equations in (4.27) and

(4.28), one can deduce

(
E [n+1], E [n+1]

)
G −

(
Ê

[n]
, Ê

[n]
)
G
− 2τ

s∑
i=1

hi

(
En,i, Ėn,i

)
=

r∑
i,j

gij

(
E [n+1]
i , E [n+1]

j

)
−

r∑
i,j

gij

(
Ê

[n]
i , Ê

[n]
j

)
− 2τ

s∑
i=1

hi

(
En,i, Ėn,i

)
= −

r∑
i,j

gij

(
Ê

[n]
i , Ê

[n]
j

)
+

r∑
i,j

gij

(
r∑

k=1

d22
ik Ê

[n]
k ,

r∑
k=1

d22
jl Ê

[n]
l

)

− 2τ
s∑
i=1

hi

(
r∑

k=1

d12
ik Ê

[n]
i , Ėn,i

)
+ 2τ

r∑
i,j

gij

(
r∑

k=1

d22
ik Ê

[n]
k ,

s∑
k=1

d21
jl Ėn,l

)

− 2τ 2

s∑
i=1

hi

(
s∑

k=1

d11
ik Ėn,k, Ėn,i

)
+ τ 2

r∑
i,j

gij

(
s∑

k=1

d21
ik Ėn,k,

s∑
k=1

d21
jl Ėn,l

)

= −
r∑
i,j

pij

(
Ê

[n]
i , Ê

[n]
j

)
− 2τ

r∑
i=1

s∑
j=1

sij

(
Ê

[n]
i , Ėn,i

)
− τ 2

s∑
i,j

qij

(
Ėn,i, Ėn,i

)
,

which can be rewritten as

(
E [n+1], E [n+1]

)
G =

(
Ê

[n]
, Ê

[n]
)
G

+ 2τ
s∑
i=1

hi

(
En,i, Ėn,i

)
−

r+s∑
i,j

mij

(
Ēn,i, Ēn,j

)
, (4.31)
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where

Ēn :=
(
Ê

[n]
1 , Ê

[n]
2 , · · · , Ê[n]

r , τ Ėn,1, τ Ėn,2, · · · , τ Ėn,s
)T

.

Since the matrix M is non-negative definite, one has from (4.31) that

(
E [n+1], E [n+1]

)
G ≤

(
Ê

[n]
, Ê

[n]
)
G

+ 2τ
s∑
i=1

hi

(
En,i, Ėn,i

)
. (4.32)

In the following, the mathematical induction is used to prove the inequality (4.26) for all

1 ≤ n ≤ K − 1. Assume 1 ≤ m ≤ K − 1 and (4.26) is true for all n ≤ m. Let us prove (4.26)

for n = m+ 1.

For evaluating the starting values by the extrapolation, it holds for n ≤ m that

∥∥ūn,i − Ūn,i∥∥ ≤ C

(
s∑
i=1

‖En−1,i‖+
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥) ,
which further implies that

∥∥W (ūn,i)−W (Ūn,i)
∥∥ ≤ C

(
s∑
i=1

‖En−1,i‖+
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥) , (4.33)

since the function W is locally Lipschitz continuous. In terms of (4.33) and the boundedness

of the quantity Ūn,i for n ≤ m due to the induction assumption, we can obtain

∥∥Dn,iW (Ūn,i)+Zn,i
[
W (ūn,i)−W (Ūn,i)

]∥∥≤C(|Dn,i|+ s∑
i=1

‖En−1,i‖+
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥). (4.34)

Using (4.29) and (4.34) gives

(
En,i, Ėn,i

)
(4.29)
= −(En,i,LEn,i)−

(
En,i,Dn,iW (Ūn,i)+Zn,i

[
W (ūn,i)−W (Ūn,i)

])
,

(4.34)

≤ − (En,i,LEn,i)+
1

2
‖En,i‖2+ C

(
|Dn,i|2+

s∑
i=1

‖En−1,i‖2+
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2
)
. (4.35)

Substituting it into (4.32) yields for n ≤ m that

∥∥E [n+1]
∥∥2

G + 2τ
s∑
i=1

hi (En,i,LEn,i)
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≤
∥∥∥Ê[n]

∥∥∥2

G
+ Cτ

s∑
i=1

(
|Dn,i|2 + ‖En,i‖2 + ‖En−1,i‖2)+ Cτ

r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

. (4.36)

Similarly, using both the second equations in (4.27) and (4.28) can derive

∥∥D[n+1]
∥∥2

G ≤
∥∥∥D̂[n]

∥∥∥2

G
+ Cτ

s∑
i=1

(
|Dn,i|2+ ‖En,i‖2+ ‖En−1,i‖2)+ Cτ

r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

. (4.37)

Combining (4.36) with (4.37) gives for n ≤ m that

∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2τ
s∑
i=1

hi (En,i,LEn,i)

≤
∥∥∥Ê[n]

∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G
+ Cτ

[
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

+
s∑
i=1

(
|Dn,i|2+ ‖En,i‖2+ ‖En−1,i‖2)] . (4.38)

On the other hand, testing the first relation in (4.27) with En,i yields

s∑
i=1

‖En,i‖2 ≤ C
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

+ Cτ
s∑

i,j=1

d11
ij

(
En,i, Ėn,j

)
.

Using (4.29) and (4.34) gives

s∑
i,j=1

d11
ij

(
En,i, Ėn,i

)
(4.29)
= −

s∑
i,j=1

d11
ij

(
En,i,LEn,j+Dn,jW (Ūn,j)+Zn,j

[
W (ūn,j)−W (Ūn,j)

])
(4.34)

≤ C
s∑
i=1

[
(En,i,LEn,i)+ |Dn,i|2+ ‖En,i‖2+ ‖En−1,i‖2]+ C

r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

.

