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Abstract

We study uncertainty quantification for a Boltzmann-Poisson system
that models electron transport in semiconductors and the physical colli-
sion mechanisms over the charges. We use the stochastic Galerkin method
in order to handle the randomness associated with the problem. The main
uncertainty in the Boltzmann equation concerns the initial conditions for a
large number of particles, which is why the problem is formulated in terms
of a probability density in phase space. The second source of uncertainty,
directly related to the quantum nature of the problem, is the collision op-
erator, as its structure in this semiclassical model comes from the quantum
scattering matrices operating on the wave function associated to the elec-
tron probability density. Additional sources of uncertainty are transport,
boundary data, etc. In this study we choose first the phonon energy as
a random variable, since its value influences the energy jump appearing
in the collision integral for electron-phonon scattering. Then we choose
the lattice temperature as a random variable, since it defines the value of
the collision operator terms in the case of electron-phonon scattering by
being a parameter of the phonon distribution. The random variable for
this case is a scalar then. Finally, we present our numerical simulations.
We calculate with our stochastic Discontinuous Galerkin methods the un-
certainty in kinetic moments such as density, mean energy, current, etc.
associated to a possible physical temperature variation (assumed to follow
a uniform distribution) in the lattice environment, as this uncertainty in
the temperature is propagated into the electron PDF. Our results then let
us predict in a real world problem setting the impact that possible varia-
tions in the lab conditions or limitations in the mathematical model (such
as assumption of a constant phonon energy) will have over the calculated
uncertainty in the behavior of electronic devices.

1 Introduction

1.1 The Deterministic Boltzmann-Poisson System

Electronic transport in semiconductors is a problem that, although definitely
quantum mechanical in nature, can be approximated up to a certain point by
semiclassical models featuring quantum corrections. In the semiclassical mod-
elling, even with deterministic laws of motion, the number of electric charge
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carriers N � 1 is of the order of the Avogadro number. The consequence is
that a statistical model on the semiclassical scale is extremely adequate due
to the large number of particles (i.e., the charge carriers, which are electrons
in our problem), because it is virtually impossible to know exactly the initial
conditions of positions and momentums for all the particles (on top of quantum
considerations such as the Uncertainty Principle which indicate that knowing
these initial conditions exactly is completely impossible). Therefore, uncer-
tainty in the initial condition is naturally linked to the essence of the electron
transport problem due to its many-carriers nature, even under a semiclassical
approximation of this quantum problem, which consequently requires a statis-
tical formulation, provided then by a particle density mechanics approach in
terms of a probability density function in phase space. This probabilistic for-
mulation is given precisely by the Boltzmann-Poisson (BP) semiclassical model
for collisional electronic transport.

The Boltzmann-Poisson (BP) system for electron transport on a single con-
duction energy band has the form

∂f

∂t
+

1

h̄
∇~k ε(~k) · ∇~xf −

q

h̄
~E(~x, t) · ∇~kf = Q(f), (1)

∇~x · (ε∇~xV ) = q [ρ(~x, t)−N(~x)] , ~E = −∇~xV, (2)

with the quantum mechanical electron group velocity 1
h̄∇~k ε(~k) and the elec-

tron density ρ(~x, t) =
∫

Ω~k
f(~x,~k, t) d~k. The collision integral operator Q(f)

describes the scattering over the electrons, where several mechanisms of quan-
tum mechanical nature can be taken into account. In its full form, it enforces
the Pauli Exclusion Principle by being given as

Q(f)(t, ~x,~k) =

∫
Ω~k′

[
S(~k′ → ~k)f ′(1− f)− S(~k → ~k′)f(1− f ′)

]
d~k′. (3)

The collision scattering term S(~k → ~k′; ε(~k) → ε(~k′)) acts over f in our semi-
classical model as a scattering matrix does in a quantum description over the
wave function for a ~k-state, i.e., representing the transition from a momentum
~k to another state ~k′, satisfying momentum and energy conservation principles.

There’s then an analogy
〈

Ψ(~k)|S|Ψ(~k′)
〉
↔
∫

Ω~k′
S(~k′ → ~k)f ′(1 − f)d~k′. It

is important to mention that the specific form of S(~k → ~k′) can be derived
from first-order time-dependent perturbation theory for the Schrödinger equa-
tion, by considering the perturbative Hamiltonian representing the scattering
mechanisms under consideration. In the low density regime, however, we can
relax the enforcing of the Pauli principle. In that case, the collisional integral
operator can be approximated as being linear in f and therefore having the form

Q(f) =

∫
Ω~k

[
S(~k′,~k)f(t, ~x,~k′)− S(~k,~k′)f(t, ~x,~k)

]
d~k′, (4)

where S(~k,~k′) is the scattering kernel representing non-local interactions of elec-
trons with a background density distribution. For example, in the case of silicon,
one of the most important collision mechanisms are electron-phonon scatterings
due to lattice vibrations of the crystal, which are modeled by acoustic (assumed
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elastic) and optical (non-elastic) non-polar modes, the latter with a single fre-
quency ωp (assumed constant), as in

S(~k,~k′) = (nq + 1)K δ(ε(~k′)− ε(~k) + h̄ωp)

+ nqK δ(ε(~k′)− ε(~k)− h̄ωp) +K0 δ(ε(~k
′)− ε(~k)), (5)

where K and K0 are material constants for silicon. The symbol δ indicates the
usual Dirac delta distribution, derived under the well-known Fermi’s Golden
Rule approximation in time-dependent perturbation theory [1]. The constant
nq is related to the phonon occupation factor

nq(h̄ωp) =

[
exp

(
h̄ωp
KBTL

)
− 1

]−1

, (6)

where KB is the Boltzmann constant and TL = 300K is the lattice temperature.

1.2 Main Uncertainties of the Boltzmann-Poisson Model

We can summarize the main uncertainties of the Boltzmann-Poisson model for
electron transport in semiconductors as follows.

1. The initial conditions for and the large number of particles of the system,
leading to a probabilistic formulation of the problem in terms of f(~x,~k, t).

