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Abstract

We present a population control method with sampling and regulation steps for Monte Carlo
particles involved in the numerical simulation of a transport equation. We recall in the first section
the difficulties related to the variance reduction methods in the general framework of transport
equations; we continue with a brief presentation of the mathematical tools invoked when solving the
radiative transport equations and we focus on the importance of the emission and control of existing
Monte Carlo particles.

The next part discusses several novel methods based on the cell-based population control method
proposed in [27]. To this end, we analyze theoretically two types of splitting: one is conservative
in energy (at the particle level) and the other is not. Thanks to these results, a new algorithm is
introduced that uses cell-based population control and a spatial distribution. A numerical comparison
of the different types of splitting is proposed in a simplified framework, then the various algorithms
presented are compared against two benchmarks : the propagation of a Marshak wave and the
propagation of two waves having different intensity and speed scales. To carry out these last tests,
we use the multi-physics code FCI2 [13].

Keywords: variance reduction ; Monte Carlo method ; sampling method ; photon transport ; radiative
transfer.

1 Introduction

The goal of this work is to propose a Monte Carlo sampling and population control method for the
simulation of transport equations. To better situate the contribution, we review the existing literature
on the population control and other variance reduction techniques used for the transport equations
together with the stochastic approaches employed for the resolution of radiative transfer equations. Then
the section 1.2 gives a brief introduction to the Implicit Monte Carlo approach [15] (used later for the
numerical tests) while the section 1.3 contains the detailed overview of this paper.

1.1 State of the art and motivation

The radiative transport equations lead to the resolution of a transport equation coupled to an equation
describing the evolution of the internal matter density. To solve such a non-linear transport problem
two types of algorithms have been proposed: deterministic [3, 35] and stochastic. These methods can
be further classified as belonging to several approaches. In the first approach the weight of an emitted
particle is treated as an energy (e.g. the Fleck linearization [15] using some implicit treatment of the
emitted term to linearize the transport equation); in another approach (e.g., [38]) the inversion of a
matrix is necessary to reconstruct the emitted term; other methods use the diffusion limit [37, 12]. More
generally Lapeyre & al. [28] describe two probabilistic approaches to solve a transport equation (the
section 1.2 briefly describes one such method) in a non-stationary case.
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The stochastic Monte Carlo methods have the drawback to display a slow convergence and many
works focus on improving the error that scales as C/

√
N ; here C represents the error in the Monte Carlo

population and N is the number of particles. The improvement takes the form of variance reduction
methods, of which one can distinguish three main variants, see [33] : the modified sampling method
(with the population control), the use of analytical equivalence or other special techniques (as Sequential
Sampling ; Orthonormal Functions ; Adjoint Method ; Transformations or Conditional Monte Carlo).

The choice of a method is often case dependent. The modification of the weight of a particle (see
section 1.2 for details) by an well chosen importance function is a crucial part of the variance reduction
techniques (see [24, 30, 23]). On the other hand the adjoint operator has been used for a long time
(see [5]) and motivated the development of several approaches to select a suitable importance function
depending on the situation [49, 20, 53, 41, 36, 54]. A Russian-Roulette and Splitting method (see 1.2 for
the definition), coupled to an importance function allows to conserve the weight in a window (depending
on the geometry) and improves the computation [30, 8, 39, 52, 54, 50, 51, 55, 4, 44, 43, 29] and [1]. For
a more detailed description of the existing methods in the stationary case see for instance the first part
of [26].

The cited algorithms treat a stationary problem, using Russian Roulette (henceforth abbreviated
RR) and Splitting (abbreviation S) during the transition from a region of the domain to another (see
[22, 21] for an analysis of these methods in this framework). On the contrary, very few works treat the
non-stationary case and the variance reduction techniques have to be adapted to the situation under
consideration (see [2, 6, 59]), or modified IMC approach with deterministic results [47, 58] and [56, 7].
The presence of a source term implies the emission of particles; the computation cost has to be controlled,
which is a concern not present in the stationary situation for the radiative transport problem (that is not
the case for neutronic simulations).

In the non stationary case such as the radiative transport problem, a parallel comb method was
proposed in [46] (see [25] for an application of this method to a neutronic problem and [57, 9, 18] for
additional details on previous non parallel proposals). Variance reduction being favorably impacted by
uniform weight distribution, the comb method tends thus to kill or split particles in order to obtain
a fixed (target) number on a given area and fix the weights of the obtained particle population. The
main difference between our method and the comb method is that the comb method allows to obtain
exactly the target number of particle by using a unique random number per cell while our method allows
to obtain this number only in average because it uses a random number by particle (see part 2); that
implies a different final weight which is adjusted during the renormalization step. This approach removes
the dependence on the distribution of the particles and allows to perform the algorithm independently
of each particle (and is therefore compatible with parallel processing). Our algorithm 3 is similar in
spirit to the method in [45]: the distribution of the particles follows the energy in the cell. However, the
algorithm that we propose is not iterative and does not look for an exact number of particles to distribute;
the convergence is obtained through stochastic limits and not during the research of a fixed point. Our
approach is probabilistic, which allows, on average, to guarantee the number of particles distributed on
the domain. Nevertheless, to guarantee the robustness of the algorithm, a security is imposed so that,
whatever the simulation, the number of particles distributed on the domain is not higher than the number
requested by the user: the sum of the objective numbers per cell, on the whole domain, does not exceed
the number requested. Lastly, we propose a method to reach the target number of particles per cell
(through the algorithm 2). Nevertheless, the number of particles per cell after the regulation phase is
always stochastic so that the total number finally obtained can exceed the desired number fixed by the
algorithm for the same reasons as in the case of a constant objective number by cell (cf. algorithm 2).

The previous studies show that there are some difficulties when parametrizing the RR and S methods.
The cell-based population control method proposed here and described in section 2 requires a single
parameter (that is a proxy for the computation cost) and can be adapted to all types of unsteady
computations (2D or 3D geometry etc...) that needs a control of the Monte Carlo population. This
method, see [27], has been developed in the framework of a multi-physics computation code, requiring a
correct statistics on the whole domain: the cell-based population control method does not aim to improve
the result in a direction or area but the whole statistic. This method is easy to implement, does not
require any specific “know-how”, does not compute any importance function, no adjoint or any other,
potentially costly, resolution. In addition it is independent of the geometry (be it 2D, 3D etc) and since
it is also independent of the Monte Carlo estimate (such as indicated value, passage time, form functions,
see [28, page 72] for details), it does not augment the computation time for the particles involved. Another
advantage of the method is that it is not related to the transition kernel (in the unsteady state coupled to
a different physics the computation of the solution between t and t+ ∆t depends on the transition kernel
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before t only through the solution obtained); the method can also be used complementary to source bias
methods (ideally that do not bias using the weights but using the position or direction). It is possible
to relate this method with the adaptive weight windows of the stationary case: at the beginning of the
time step, one limits the variance of the weights (which is transcribed by imposing a maximal value to
the objective weight (noted wobj), see part 2).

The method proposed here is novel by the fact that it applies to the whole Monte Carlo particle
population: the source emission is adapted to the present population which is itself regulated (the points
1 and 2 of the algorithm presented in part 1.2). Moreover, this approach does not affect the tracking
phase and does not require any importance region. Of course, it can also be used when there is no source
term.

1.2 Mathematical framework

We illustrate the utilization of the cell-based population control method in the framework of radiative
transfer using the Implicit Monte Carlo approach, see [15, 17]. To this end, we briefly describe the method
and the resolution algorithm that has been used and refer the reader to [15, 57] for additional details.

To simplify the presentation, the radiative transfer model is used in the gray case that is, when the
radiative intensity is averaged in frequency. We consider a general radiative transfer model where I, the
radiative intensity, depends on the time t ∈ R+, the position x ∈ Rd and the direction of propagation
Ω ∈ Rd (with ||Ω||d = 1) through the following equation (see [14] for a general presentation of transport
equation and [34, 40] for a global description of the radiation hydrodynamics equations):

1

c
∂tI(t, x,Ω) + Ω · ∇I(t, x,Ω) = j(t, x,Ω)− k(t, x,Ω)I(t, x,Ω), (1)

where c is the speed of light, j the emission term of the matter and k the absorption coefficient. This
last equation is coupled with the equation describing the internal energy density of matter which can be
written, when the matter (of temperature T ) is supposed stationary (as its volumic mass is independent
of time):

∂t(ρε) = ρCV ∂tT =

∫
S2
kIdΩ−

∫
S2
jdΩ, (2)

with CV = ∂ε
∂T

∣∣
ρ cst

> 0 being the caloric capacity at constant volume and S2 the unit sphere of R3 .