Thus, combining the last two inequalities derives

s∑
i=1

‖En,i‖2 ≤ Cτ
s∑
i=1

[
(En,i,LEn,i)+ |Dn,i|2+ ‖En,i‖2+ ‖En−1,i‖2]

+ C(1 + τ)
r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

. (4.39)

Also, in a similar way, we obtain

s∑
i=1

|Dn,i|2 ≤ Cτ
s∑
i=1

[
(En,i,LEn,i)+ |Dn,i|2 + ‖En,i‖2 + ‖En−1,i‖2]
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+ C
r∑
i=1

∣∣∣D̂[n]
i

∣∣∣2 + Cτ

r∑
i=1

∥∥∥Ê[n]
i

∥∥∥2

. (4.40)

Summing up (4.39) and (4.40) yields

s∑
i=1

(
‖En,i‖2+|Dn,i|2

)
≤C

r∑
i=1

(∥∥∥Ê[n]
i

∥∥∥2

+
∣∣∣D̂[n]

i

∣∣∣2)+Cτ
s∑
i=1

[
(En,i,LEn,i)+‖En−1,i‖2]

≤ C

(∥∥∥Ê[n]
∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G

)
+ Cτ

s∑
i=1

[
hi (En,i,LEn,i)+ ‖En−1,i‖2] , (4.41)

for sufficiently small τ , where the equivalence between the weighted norm and the L2 norm and

the positivity of the weights h1, h2, · · · , hs are used in the second inequality. Inserting (4.41)

to (4.38) gives

∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2τ
s∑
i=1

hi (En,i,LEn,i)

≤(1+C1τ)

(∥∥∥Ê[n]
∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G

)
+ C1τ

2

s∑
i=1

hi (En,i,LEn,i)+ C1τ
s∑
i=1

‖En−1,i‖2 , (4.42)

with a constant C1 > 0. Multiplying (4.41) by 2C1τ and adding to (4.42) gives

∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2τ
s∑
i=1

hi (En,i,LEn,i) + 2C1τ
s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤(1+C2τ)

(∥∥∥Ê[n]
∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G

)
+ C2τ

2

s∑
i=1

hi (En,i,LEn,i)+ (C1+C2τ)τ
s∑
i=1

‖En−1,i‖2 ,

with a constant C2 > 0. For sufficiently small τ , the term C2τ
2

s∑
i=1

hi (En,i,LEn,i) can be absorbed

by the left-hand side, and C1+C2τ ≤ 2C1. Hence, the above inequality is reduced to

∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2τ
s∑
i=1

hi (En,i,LEn,i) + 2C1τ
s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤(1+C2τ)

[∥∥∥Ê[n]
∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G
+ 2C1τ

s∑
i=1

(
‖En−1,i‖2+ |Dn−1,i|2

)]
. (4.43)
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On the other hand, it follows from the Cauchy inequality that

∥∥∥Ê[n+1]
∥∥∥2

G
+
∥∥∥D̂[n+1]

∥∥∥2

G
≤
(

1+
1

τ

)[∥∥û(tn+1)− U [n+1]
∥∥2

G +
∥∥ẑ(tn+1)−Z [n+1]

∥∥2

G

]
,

+ (1+τ)
[∥∥E [n+1]

∥∥2

G +
∥∥D[n+1]

∥∥2

G

]
, (4.44)

which implies by Theorem 4.2 that

∥∥∥Ê[n+1]
∥∥∥2

G
+
∥∥∥D̂[n+1]

∥∥∥2

G
≤ (1+τ)

(∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G

)
+ Cτmin{2q̂+1,2ν+1}. (4.45)

Also, we can obtain

s∑
i=1

(
‖En,i‖2+ |Dn,i|2

)
≤ (1+τ)

s∑
i=1

(
‖En,i‖2+ |Dn,i|2

)
+ Cτmin{2q̂+1,2ν+1}. (4.46)

Multiplying (4.46) by 2C1τ and adding to (4.45) yields

∥∥∥Ê[n+1]
∥∥∥2

G
+
∥∥∥D̂[n+1]

∥∥∥2

G
+ 2C1τ

s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ (1+τ)

[∥∥E [n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2C1τ
s∑
i=1

(
‖En,i‖2+ |Dn,i|2

)]
+ C3τ

min{2q̂+1,2ν+1}

(4.43)

≤ (1+C3τ)

[∥∥∥Ê[n]
∥∥∥2

G
+
∥∥∥D̂[n]

∥∥∥2

G
+ 2C1τ

s∑
i=1

(
‖En−1,i‖2 + |Dn−1,i|2

)]

+ C3τ
min{2q̂+1,2ν+1}, (4.47)

with some positive constant C3. According to the sum formula of the geometric sequence and

the common inequality (1 + a)n ≤ exp(na), ∀a ≥ 0, an induction to (4.47) concludes

∥∥∥Ê[n+1]
∥∥∥2

G
+
∥∥∥D̂[n+1]

∥∥∥2

G
+ 2C1τ

s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ C4

[∥∥∥Ê[1]
∥∥∥2

G
+
∥∥∥D̂[1]

∥∥∥2

G
+ 2C1τ

s∑
i=1

(
‖E0,i‖2 + |D0,i|2

)]
+ C4τ

min{2q̂,2ν}. (4.48)
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Considering the definition of the generalized stage order gives

ui(tn)− Ûi(tn) = O(hq̂), zi(tn)− ẑi(tn) = O(hq̂), i = 1, 2, · · · , r.

Finally, by (4.48) and the commonly used triangle inequality, it can be deduced

∥∥E[n+1]
∥∥2

G +
∥∥D[n+1]

∥∥2

G + 2C1τ
s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ C5

[∥∥E[1]
∥∥2

G +
∥∥D[1]

∥∥2

G + 2C1τ
s∑
i=1

(
‖E0,i‖2 + |D0,i|2

)]
+ C5τ

min{2q̂,2ν}. (4.49)

Thanks to the equivalence between the weighted norm and the L2 norm, (4.49) implies (4.26)

for n = m + 1. Therefore, by the mathematical induction, the estimate (4.26) holds for all

1 ≤ n ≤ K − 1. The proof is completed.

When both the stage order and method order of the GLTDs (2.2) are q, their generalized

stage orders are at least q̂ = q. Hence, Theorem 4.3 implies the following result directly.

Corollary 4.4. Under the hypothesises H1 and H2, if the GLTDs (2.2) are algebraically stable

and diagonally stable, their both stage order and method order are q, then the discrete solutions

derived by the schemes (2.13)-(2.14) satisfy

r∑
i=1

(∥∥∥E[n+1]
i

∥∥∥2

+
∣∣∣D[n+1]

i

∣∣∣2)+ τ
s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ Cτmin{2q,2ν}, (4.50)

when the time stepsize τ is sufficiently small.