2. Quantum mechanical features in the Boltzmann equation, particulary in
the collision operator Q(f), based on a probabilistic description of the

electron as a wavefunction Ψ:
〈
Ψ~k|S|Ψ~k′

〉
↔
∫

Ω~k′
S(~k′ → ~k)f ′(1− f)d~k′.

3. Uncertainty in the exact functional form of the energy band ε(~k). This

function defines both the quantum terms of transport ∇~kε(~k) and of

electron-phonon scattering in silicon δ(ε(~k)−ε(~k′)+lh̄ωp), l ∈ {−1, 0,+1},
appearing in the Boltzmann equation.

4. The lattice temperature T may fluctuate, since it is related to the envi-
ronmental temperature.

5. The phonon energy h̄ωp is often assumed to be constant, but it is known
from experiments that this is not the case in general.

6. Parameters in the Poisson equation such as doping and permittivity may
be uncertain. These are experimental parameters, and since they are given
by measurements they are associated with measurement errors.

7. The boundary conditions that connect the domain to a stochastic envi-
ronment. For example, reflection at physical boundaries might not be
perfectly specular but rather have a diffusive component due to roughness
in these boundaries.

In summary, uncertainty in the Boltzmann-Poisson system is crucial due to the
inherent probabilistic (many particles) and quantum mechanical nature of the
problem itself.
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1.3 The Stochastic Boltzmann-Poisson System

Because of these reasons, we consider a stochastic Boltzmann-Poisson system of
the form

∂f

∂t
+

1

h̄
∇~k ε(~k, ~z) · ∇~xf −

q

h̄
~E(~x, t, ~z) · ∇~kf = Q(f)(t, ~x,~k, ~z), (7)

∇~x · (ε∇~xV ) = q [ρ(~x, t)−N(~x)] , ~E = −∇~xV, (8)

with f(t, ~x,~k, ~z) being the probability density function now depending on an
additional random parameter vector ~z. The components of our random vector
will be associated with the sources of uncertainty abovementioned, and they
will be explicitly restated when we describe the stochastic Galerkin method for
the Boltzmann-Poisson system.

1.4 Previous Work on Uncertainty Quantification for Boltz-
mann Models via Stochastic Galerkin Methods

In addition to the classical references for the stochastic Galerkin (SG) method
such as Wiener’s polynomial chaos [2], Ghanem and Spanos [3], Xiu and Kar-
niadakis [4] etc., SG for Boltzmann equations in particular has recently been
developed mainly by Shi Jin and his collaborators. It is a very active research
area in the kinetic-theory community. The first paper that considered the use of
SG for the Boltzmann equation in the context of gases was written by Hu and
Jin [5]. Later on, SG was studied in the context of kinetic equations with ran-
dom inputs, considering different models such as random linear and nonlinear
Boltzmann equations, linear transport equations, and Vlasov-Poisson-Fokker-
Planck equations. An overall view of the advances in the discipline for these
equations can be found in the review paper [6], part as well of the review book
[7].

More specifically, regarding SG methods for the semiconductor Boltzmann
equation, the first work related to this topic was performed by Jin and Liu [8].
They consider in their model a collision operator whose scattering kernel term is
bounded above and below. Although uncertainties can possibly come from the
collision operator, the electric potential, initial data, or boundary data, the col-
lision operator in this previous study of the semiconductor Boltzmann equation
did not consider the more physically realistic case of Dirac delta distributions
obtained by Fermi’s Golden Rule for energy transitions, as the scattering kernel
was assumed to be bounded. Furthermore, a possible uncertainty in the elec-
tron velocity was not considered by making the assumption of a deterministic
velocity given by the parabolic energy band model. Most importantly, the nu-
merical study in this work considered a random relaxation Maxwellian collision
kernel, which does not involve energy transitions in its scattering model, in ad-
dition to random initial data in the electron density, random boundary data, a
random Debye length, and random doping parameters in the Poisson equation.
Therefore, the randomness of the energy band in the transport and collision
terms and the uncertainty related to a collision operator that uses Dirac delta
distributions due to Fermi’s Golden Rule, as it is the case for electron-phonon
scattering, remain as crucial topics yet to be studied for the understanding of
uncertainty quantification in collisional electron transport in semiconductors via
stochastic methods.
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Our methodology will then be to study variables related to the electron-
phonon collision operator as random in the SG method for the Boltzmann-
Poisson model of electrons in semiconductors. We first choose as one of those
variables the lattice temperature, as it is involved in the phonon distribution as
a parameter. The dimensional cost is minimal as the temperature is a scalar.

We describe the structure of the rest of this paper as follows. In Section 2 we
discuss how the SG method handles the uncertainties arising in the Boltzmann-
Poisson system. Then we consider uncertainty quantification by SG first for
the phonon energy being a random variable and then the lattice temperature
being a random variable too. Section 3 describes the numerics of the determin-
istic Boltzmann-Poisson system solved by discontinuous-Galerkin (DG) meth-
ods. Then Section 4 covers in more detail the stochastic discontinuous Galerkin
(SDG) method for the Boltzmann-Poisson system for the case of a random lat-
tice temperature. In Section 5, the conclusions are drawn.

2 Stochastic Galerkin Method for the Boltzmann-
Poisson System

2.1 Description of Uncertainties

The SG method handles the uncertainties in the Boltzmann-Poisson system by
introducing random variables zi, i ∈ {1, . . . , 7}, associated with the uncertainties
as indicated below.

1. Regarding initial conditions and the large number of particles, the proba-
bilistic formulation f(~x,~k, t, z1) with random initial conditions f(~x,~k, 0, z1)
is used.

2. Regarding quantum phenomena in the collision operator Q(f), the proba-
bilistic nature of the electron wavefunction Ψ is mimicked (relaxing Pauli

principle) by
〈
Ψ~k′ |S|Ψ~k

〉
↔
∫

Ω~k
S(~k → ~k′, z2)f(~x,~k, t, z2)d~k′.

3. The uncertainty in the energy band structure is described as ε(~k, z3). This

function defines both quantum terms of electron velocity ∇~kε(~k, z3)/h̄ and

of electron-phonon scattering in silicon δ(ε(~k, z3)−ε(~k′, z3)+ l(h̄ωp+z4)),
l ∈ {−1, 0,+1}.