Neglecting the hydrodynamic motion of the matter we have j(t, x,Ω) = k(t, x)B(T ) with B(T ) = acT 4

4π
the gray Plank constant; the equation (1) reads now:

1

c
∂tI + Ω · ∇I = k

(
acT 4

4π
− I
)
. (3)

We apply the Implicit Monte Carlo (IMC) methodology introduced in [15] that is, we solve with a
Monte Carlo method the linear transport equation (see [14] for a general presentation of the transport
equations):

1

c
∂tI + Ω · ∇I + knI = fnknBn + (1− fn)kn

∫
S2
I(t, x,Ω′)dΩ′, (4)

where fn = 1
1+βnckn∆t is the Fleck coefficient with βn = 4a(Tn)3

ρCnV
. The quantities kn, Bn, βn depend on

the space variable but are now constants in the time interval [tn, tn + ∆t[.
Integrating equation (4) over all directions Ω and then on a cell m of volume Vm and on the time

interval [tn, tn + ∆t[, we obtain that the energy to be emitted on the cell m during the time interval is :

Snm = Vmf
n
mk

n
mac(T

n
m)4∆t. (5)

Moreover, denoting {wnini,p}p∈{1,...,Nini} the set of particles present at time tn (that is, resulting from the
previous iteration) and {wvol,p}p∈{1,...,Nvol} the set of particles emitted during the interval [tn, tn + ∆t[
we can express the density of radiative energy Enr,m of the cell m at time tn and the emitted energy Snm
as:

Enr,m =
1

Vm

Nini∑
i=1

wnini,p, Snm =

Nvol∑
i=1

wnvol,p. (6)

The term
∫ tn+∆t

tn

∫
m

∫
S2 Ω · ∇IdΩdxdt is susceptible to use the boundary conditions of the equation

(4) which are represented by the surface particles {wsurf,p}p∈{1,...,Nsurf}.
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To solve the linear equation (4), one can use a direct Monte Carlo method [28, section 3.2], on which
the cell-based population control method can be adapted, irrespective of the transition kernel (here an
uniform random variable) or functions that are involved (as kn, fn or Bn).

We briefly present an adaptation of the general direct method with time and space discretization,
presented in [28, section 3.4], adapting it to a multi-physics code and previous notation in algorithm 1.

Algorithm 1: Summary of the direct Monte Carlo method with time and space discretization.

1 Initialization : for each cell, sample Nic particles from the probability law I(0, x, ω)dxdω ;
2 for each time interval [tn, tn + ∆t[ : do
3 ? (optional) Control of the present population {wini,p}p∈{1,...,Nini} with the contraint (6) ;

4 ? Emission of Nvol (and eventualy Nsurf ) particles to take into account the source term (and
eventualy the boundary conditions) during the time interval with the contraint (6) ;

5 ? Tracking of the Monte Carlo particles : each particle moves according to the equation (4)
and the weight of each particle is updated with the general formula:

wi(t+ ∆t) = wi(t) exp
(∫ t+∆t

t
fnkn(Xi(s))ds

)
where Xi(s) is the position of the ith particle

at time s ;
6 ? computation of all quantities required for the other physics (as En+1

r,m ) and update (due to
other physics) of the equation (4) (in particular the Fleck coefficient fn+1 and the functions
kn+1 and Bn+1).

7 end

A particle, once emitted, is followed until it experiences one of the following events: it goes out of
the domain, it is absorbed by the weight rule (alone) or is suppressed during the control phase. In the
corresponding Monte Carlo simulation, as presented here, the weight is an exponential function which
decays to zero but would never disappear completely.

The law of large numbers implies convergence when the number of particles is large, however the
computer capacity is limited. Therefore the question of population management arises: how many
particles are to be emitted to represent well the source term (Snm) and regulate the existing population.

We focus on the new “cell-based population control method” used in the FCI2 code (see [27] for a
detailed presentation of the method) that combines an emission controlled by the value of the source
term with a RR and S strategy occurring at the source term emission time.

1.3 Scope and structure of paper

The section 1 is dedicated to a general presentation of the framework of this contribution. We start in
section 1.1 with a presentation of the state of the art of variance reduction methods which are essen-
tially adapted to the stationary transport equations. We only found very few references concerning the
instationary case, which shows the difficulty of the parametrization of the RR and S steps, both from the
point of view of variance reduction techniques and the point of view of the management of the particle
population.

The part 1.2 illustrates this difficulty in the framework of radiative transfer, by presenting the algo-
rithm resulting from the utilization of the Implicit Monte Carlo method, followed by a direct Monte Carlo
method. We present the different particle populations that are used in the new cell-based population
control method studied in the part 2. The section 2.1 describes a simplified version of the method based
on [27] and allows to present the advantages of this method. In order to understand the pertinence
of such an approach, the section 2.2 analyzes the convergence of the algorithm with different variants.
Then the section 2.4 proposes a variant of the cell-based population control method by inverting the
paradigm : instead of fixing a target number of particles by cell, one chooses a target weight. There
methods are compared in section 3. First, we illustrate the convergence speed of the two algorithms with
or without conservative splitting (section 3.1) then we propose an application of the three methods for
two benchmark cases: the propagation of a Marshak wave (section 3.2) and the propagation of two waves.
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2 Several algorithms based on the cell-based population control
method

In this part we present the original cell-based population control method in the section 2.1 and we study
two variants. The first one (sections 2.2 and 2.3 with and without term source respectively) allows to
converge to the same distribution as the cell-based population control method with improved speed. The
second variant (section 2.4) proposes a different paradigm : obtain a target weight homogeneous among
the cells instead of a target number of particles.

2.1 Description and general properties of the original cell-based population
control algorithm

In this section we present the cell-based population control method following [27] that is used for a single
cell : indeed, in this version, the algorithm is local at the cell level and independent of the neighboring
cells. We will prove that this method guarantees, in average, the presence of a target (objective) number
Nobj of particles with similar weight by cell. We refer to [27, section 1.2] for a detailed presentation of the
method that we expose here in a simplified setting. In addition, we do not consider Nsurf (and therefore
the boundary condition) because its role is similar to Nvol and Snm.
The procedure described in the algorithm 2 is enforced at the beginning of an iteration and replaces the
steps 3 and 4 of the algorithm 1. We recall the notations used:

• N ini
m : the number of particles in the cell m issued from the previous iteration;

• {winip }p∈{1,...,Ninim } : weight of the current particle population;

• Enr,m =
∑Ninim
p=1 winip : sum of weights of the particles in the cell m;

• Snm : energy to be emitted during the iteration n;

• Nn
m,obj : number of target particles in the cell (user parameter or parameter depending on the total

computational cost). This integer can depend on time and space (we just use Nobj if there is no
ambiguous for the time and cell).

Remark 2.1. The treatment of the term involving the initial conditions is similar to Snm and will not be
detailed further.

One of the advantages of this approach is to consider simultaneously two populations of particles:

1. that resulting from the previous time steps {winip }p∈{1,...,Ninim }, that will undergo a RR or S phase;

2. the particles that convey the source term Snm of the current iteration: {wvolp }p∈{1,...,Nvolm } .

The only hypothesis required by the cell-based population control method is the positivity of the
terms winip ∀p ∈ {1, · · ·N ini}, (thus of Emr,n) and Snm. For notation convenience, we omit to mention
explicitly in the sequel the time dependence of the quantities specific to the cell-based population control
method. Moreover, standard notation 1 for the indicator function is used.

Remark 2.2. Only the conservative splitting exactly conserves the energy of the particles. The Russian
Roulette phase, required for the existing population control, does not strictly conserves the energy (sum
of weights of particles) which motivate the steps 27 and 30 of the algorithm 2. The renormalization step
will correct any energy mismatch introduced by the non-conservative splitting.

Lemma 2.3. The Russian Roulette and Splitting (conservative or not) phases of the algorithm 2 conserve,
in average, the energy.

Proof of lemma 2.3: After the Russian Roulette and Splitting steps and before the renormalization,
the weight w̃inip of the particle can be written (using notations of algorithm 2):

• if conservative splitting:

w̃inip = 1{winip <wmobj}1{up01<
winip
wm
obj
}
wmobj + 1{winip ≥wmobj}

winip

Nsplit
p

. (7)
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Algorithm 2: Description of the cell-based population control method

1 Computation of wmobj : target weight to be reached by any particle of the cell m :

wmobj ←
Enr,m+Snm
Nnm,obj

.

2 if Snm > 0 then computation of the number of particles Nvol
m to represent Snm :

3 Nvol
m ← max

(
1,

⌊
Snm
wmobj

⌋)
;

4 wvolm ← Snm
Nvolm

. ;

5 emission during the time step of Nvol
m particles of weight wvolm ;

6 end
7 if Enr,m > 0 then Russian Roulette and Splitting for each particle depending on its weight
8 for p ∈ {1, . . . , N ini

m } do

9 Ip ←
⌊
winip

wmobj

⌋
;

10 Rp ←
winip

wmobj
− Ip ;

11 up01 ∼ U(0, 1) (uniform);
12 if Ip = 0 then Russian Roulette
13 if Rp < up01 then the particle is killed
14 winip ← 0

15 else the particle survives
16 winip ← wmobj
17 end

18 else Splitting
19 Nsplit

p ← Ip + 1up01<Rp ;

20 Conservative splitting : winip ← winip

Nsplitp
;

21 Non conservative splitting : winip ← wmobj . ;

22 The particle p is duplicated Nsplit
p − 1 times.

23 end

24 end

25 end

26 cm ← Enr,m+Snm∑Ninim
p=1 winip +Nvolm ·wvolm

;

27 for p ∈ {1, . . . , N ini
m } do final renormalisation on the present particles

28 winip ← cm × winip

29 end

30 for p ∈ {1, . . . , Nvol
m } do final renormalisation on the emitted particles

31 wvolp ← cm × wvolp

32 end
33 Non-void correction: when Snm = 0 and if after the previous RR and S phases the number of

resulting particles is zero, then the number of particles is set to 1 with weight Enr,m.
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• if non conservative splitting :

w̃inip = 1{winip <wmobj}1{up01<
winip
wm
obj
}
wmobj + 1{winip ≥wmobj}w

m
obj . (8)

Noting that E[Nsplit
p ] =

winip

wmobj
we obtain then that the energy of a particle is conserved in average:

E[1{winip <wmobj}w̃
ini
p +Nsplit

p 1{winip ≥wmobj}w̃
ini
p ] = winip . (9)

The next section deals with the properties of this algorithm in its two variants: conservative or non-
conservative splitting and, in order to compare them, analyzes their convergence when it is repeatedly
applied on the same population of particles. Then, based on the properties of the cell-based population
control method a stronger variant is introduced.