In the following, we further investigate when the convergence orders of the SAV-GL schemes

(2.13)-(2.14) are one higher than the stage order of the GLTDs. Suppose that the GLTDs (2.2)

have the stage order q and method order p = q + 1, then it follows that

s∑
i=1

(‖ηn,i‖+ |σn,i|) ≤ Cτmin{q+1,ν+1},
r∑
i=1

(∥∥∥η[n]
i

∥∥∥+
∣∣∣σ[n]
i

∣∣∣) ≤ Cτmin{q+2,ν+1}, (4.51)

where the local errors ηn,i, η
[n]
i , σn,i and σ

[n]
i are defined by (4.1) and (4.2) with ûi(tn) = ui(tn)
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and ẑi(tn) = zi(tn) for i = 1, 2, . . . , r. Moreover, if the condition (2.4) holds, we have

ηn,i− κτ q+1u(q+1)(tn)=O(τ q+2), σn,i− κτ q+1z(q+1)(tn)=O(τ q+2), i=1, 2, · · · , s. (4.52)

Hence, in (4.1)-(4.2), we can take

ûi(tn) = ui(tn) + wi0κτ
q+1u(q+1)(tn), ẑi(tn) = zi(tn) + wi0κτ

q+1z(q+1)(tn),

such that

s∑
i=1

(‖ηn,i‖+ |σn,i|) ≤ Cτmin{q+2,ν+1}.

Therefore, by Theorem 4.3, the following result is derived.

Theorem 4.5. Under the hypothesises H1 and H2, if the GLTDs (2.2) are algebraically stable

and diagonally stable, their stage order and method order are q and q+ 1, respectively, and the

condition (2.4) holds, then the discrete solutions derived by the schemes (2.13)-(2.14) satisfy

r∑
i=1

(∥∥∥E[n+1]
i

∥∥∥2

+
∣∣∣D[n+1]

i

∣∣∣2)+ τ
s∑
i=1

(
‖En,i‖2 + |Dn,i|2

)
≤ Cτmin{2q+2,2ν}, (4.53)

when the time stepsize τ is sufficiently small.

Remark 4.1. The above result shows the advantage of the generalized stage order that the

convergence orders of the SAV-GL schemes (2.13)-(2.14) may be one higher than the stage

order of the GLTDs (2.2).

4.3. Applications to the one-leg and MRK time discretization

This subsection presents the convergence results for the special SAV-GL schemes (3.7), (3.8)

and (3.10)-(3.11) as practical applications of Theorems 4.3 and 4.5.

For the SAV-GL scheme (3.7), where ν = 2, it can be checked that the one-step one-leg time

discretization (2.6) has the generalized stage order q̂ = 2 for θ = 1
2

and q̂ = 1 for 1
2
< θ ≤ 1

when it is written as a GLTD, so that using Theorem 4.3 can give the following results.
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Theorem 4.6. Under the hypothesises H1 and H2, if the time stepsize τ is sufficiently small,

then the scheme (3.7) has the following error estimates

∥∥u(·, tn+1)− un+1
∥∥2

+
∣∣z(tn+1)− zn+1

∣∣2 ≤ Cτ 2, (4.54)

for 1
2
< θ ≤ 1, and

∥∥u(·, tn+1)− un+1
∥∥2

+
∣∣z(tn+1)− zn+1

∣∣2 ≤ Cτ 4, (4.55)

for θ = 1
2
.

Remark 4.2. The inequality (4.54) can be derived by Corollary 4.4, since both the stage order

and method order of the one-step one-leg time discretization (2.6) with 1
2
< θ ≤ 1 are 1 when

it is written as a GLTD. However, for θ = 1
2
, the stage order and method order of (2.6) are

respectively 1 and 2 and the condition (2.4) holds so that the inequality (4.55) can be derived

by Theorem 4.5.

Remark 4.3. An error estimate was also derived in [59] for the scheme (3.7) with θ = 1 and

1
2
, respectively. Although that result can be extended to the scheme (3.7) for any θ ∈ [1

2
, 1],

it seems quite difficult to obtain the rigorous error estimate for the general SAV-GL schemes

(2.13)-(2.14).

For the SAV-GL scheme (3.8), where the number of extrapolation points is two, a simple

calculation can show that the two-step one-leg time discretization (2.7) has the generalized

stage order q̂ = 2 so that in terms of Theorem 4.3, the following optimal error estimate can be

obtained.

Theorem 4.7. Under the hypothesises H1 and H2, if the time stepsize τ is sufficiently small,

the scheme (3.8) with γ ≥ 0 and δ > 0 satisfies

∥∥u(·, tn+1)− un+1
∥∥2

+
∣∣z(tn+1)− zn+1

∣∣2 ≤ Cτ 4. (4.56)

Remark 4.4. The estimate (4.56) can also be derived by Theorem 4.5, since the stage order
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and the method order of the time discretization (2.7) are 1 and 2, respectively when it is written

as a GLTD, and the condition (2.4) holds.

For the MRK time discretization (2.8), due to the simplified conditions B(s) and C(s), its

generalized stage order q̂ is at least 2, when the integer s = 1 and the number of extrapolation

points ν = 2, while it is at least s when the integer s ≥ 2 and the number of extrapolation

points ν = s. Therefore, using Theorem 4.3 can conclude the following error estimate for the

SAV-GL scheme (3.10)-(3.11).

Theorem 4.8. Under the hypothesises H1 and H2, if the MRK time discretization is alge-

braically stable and diagonally stable, and the conditions B(s) and C(s) hold, then the SAV-GL

scheme (3.10)-(3.11) satisfies the following error estimates

∥∥u(·, tn+1)− un+1
∥∥2

+
∣∣z(tn+1)− zn+1

∣∣2 ≤ Cτ 4, for s = 1, (4.57)

and

∥∥u(·, tn+1)− un+1
∥∥2

+
∣∣z(tn+1)− zn+1

∣∣2 ≤ Cτ 2s, for s ≥ 2, (4.58)

when the time stepsize τ is sufficiently small.

Remark 4.5. The error estimates (4.57) and (4.58) of the SAV-GL schemes (3.10)-(3.11)

can be reduced to those for the Allen-Cahn equation in [1], which was deduced with a different

technique.

Remark 4.6. The inequality (4.58) shows that the SAV-GL schemes (3.10)-(3.11) with the

integer s ≥ 2 and the number of extrapolation points ν = s are convergent with the order of s

for the gradient flows. However, numerical experiments in Section 6 will show that the SAV-GL

schemes (3.10)-(3.11) can be convergent with the order of s + 1 when adding an extrapolation

point, i.e., ν = s+ 1.
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5. Spatial discretization

This section introduces the Fourier spectral spatial discretization of the SAV-GL schemes

(2.13)-(2.14) to derive the fully discrete SAV-GL schemes for the gradient flows with the periodic

boundary conditions in order to conduct our numerical validation in next section. Because the

proof of the energy stability in Section 3 is variational and the energy stability is available for

the boundary conditions which make all boundary terms disappear when the integration by

parts is performed, the above results on the energy stability can be straightforwardly extended

to the fully discrete SAV-GL schemes with the Galerkin finite element or the spectral methods

or the finite difference methods, satisfying the summation by parts for the spatial discretization.