4. The lattice temperature is written as T + z4 as it may change due to
fluctuations in the environment, but it is assumed to be constant in the
model.

5. The phonon energy h̄ωp + z5 is approximated as constant in the model,
but experiments show that it is nonconstant in general.

6. In the Poisson equation, the doping concentration is written as ND + z6

and the permittivity as ε+ z6.

7. The boundary conditions are described as fB(~x,~k, t, z7)|∂Ω, etc.

5



2.2 Stochastic Galerkin Method for the Boltzmann-Poisson
System with the Phonon Energy as a Random Vari-
able

In this section, we assume that the only uncertainty stems from the phonon
energy model. Randomness in the phonon energy is physically relevant because
it is known to be strictly speaking non-constant, and it is also a good starting
point as a scalar random variable. Therefore, we replace h̄ωp in the deterministic
equation by h̄ωp + z. Then the phonon occupation as a function of the energy
becomes

nq(h̄ωp, z) =

[
exp

(
h̄ωp + z

KBTL

)
− 1

]−1

. (9)

This introduces randomness in the collision operator as well, leading to

S(~k,~k′, z) = [nq(h̄ωp, z) + 1] K δ(ε(~k′)− ε(~k) + h̄ωp + z)

+K0 δ(ε(~k
′)− ε(~k)) + nq(h̄ωp, z)K δ(ε(~k′)− ε(~k)− h̄ωp − z).

We consider two cases. First we devise a stochastic Galerkin algorithm using
a distributional-derivative approximation with respect to the random variable.
Then we consider the fully general case of the random variable in the collision
operator without any distributional-derivative approximation in the random
space. The algorithms are described in detail in the following.

2.2.1 Random Phonon Energy Using a Distributional Derivative Ap-
proximation

We consider the case n := 1, P := 1, K := dim(PnP ) := 2, and approximate the

density as (with ~p = h̄~k being the crystal momentum)

f(t, ~x, ~p, z) ≈
2∑
k=1

αk(t, ~x, ~p)Ψk(z) = α(t, ~x, ~p) ·Ψ(z) = (α1, α2) · (Ψ1,Ψ2). (10)

Then the Boltzmann equation reads

∂tα+ ~v · ∇~xα+ F · ∇~pα = Q(α), (11)

Q(α) =

∫
Ω~p

B(~p, ~p′)[M(~p)α(~p′)−M(~p′)α(~p)]d~p′, (12)

Bij(~p, ~p′) =

∫
Iz

σ(~p, ~p′, z)Ψi(z)Ψj(z)π(z)dz (13)

= σ0(~p, ~p′)δij +

∫
Iz

∂zσ(~p, ~p′, z)|z=0zΨi(z)Ψj(z)π(z)dz, (14)

σ(~p, ~p′, z) = σ0(~p, ~p′) + σ̃1(~p, ~p′)z = σ|z=0 + ∂zσ(~p, ~p′, z)|z=0z. (15)

The scattering cross section is then written as

σ(~p, ~p′, z) = σ0(~p, ~p′) + σ̃1(~p, ~p′)z, (16)
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where

σ0 = M−1[K0δ(ε−ε′)+(eh̄ωp−1)−1K(eh̄ωpδ(ε−ε′+h̄ωp)+δ(ε−ε′−h̄ωp))]. (17)

Here σ̃1(~p, ~p′) = ∂zσ(~p, ~p′, z)|z=0 is a distributional derivative with respect to z,
and we find

σ̃1(~p, ~p′) = M−1K∂z
{

[1 + (eh̄ωp+z − 1)−1]δ(ε− ε′ + h̄ωp + z)

+ (eh̄ωp+z − 1)−1δ(ε− ε′ − h̄ωp − z)
}
|z=0.

Using δ′[φ] = −δ[φ′] and phonon distribution properties, we have

σ̃1(~p, ~p′) = M−1K
{

[1 + (eh̄ωp − 1)−1]∂z|0δ(ε− ε′ + h̄ωp + z)

+ (eh̄ωp − 1)−1∂z|0δ(ε− ε′ − h̄ωp − z)

− eh̄ωp

(eh̄ωp − 1)2
[δ(ε− ε′ + h̄ωp) + δ(ε− ε′ − h̄ωp)]

}
and

Bij(~p, ~p′) = σ0(~p, ~p′)δij +M−1K

∫
Iz

dzΨi(z)Ψj(z)π(z)z ·

·
{

[1 + (eh̄ωp − 1)−1]∂z|0δ(ε− ε′ + h̄ωp + z)

+ (eh̄ωp − 1)−1∂z|0δ(ε− ε′ − h̄ωp − z)

− eh̄ωp

(eh̄ωp − 1)2
[δ(ε− ε′ + h̄ωp) + δ(ε− ε′ − h̄ωp)]

}
= σ0(~p, ~p′)δij −M−1K ·
·
{

[1 + (eh̄ωp − 1)−1]∂z[Ψi(z)Ψj(z)π(z)z]χ|z=−(ε−ε′+h̄ωp)

+ (eh̄ωp − 1)−1∂z[Ψi(z)Ψj(z)π(z)z]χ|z=+(ε−ε′−h̄ωp)

+
eh̄ωp

∫
Iz
dzΨi(z)Ψj(z)π(z)z

(eh̄ωp − 1)2

∑
±
δ(ε− ε′ ± h̄ωp)

}
.

If we assume the example π(z) := e−
z2

2√
2

, Ψ1 := 1, and Ψ2 := 2z, we obtain

B(~p, ~p′) = σ0(~p, ~p′)δij −M−1K ×{[
1 +

1

eh̄ωp − 1

]
∂z

[(
1 2z
2z 4z2

)
π(z)z

]
χ|z=−(ε−ε′+h̄ωp)

+ (eh̄ωp − 1)−1∂z

[(
1 2z
2z 4z2

)
π(z)z

]
χ|z=+(ε−ε′−h̄ωp)

+
eh̄ωp

∑
± δ(ε− ε′ ± h̄ωp)
(eh̄ωp − 1)2

(
0 1/2

1/2 0

)}
= σ0(~p, ~p′)I −M−1K ×{

eh̄ωp

eh̄ωp − 1

(
1− z2 2z(2− z2)

2z(2− z2) 2z2(3− z2)

)
πχ|z=−(ε−ε′+h̄ωp)

+
1

eh̄ωp − 1

(
1− z2 2z(2− z2)

2z(2− z2) 2z2(3− z2)

)
πχ|z=+(ε−ε′−h̄ωp)
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+
eh̄ωp

(eh̄ωp − 1)2

∑
±
δ(ε− ε′ ± h̄ωp)

(
0 1/2

1/2 0

)}
,

Q(α) =

∫
Ω~p

B(~p, ~p′)
[
M(~p)α(~p′)−M(~p′)α(~p)

]
d~p′.