Remark 2.4. Note that if we use the non conservative splitting, the expression of w̃inip can simply be

written by: w̃inip = wmobj1Nsplitp ≥1 and the energy resulting from the phase of RR and S on the particle p

is then Nsplit
p × wmobj.

2.2 Theoretical properties of the cell-based population control method with-
out source term

We present in this section some theoretical guidance concerning the performance of the cell-based popula-
tion control method. We investigate what is the limit distribution when the cell-based population control
algorithm is repeatedly applied on the same population of particles. This situation can correspond to a
simulation regime where the time step imposed by the physics is small enough such that the trajectory
phase does not influence greatly the weights of the particles. We give formal arguments (in a particular
setting) to show that the limit distribution is uniform and the number of particles is Nobj .

Consider the process (N l
m)l∈N such that N0

m = N ini
m is relative to a set of weights {wli}i∈{1,...,N lm}

and {w0
i }i∈{1,...,N0

m} = {winip }p∈{1,...,Ninim }. The weights {wl+1
i }i∈{1,...,N l+1

m } are obtained by applying the

algorithm 2 to the set of weights {wli}i∈N lm which are not issued from the generation of the source term.

The process (N l
m)l∈N describes the number of weights considered after l iterations i.e., phases of RR

and S on the population of weights {winip }p∈{1,...,Ninim } with the renormalization step (step at line 31 in
algorithm 2).

2.2.1 The convergence of the non-conservative splitting method

We analyze the convergence of the algorithm 2 presented in section 2 and more precisely the non-
conservative splitting when Snm = 0 (thus Nvol

m = 0) and, to simplify the presentation Enr,m = 1. Let us
fix a cell.

The algorithm 2 is local relative to each cell and is applied at the beginning of a time interval, thus
for simplicity we omit the indexes m and n in this part.

Proposition 2.5. Denote by N l the number of the particles in the cell after the l-th iteration of the
algorithm. Then

lim
l→+∞

P(N l = Nobj) = 1. (10)

More precisely, there exists λ > 0 such that

P(N l 6= Nobj) ≤ e−l·λ, (11)

i.e., the convergence is exponential.

Proof. After l > 1 iterations of the algorithm, there are N l particles present of equal weight Enr,m/N
l =

1/N l. Note that this common weight is not necessarily wobj = 1/Nobj due to the renormalization step.
The number of particles that are obtained at iteration l + 1 is given by:

N l+1 = max(1, Y l) where Y l = N l ×
⌊
Nobj
N l

⌋
+ B

(
N l,

Nobj
N l
−
⌊
Nobj
N l

⌋)
. (12)

We used the standard notations :

7



- B(n, p) designates a binomial variable of parameters n and p independent of any previous other
variable;

- the floor function b·c designates the largest integer smaller than (or equal to) the argument.
The previous formula can also be written in the following form:

N l+1 = max

(
1, Nobj +

∞∑
y=1

1N l=y [B (y, εy)− yεy]

)
, (13)

with

εy =
Nobj
y
−
⌊
Nobj
y

⌋
. (14)

We recall that the binomial variables appearing in (13) are independent of the sigma algebra Fl =
σ{Nk, k ≤ l} (the smaller sigma algebra making N0, ..., N l measurable).

Denote now max(Nk) to be the maximum value of the random variable Nk (this value is finite because
the random variable is discrete). We show next that N l are all bounded by M0 = max(N0, 2Nobj).

When y ≤ Nobj all values taken by the random variable B (y, εy) are smaller or equal to y, thus
B (y, εy)− yεy ≤ y ≤ Nobj .

When y ≥ Nobj then B (y, εy) − yεy ≤ y − yεy. But in this case εy =
Nobj
y thus y − yεy = y − Nobj .

Using (13) we can write:

Y l = Nobj +

∞∑
y=1

1N l=y [B (y, εy)− yεy] (15)

≤ Nobj +
∑

1≤y≤Nobj
1N l=y ·Nobj +

∑
y>Nobj

1N l=y · (y −Nobj)

≤ 1N l≤Nobj · 2Nobj +
∑

y>Nobj

1N l=y · y

≤ 1N l≤Nobj · 2Nobj + 1N l>Nobj ·max(N l) ≤ max(N0, N1, ..., N l, 2Nobj).

By recurrence we obtain N l+1 ≤M0.
For a, b ≤M0 we introduce the notation pa→b := P(Nk+1 = b|Nk = a) and remark that the quantity

is independent of k. In fact N l are realizations of a Markov chain and pa→b are the transition probabilities
of this process. In particular note that pa→Nobj > 0 for any a because the variable Y l takes all values in

the interval [Nobj −N l, Nobj +N l(1− εN l)] which contains Nobj . Moreover pNobj→Nobj = 1. Denote also
p− = min{pa→Nobj ; a 6= Nobj}. Note that p− > 0. Thus

P(N l+1 = Nobj) =
∑
a≤M0

P(N l+1 = Nobj |N l = a)P(N l = a) (16)

= P(N l = Nobj) +
∑

a6=Nobj
pa→Nobj · P(N l = a)

≥ P(N l = Nobj) +
∑

a6=Nobj
p− · P(N l = a) ≥ P(N l = Nobj) + p− · (1− P(N l = Nobj)).

We obtain thus
P(N l+1 = Nobj) ≥ p− + (1− p−) · P(N l = Nobj), (17)

which can also be written
P(N l+1 6= Nobj) ≤ (1− p−) · P(N l 6= Nobj), (18)

and the conclusion follows with λ = − log(1− p−).

2.2.2 The convergence of the conservative method

We continue with the analysis of the convergence of the conservative version of the algorithm 2 presented
in section 2 when Snm = 0 (thus Nvol

m = 0) and, to simplify the presentation, Enr,m = 1. Let us fix a cell.
For the same reasons as above, in order to simplify the presentation we will omit the index m of the cell,
the index n of the time interval and only keep the iteration count l as index. Since the cell is fixed and
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there are no source terms, the total mass, Enr,m = 1 is fixed ; Nobj and wobj = Enr,m/Nobj = 1/Nobj are
also fixed.

Denote from now on by Xl the state of the algorithm after l iteration of RR + S plus the renor-
malization steps. Note that, in full generality, Xl can be described as a set of (unknown number, noted

N l, of) positive weights (noted X1
l , . . . , X

N l

l ) that sum up to Enr,m, i.e. a member of `1, the ensemble of
(absolutely) summable sequences. Denote also by XT the uniform distribution with Nobj particles all of
weight wobj : XT = (wobj , ..., wobj) ∈ RNobj . With these preliminaries we can prove the following result.

Proposition 2.6. Suppose N0 is finite. Then the sequence of random variables (Xl)l≥0 converges almost
everywhere in `1 to the target distribution XT i.e.

P[ lim
l→∞

Xl = XT] = 1. (19)

Proof. The proof requires many technical arguments, we present here only a sketch and refer for the full
proof to appendix A.

? First, we invoke lemma A.1 that ensures that, after a finite time τ , Xl will have at most Nobj
non-null particles i.e. there exists c1 > 0 such that:

∀L ≥ 0 : P[N0 > Nobj , N1 > Nobj , ..., NL > Nobj ] ≤ ec1(L−1). (20)

? Then, we prove (lemma A.3) that, for l ≥ τ , Xl will have at most Nmax = 6Nobj non-null particles
forever: for any l ≥ τ , N l ≤ 6Nobj (with certainty).

? After that, we introduce the set (a specific neighborhood of the target distribution) :

Tε =

(w1, ..., wNobj ) ∈ RNobj

∣∣∣∣∣∣
Nobj∑
k=1

wk = Nobjwobj ,

Nobj∑
k=1

|wk − wobj | ≤ εwobj


and denote τε the first iteration step l when Xl enters Tε. In lemma A.4 we show that there exists ε0 > 0
such that for any ε ∈ [0, ε0] there exists Lε ∈ N and cε < 1 with:

∀l ≥ τ : P[Xl+1 /∈ Tε, ..., Xl+Lε /∈ Tε|Xl /∈ Tε] ≤ cε. (21)

Thus P[τε ≥ k] is exponentially decreasing when k → ∞ and in particular the stopping time τε is finite
almost everywhere (P[τε <∞] = 1) i.e., after a finite time τε the state Xτε will be in Tε.

? We conclude using lemma A.2: there exists some constant c3 > 0 only depending on Nobj such that

P[ lim
l→∞

Xl = XT|τε <∞] ≥ 1− c3ε. (22)

As this lemma is true for any ε (small enough) then we have convergence everywhere.

Remark 2.7. As mentioned before, in full rigor the convergence should be understood as the convergence
of `1 sequences, but in fact, as it will be seen later, it boils down to the usual convergence of Nmax-tuples
in RNmax . Also note that the result does not require any hypothesis on the number N0 of particles present
in the initial datum X0 (in particular it can be as large as required, as long as it is finite; moreover,
slight modifications of the proof allow to treat the situation of a infinitely countable set of non-null initial
weights).