Assume that the domain Ω = (0, L)× (0, L) is uniformly partitioned into

Ωh = {(xi, yj)|xi = ih, yj = jh, 0 ≤ i, j ≤ N − 1},

with h = L
N

and N ∈ Z+ (assumed even). Temporarily ignore the time dependence of function

u etc in (2.13)-(2.14). The Fourier spectral spatial discretization is a function-space method

that approximates an arbitrary discrete periodic function u(xi, yj) defined on Ωh by a finite

sum of N2 complex exponentials

u(xi, yj) ≈ uN(xi, yj) =

N/2−1∑
m,l=−N/2

ûm,le
ıξmxieıηlyj , 0 ≤ i, j ≤ N − 1,

where ı =
√
−1, ξm = 2πm/L, ηl = 2πl/L, and ûm,l are the (discrete) Fourier coefficients

calculated by the discrete Fourier transform

ûm,l =
1

N2

N−1∑
i,j=0

u(xi, yj)e
−ı(ξmxi+ηlyj).

Let Vh := {v = (vij), vij ∈ R, 0 ≤ i, j ≤ N − 1} be the grid function space defined on Ωh,

and assume that u
[n]
i ∈ Vh and z

[n]
i ∈ R are given for i = 1, 2, · · · , r. Applying the discrete
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Fourier transform to the semi-discrete SAV-GL schemes (2.13)-(2.14) yields


Ûn,i = τ

s∑
j=1

d11
ij

˙̂
Un,j +

r∑
j=1

d12
ij û

[n]
j ,

Zn,i = τ
s∑
j=1

d11
ij Żn,j +

r∑
j=1

d12
ij z

[n]
j , i = 1, 2, · · · , s,

(5.1)

and


û

[n+1]
i = τ

s∑
j=1

d21
ij

˙̂
Un,j +

r∑
j=1

d22
ij û

[n]
j ,

z
[n+1]
i = τ

s∑
j=1

d21
ij Żn,j +

r∑
j=1

d22
ij z

[n]
j , i = 1, 2, · · · , r,

(5.2)

where Ûn,i and û
[n]
i are the discrete Fourier coefficients of Un,i and u

[n]
i ∈ Vh, respectively, Zn,i

and z
[n+1]
i are used as the same as the symbols in the semi-discrete scheme (2.13)-(2.14), since

those quantities are not changed when applying the discrete Fourier transform, and

˙̂
Un,i=Gh◦µ̂n,i, µ̂n,i=Lh◦Ûn,i + Zn,iŴ (Ūn,i), Żn,i=

1

2

〈
Ŵ (Ūn,i),

˙̂
Un,i

〉
, i=1, 2, · · · , s, (5.3)

where “◦” denotes the Shur product symbol, 〈·, ·〉 is the discrete L2 inner product defined by

〈φ,ψ〉 := h2
N−1∑
i,j=0

φijψij for any φ,ψ ∈ Vh, and Gh and Lh are the analytical formulas of the

operators G and L in the discrete Fourier space. Specifically, Gh is a N × N matrix with the

elements Gh(m, l) = −(ξ2
m + η2

l ) (resp. −1) for the H−1 (resp. L2) gradient flow, and Lh also

is a N ×N matrix with the elements Lh(m, l) = −α(ξ2
m + η2

l ) + β for the case of L = α∆ + β

with α > 0, β ≥ 0. Once {Ûn,i, û
[n+1]
i } are known by solving (5.1)-(5.3), one can compute the

numerical solutions {Un,i, u
[n+1]
i ∈ Vh} by using the discrete inverse Fourier transform. Similar

to the semi-discrete SAV-GL schemes (2.13)-(2.14), the fully discrete schemes (5.1)-(5.3) are

also unconditionally energy stable.

Theorem 5.1. If the GL time discretizations (2.2) are algebraically stable with a symmetric

and positive definite matrix G = (gij) ∈ Rr×r, then the fully discrete SAV-GL schemes (5.1)-
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(5.3) satisfy the following energy decay property

1

2

r∑
i,j

gij

〈
Lh ◦ û[n+1]

i , û
[n+1]
j

〉
+
∥∥z[n+1]

∥∥2

G ≤
1

2

r∑
i,j

gij

〈
Lh ◦ û[n]

i , û
[n]
j

〉
+
∥∥z[n]

∥∥2

G . (5.4)

Remark 5.1. The proof of Theorem 5.1 is similar to that of Theorem 3.1 so that it is skipped

here to avoid repetition. Due to the discrete Parseval equality, the inequality (5.4) can be

extended for {Un,i, u
[n+1]
i }. The Fourier spectral discretization in (5.1)-(5.3) can be directly

applied to the special semi-discrete schemes (3.7), (3.8) and (3.10)-(3.11) with the energy decay

deduced from Theorem 5.1.

Remark 5.2. This paper does not focus on the error estimates of the fully discrete schemes

(5.1)-(5.3). The readers are referred to [16, 50], in which the error estimates of the fully discrete

SAV-BDF1 and SAV-CN schemes with the Fourier spectral or finite-element discretization in

space are addressed.

Before ending this section, the implementation of the fully discrete SAV-GL schemes (5.1)-

(5.2) is outlined here for the case of that the GLTDs are diagonally stable. For any sN × sN

matrix Φ = (φij) with φij ∈ RN×N , i, j = 1, 2, . . . , s, and sN × N matrix Ψ = (ψs, · · · ,ψs)T

with ψi ∈ RN×N , i = 1, 2, . . . , s, we define the sN ×N matrix V = (v1, · · · , vs)T := Φ •Ψ with

vi =
s∑
j=1

φij ◦ ψj ∈ RN×N , i = 1, 2, . . . , s.