One could use as another example a sharper Gaussian with support mostly
concentrated around the central value of zero fluctation, in order to give such
a low probability to energy values h̄ωp + z < 0 that virtually the probability
density of having z < −h̄ωp would be numerically zero in a computational
implementation.

2.2.2 Random Phonon Energy Without Approximation

Next, we consider again a random phonon energy, but now use the collision
scattering term without approximation by distributional derivatives in the ran-
dom space. We consider the case n := 1, P := 1, K := dim(PnP ) := 2, and
approximate the density again as

f(t, ~x, ~p, z) ≈
2∑
k=1

αk(t, ~x, ~p)Ψk(z) = α(t, ~x, ~p) ·Ψ(z) = (α1, α2) · (Ψ1,Ψ2). (18)

Then the Boltzmann equation reads

∂tα+ v · ∇~xα+ F · ∇~pα = Q(α), (19)

Q(α) =

∫
Ωp

B(~p, ~p′)[M(~p)α(~p′)−M(~p′)α(~p)]d~p′, (20)

Bij(~p, ~p′) =

∫
Iz

σ(~p, ~p′, z)Ψi(z)Ψj(z)π(z)dz, (21)

σ(~p, ~p′, z) =
K0δ(ε− ε′) +K

eβ(h̄ωp+z)δ(ε−ε′+h̄ωp+z)+δ(ε−ε′−h̄ωp−z)
eβ(h̄ωp+z)−1

M(~p)
(22)

with β = (KBTL)−1. We then have

Bij(~p, ~p′) =
K0δ(ε− ε′)δij +K

∫
Iz
dzΨi(z)Ψj(z)π(z)

{
eβ(h̄ωp+z)δ(ε−ε′+h̄ωp+z)+δ(ε−ε′−h̄ωp−z)

eβ(h̄ωp+z)−1

}
M(~p)

.

Therefore, we find

Bij(~p, ~p′) =

K0δ(ε− ε′)δij +K

(
χ(z)Ψi(z)Ψj(z)π(z)eβ(h̄ωp+z)

eβ(h̄ωp+z)−1

∣∣∣
z=ε′−ε−h̄ωp

+
χ(z)Ψi(z)Ψj(z)π(z)

eβ(h̄ωp+z)−1

∣∣∣
z=ε−ε′−h̄ωp

)
M(~p)

with χ(z) being the characteristic function. Furthermore, we have

B = M−1(~p)K0δ(ε− ε′)I

+

Kχ(z)π(z)

1−e−β(h̄ωp+z)

(
Ψ2

1(z) Ψ1Ψ2

Ψ1Ψ2 Ψ2
2(z)

)∣∣∣∣
ε′−ε−h̄ωp

+ Kχ(z)π(z)

eβ(h̄ωp+z)−1

(
Ψ2

1(z) Ψ1Ψ2

Ψ1Ψ2 Ψ2
2(z)

)∣∣∣∣
ε−ε′−h̄ωp

M(~p)
.
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If we assume a uniform distribution π(z) = N/2β for z ∈ [−β/N, β/N ] with
N > 1, or equivalently π(w) = 1/2 by the scaling w = Nz/β for w ∈ [−1, 1],
with the associated Legendre polynomials Ψ1 = 1 and Ψ2(w) = w, we obtain

B = M−1(~p)K0δ(ε− ε′)I

+

Kχ(z)/2

1−e−β(h̄ωp+z)

(
1 Nz

β
Nz
β (Nzβ )2

)∣∣∣∣∣
z=ε′−ε−h̄ωp

+ Kχ(z)/2

eβ(h̄ωp+z)−1

(
1 Nz

β
Nz
β (Nzβ )2

)∣∣∣∣∣
z=ε−ε′−h̄ωp

M(~p)
,

Q(α) =

∫
Ω~p

B(~p, ~p′)
[
M(~p)α(~p′)−M(~p′)α(~p)

]
d~p′.

2.3 Stochastic Galerkin Method for the Boltzmann-Poisson
System with the Lattice Temperature as a Random
Variable

In this example, we assume that the only uncertainty in our problem stems from
the lattice temperature. Randomness in the lattice temperature is motivated
by physical reasons, as the temperature in the material or in its environment
often fluctuates. The random variable is scalar, and randomness is introduced
in the collisions, but now outside the argument of the Dirac delta distributions
associated with Fermi’s Golden Rule.

Therefore, the term KBTL in the deterministic equation is replaced by
KBTL+ z∗, or equivalently, the term β := (KBTL)−1 in the deterministic equa-
tion is replaced by β+z. This introduces randomness in the phonon occupation
as a function the energy, yielding

nq(h̄ωp, z) =

[
exp

(
h̄ωp

KBTL + z∗

)
− 1

]−1

=
[
e(β+z)h̄ωp − 1

]−1

. (23)

Additionally, randomness in the collision operator model is introduced as well.
We have

S(~k,~k′, z) = [nq(h̄ωp, z) + 1] K δ(ε(~k′)− ε(~k) + h̄ωp)

+K0 δ(ε(~k
′)− ε(~k)) + nq(h̄ωp, z)K δ(ε(~k′)− ε(~k)− h̄ωp).

Noticing that the randomness is just in the coefficients related to the phonon
density and not inside the arguments of the delta distributions, we equivalently
have

S(~k,~k′, z) = K
e(β+z)h̄ωp

e(β+z)h̄ωp − 1
δ(ε(~k′)− ε(~k) + h̄ωp)

+K0 δ(ε(~k
′)− ε(~k)) + K

1

e(β+z)h̄ωp − 1
δ(ε(~k′)− ε(~k)− h̄ωp).