2.3 Theoretical properties of the cell-based population control method with
source term

In this part, we investigate the case when the source term cannot be neglected. In general the source
term is time-dependent and therefore there is no constant target distribution of the particles (in terms
of number or weight). In order to give some theoretical guidance we will show that the RR+S (plus
renormalization) part of the procedure is not affected by the choice of a objective weight wmobj depending
on the source too (besides the previous energy); under appropriate hypotheses we show that the RR+S
part does help converge the number of particles to Nobj . We consider thus that the algorithm is repeated
several times on the particles of the previous time step. This is not the general case (in the general case
one would apply the algorithm to all the particles) but supports the idea that by treating the emission
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simultaneously with the control of existing population, the cell-based population control method ensures
a convergence towards Nobj particles even with the addition of a source term.

We reuse the notations from the previous part by distinguishing two populations, the initial one and
the emitted one: N l = Nvol

m + N ini
l i.e., N ini

l+1 is the number of “initial” particles in the cell after an
iteration of the RR + S part and renormalization of the N ini

l particles.

Proposition 2.8. Suppose
SnmNobj

Enr,m + Snm
∈ N and Nvol

m > 1. Consider the procedure that acts iteratively

on two populations of particles as follows:
- on the Nvol

m emitted particles defined at the line “computation of the number of particles Nvol
m to

represent Snm” of algorithm 2 : each is assigned weight wvolm =
Snm
Nvolm

without further modifications;

- on the non-volumic particles : one computes wmobj as detailed at line “Computation of wmobj” of

algorithm 2, runs the the RR+S steps on the N ini
l particles, and then renormalizes them to obtain total

mass Enr,m + Snm.

Denote N l the number of particles at the iteration l. Then:

lim
l→+∞

P[N l = Nobj ] = 1. (23)

More precisely, there exists λ > 0 such that

P(N l 6= Nobj) ≤ e−l·λ, (24)

i.e., the convergence is exponential.

Remark 2.9. The condition
SnmNobj

Enr,m + Snm
∈ N is required if one hopes to find convergence to some uniform

distribution while respecting the conservation of mass. Indeed, if both the volumic and non-volumic
particles have the same target weight and there are Nobj particles in all, then Enr,m and Snm are both
integer multiples of the target weight and relation is satisfied. On the other hand, the specificity of this
proof, compared to proposition 2.5 is that wmobj depends on the source term Snm too.

Proof. After l > 1 iterations of the algorithm, there are N ini
l particles present of equal weight wobj/N

l.
Note that:

N l+1 = Nvol +N ini
l+1,where N ini

l+1 = max(1, Y l) and

Y l = N ini
l ×

⌊
Enr,m

Enr,m + Snm
× Nobj
N ini
l

⌋
+ B

(
N ini
l ,

Enr,m
Enr,m + Snm

× Nobj
N ini
l

−
⌊

Enr,m
Enr,m + Snm

× Nobj
N ini
l

⌋)
.

(25)

On the other hand, at the present iteration l the number of emitted particles isNvol =

⌊
SnmNobj

Enr,m + Snm

⌋
=

SnmNobj
Enr,m + Snm

, the last equality being true by hypothesis. Denote N ini
obj =

Enr,mNobj

Enr,m + Snm
= Nobj −Nvol which

is also an integer for the same reason. Then one can write:

N l+1 = Nvol +N ini
l+1,where N ini

l+1 = max(1, Y l) and Y l = N ini
l ×

⌊
N ini
obj

N ini
l

⌋
+ B

(
N ini
l ,

N ini
obj

N ini
l

−
⌊
N ini
obj

N ini
l

⌋)
.

(26)
But this formula is the same as (12) with Nobj replaced by N ini

obj . Starting from this point the same proof
as in proposition 2.5 applies.

Remark 2.10. Similarly, the proof for the conservative splitting is a combination of the above arguments
and proposition 2.6.

Remark 2.11. When Nobj → ∞ then wvolm → wmobj. Indeed, |wvolm − wmobj | = (wmobj)
2/|(Snm − wmobj)| → 0

because wmobj → 0 when Nobj →∞.
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2.4 Additional procedures based on the cell-based population control method

The previous section allowed to show that the cell-based population control algorithm with conservative
or non-conservative splitting will orient towards an uniform distribution of the weights of the particles,
locally in each cell. We already gave some details on the spatial and temporal dependence of Nn

m,obj in
section 2 but a too empirical parametrization of Nobj could impact the other variance reduction methods.

However, obtaining uniform weights during simulation could allow a global variance reduction; we
propose thus to use the parametrization of Nobj to obtain objective weights by cell wobj as homogeneous
as possible.

To this end, the total number of particles specified at the start of an iteration can be determined in
several ways:

1. given by a single user parameter, in order to best control the simulation cost;

2. be derived from a user parameter as above. In this case, one has to specify the number of cells to
be treated in Monte Carlo (according to the conditions dictated by the simulation) and multiply
by Nobj .

If the RR and S phases are global on the domain they can induce a nonphysical phenomenon of energy
transport like a teleportation error [11] for the emitted term. To limit it, we keep a cell-based objective
weight and only change the determination of the Nobj as described in the algorithm 3. LetM be the set
of cells used in the simulation and cM the number of cells. We obtain the algorithm 3 described below.

Algorithm 3: Modification of the cell-based population control method to obtain homogeneous
weights for all particles in mesh m ∈M.
1 Compute total particles number :
2 case 1 : read the user parameter Nn

total and set Nn
share = Nn

total − 2cM (see remark 2.13);
3 case 2 : read the parameter Nusr

obj to compute Nn
share = (Nusr

obj − 2)× cM and Nn
total = Nusr

obj × cM
(see remark 2.13)

4 Compute total energy Enr,tot =
∑
m∈MEnr,m + Snm ;

5 for m ∈M do
6 if Enr,m + Snm > 0 then
7 ? um01 ∼ U(0, 1)

8 ? Rm =
Enr,m−Snm
Enr,tot

−
⌊
Enr,m + Snm
Enr,tot

⌋
9 ? Nn

m,obj = max

[⌊
Enr,m + Snm
Enr,tot

⌋
Nn
share + 1um01<Rm ;1Enr,m>0 + 1Snm>0

]
;

10 ? Apply algorithm 2 with Nobj = Nn
obj,m.

11 end

12 end

Remark 2.12. The goal of this method is to obtain homogeneous weights on the domain; the non con-
servative splitting is thus preferred.

Remark 2.13. Without using the “max” operation in line 9, the algorithm 3 can lead to a pathological
situation as follows: even if Enr,m > 0 or Snm > 0, the number of particles obtained with the algorithm can
reach Nn

m,obj = 0 which may be unacceptable because the method must conserve the energy in each cell.

That is why, the “max” operation is a fail-safe to make sure to not exceed N total; it is set with the most
pessimistic (and in fact impossible) alternative: all cells are pathological.

With this method, previous properties such as lemma 2.3 are preserved. We can state:

Lemma 2.14. The average total number of particles for iteration n is less than Nn
total. Moreover, if

Nn
m,obj =

⌊
Enr,m + Snm
Enr,tot

⌋
Nn
share + 1um01<Rm > 0 ∀m ∈ M then the average total number of particles for

iteration n is Nn
share.
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Proof. Let us denote by Ñn
m the random variable describing the number of particles in the cell m with

Nn
obj,m ≥ 1Enr,m>0 + 1Snm>0 after the action of the algorithm 2. Then:

E[Ñn
m|Nn

obj,m] = Nvol
m + E

Ninim∑
p=1

1{winip <wmobj}1{up01<
winip
wm
obj
}

+Nsplit
p 1{winip ≥wmobj}

 (27)

=
Snm

Snm + Enr,m
Nn
obj,m +

Ninim∑
p=1

1{winip <wmobj}P

[
up01 <

winip

wmobj

]
+ 1{winip ≥wmobj}E[Nsplit

p ] (28)

=
Snm

Snm + Enr,m
Nn
obj,m +

Ninim∑
p=1

winip

wmobj
=

Snm
Snm + Enr,m

Nn
obj,m +

Enr,m
wmobj

= Nn
obj,m (29)

since wmobj =
Snm+Enr,m
Nnobj,m

.

Moreover, following the specifications of the algorithm 3 :

E[Nn
obj,m] =

⌊
Enr,m + Snm
Enr,tot

⌋
Nn
share + P[um01 < Rm] =

Enr,m + Snm
Enr,tot

Nn
share. (30)

Also, let us denote by Ñn
total the total number of particles at the end of the algorithm 3; invoking the

properties of the conditional expectation:

E
[
Ñn
total

]
=

∑
Nobj,m=1Enr,m>0+1Snm>0

1Enr,m>0 + 1Snm>0 +
∑

Nobj,m 6=1Enr,m>0+1Snm>0

E
[
Ñn
m

]
≤ 2cM +

∑
Nobj,m 6=1Enr,m>0+1Snm>0

E
[
E[Ñn

m|Nn
obj,m]

]
≤ 2cM +

∑
Nobj,m 6=1Enr,m>0+1Snm>0

E[Nn
obj,m]

≤ 2cM +
∑

Nobj,m 6=1Enr,m>0+1Snm>0

Enr,m + Snm
Enr,tot

Nn
share ≤ 2cM +Nn

share = Nn
total.

(31)

If Nn
m,obj =

⌊
Enr,m + Snm
Enr,tot

⌋
Nn
total + 1um01<Rm > 0 ∀m ∈M, then :

E
[
Ñn
total

]
=
∑
m∈M

E
[
Ñn
m

]
, (32)

and we conclude with the same argument as above.