It can be deduced from (5.1) and (5.3) that

[
τ−1D−1

11 ⊗IN − (Gh◦Lh)⊗Is
]
• Ûn

= τ−1
[(
D−1

11 D12

)
⊗IN

]
• û[n] + (Zn⊗IN)◦Bn, (5.5)(

τ−1D−1
11 −Cn/2

)
Zn = τ−1D−1

11 D12z
[n] + C̃

n
/2, (5.6)

where

Û
n

:=
(
Ûn,1, Ûn,2, . . . , Ûn,s

)T
, û

[n] :=
(
û

[n]
1 , û

[n]
2 , . . . , û[n]

s

)T
, Zn :=(Zn,1, Zn,2, . . . , Zn,s)

T ,

z[n] :=
(
z

[n]
1 , z

[n]
2 , . . . , z[n]

s

)T
, Ŵ n,i :=Ŵ (Ūn,i), Ŵ

n
:=
(
Ŵ n,1, Ŵ n,2, . . . , Ŵ n,s

)T
,

Cn :=diag
[〈
Ŵ n,1,Gh ◦ Ŵ n,1

〉
,
〈
Ŵ n,2,Gh ◦ Ŵ n,2

〉
, . . . ,

〈
Ŵ n,s,Gh ◦ Ŵ n,s

〉]
,

Bn :=
(
Gh ◦ Ŵ n,1,Gh ◦ Ŵ n,2, . . . ,Gh ◦ Ŵ n,s

)T
,
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and ⊗ denotes the Kronecker product symbol, Is is the s× s identity matrix, IN is the N ×N

matrix with all elements being one, while C̃
n

is an unknown vector given by

C̃
n

:=
(〈
Ŵ n,1,Gh◦Lh◦Ûn,1

〉
,
〈
Ŵ n,2,Gh◦Lh◦Ûn,2

〉
, . . . ,

〈
Ŵ n,s,Gh◦Lh◦Ûn,s

〉)T
.

The discrete operator Gh in Fourier space is non-positive, so is the diagonal matrix Cn. When

the GLTDs (2.2) are diagonally stable, the matrix τ−1D−1
11 − 1

2
Cn is invertible, see Theorem 3.1

in [14]. Multiplying (5.6) with
(
τ−1D−1

11 − 1
2
Cn
)−1

and substituting the derived equation into

(5.5) yields

[
τ−1D−1

11 ⊗IN − (Gh◦Lh)⊗Is
]
• Ûn

= Rn +
1

2

[(
τ−1D−1

11 −Cn/2
)−1

C̃
n⊗IN

]
◦Bn, (5.7)

where τ−1D−1
11 ⊗IN − (Gh◦Lh)⊗Is is invertible and

Rn := τ−1
[(
D−1

11 D12

)
⊗IN

]
• û[n] +

[(
τ−1D−1

11 −Cn/2
)−1

D−1
11 D12z

[n]⊗IN
]
◦Bn.

To summarize, the SAV-GL schemes (5.1)-(5.2) are implemented as follows:

(1) Compute Û
n

from (5.7);

(2) Compute Zn from (5.6) or the second equation of (5.1);

(3) Compute û[n+1] and z[n+1] from (5.2).

Remark 5.3. We solve the linear system (5.7) by using an incomplete iteration. Instead of

(5.7), iteratively, for each k ≥ 0, one solves the simplified linear system

[
τ−1D−1

11 ⊗IN−(Gh◦Lh)⊗Is
]
• Ûn,(k+1)

=Rn+
1

2

[(
τ−1D−1

11 −Cn/2
)−1

C̃
n,(k)⊗ IN

]
◦Bn,

(5.8)

where

C̃
n,(k)

:=
(〈
Ŵ n,1,Gh◦Lh◦Û

(k)

n,1

〉
,
〈
Ŵ n,2,Gh◦Lh◦Û

(k)

n,2

〉
, . . . ,

〈
Ŵ n,s,Gh◦Lh◦Û

(k)

n,s

〉)T
,
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and Û
n,(0)

:=
( ̂̄Un,1, ̂̄Un,2, . . . , ̂̄Un,s

)T
. If

∥∥∥Ûn,(k+1) − Ûn,(k)
∥∥∥ =

∑s
i=1

∥∥∥Û (k+1)

n,i − Û (k)

n,i

∥∥∥ ≤ 10−12,

then stop the above iteration and do Û
n

:= Û
n,(k+1)

.

Remark 5.4. In our computations, the codes are written in MATLAB and call both fft and

ifft functions directly for the discrete Fourier and inverse Fourier transforms, so that they are

simple and efficient.

6. Numerical experiments

This section applies respectively the SAV-GL schemes (3.7), (3.8) and (3.10)-(3.11) com-

bined with the Fourier spectral method to three typical gradient flow models (the Allen-Cahn,

Cahn-Hilliard, and phase field crystal) with the periodic boundary conditions in order to demon-

strate their energy stability and accuracy. Specially, (3.7) with θ = 3
4
, (3.8) with γ = δ = 1, and

(3.8) with γ = δ = 2 are chosen and corresponding fully-discrete SAV-GL schemes are abbrevi-

ated as SAV-GL(1), SAV-GL(2) and SAV-GL(3), respectively, for convenience. For (3.10)-(3.11),

the coefficients are chosen as one-stage members of the two-step Runge-Kutta time discretiza-

tions [49, pp. 1497, Example 1] and two- and three-stage members of the Radau IIA time

discretizations [32, Section IV, pp. 74], and corresponding fully-discrete SAV-GL schemes are

named as SAV-GL(4), SAV-GL(5) and SAV-GL(6), respectively, for simplicity. Unless otherwise

specified, the domain Ω = [0, 2π]× [0, 2π], the spatial stepsize h = 2π
256

, the discrete free energy

is defined by

Υ(u[n], r[n]) =
1

2

r∑
i,j

gij

〈
Lh ◦ û[n]

i , û
[n]
j

〉
+
∥∥z[n]

∥∥2

G − C0,

where u[n] =
(
u

[n]
1 ,u

[n]
2 , · · · ,u[n]

r

)
with u

[n]
i ∈ Vh, z[n] =

(
z

[n]
1 , z

[n]
2 , · · · , z[n]

r

)
with z

[n]
i ∈ R, and

the matrix G = (gij) ∈ Rr×r is only dependent on the GLTDs.

6.1. Allen-Cahn model

The Allen-Cahn model is a second-order nonlinear partial differential equation (PDE)

∂u

∂t
= ε2∆u+ (u− u3), (6.1)
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introduced to describe the motion of anti-phase boundaries in crystalline solids [2] and then

widely used to study the phase transition and the interfacial dynamics in material sciences, see

e.g. [15, 28, 55]. It can be derived from the L2 gradient flow of the free energy

F(u) =

∫
Ω

ε2

2
|∇u|2 +

1

4
(u2 − 1)2dx. (6.2)

In the following, we implement SAV-GL(1)∼SAV-GL(6) for (6.1) and choose the operators

L, G and the energy F1 as follows

L = −ε2∆ + β, G = −1, F1(u) =

∫
Ω

1

4

(
u2 − 1

)2 − β

2
u2dx,

where β is a non-negative parameter, e.g. β = 2, and F1(u) is bounded from below.