In particular, we consider the random temperature TL+z, set n := 1, P := 1,
K := dim(PnP ) = 2, and approximate the density as

f(t, ~x, ~p, z) ≈
2∑
k=1

αk(t, ~x, ~p)Ψk(z) = α(t, ~x, ~p) ·Ψ(z) = (α1, α2) · (Ψ1,Ψ2). (24)
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This yields the Boltzmann equation

∂tα+ v · ∇~xα+ F · ∇~pα = Q(α), (25)

Q(α) =

∫
Ωp

B(~p, ~p′)[M(~p)α(~p′)−M(~p′)α(~p)]d~p′, (26)

Bij(~p, ~p′) =

∫
Iz

σ(~p, ~p′, z)Ψi(z)Ψj(z)π(z)dz (27)

with the scattering cross section

σ(~p, ~p′, z) =
1

M(~p)

(
K0δ(ε− ε′) +K

e(β+z)h̄ωpδ(ε− ε′ + h̄ωp) + δ(ε− ε′ − h̄ωp)
e(β+z)h̄ωp − 1

)
.

(28)
Substituting σ into Bij yields

Bij(~p, ~p′) =

∫
Iz

dzΨi(z)Ψj(z)π(z)
K0δ(ε− ε′) +K

e(β+z)h̄ωpδ(ε−ε′+h̄ωp)+δ(ε−ε′−h̄ωp)

e(β+z)h̄ωp−1

M(~p)

= M−1(~p)K0δ(ε− ε′)δij +

∫
Iz

dzΨi(z)Ψj(z)π(z)
K
e(β+z)h̄ωpδ(ε−ε′+h̄ωp)+δ(ε−ε′−h̄ωp)

e(β+z)h̄ωp−1

M(~p)
.

This expression simplifies to

Bij(~p, ~p′) =
K0δ(ε− ε′)δij +K

(
δ(ε− ε′ + h̄ωp)

∫
Iz

dzΨiΨjπ

1−e−(β+z)h̄ωp
+ δ(ε− ε′ − h̄ωp)

∫
Iz

dzΨiΨjπ

e(β+z)h̄ωp−1

)
M(~p)

and

Bij(~p, ~p′) = M(~p)
−1 [

K0δ(ε− ε′)δij +K
(
δ(ε− ε′ + h̄ωp)C

+
ij + δ(ε− ε′ − h̄ωp)C−ij

)]
with the coefficients

C−ij =

∫
Iz

dzΨi(z)Ψj(z)π(z)
1

e(β+z)h̄ωp − 1
=

∫
Iz

dzΨi(z)Ψj(z)π(z)nq(h̄ωp, β + z),

C+
ij =

∫
Iz

dzΨi(z)Ψj(z)π(z)

(
1 +

1

e(β+z)h̄ωp − 1

)
=

∫
Iz

dzΨiΨjπ (nq + 1) = δij + C−ij .

Therefore the scattering operator becomes

Q(α) =

∫
Ω~p

(
K0δ(ε− ε′)Id +K

∑
±
δ(ε− ε′ ± h̄ωp)C±

)
M(~p)−1

[
M(~p)α(~p′)−M(~p′)α(~p)

]
d~p′

=

∫
Ω~p

(
1∑

l=−1

Klδ(ε− ε′ + lh̄ωp)C
l

)
M(~p)−1

[
M(~p)α(~p′)−M(~p′)α(~p)

]
d~p′

with K−1 = K = K+1 and C0
ij = δij being the identity matrix.

It is important to note that a Gaussian distribution is not appropriate in this
example, as there would arise a singularity in the integrals when the temperature
(in energy units) becomes zero. We hence assume a uniform distribution π(z) =

10



N/2β for z ∈ [−β/N, β/N ] with N > 1, or equivalently π(w) = 1/2 by the
scaling w = Nz/β for w ∈ [−1, 1], with the associated Legendre polynomials
Ψ1 = 1 and Ψ2(w) = w. This means that f ≈ α1 + wα2. Therefore we find

C− =

∫ β/N

−β/N

dz N/2β

e(β+z)h̄ωp − 1

(
1 Nz/β

Nz/β (Nz/β)2

)
=

1

2

∫ 1

−1

(
1 w
w w2

)
dw

eβh̄ωp(1+w/N) − 1
.

The analytic values of these integrals are∫
dx

exp(A+Bx)− 1
=

log(1− eA+Bx)

B
− x+ ct,∫

xdx

exp(A+Bx)− 1
=

Li2(eA+Bx)

B2
+
x log(1− eA+Bx)

B
− x2

2
+ ct,∫

x2dx

exp(A+Bx)− 1
=
−2Li3(eA+Bx)

B3
+

2xLi2(eA+Bx)

B2
+
x2 log(1− eA+Bx)

B
− x3

3
+ ct

with A = βh̄ωp, B = βh̄ωp/N , and Lin(x) being the polylogarithm functions.
Furthermore, we can evaluate these formulas to obtain C− explicitly in the form

C− =
1

2

 log(1−eA+Bx)
B − x

∣∣∣1
−1

Li2(eA+Bx)
B2 + x log(1−eA+Bx)

B

∣∣∣1
−1

Li2(eA+Bx)
B2 + x log(1−eA+Bx)

B

∣∣∣1
−1

−2Li3(eA+Bx)
B3 + 2xLi2(eA+Bx)

B2 + x2 log(1−eA+Bx)
B − x3

3

∣∣∣1
−1

 ,

where we can omit the term −x
2

2 in the off-diagonal elements, since it will vanish
when evaluating at ±1.

To determine concrete numbers for numerical simulations and for the eval-
uation of the C− matrix, we recall that the Planck constant divided by 2π
is equal to h̄ = h/2π = 1.0546 × 10−34 J · s and that the Boltzmann con-
stant is equal to KB = 1.3805 × 10−23 J/K. The mean lattice temperature
is assumed to be TL := 300K = 26.85◦C. Therefore, we have that KBTL =
4.1415 × 10−21 J = 0.025 849 eV, since 1 eV = 1.602 18 × 10−19 J. Hence β =
(KBTL)−1 = 2.414 584 1× 1020 J−1.