Remark 2.15. Contrary to the algorithm that aims to obtain an uniform target number of particles by
cell, the algorithm 3 does not allow, even if repeated several times, to have the certainty to obtain exactly
Nn
total (or Nn

share) particles. Indeed, the algorithms in the section 2.2 have the advantage to converge
exponentially towards Nobj. However, algorithm 3 allows to control easily the number of the particles in
the simulation.

Up to now, we presented three algorithms that improve the weight distribution, before the track-
ing phase. The next part illustrates the effect of these algorithms on the weight distribution and its
contribution for a radiative transfer example.

3 Numerical results

The cell-based population control algorithm influences the particle weight distribution before the tracking
phase. The subsection 3.1 will investigate the speed of convergence of the algorithm with or without
conservative splitting. To this end, we analyze what is the result of the repetition of the algorithms on a
vector of norm 1 and study the distance to an uniform distribution and the number of weights at each
iteration. Then in the subsection 3.2, we apply the considered algorithms on a radiative transfer case
with the propagation of a Marshak wave, then we add a second wave of lower intensity, all with the FCI2
code [13]. In this case, we are interested in the speed of the waves and the variance of the radiative
temperatures obtained.

12



3.1 Illustration of the weight distribution

We use the notations of the section 2.2 and consider the evolution of the process N l related to a set of
weights {wli}i∈1,...,N l . We start by illustrating the evolution of this process when there is no source term
(noted S, with S = 0 therefore Nvol = 0) then we illustrate the consequences of a non-null value of Nvol

m .

3.1.1 Absence of source term Nvol = 0

To illustrate the speed of convergence of the algorithms defined in the section 2.1 and studied in the section
2.2 we generate, according to a uniform law, weights between 0 and 1 then we perform a renormalization
to obtain a uniform distribution of weights with norm equal to 1. We illustrate the results obtained
by algorithms with conservative (denoted Split C ) or non-conservative splitting (denoted Split NC ) by
presenting the evolution of the process (N l)l∈N depending on the number l of repetitions of the algorithm
2 and the distance of the distribution {wli}i∈1,...,N l to a uniform distribution denoted dl defined simply
by:

dl =

N l∑
i=1

∣∣∣∣wli − 1

Nobj

∣∣∣∣ . (33)

The figures 1 and 2 present the results obtained for different values of Nobj and N0. The algorithm
with Split NC converges in a few iterations in both cases while the Split C version is slower (even more
when Nobj increases). Moreover, these curves illustrate that the state N l = Nobj is absorbing for the
Split NC algorithm while this is not the case for the Split C counterpart who arrives there several times
and leaves.
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Figure 1: Results obtained for Nobj = 10 with the algorithm 2 and S = 0 on a population of weights of
norm 1.

13



0 5 10 15 20

80

100

120

l (iterations number)

N
l

0 5 10 15 20

10−10

10−7

10−4

10−1

l (iterations number)

d
l

Split C, N0 = 75 Split NC, N0 = 75 Split C, N0 = 100

Split NC, N0 = 100 Split C, N0 = 125 Split NC, N0 = 125

Figure 2: Results obtained for Nobj = 100 with the algorithm 2 and S = 0 on a population of weights of
norm 1. The difference between the conservative and non-conservative versions is larger than in figure 1.

3.1.2 Presence of a source term: Nvol > 0

We illustrate the algorithms in section 2.2 with a source term in a manner analogous to the previous
section with the exception that the generated weight renormalization is not at 1 but at 1 − S with
S ∈ [0, 1] representing the source term. The algorithm 2 is then used after which only the Russian-
Roulette, Splitting and renormalization phases are repeated on the weights not coming from S with the
update of wobj as discussed in the section 2.3.

For a low value of S, the results obtained are shown in figures 3 and 4 and illustrate the influence of
Nobj and N0. Note that we have limited the minimum error to 10−10. As in the previous case, the Split
NC algorithm converges in a few iterations, unlike the Split C algorithm. However, the figure 3 shows
that the limit distribution is not necessary a uniform distribution: the presence of a source term, weak
and much lower than wobj , limits the converges of dl. When the value of Nobj increases (figure 4) the
distance to the uniform distribution decreases. When the value of the source term is high, these findings
remain unchanged as shown in figures 5 and 6.
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Figure 3: Results obtained for Nobj = 10 with the algorithm 2 and S = 0.0115 on a population of weights
of norm 1.
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Figure 4: Results obtained for Nobj = 100 with the algorithm 2 and S = 0.0115 on a population of
weights of norm 1.
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Figure 5: Results obtained for Nobj = 10 with the algorithm 2 and S = 0.715 on a population of weights
of norm 1.
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Figure 6: Results obtained for Nobj = 100 with the algorithm 2 and S = 0.715 on a population of weights
of norm 1.

Remark 3.1. For radiative transfer applications, the number of particles in figures 1, 3 and 5 and may
appear to be small. But we think that it is useful to illustrate that the difference in convergence speed
between conservative and non conservative splitting does not depend on the number of particles. In fact,
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Figure 7: Diagram of the setting of the Marshak wave discretized into 50 identical cells of size 0.01× 0.5
cm.

when the number of cells is high (e.g. for three dimensional simulations) the number of particles per cell
may be small.

We have illustrated the results obtained by algorithms with conservative or non-conservative splitting
in a simplified framework neglecting in particular the spatial and angular aspect. The following part
allows to apply the algorithms in a framework of the resolution of a transport equation via the equations
of the radiative transfer.

3.2 Radiative transfer: propagation of a Marshak-type wave

The algorithm 2 in its conservative or non-conservative splitting versions is compared with the proposed
algorithm 3. The latter shows promising numerical results both in the context of the propagation of a
Marshak-type wave and in the case of two waves having intensities of different scale, in particular by
reducing the calculation time and the overall variance of the system in the second case.

We apply the algorithms presented previously in the framework of the resolution of radiative transfer
equations. We study the statistical noise for a fixed mesh and time step. We do not provide a global
convergence study (in time, angle or space) as the calculation of the full, exact, solution is not the goal
of this work; instead the Marshak wave is a well-know test case with documented reference solutions.
The section 3.2.1 is concerned with the framework of the propagation of a Marshak-type wave. Then
the section 3.2.2 proposes, in order to challenge the influence of the spatial distribution proposed by the
algorithm 3, a second wave of much weaker intensity than the first.

3.2.1 Propagation of a Marshak wave

We test the different algorithms presented on the propagation of a Marshak-type wave in an opaque
medium (see [31, 32] for details) using the FCI2 code described in [13].

We assume an ideal gas equation under the gray approximation. The Monte Carlo method used here
is based on the Fleck & Cummings [15] linearization mentioned in the section 1.2. We use a model with
two temperatures (radiative and matter): except mention of the contrary, the term temperature (noted
Tmatter) will indicate the matter temperature since it is the one that appears in the emission term of the
equation (5).

This is a 1D benchmark (but treated in 2D with symmetry conditions on the top and bottom edges
of the mesh (see figure 7). We then solve the equation (1) in the section 1.2 for j(t, x, ω) = k(t, x, ω) =
ρ× d× T−3

matter(t, x). The values and units used are specified in the table 1.

I erg.cm−2.s−1 a 7.56× 10−15 erg.cm−3.K−4

dt 4× 10−11 s d 1.56× 1023 K3.g−1.cm2

ρ 3 g.cm−3 c 3× 1010 cm.s−1

Tmatter K Tmatter(0, ·) 11604 K

CV 8.6177× 107 erg.g−1.K−1 Tmatter(·, left border) 11604000 K

Table 1: Values and units used in the numerical simulation of the propagation of a Marshak-type wave
in an opaque medium.
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For each cell m, at time tn, the value of the volume emission is given by the formula (5) and the
surface emission term is given by the following formula:

acT 4
matter(·, left border)∆x∆t

4
. (34)

These two terms are positive: the cell-based population control method can therefore be applied.
We analyze the wave profile at 74ns using a time step of ∆t = 4 × 10−11s. To do this, we perform

n = 30 realizations for Nobj ∈ {20, 200, 2000} and we compare the statistical variance obtained per cell.
Note that in this case, the matter temperature is coupled to the radiative temperature.

The variance per cell of the results obtained and the temperature profile with a confidence interval of
99% are the object of the figures 8 and 9 when the objective number per cell is homogeneous (algorithm
2) and the splitting is conservative or not; the figure 10 presents the results of the application of the
algorithm 3. For the three methods, the cell at the foot of the wave has the greatest variance. The
figure 11 allows to compare the size of the confidence interval per cell: it is interesting to note that
non-conservative splitting does improve the variance at the bottom of the wave, even if there are very few
splitted particles compared to the total number of particles tracked. The figure 12 shows the evolution
over time of the number of splitted particles compared to the total number of particles of the simulation:
only about 0.25% of particles are affected. The results obtained by the algorithm 3 are close to the
case with conservative splitting at the wave foot rather than with non-conservative splitting; nevertheless
these results are improved on the left edge, the origin of the source temperature condition as shown in
figure 10. This is explained by the density of particles: the figure 14 shows the particle densities before
and after the last tracking phase. The foot of the wave is depopulated with the algorithm 3 while the
limit condition is much better represented.