Example 6.1. This example is used to check the accuracy of SAV-GL(1)∼SAV-GL(6) for the

Allen-Cahn equation (6.1). For this purpose, the parameter ε is taken as 0.1, the initial data are

chosen as u(x, y, 0) = sin(x) sin(y), and SAV-GL(6) with τ = 10−4 is used to get the reference

solution for computing the L2 errors. Table 6.1 presents the L2 errors of SAV-GL(1)∼SAV-GL(6)

at t = 1.5 and corresponding convergence rates with different time stepsizes. It can be found

that the numerical accuracies of SAV-GL(1)∼SAV-GL(4) are consistent with the theoretical,

and SAV-GL(5) and SAV-GL(6) can arrive at the third-order and fourth-order accuracy for the

Allen-Cahn equation (6.1), since the number of extrapolation points is ν = 3 and 4, respectively.

Those results well verify the statements in Remark 4.6.

Example 6.2. This example uses SAV-GL(1)∼SAV-GL(6) to simulate the phase separation

and coarsening process. The parameter ε in (6.1) is chosen as 0.05, the time stepsize τ is taken

as 0.1 or 0.01, and the initial data are u(x, y, 0) = 0.1 × rand(x, y) − 0.05, where rand(x, y)

generates random number between −1 and 1.

Figure 6.1 gives the cut lines and contour lines of the numerical solution at t = 200 derived

by SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1. We see that the numerical

solutions obtained by those schemes are similar or have a little difference due to the low-accuracy

of SAV-GL(1). Figure 6.2 presents the snapshots of the numerical solutions at t = 0, 2, 10, 50, 100
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Table 6.1: Example 6.1. L2 errors of SAV-GL(1)∼SAV-GL(6) at t = 1.5 and corresponding convergence rates.

SAV-GL(1) SAV-GL(2) SAV-GL(3)

K Errors Orders Errors Orders Errors Orders

80 4.7399e-02 – 1.2682e-03 – 2.0128e-03 –
120 3.1691e-02 0.9928 5.6554e-04 1.9918 8.9734e-04 1.9924
160 2.3803e-02 0.9950 3.1866e-04 1.9941 5.0554e-04 1.9946
200 1.9058e-02 0.9962 2.0415e-04 1.9954 3.2385e-04 1.9958
240 1.5891e-02 0.9969 1.4187e-04 1.9962 2.2504e-04 1.9965

SAV-GL(4) SAV-GL(5) SAV-GL(6)

K Errors Orders Errors Orders Errors Orders

80 1.0273e-03 – 1.2299e-06 – 1.2539e-08 –
120 4.5990e-04 1.9822 3.4481e-07 3.1365 2.2253e-09 4.2641
160 2.5961e-04 1.9877 1.4145e-07 3.0975 6.5717e-10 4.2398
200 1.6650e-04 1.9906 7.1206e-08 3.0759 2.5853e-10 4.1809
240 1.1579e-04 1.9923 4.0742e-08 3.0622 1.2207e-10 4.1160

and 200 obtained by SAV-GL(5) with τ = 0.1. One can clearly observe the phase separation

and coarsening process. In order to check numerically the discrete maximum principle of those

schemes, Figure 6.3 shows the maximal and minimal values of the numerical solutions obtained

by SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1. Figure 6.4 displays the

discrete energy curves of SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1 and

0.01. It is shown that the discrete energy curves are monotonically decreasing so that those

schemes are energy stable in solving the Allen-Cahn model (6.1); there are obvious differences

between those discrete energy curves with τ = 0.1 but the differences are indistinguishable for

τ = 0.01; and the third-order accurate SAV-GL(5) can reach steady state faster than SAV-

GL(1), SAV-GL(3) and SAV-GL(4).

6.2. Cahn-Hilliard model

The Cahn-Hilliard (CH) model was introduced by Cahn and Hilliard in [13] to describe

the complicated phase separation and coarsening phenomena. Different from the Allen-Cahn

(6.1), the CH model is derived from the H−1 gradient flow of the free energy (6.2) and is a
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Figure 6.1: Example 6.2. Cut lines of u(x, y, t) along y = π
2 (Left) and contour lines of u(x, y, t) = −0.1 (Right)

at t = 200.

Figure 6.2: Example 6.2. Snapshots of the numerical solutions at t = 0, 2, 10, 50, 100 and 200 obtained by using
SAV-GL(5) with τ = 0.1.
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Figure 6.3: Example 6.2. Maximal and minimal values (from left to right) of the numerical solutions derived
by SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1.
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fourth-order nonlinear PDE as follows

∂u

∂t
= ∆

(
−ε2∆u+ u3 − u

)
, (6.3)

In order to validate the energy stability and accuracy of SAV-GL(1)∼SAV-GL(6) for the CH

model (6.3), the operators L, G and the energy F1(u) are taken as

L = −ε2∆ + β, G = ∆, F1(u) =

∫
Ω

1

4

(
u2 − 1

)2 − β

2
u2dx,

where the parameter β is chosen as 2 in subsequent simulations, and it is obvious that the

energy F1(u) is bounded from below.

Example 6.3. This example is used to test the accuracy of SAV-GL(1)∼SAV-GL(6) for the CH

model (6.3). The parameter ε is chosen as 1, the initial data are u(x, y, 0) = 0.4 sin(x) sin(y),

and SAV-GL(6) with τ = 10−4 is used to generate the reference solution for computing the L2

errors. Table 6.2 lists the L2 errors of SAV-GL(1)∼SAV-GL(6) at t = 0.3 and corresponding

convergence rates with different time stepsizes. One can find that the numerical accuracies of

SAV-GL(1)∼SAV-GL(4) are consistent with the theoretical, while SAV-GL(5) (resp. SAV-GL(6))

with the number of extrapolation points ν = 3 (resp. ν = 4) can arrive at the third-order (resp.

fourth-order) accuracy, which validates the statement in Remark 4.6.

Example 6.4. This example applies SAV-GL(1)∼SAV-GL(6) to a benchmark problem of study-
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Table 6.2: Example 6.3. L2 errors of SAV-GL(1)∼SAV-GL(6) at t = 0.3 and corresponding convergence rates.