Moreover, the variation in the environment temperature might be of ±10◦C,
resulting in a lattice temperature between 16.85◦C = 290 K and 36.85◦C =
310 K. In that caseKBTL ∈ [4.003 45, 4.279 55]×10−21 J, β+z ∈ [2.336 694 3, 2.497 845 6]×
1020 J−1, and z ∈ [−0.077 889 8, 0.083 261 5] × 1020 J−1. Thus z ∈ Iz, which is
Iz ≈ [−0.080 575 65, 0.080 575 65]×1020 J−1, and therefore β/N = 0.080 575 65×
1020 J−1 implies N = 2.414 584 1×1020 J−1

0.080 575 65×1020 J−1 = 29.966 672 313 5. After rounding to

N := 30, we have z ∈ [−β/N, β/N ] with β/N = 0.080 486 136 66 × 1020 J−1.
Finally, since the phonon energy is h̄ωp = 0.063 eV = 1.009 373 4 × 10−20 J, we
obtain the values of the adimensional numbers βh̄ωp = 2.437 216 962 6 = A and
βh̄ωp/N = 0.081 240 565 42 = B.

Hence we find the matrices

C− =
1

2

(
0.191 825 −0.005 690 12
−0.005 690 12 0.064 015 1

)
=

(
0.095 912 5 −0.002 845 06
−0.002 845 06 0.032 007 55

)
,

C+ =

(
1.095 912 5 −0.002 845 06
−0.002 845 06 1.032 007 55

)
,
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since C+
ij = C−ij + δij . With these matrices, the scattering operator becomes

Q(α) =

∫
Ω~p

(
K0δ(ε− ε′)Id +K

∑
±
δ(ε− ε′ ± h̄ωp)C±

)
Mα′ −M ′α

M
d~p′,

(29)
which we can write in the form

Q(α) =

∫
Ω~p

(
K0δ(ε− ε′) +K

∑
±
δ(ε− ε′ ± h̄ωp) [nq + (1± 1)/2]

)
Id
Mα′ −M ′α

M
d~p′

+

∫
Ω~p

K

[∑
±
δ(ε− ε′ ± h̄ωp)

] (
C− − nqId

)Mα′ −M ′α
M

d~p′,

since C+ = C− + Id and hence C− − nqId = C+ − (nq + 1)Id.
Therefore the term in the first row is the collision operator, as originally

written in the deterministic case, acting on each separate band (by means of
the identity matrix) without any recombination, whereas the second term rep-
resents the recombination and diagonal terms related to the uncertainty in the
temperature associated solely with inelastic integrals. Given the value of the

constant nq =
[
eβh̄ωp − 1

]−1
= 0.095 774 842 71, we find

C− − nqId =

(
0.000 137 657 29 −0.002 845 06
−0.002 845 06 −0.063 767 292 71

)
= C+ − (nq + 1)Id.

3 Stochastic Galerkin Method for the Boltzmann-
Poisson System Using Deterministic Discon-
tinuous Galerkin Solvers

The numerics of deterministic solvers for the Boltzmann-Poisson system that
use the discontinuous Galerkin (DG) algorithm have been studied in [9], [10]
for a single PDF (one band) without randomness. We will use the deterministic
DG method for two bands (representing the α vector of coefficients) to solve the
stochastic Galerkin system, which contains a different kind of matrix integral
collisional operator.

3.1 Discontinuous Galerkin: the Boltzmann Equation in
~k-Spherical Coordinates

We perform a spherical transformation of the momentum coordinate ~k taking
the location of a (local) minimum of the conduction energy band as the origin.
This transformation is useful (in the absence of Umklapp effects), because in low
energy limits (i.e., for small potential bias) the conduction band energy scales
as the square of the momentum norm, and hence the radial coordinate is an
energy variable. We then have

~k =

√
2m∗KBTL

h̄

√
r
(
µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)
,

r ≥ 0, µ ∈ [−1, 1], ϕ ∈ [−π, π].
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The variable r is proportional to the energy for small biases in the parabolic
band approximation, assuming the same effective mass in all three Cartesian
momentum directions. Due to this momentum coordinate tranformation, we
have to weight the PDF coefficients by the Jacobian of the ~k-transformation,
specifically for the computation of moment integrals over the ~k-space. We then
obtain a transformed PDF in the phase space (~x, r, µ, ϕ) given by

Φ(t, ~x, r, µ, ϕ) =

√
r

2
α(t, ~x,~k(r, µ, ϕ)).

We also obtain a transformed Boltzmann equation in divergence form for our
new PDF Φ in the (x, y, z; r, µ, ϕ) space, which reads

∂Φ

∂t
+

∂

∂x
(a1 Φ) +

∂

∂y
(a2 Φ) +

∂

∂z
(a3 Φ) +

∂

∂r
(a4 Φ) +

∂

∂µ
(a5 Φ) +

∂

∂ϕ
(a6 Φ) = C(Φ),

where the transport coefficients are, for (a1, a2, a3) ∝ ∇~kε(~k), proportional to

the ~k-gradient in transformed coordinates, and the rest are given by

a4 = −2 cE
√
r êr · E = −2 cE

√
r
(
µ,
√

1− µ2 cosϕ,
√

1− µ2 sinϕ
)
· E, (30)

a5 = −cE
√

1− µ2

√
r

êµ · E = −cE
√

1− µ2

√
r

(√
1− µ2,−µ cosϕ,−µ sinϕ

)
· E,

a6 = −cE
1

√
r
√

1− µ2
êϕ · E = −cE

1
√
r
√

1− µ2
(0,− sinϕ, cosϕ) · E. (31)

Regarding the transformed linear collision operator, we write ~x = (x, y, z)
and r = (r, µ, ϕ), and obtain

C(Φ)(t, ~x, r) =

√
r

2

∫
Ω

S(r′, r) Φ(t, ~x, r′) dr′ − Φ(t, ~x, r)

∫
Ω

S(r, r′)

√
r′

2
dr′,

showing the importance of the transformed PDF Φ. Here S(r′, r) represents the
electron-phonon scattering for the two-band system.