To present the results we use a ”figure of merit” metric. Denote by n the total number of realizations
and Tmatter(u,m) the matter temperature on the cell m ∈ M at realisation u. The figure of merit,
denoted FOM from now on, is defined [22, 36, 53, 16, 42] as the inverse of the product between the
average CPU time TCPU (n) and the square relative error RE2(n) :

FOM(n) =
1

RE2(n)× TCPU (n)
. (35)

When the output of interest is a scalar, the relative error RE(n) is simply the standard deviation divided
by the average value; however here the output (matter temperature) is a vector indexed over the cells
m ∈ M; accordingly, RE2(n) will be the norm (squared) of the vector of standard deviations divided
by the norm (squared) of the average matter temperature vector. More precisely, to obtain the RE2, we
compute successively :

- the average matter temperature vector : Tmatter(m) = 1
n

∑n
u=1 Tmatter(u,m), m ∈M;

- its squared norm : ‖Tmatter(·)‖2 =
∑
m∈M Tmatter(m)2;

- the unbiased empirical standard deviation matter temperature vector Std(m) =
√
V ar(m) where

V ar(m) = 1
n−1

∑n
u=1 [Tmatter(u,m)− Tmatter(m)]

2
, m ∈M;

- its squared norm : ‖Std(·)‖2 =
∑
m∈M Std(m)2 =

∑
m∈M V ar(m)

- and finally

RE2(n) =
‖Std(·)‖2
‖Tmatter(·)‖2

=

∑
m∈M V ar(m)∑

m∈M Tmatter(m)2
. (36)

The figure 13 shows that the algorithm 3 does not allow a significant gain in variance for the same
number of particles followed but allows a significant gain in terms of computation time. This case has
the particularity of being placed at the diffusion limit: one explanation is that the particles placed at the
foot of the wave have a higher CPU cost because they enter a very opaque medium (therefore undergo
many events), unlike the left boundary of the domain (see figure 14 for the distribution of particles in the
cell before and after the last tracking phase). The algorithm 2 allows to have, on average, Nobj particles
per cell, both at the foot of the wave and at the left border. It is interesting to note that having few
particles at the foot of the wave, with the algorithm 3, does not prevent a variance comparable to the case
with Nobj particles and conservative splitting. In addition, the distribution after the tracking phase is
similar. Nevertheless, this depopulation of the foot of the wave could be a source of problems in the case
of several distinct phenomena to be captured simultaneously: the following section provides an example
in this context.
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Figure 8: Results obtained with the algorithm 2 and conservative splitting. Top: matter temperature.
Bottom: variance per cell over 30 realizations. The reference is the mean value of the temperature for
the simulation with Nobj = 2000.
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Figure 9: Results obtained with the algorithm 2 and non conservative splitting. Top: matter temperature.
Bottom: variance per cell over 30 realizations. The reference is the mean value of the temperature for
the simulation with Nobj = 2000.
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Figure 10: Results obtained with the algorithm 3 and non conservative splitting. Top: matter tempera-
ture. Bottom: variance per cell over 30 realizations. The reference is the mean value of the temperature
for the simulation with Nobj = 2000.
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Figure 11: Comparison of the variance obtained with the three algorithms for Nobj = 2000.
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Figure 12: Number of particles split (left) and number of individual tracks through the cell over the
simulation (right) over time in the case of the propagation of a Marshak type wave and Nobj = 200.
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Figure 13: Metric FOM(30) (left) and CPU time (right) for several values of Nobj in the case of the
propagation of a Marshak wave.
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Figure 14: Distribution of particles on the cell before (left) and after (right) the last tracking phase in
the case of the propagation of a Marshak wave.
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3.2.2 Propagation of a primary and secondary wave

The algorithm 3 has shown its advantages within the framework of the propagation of a Marshak type
wave: thanks to a spatial distribution of the particles, it allows, with comparable variance, to reduce
the computation time. However, an important question in the context of a multi-physics code, where
the solution must be computed with enough precision over the entire domain, is to make sure not to
depopulate one area of the field in favor of another area and therefore to fail capturing the start of a
phenomenon, however small it may be. This is why we are considering the previous numerical application
but adding a wave, of much lower intensity, on the right edge of the domain. Moreover, on the right
part of the domain, we go beyond the framework of the diffusion limit by modifying the emission and the
absorption opacity by the values specified in the table 2 in order to describe two phenomena which are
different in both intensity and propagation speed. We observe the position of the two waves at 2ns, this
time using the radiative temperature, which better reflects the propagation of the low intensity wave.

Remark 3.2. It would have been possible to adapt the emission and the absorption opacity of the right
part to remain in the diffusion limit. However, this would have led to expensive calculations for the right
wave to propagate given its low intensity. It is the same for the choice of the observed temperature: it
is possible to consider the matter temperature, but in this case, it is necessary to increase the size of the
domain to allow the second wave to propagate significantly without encountering the first wave. This leads
to a drastic increase of the final time of the simulation, the size of the cell and the number of particles
followed thus increasing its cost.

dright 1.56× 1013 K3.g−1.cm2 Tmatter(·, right border) 116040 K

Table 2: Values used in the numerical simulation of a low intensity wave, to be compared with the table
1.

We present the same metrics as in the previous case, and the temperatures are presented in logarithmic
scales so that the propagation of the weak wave can be represented. Figure 15 shows the results when Nobj
is homogeneous and the splitting is non-conservative; the figure 16 treats the case when the algorithm
3 is used. The case with homogeneous Nobj and conservative splitting is not presented in view of the
results on the propagation of a single wave. The propagation of the low intensity wave is reconstructed
with both methods, even if with the algorithm 3 few particles are used for this wave (figure 18). With
the algorithm 3, increasing Nobj does not change the variance on the low intensity wave, since the extra
particles are allocated to the high intensity wave.

Figures 15 and 16 present the radiative temperatures and the associated confidence intervals and
the figure 17 makes it possible to compare the size of the confidence intervals of the two methods for
Nobj = 2000. Unsurprisingly, the variance of the right wave is greater with the algorithm 3 than with
the algorithm 2 (non-conservative splitting version). The reverse occurs for the wave on the left.

The figure 19 presents the FOM and the CPU time. The global variance is significantly reduced
with the algorithm 3 which has a lower computation time than the algorithm 2. In this case, the use
of a spatial distribution of the particles allows to gain both in global variance over the system and in
computation time. This case underlines the main characteristic of the algorithm 3 which aims to reduce
the global variance on the domain.

This section allowed to challenge the algorithm 2 in a framework which seemed unfavorable. However,
it made possible to underline the characteristics of this method through the reduction of the global
variance in the system even if further practice is needed in order to better qualify these results.

4 Conclusion

The resolution of the transport equations by a Monte Carlo method allows a detailed level of modeling
of the physical phenomena involved. However, this stochastic method requires a precise sampling of the
underlined Markov process in order to be able to treat the emission of the source term and the good
representation of the solution obtained at the previous time step. In this work, we have discussed the
difficulties related to the variance reduction methods (cf., section 1) then we have presented the cell-based
population control method which simultaneously performs the control of existing population phase and
the source emission phase (cf., section 2.1).
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Figure 15: Results obtained with the algorithm 2 and non-conservative splitting. Top: matter tempera-
ture. Bottom: variance per cell over 30 realizations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

104

105

106

107

position x (cm)

T
em

p
er
at
u
re

(K
)

Nobj = 20
Nobj = 200
Nobj = 2000
reference

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10−5

100

105

V
a
r 3

0
(m

)/
30

Figure 16: Results obtained with the algorithm 3 and non-conservative splitting. Top: matter tempera-
ture. Bottom: variance per cell over 30 realizations.
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Figure 17: Comparison of the variance obtained with the two algorithms for Nobj = 2000.
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Figure 18: Distribution of the particles on the cell before (left) and after (right) the last tracking phase
in the case of the propagation of a Marshak wave using the algorithm 3 and different values of Nobj .
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Figure 19: FOM(30) metric (left) and CPU time (right) for several values of Nobj for the case of the
propagation of a Marshak wave with a second wave.
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First, based on the cell-based population control method presented in [27], we compared two types of
splitting: first, one that conserves the energy and secondly a non-conservative procedure (cf., section 2.2)
(the total energy remains conserved in both cases thanks to a correction step). These two algorithms,
repeated several times on the same population of weights, converge towards the same limit distribution
(cf., sections 2.2 and 2.3), but the algorithm with a non-conservative splitting has a faster convergence,
as illustrated in section 3.1. Exploiting the properties of the cell-based population control method, we
propose a variant in the section 2.4 which enables to obtain homogeneous weights over the entire cell
considered. The algorithm 3 contrasts with the initial method aiming to guarantee a homogeneous number
of particles.

These algorithms are applied within the framework of a radiative transfer using the propagation of a
wave in an opaque medium, corresponding to the diffusion limit of the system. For the three methods,
the variance is largest at the foot of the wave. Non-conservative splitting, although involving a low
proportion of particles in the system, allows a significant reduction in the variance at the foot of the
wave. The newly proposed method allows to obtain a similar level of variance, but significantly reduces
the calculation time and thus improves the merit index.

The algorithm 3 is then tested on a situation which seems unfavorable: two physical phenomena
distinct in intensity and speed are present on the considered domain. In this context, the method with
homogeneous objective number and non-conservative splitting is compared with the method aiming to
obtain homogeneous objective weights. In this case, the variance on the main wave is improved to the
detriment of the secondary wave. Nevertheless, at the global level of the simulation, the variance is
improved, as well as the computation time.