SAV-GL(1) SAV-GL(2) SAV-GL(3)

K Errors Orders Errors Orders Errors Orders

120 3.6925e-03 – 3.1250e-05 – 4.1560e-05 –
160 2.7695e-03 0.9998 1.7598e-05 1.9961 2.3339e-05 2.0057
200 2.2157e-03 0.9998 1.1270e-05 1.9969 1.4923e-05 2.0042
240 1.8465e-03 0.9999 7.8304e-06 1.9974 1.0357e-05 2.0034
280 1.5827e-03 0.9999 5.7548e-06 1.9978 7.6059e-06 2.0028

SAV-GL(4) SAV-GL(5) SAV-GL(6)

K Errors Orders Errors Orders Errors Orders

120 2.2516e-05 – 1.8203e-09 – 2.4250e-09 –
160 1.2680e-05 1.9959 7.7214e-10 2.9811 7.2844e-10 4.1806
200 8.1207e-06 1.9969 3.9652e-10 2.9866 2.8832e-10 4.1535
240 5.6420e-06 1.9975 2.2981e-10 2.9919 1.3615e-10 4.1153
280 4.1465e-06 1.9979 1.4486e-10 2.9935 7.2146e-11 4.1198

ing the coarsening effect. The parameter ε in (6.3) is taken as 0.1, the time stepsize τ is chosen

as 0.1 or 0.01, and the initial data are specified by the following expression [77]

u0(x, y, 0) =
2∑
i=1

− tanh

(√
(x− xi)2 + (y − yi)2 − νi

1.2ε

)
+ 1,

where (x1, y1, ν1) = (π − 0.7, π − 0.6, 1.5) and (x2, y2, ν2) = (π + 1.65, π + 1.6, 0.7).

Figure 6.6 gives the snapshos of the numerical solutions at t = 0, 2, 5, 7, 9 and 20 obtained

by SAV-GL(5) with τ = 0.01. One can clearly observe the coarsening effect that the small circle

is absorbed into the big circle, and the total absorption happens at around t = 10. Figure 6.5

presents the cut lines and contour lines of the numerical solutions at t = 5 and 20 derived by

SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1. It can be seen that those

solutions at t = 5 have some visible differences, see Figure 6.5 (a), but they become quite

similar when t = 20, see Figure 6.5 (b). Compared to the initial total mass, the total mass

differences at tn obtained by SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1

are given in Figure 6.7, which checks the mass conservation numerically. Figure 6.8 shows the

discrete energy curves of SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1 and

0.01. One can see that the discrete energy curves are monotonically decreasing so that those
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Figure 6.5: Example 6.4. Left: cut lines of the numerical solutions along y = x; right: contour lines of
u(x, y, t) = −0.1.

schemes are energy stable in solving the CH model (6.3); the discrete energy curves of those

schemes have big differences when τ = 0.1, but the differences become small for τ = 0.01; and

similarly, SAV-GL(5) can obtain the steady state faster than t SAV-GL(1), SAV-GL(3) and

SAV-GL(4). The results shown in Figure 6.8 are also consistent with the differences between

the numerical solutions at t = 5 in Figure 6.5.

6.3. Phase field crystal model

The phase field crystal (PFC) model is a sixth-order nonlinear PDE

∂u

∂t
= ∆µ, µ = u3 − ε1u2 + (1− ε2)u+ 2∆u+ ∆2u, (6.4)
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Figure 6.6: Example 6.4. Snapshots of the numerical solutions at t = 0, 2, 5, 7, 9 and 20 derived by using
SAV-GL(5) with τ = 0.1.
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Figure 6.7: Example 6.4. Total mass differences of SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with
τ = 0.1.
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Figure 6.8: Example 6.4. Discrete energies of SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1
(Left) and 0.01 (Right).

which can be derived from the H−1 gradient flow of the following free energy

F(u) =

∫
Ω

[
1

4
u4 − ε1

3
u3 +

1− ε2
2

u2 − |∇u|2 +
1

2
(∆u)2

]
dx,

where ε1 and ε2 are two non-negative constants. This model can be used to describe many

crystal phenomena such as edge dislocations [6], deformation and plasticity in nanocrystalline

material [61], fcc ordering [70], epitaxial growth and zone refinement [25]. When ε1 = 0, (6.4)

becomes the classical PFC equation.

In order to apply the SAV-GL schemes for the PFC equation successfully, the operators L,

G and the energy F1(u) are chosen as

L = α∆2 + β, G = ∆, F1(u) =

∫
Ω

[
1

4
u4 − ε1

3
u3 +

1−ε2−β
2

u2 − |∇u|2 +
1−α

2
(∆u)2

]
dx,

where 0 < α < 1 and β ≥ 0 are two given parameters. It can be verified that F1(u) is bounded

from below, since

F1(u) =

∫
Ω

[
1

4
u4 − ε1

3
u3 +

1−ε2−β
2

u2 + u∆u+
1−α

2
(∆u)2

]
dx

≥
∫

Ω

[
1

4
u4 − ε1

3
u3 +

1−ε2−β
2

u2 − 1

2(1−α)
u2

]
dx,

where the inequality ab ≥ − 1
2ε
a2 − ε

2
b2, ε > 0 is used. Let us apply SAV-GL(1)∼SAV-GL(6) to

the PFC model (6.4) in order to validate the energy stability and accuracy.
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Example 6.5. This example checks the accuracy of SAV-GL(1)∼SAV-GL(6) for the PFC model

(6.4). The parameters are taken as ε1 = 0, ε2 = 0.5, α = 0.99 and β = 4, the initial data are

u(x, y, 0) = 0.4 sin(x) cos(y), and SAV-GL(6) with τ = 5×10−5 is used to generate the reference

solution for computing the L2 errors. Table 6.3 shows the L2 errors of SAV-GL(1)∼SAV-GL(6)

at t = 0.1 and corresponding convergence rates with different time stepsizes. It is seen that

the numerical accuracies of SAV-GL(1)∼SAV-GL(4) are consistent with the theoretical, and

SAV-GL(5) (resp. SAV-GL(6)) with the number of extrapolation points ν = 3 (resp. ν = 4)

reaches the third-order (resp. fourth-order) accuracy for the PFC model (6.4), which validates

the statement in Remark 4.6.

Table 6.3: Example 6.5. L2 errors of SAV-GL(1)∼SAV-GL(6) at t = 0.1 and corresponding convergence rates.