We use the dimensionless Poisson equation

∇~x · (εr∇~xΨ) = cp [ρ(t, ~x)−ND(~x)] , (32)

where

ρ(t, ~x) =

∫
Ω

Φ0(t, ~x, r′) dr′, ND(~x) =

(√
2m∗KBTL

h̄

)−3

ND(~x). (33)

The electron density is given by the first PDF coefficient, which represents the
mean of the PDF.

The discontinuous Galerkin method for the Boltzmann-Poisson system rep-
resents a dynamic extension of the Gummel iteration map. Starting with an
initial condition Φh and given boundary conditions, the DG algorithm advances
from tn to tn+1 in these steps:

Step 1 Compute the charge density ρ.
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Step 2 Use ρ to solve the Poisson equation (either by an integral form in 1D
or by the LDG method in 2D or 3D) for the potential and electric field,
and compute the transport coefficients ai, 1 ≤ i ≤ 6.

Step 3 Solve the transport part of the Boltzmann equation by DG, then use
the method of lines for Φh (ODE system).

Step 4 Evolve the ODE system by proper time stepping from tn to tn+1 (if
partial time steps are necessary, as in a Runge-Kutta method, repeat
steps 1 to 3 as needed).

We use a rectangular Cartesian grid in the transformed phase space. It has
the form

Ωijkmn =
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
×
[
rk− 1

2
, rk+ 1

2

]
×
[
µm− 1

2
, µm+ 1

2

]
×
[
ϕn− 1

2
, ϕn+ 1

2

]
with 1 ≤ i ≤ Nx, 1 ≤ k ≤ Nr, 1 ≤ m ≤ Nµ, and xi± 1

2
= xi ±∆xi/2, rk± 1

2
=

rk ±∆rk/2, µm± 1
2

= µm ±∆µm/2.

The test function ψ(x, y, r, µ, ϕ) ∈ Vh belongs to the set of piecewise linear
polynomials so that the set of all test functions is

Vh := V lh :=
{
v : v|Ωijkmn ∈ P (Ωlijkmn)

}
,

where the P (Ωlijkmn) are the polynomials of degree l ≤ 1 on Ωijkmn.

Inside the cell Ω̊I , I = (i, j, k,m, n), we approximate the weighted PDF Φ
by a linear polynomial in Vh, i.e.,

Φh = TI(t)+XI(t)
(x− xi)
∆xi/2

+YI(t)
(y − yj)
∆yj/2

+RI(t)
(r − rk)

∆rk/2
+MI(t)

(µ− µm)

∆µm/2
+PI

(ϕ− ϕn)

∆ϕn/2
.

(34)
The charge density for a piecewise linear PDF Φ is given by

ρ(t, x, y) =

Nµ∑
m=1

Nϕ∑
n=1

Nr∑
k=1

[
Tijkmn(t) +Xijkmn(t)

(x− xi)
∆xi/2

+ Yijkmn(t)
(y − yj)
∆yj/2

]
∆rk∆µm ∆ϕn.

In summary, the discontinuous Galerkin formulation for the vector Boltz-
mann equation is to find Φh in the piecewise polynomial space Vh such that the
equation∫

K

∂Φh
∂t

vhdΩ−
∫
K

∂vh
∂x

(a1 Φh) dΩ−
∫
K

∂vh
∂y

(a2 Φh) dΩ−
∫
K

∂vh
∂z

(a3 Φh) vhdΩ

−
∫
K

∂vh
∂r

(a4 Φh) dΩ−
∫
K

∂vh
∂µ

(a5 Φh) dΩ−
∫
K

∂vh
∂ϕ

(a6 Φh) dΩ

+ F+
x − F−x + F+

y − F−y + F+
z − F−z + F+

r − F−r + F+
µ − F−µ + F+

ϕ − F−ϕ =

∫
K

C(Φh)vhdΩ,

where the F± represent the boundary integrals, holds for any test function
vh ∈ Vh and for each element K = Ωijkmn.
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4 SDG-BP: Stochastic Discontinuous Galerkin
Method for the Boltzmann-Poisson System

4.1 The Symmetric Case: One-Dimensional in x, Two-

Dimensional in ~k(r, µ)

We consider a 1D n+–n–n+ silicon diode, rendering the problem one-dimensional
in position space. The length of the diode is L = 1µm, and the length of the n-
channel in the middle is 400 nm. The doping concentration is n+ = 5·1023/m3 =
5 · 1017/cm3 and n = 2 · 1021/m3 = 2 · 1015/cm3.

We consider the case with k-space azimuthal symmetry on ϕ ∈ [0, 2π] →
~k = ~k(r, µ). Therefore, by the symmetry assumptions, it is only necessary to
consider the radial and polar coordinates of the momentum.

The computational domain is taken as x ∈ [0, 1], r ∈ [0, rmax], and µ ∈
[−1, 1]. The constant rmax is the cut-off such that Φ(t, x, r, µ) ≈ 0 for r ≥ rmax

in the numerical experiments. For example, rmax ≈ 36 for Vbias = 0.5 V in a
400 nm channel.

The initial condition is (Φ0,Φ1)(0, x, r, µ) = (CND(x)e−ε(r)
√
r/2, 0) with a

constant C such that ρ(0, x)−ND(x) = 0 at the initial time t = 0.
The boundary conditions are the following.

• In the x-space, the charge concentration is neutral at the source and drain
endpoints 0 = x1/2 and xNx+1/2 = 1. This charge neutrality condition is

imposed by Φ(0,~k, t) = ND(x)Φ(x1,~k,t)

ρ(x1,~k,t)
and Φ(1,~k, t) = ND(x)

Φ(xNx ,
~k,t)

ρ(xNx ,
~k,t)

.

• The applied potential (bias) is V (0,~k, t) = 0 and V (1,~k, t) = V0.

• In the (r, µ)-space, a cut-off boundary is used such that Φ vanishes at
r = rmax.

• At the “point” boundaries, no boundary conditions are needed and trans-
port equals zero analytically. Hence, at the origin r = 0, a4 = 0 holds,
and likewise at the poles µ = ±1, a5 = 0 holds. Therefore the boundary
integrals are analytically equal to zero at r = 0 and µ = ±1.