The reduction of variance is a problem depending on the case studied. It seems interesting to continue
exploring this new method, in order to better characterize the situations where it is effective and the ones
where it does not allow to obtain a satisfactory result on the whole domain (for instance, an area with
a very important phenomenon but where energy is low). Finally, it is important not to fall back into
too complicated setups and parameter specifications: although the idea of defining an area where the
weight should be homogeneous (for example distinguishing between two waves) is generally beneficial, it
may also fall into the trap of the definition of a coefficient of importance; this is detrimental because the
user is forced to employ the result of the calculation for the parameterization of the method. Finally,
in situations where zone depopulation can be too problematic, it would be interesting to combine the
principle of the two methods: a minimum number of particles per cell, and distribute the rest in such a
way as to homogenize the objective weights as much as possible.

This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.
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A Proof of the proposition 2.6 on the conservative splitting
method

We provide in this appendix a complete version of the proof sketched in main text; this version addresses
rigorously all technical details required for the proof of the proposition 2.6 page 9. We recall that this
proposition concerns one cell and a fixed time. In this appendix, we omit the index m of a cell, and
denote as before by l the iteration counter.

Recall that Xl is the state of the algorithm after l iterations of (RR + S + the renormalization) steps.

The Xl have N l components noted (X1
l , . . . , X

N l

l ). Note that, in full generality, Xl can be described as
a set of (unknown number) positive weights that sum up to Elr,m = 1, i.e. a member of `1, the ensemble
of (absolutely) summable sequences. Denote also by XT the uniform distribution with Nobj particles all
of same weight wobj : XT = (wobj , ..., wobj) ∈ RNobj .

Note for now that, since N0 is finite, Nl will remain finite for any l; moreover, since for any l the
alternatives are in finite number (basically the outcomes of some binomial variables) then, given X0, the
set of all possible states taken by the algorithm is countable.

As in the non-conservative case, the number of particles at the next step is depending of a sum of
Bernoulli variables (noted Be):

N l+1 =

N l∑
i=1

⌊
Xi
l

wobj

⌋
+ Be (pi) . (37)

with pi =
Xil
wobj
−
⌊
Xi
l

wobj

⌋
.

As Elr,m = 1, 1
Nobj

∑N l

i=1 pi ≤
∑N l

i=1X
i
l − 1

Nobj

⌊
Xi
l

wobj

⌋
≤∑N l

i=1X
j
l ≤ 1 so

∑N l

i=1 pi ≤ Nobj ∀l ≥ 1.

Therefore the algorithm generates a discrete time countable state Markov chain (Xl)l≥0. We recall
that such a stochastic process has the strong Markov property (we will use this property later). Finally,
note that, should the algorithm arrive at the “non-void correction” step, then the next distribution will
consist of one particle with mass Elr,m and the next one will be exactly XT. Therefore, without loss of
generality we will consider only Markov chain scenarios that do not involve the non-void correction step.

With these preliminaries we can prove the proposition 2.6. The proof requires many technical argu-
ments and will be split into several parts.

? The first step of the proof is to show that the Markov chain will arrive, after a finite time τ , at a
total number of particles Nτ ≤ Nobj .
Lemma A.1. Under the hypothesis of Proposition 2.6 there exists c1 > 0 such that

∀L ≥ 0 : P[N0 > Nobj , N1 > Nobj , ..., NL > Nobj ] ≤ ec1(L−1). (38)

In particular, let us define a stopping time τ equal to the first j ≥ 1 such that Nj ≤ Nobj. Then τ is
finite (with probability one).

Proof. The number of particles at step l+1 depends on the outcomes of a set of Bernoulli variables Be(pi)
(equation (37)): in general their number can be arbitrary large, but the parameters pi (the means) are
such that p =

∑
i pi is an integer less than Nobj . For instance, if all but one particles are of weight less

than wobj and the remaining particle of weight in [2wobj , 3wobj [ then p will be Nobj − 2.
When the random variables Be(pi) are such that

∑
iBe(pi) matches exactly its mean p the next

iteration l + 1 will have exactly Nobj particles.
Let us recall the following inequality (known as the Chernoff bound [10, 48, 19] for the Poisson

binomial distribution
∑
iBe(pi)) :

P

[∑
i

Be(pi) ≥ p+ 1

]
≤ e−1/(2+p). (39)

Since p is bounded from below (we excluded the situation p = 0, see the discussion above) we obtain that
there exists some constant c2 < 1 depending only on Nobj such that for any l ≥ 1: P[Nl+1 > Nobj ] ≤ c2
and also P[Nl+1 > Nobj |Nl > Nobj ] ≤ c2.
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Then, for any L ≥ 1:

P[N0 > Nobj , N1 > Nobj , . . . , NL > Nobj ] = P[NL > Nobj |N0 > Nobj , N1 > Nobj , . . . , NL−1 > Nobj ]

· P[NL−1 > Nobj |N0 > Nobj , N1 > Nobj , . . . , NL−2 > Nobj ] · · · · · P[N1 > Nobj |N0 > Nobj ]

= P[NL > Nobj |NL−1 > Nobj ] ·P[NL−1 > Nobj |NL−2 > Nobj ] · · · · ·P[N1 > Nobj |N0 > Nobj ] ·P[N0 > Nobj ]

≤ cL−1
2 , (40)

where we used the Markov property to pass from P[NL > Nobj |N0 > Nobj , N1 > Nobj , . . . , NL−1 > Nobj ]
to P[NL > Nobj |NL−1 > Nobj ]. This gives (38) for c1 = −log(c2) > 0.

In particular the tail probability P[τ ≥ L− 1] decreases exponentially with L and thus τ is finite.

? We invoke now the strong Markov property of the countable space discrete time Markov chain
(Xl)l≥0 to conclude that (Yl)l≥0 = (Xτ+l)l≥0 is also a Markov chain and moreover Y0 has at most Nobj
non-null weights (with probability one). Note that the conclusion in equation (19) is true if and only
if it is also true for the Markov chain (Yl)l≥0 because the limit is independent of what happens before
the finite stopping time τ . Thus, without loss of generality and in order to keep the same notations, we
consider from now on that X0 has at most Nobj non-null weights. Note that this does not necessarily
imply the same for X1 or following values of the Markov chain.

? We will need another result which is describing the stability of the target XT with respect to the
algorithm. Consider

Tε =

(w1, ..., wNobj ) ∈ RNobj |
Nobj∑
k=1

wk = Nobjwobj ,

Nobj∑
k=1

|wk − wobj | ≤ εwobj

 ,

and denote τε the first iteration step l when Xl enters Tε.

Lemma A.2. There exists some constant c3 > 0 only depending on Nobj such that

P[ lim
l→∞

Xl = XT|τε <∞] ≥ 1− c3ε. (41)

Proof. First note that we only need to prove the assertion for small enough ε because for large ε we
have 1− c3ε ≤ 0 and in this case the conclusion holds trivially because a probability is always a positive
number. We can assume ε < 1. Let us write

P[ lim
l→∞

Xl = XT|τε <∞] =
∑
k≥1

P[ lim
l→∞

Xl = XT|τε = k]P[τε = k|τε <∞]. (42)

Since
∑
k≥0 P[τε = k|τε <∞] = 1 it is enough to find a constant c3 such that for any k:

P[ lim
l→∞

Xl = XT|Xk ∈ Tε] ≥ 1− c3ε,

where we used the Markov property of (Xl)l≥0.

As ε < 1, this means that any Xj
k can be written as Xj

k = wobj(1 + εj) with |εj | ≤
∑
j |εj | = ε < 1;

moreover
∑
j εj = 0 and

∑
j |εj | = ε imply

∑
{j;εj≤0} |εj | =

∑
{j;εj≥0} |εj | = ε/2.

When εj < 0 the probability for each each Xj
k to survive after RR is 1 − |εj | and when εj > 0 the

probability to survive as is (without any split) is 1 − εj . So the probability for each particle, being it

subject to RR or S to survive and not undergo any split is at least
∏Nobj
j=1 (1− |εj |) ≥ 1−∑j |εj | = 1− ε.

Thus, with probability 1− ε the distribution Xk+1 will have exactly Nobj non null weights. In this case,
the renormalization factor (which will be less than unity because particles surviving RR increase the total
mass) is exactly Nobj/(Nobj + ε/2).
After the renormalization phase :

• the particles having εj ≤ 0 have survived after a RR phase, will be all equal to Nobj/(Nobj + ε/2) =

wobj + wobj
ε/2

Nobj+ε/2
;

• the particles having εj ≥ 0 will not be split by the S phase and will become wobj + wobj
Nobjεj−ε/2
Nobj+ε/2

.
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Thus: ∑
j

|Xj
k+1 − wobj | = wobj

 ∑
{j;εj≤0}

ε/2

Nobj + ε/2
+

∑
{j;εj≥0}

|Nobjεj − ε/2|
Nobj + ε/2

 . (43)

Note that, when εj1 ≥ εj2 ≥ 0 replacing εj2 by 0 and εj1 by εj1 + εj2 the sum is remains constant but the
error increases. Doing this to any pair of εj , εj′ ≥ 0 we obtain that the error is maximized when all of
them are null except one equal to ε/2. Thus we can write:∑

j

|Xj
k+1 − wobj | ≤ wobj(Nobj − 1)

ε/2

Nobj + ε/2
+ wobj

Nobjε/2− ε/2
Nobj + ε/2

≤ wobjε
Nobj − 1

Nobj
. (44)

We conclude that, for ε < 1: P[Xk+1 ∈ TεNobj−1

Nobj

|Xk ∈ Tε] ≥ 1 − ε. Continuing this procedure,

P

[
Xk+` ∈ T

ε
(
Nobj−1

Nobj

)`
∣∣∣∣∣Xk ∈ Tε

]
≥ ∏`

a=1

[
1− ε

(
Nobj−1
Nobj

)a]
and therefore convergence is attained with

probability at least
∏∞
a=1

[
1− ε

(
Nobj−1
Nobj

)a]
≥ 1− εNobj which establishes the conclusion.