SAV-GL(1) SAV-GL(2) SAV-GL(3)

K Errors Orders Errors Orders Errors Orders

240 4.3324e-04 – 3.2234-06 – 4.7791e-06 –
280 3.7131e-04 1.0007 2.3687e-06 1.9987 3.5115e-06 1.9995
320 3.2487e-04 1.0006 1.8138e-06 1.9989 2.6887e-06 1.9995
360 2.8875e-04 1.0005 1.4333e-06 1.9990 2.1245e-06 1.9995
400 2.5987e-04 1.0005 1.1610e-06 1.9991 1.7209e-06 1.9995

SAV-GL(4) SAV-GL(5) SAV-GL(6)

K Errors Orders Errors Orders Errors Orders

240 8.8351e-07 – 1.1427e-09 – 4.4513e-10 –
280 6.4931e-07 1.9980 7.1376e-10 3.0528 2.4953e-10 3.7546
320 4.9724e-07 1.9982 4.7372e-10 3.0700 1.4818e-10 3.9028
360 3.9296e-07 1.9984 3.2929e-10 3.0877 9.3183e-11 3.9384
400 3.1835e-07 1.9985 2.3740e-10 3.1055 6.1172e-11 3.9947

Example 6.6. This example is used to simulate the polycrystal growth in a supercool liquid

by solving (6.4). In this case, ε1 = 0, ε2 = 0.25, α = 0.8 and β = 0, the spatial stepsize h is 1

for the domain Ω = [0, 400]× [0, 400], and the time stepsize τ is taken as 0.1 or 0.01. The initial

value u0 is fixed to be a constant value φ0 = 0.285 firstly and then modified by setting three

crystallites in three small square patches of the domain, where the centers of three crystallites

are located at (150, 150), (200, 250) and (250, 150), respectively, the length of each path is 40,
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and the three crystallites are defined by the following expression (see e.g. [52, 76])

u(xl, yl) = φ0 +B

[
cos

(
ϑ√
3
yl

)
cos (ϑxl)−

1

2
cos

(
2ϑ√

3
yl

)]
,

with B = 0.446, ϑ = 0.66, and local coordinates xl, yl given by

xl(x, y) = x sin(θ) + y cos(θ), yl(x, y) = −x cos(θ) + y sin(θ), for θ =
π

4
, 0,−π

4
.

Figure 6.9 gives the cut lines and contour lines of the numerical solutions at t = 150 derived

by SAV-GL(1), SAV-GL(3), SAV-GL(4) and SAV-GL(5) with τ = 0.1, from which one can see

that the numerical solutions computed by those schemes are quite similar. Figure 6.11 shows

the differences between the total masses at tn and t0 obtained by SAV-GL(1), SAV-GL(3),

SAV-GL(4) and SAV-GL(5) with τ = 0.1, which checks the mass conservation numerically.

Figure 6.10 gives the snapshots of the numerical solutions at t = 0, 70, 150, 300, 450 and 1000

computed by using SAV-GL(5) with τ = 0.1. It can be seen that the three different crystal

grains grow and become large enough to form grain boundaries finally. Figure 6.12 displays the

discrete energy curves of SAV-GL(1), SAV-GL(3) and SAV-GL(5) with τ = 0.1 and 0.01, which

indicates that those schemes are energy stable in solving the PFC model (6.4). The discrete

energy curves of those schemes have some visible differences with τ = 0.1, but the differences

are almost indistinguishable for τ = 0.01. It means that SAV-GL(5) may have some advantages

to get the accurate steady solution of the PFC model (6.4) when a large time stepsize is taken.

7. Conclusions

This paper proposed a general class of linear and unconditionally energy stable numerical

schemes for the gradient flows by using the SAV and the general linear time discretizations

(GLTDs). Those SAV-GL schemes could reach arbitrarily high-order accuracy in time, and

only a coupled system of linear equations was solved at each time step since the nonlinear

terms of the reformulated SAV equations were linearized based on extrapolation. Importantly,

the resulting SAV-GL schemes contained most of the time integration schemes for the gradient

flows in literature and many new schemes. The semi-discrete-in-time SAV-GL schemes were
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Figure 6.9: Example 6.6. Left: cut lines of the numerical solutions at t = 150 along y = x (x ∈ [75, 250]); right:
contour lines of u = 0.1 at t = 150.

Figure 6.10: Example 6.6. Snapshots of the numerical solutions at t = 0, 70, 150, 300, 450 and 1000 computed
by using SAV-GL(5) with τ = 0.1.
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proved to be unconditionally energy stable when the GLTD was algebraically stable, and to be

convergent with the order of min{q̂, ν} under the diagonal stability and some suitable regularity

and accurate starting values, where q̂ was the generalized stage order of the GLTD and ν

denoted the number of the extrapolation points in time. As two typical examples, the so-

called one-leg and multistep Runge-Kutta (MRK) time integration schemes were considered for

the gradient flows and their energy stabilities and error estimates were discussed separately.

Because the proof of the energy stability was variational and the energy stability was available

for the boundary conditions which made all boundary terms disappear when the integration

by parts was performed, the above energy stability could be straightforwardly extended to the

fully discrete SAV-GL schemes with the Galerkin finite element or the spectral methods or the

finite difference methods, satisfying the summation by parts for the spatial discretization.

In order to demonstrate numerically the energy stability and accuracy of the SAV-GL

schemes, the fully discrete SAV-GL schemes with the Fourier spectral spatial discretization were

presented for three gradient flows equations (the Allen-Cahn, Cahn-Hilliard and phase field crys-

tal models) with periodic boundary conditions. Our numerical experiments well demonstrated

the theoretical results of SAV-GL(1)∼SAV-GL(6) and also checked the discrete maximum prin-

ciple for the Allen-Cahn model and the mass conservation for the Cahn-Hilliard and phase field

crystal models. They also showed that the high-order SAV-GL schemes such as SAV-GL(5)

might have some obvious advantage to derive the accurate steady solutions for the three gra-

dient flow equations when taking a large time stepsize, and the SAV-GL scheme (3.10)-(3.11)

with the integer s ≥ 2 and the number of extrapolation points ν = s + 1 was convergent with

the order of s+ 1.

Besides the one-leg and MRK time integration schemes considered in this paper, other time

discretizations, such as the diagonally implicit multistage integrations (see e.g. [11, 38]) and

the general class of two-step Runge-Kutta methods (see e.g. [21, 39]) etc., can be reformulated

as the form of the GLTDs (2.2). Those methods may also possess good energy stability and

accuracy for the gradient flows. In future, we will further address several interesting topics on

numerical schemes for the gradient flows: exploring higher-order one-leg schemes with the aid

of the novel SAV approach [36], estimating the errors of the fully discrete SAV-GL schemes,
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and combining the present SAV-GL schemes with the adaptive moving mesh method [81] for

the mixture of two incompressible fluids etc.
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