Regarding time evolution, an RK2 Method was used in our simulations.

4.2 Numerical Results

We present the numerical results for the coefficients of the truncated PDF with
a random variable. We first do so for the benchmark case of no recombination
DG-BP: − logα0(x, r, µ) (and α1(x, r, µ) = 0 plotted directly) are shown for a
1µm diode, 0.5 V bias, and t0 = 10.0 ps. In this deterministic case, the reason
why there is no recombination lies in the vanishing of the first coefficient α1 = 0
related to random effects (Figure 2), and the zeroth coefficient α0 contains all
the information of the PDF (Figure 1).

We then consider the PDF coefficients from the simulations of the SDG-
BP system with the recombination terms − logα0(x, r, µ, t) in Figure 3 and
− logα1(x, r, µ, t) in Figure 4 for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps as
well. The variations in α1 are located in similar regions of the phase space,
while for α0 they seem finer and more pronounced.
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Figure 1: − logα0(x, r, µ) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.

We also compare SDG-BP with recombination terms against SDG-BP with
no recombination case by calculating the moments with Φ0 for both. The dif-
ference is observed mainly in the prediction of the momentum (current) two
orders of magnitude below the mean value of the current (Figure 11), indi-
cating the finer resolution of the momentum by use of the stochastic Galerkin
method. We also plot the expectation, variance, and standard deviation of
our probability density function in the SDG-BP method, given as E[f ] = α1,

Var[f ] =
∑2
k=2 α

2
k = α2

2, and S[f ] =
√∑2

k=2 α
2
k = |α2|, respectively.

5 Conclusions

Uncertainty quantification in the Boltzmann-Poisson system is crucial by the
own probabilistic nature of the problem due to the high number of particles
involved and due to its quantum mechanical features. Studying randomness in
the temperature is an important leading example, both for reasons stemming
from the physical nature of the problem – as the environment temperature may
fluctuate – as well as related to the mathematical aspects, since the temperature
is a scalar random variable that introduces randomness in the collision term
and more precisely in the coefficients multiplying the Dirac delta distributions
appearing in the electron-phonon collisions by the Fermi golden rule.

Our numerical results for the stochastic Galerkin method for the Boltzmann-
Poisson system, assuming a random temperature in an electron-phonon collision
operator, show a coefficient α1 related to randomness, whose variations are
located in similar regions of the phase space to the ones of the average term α0,
which has no randomness but shows finer and more pronounced variations.
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Figure 2: Coefficient α1(x, r, µ) = 0 for a 1µm diode, 0.5 V bias, and t0 =
10.0 ps.
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Figure 3: − logα0(x, r, µ) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.
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Figure 4: − logα1(x, r, µ) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.
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Figure 5: Coefficient α0(x, r, µ) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.
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Figure 6: Coefficient α1(x, r, µ) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.
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Figure 8: Standard deviation S[f ] = |α2|.
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Figure 9: Density ρ(x, t).
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Figure 10: Energy e(x, t) for a 1µm diode, 0.5 V bias, and t0 = 10.0 ps.
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Figure 11: Momentum (current) M(x, t).
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Figure 12: Velocity v(x, t).
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Figure 13: Electric field E(x, t).
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Figure 14: Potential V (x, t).

Our comparison of SDG-BP with recombination terms against the no-recombination
case, using the mean term α0 in both cases to calculate the moments, shows
only a difference in the moment (current) between these two cases. We have
to remember that the moment is the product of density and energy, which on
their own scales do not seem to exhibit a large difference between these two
cases. However, the moment has a value close to a constant over the position
domain when equilibrium is reached, and the difference in this mean value is ob-
served between the two cases, although it is two orders of magnitude below the
average value of the current (Figure 11). Here a truncated random expansion
up to first order in z was employed, which therefore discards terms of order z2

whose average is non-zero over the domain. This is the likely explanation for the
slight difference in the momentum values between the random and deterministic
simulations.

We have also devised numerical methods for quantifying uncertainty related
to the phonon energy via stochastic Galerkin methods, which can be handled by
the introduction of distributional derivatives with respect to the random vari-
able. This mathematical structure departs from the usual form of the collision
term in stochastic Galerkin for Boltzmann models by the need of distributional
derivatives in the random space, being the first case in stochastic Galerkin
methods for kinetic equations where this structure appears, and opening a new
analytical treatment of randomness in the aforementioned stochastic method.

In conclusion, we have handled in this work the possible uncertainties aris-
ing in a model of electron transport in semiconductors by stochastic Galerkin,
mainly related to the collision mechanisms in this paper. We calculate the prop-
agated uncertainty in the electron probability density function due to possible
uncertainties in either the phonon energy (adding a random variable given by
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either a Gaussian or uniform distribution, considering first an approximate ran-
domness to first order in the phonon energy and then the full calculation) or
in the lattice temperature (assumed to vary randomly according to a uniform
distribution).

Our purpose is to observe how physical variables which can either behave
randomly in a real world setting (such as a varying temperature) or are known
to be described approximately in our model (such as the phonon energy, which
is often assumed to be constant, but really is known experimentally to be not
constant) can affect physical observables such as electric current, average energy
or density, since our kinetic model lets us calculate those measurable quantities
by means of moments of the PDF.

Our study is useful to let us predict in real world settings the impact that
uncertainties or limitations in commonly used idealized models have on the
behavior of an electronic device such as a diode or a MOSFET. This study is also
useful in terms of introducing uncertainties in the energy transition arguments
of the collision integrals with the ultimate goal of jumping from the scalar
treatment presented in this paper to the case of an energy band structure ε(~k),
which is a scalar function of a vector variable, in future work.

We have calculated with our numerical methods the variation in kinetic
moments (density, mean energy, current, etc.) associated with a physically rea-
sonable temperature variation in the lattice environment. We have presented
the algorithms to make an approximate (to first order) and exact calculation
of the propagation of uncertainty of the phonon energy (bounding the error of
a constant phonon energy by a uniform distribution) into the PDF which will
give as well the associated uncertainty in the prediction of moments.
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