? Then, in view of lemma A.2, if we prove that τε is finite almost everywhere, then the sequence
(Xl)l≥1 converges with probability at least 1 − c3ε. So, all that remains to be proved is that for any
ε > 0 (small enough) the stopping time τε is finite almost everywhere. We will fix such an ε from now
on. Before being able to do this, a technical result is needed.

Lemma A.3. If N0 is at most Nobj then:

1. for any l ≥ 1:
maxj{Xj

l |X
j
l 6= 0}

minj{Xj
l |X

j
l 6= 0}

≤ 4, (45)

2. for any l ≥ 0: Nl ≤ 6Nobj,

3. for any l ≥ 1 : min{Xj
l |X

j
l 6= 0} ≥ wobj/10.

Proof.
• Proof of point 1: note that after a RR step the survival particles have mass exactly wobj ; after

a S step, the resulting particles have mass in the interval [wobj/2, 2wobj ] thus the quotient between the
largest and smallest mass is at most 2wobj/(wobj/2) = 4. Since the renormalization step does not affect
this quotient, the claim is proved for all l ≥ 1.
• Proof of items 2 & 3 : we proceed by recurrence.
First, let us take l = 1. Note that the RR step does not create any particles and the S step can result

in at most 2Nobj particles because the mass of each particle after a S step is greater than wobj/2 (and
total mass is conserved). Thus N1 ≤ 3Nobj . Moreover, the total mass “created” during the RR step is at
most Nobjwobj thus the renormalization factor is lower bounded by 1/2. Thus after the renormalization
step each remaining particle has weight greater than wobj/4.

Suppose that for some l both claims are true and let us prove it for l + 1.

• If max{Xj
l+1|X

j
l 6= 0} ≥ wobj , then, using the bound in item 1 proved previously, then Xk

l+1 ≥
wobj/4 for any k ≤ Nl+1. But since the total mass is equal to Nobjwobj it follows that there cannot
be more than 4Nobj particles and the claim is thus true for step l + 1 too.

• Suppose now max{Xj
l+1|X

j
l 6= 0} < wobj . If at the previous step all particles underwent the RR this

means Nl+1 ≤ Nl ≤ 6Nobj (because RR cannot create particles) and moreover all present particles
are of the same mass equal to Nobjwobj/Nl+1 ≥ wobj/6.

• The only alternative left is when at step l there was at least a particle undergoing S, that is
max{Xj

l |X
j
l 6= 0} ≥ wobj ; but, as seen above, this means that min{Xj

l |X
j
l 6= 0} ≥ wobj/4 and

therefore Nl ≤ 4Nobj particles; the RR step cannot create particles and the S step can only result
in 2Nobj particles (because the total mass subjected to S is at most Nobjwobj and the minimal weight
after split is wobj/2). Thus Nl+1 ≤ 6Nobj . Moreover, the total created mass by the RR step is at
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most 4wobjNobj and therefore the renormalization coefficient is at least Nobj/(Nobj + 4Nobjwobj) =
1/5; the minimal mass before renormalization being wobj/2 we conclude that the minimal mass
after renormalization is wobj/10 which concludes the recurrence proof.

? Now, we can prove the last needed result:

Lemma A.4. There exists ε0 > 0 such that for any ε ∈ [0, ε0] there exists Lε ∈ N and cε < 1 with:

∀l ≥ 1 : P[Xl+1 /∈ Tε, ..., Xl+Lε /∈ Tε|Xl /∈ Tε] ≤ cε. (46)

Thus P[τε ≥ k] is exponentially decreasing when k → ∞ and in particular the stopping time τε is finite
almost everywhere, i.e., P[τε <∞] = 1.

Proof. We will only prove the assertion (46), the rest being standard. We can assume ε < 1.
Note that, by lemma A.3, with probability at least (9/10)6Nobj all RR will preserve all particles, the

total mass will increase and thus the renormalization factor will be smaller than unity.
On the other hand, using the notation in the algorithm 2, we write any weight Xj

l ≥ wobj in the
form wobj(Ij + Rj) where Ij ∈ N \ {0} and Rj ∈ [0, 1[. If Rj/Ij ≥ ε/(2Nobj) the probability of having

a Ij + 1 split is Rj and thus with probability at least
(

ε
2Nobj

)Nobj
× (9/10)6Nobj the renormalization

factor is smaller than one and at step l+ 1 all weights larger than wobj are in the form wobj(1 + pj) with
pj ≤ ε

2Nobj
.

If Xl+1 ∈ Tε already we are done. If not, let us denote nSl+1 the number of weights larger than wobj ,

denoted from now one wobj(1 + pj), j = 1, ..., nSl+1. Denote also nRl+1 the number of weights strictly
smaller than wobj . By the conservation of mass, the sum of these latter weights is(Nobj − nSl+1)−

∑
j

pj

wobj ≥ [(Nobj − nSl+1)− ε/2
]
wobj > (Nobj − nSl+1 − 1)wobj .

Since all weights in this set are inferior to wobj we deduce that nRl+1 > Nobj − nSl+1 − 1.

If nRl+1 = Nobj − nSl+1 then Xl+1 ∈ Tε (situation already discussed).

Thus we can assume nRl+1 ≥ Nobj − nSl+1 + 1.

Consider now the (Nobj − nSl+1 + 1)-th weight counting down, in decreasing magnitude, from the largest

one, denote it y. Since the sum of the Nobj−nSl+1 + 1 largest weights is smaller than
[
(Nobj − nSl+1)

]
wobj

it follows that y ≤ (Nobj −nSl+1)/(Nobj −nSl+1 + 1) ≤ Nobj/(Nobj + 1). That means that with probability

larger than
[

1
Nobj+1

]6Nobj
×
[

1
10

]6Nobj at the step l + 2 we can keep, after RR, exactly the Nobj − nSl+1

largest weights and eliminate the others. Doing this the total mass will increase, with at most ε/2,

therefore the renormalization coefficient will be smaller than one and larger than
Nobj

Nobj+ε/2
. Note that all

particles wobj(1 + pi) are kept unchanged by the S step with probability 1 − ε/2. Therefore, with the

strictly positive probability (1 − ε/2)
[

1
Nobj+1

]6Nobj
×
[

1
10

]6Nobj (depending only on ε and Nobj) we will

have exactly Nobj particles, and those over wobj have a distance to wobj at most ε/(2Nobj), which means
Xl+2 ∈ Tε. The lemma is proved with Lε = 2.

? We can now finish the proof of the proposition 2.6: we showed (lemma A.1) that, after a finite time
τ , Xl will have at most Nobj non-null particles and, by lemma A.3 is will have at most Nmax = 6Nobj
non-null particles forever from that point on. From lemma A.4 we conclude that after a finite time τε the
state Xτε will be in Tε and from lemma A.2 it will converge with probability 1 − c3ε. Since this is true
for any ε (small enough) then we have convergence everywhere, hence the conclusion.

29



References

[1] M. A. Cooper and E. W. Larsen. Automated weight windows for global monte carlo particle transport
calculations. Nuclear Science and Engineering, 137(1):1–13, 2001.

[2] R. Alcouffe, R. Dautray, A. Forster, G. Ledanois, and B. Mercier, editors. Monte-Carlo Methods and
Applications in Neutronics, Photonics and Statistical Physics. Springer Berlin Heidelberg, 1985.

[3] Teresa S Bailey. The piecewise linear discontinuous finite element method applied to the RZ and
XYZ transport equations. PhD thesis, Texas A&M University, 2008.

[4] G. Bal, A. B. Davis, and I. Langmore. A hybrid (Monte Carlo/deterministic) approach for multi-
dimensional radiation transport. Journal of Computational Physics, 230(20):7723–7735, 2011.

[5] G.I. Bell and S. Glasstone. Nuclear reactor theory. Van Nostrand Reinhold Company, 1970.

[6] X Blanc, C Bordin, G Kluth, and G Samba. Variance reduction method for particle transport
equation in spherical geometry. Journal of Computational Physics, 364:274–297, 2018.

[7] S.R. Bolding, M.A. Cleveland, and Morel J.E. A High-Order Low-Order Algorithm with Exponen-
tially Convergent Monte Carlo for Thermal Radiative Transfert. Nuclear Science and Engineering,
185(1):159–173, 2017.

[8] T. Booth. Sample problem for variance reduction in MCNP. Technical report, Los Alamos National
Lab., NM (USA), 10 1985.

[9] T.E. Booth. A weight (charge) conserving importance-weighted comb for Monte Carlo. Technical
report, LA-UR-96-0051 Los Alamos National Lab., NM (United States), 3 1996.

[10] H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of
Observations. The Annals of Mathematical Statistics, 23(4):493 – 507, 1952.

[11] M.A. Cleveland and N.A. Gentile. Mitigating Teleportation Error in Frequency Dependent Hybrid
Implicit Monte Carlo Diffusion Methods. Journal of Computational and Theoretical Transport,
43(1):6–37, 10 2014.
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