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Abstract. Multiscale elliptic equations with scale separation are often approximated by the
corresponding homogenized equations with slowly varying homogenized coefficients (the G-limit).
The traditional homogenization techniques typically rely on the periodicity of the multiscale coef-
ficients, thus finding the G-limits often requires sophisticated techniques in more general settings
even when multiscale coefficient is known, if possible. Alternatively, we propose a simple approach
to estimate the G-limits from (noisy-free or noisy) multiscale solution data, either from the existing
forward multiscale solvers or sensor measurements. By casting this problem into an inverse problem,
our approach adopts physics-informed neural networks (PINNs) algorithm to estimate the G-limits
from the multiscale solution data by leveraging a priori knowledge of the underlying homogenized
equations. Unlike the existing approaches, our approach does not rely on the periodicity assumption
or the known multiscale coefficient during the learning stage, allowing us to estimate homogenized
coefficients in more general settings beyond the periodic setting. We demonstrate that the proposed
approach can deliver reasonable and accurate approximations to the G-limits as well as homogenized
solutions through several benchmark problems.
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1. Introduction. A wide range of scientific and engineering problems involve
multiple scales due to the heterogeneity of the media properties. Direct numerical
simulation for multiscale problems, such as multiscale elliptic equations, is typically
computationally demanding due to the finescale fluctuation of the media properties.
A major effort has been made in past decades to approximate a multiscale equation
by the corresponding homogenized equation, whose coefficient, known as the homoeg-
enized coefficient or G-limit [26, 27], does not depend on the fine scale. The resulting
solution is referred to as the homogenized solution. However, deriving the homoge-
nized equations requires the computation of the G-limits, which is a difficult task for
general problems. For standard periodic or locally periodic problems, there are several
homogenization methods to find the G-limits, such as two-scale and multiscale conver-
gence [4, 6], but they can be computationally demanding as they often involve a large
number of local problem computations. Additionally, if the periodicity assumption
does not hold, the standard homogenization methods are not directly applicable, and
non-trivial extensions are usually needed if possible. As a result, deriving the homoge-
nized models from the first principles remains challenging for general homogenization
problems.

Alternatively, there has been a surge of interest in data-driven learning the ef-
fective macroscale model from available measurements or simulated data. In [29],
coarse-grained nonlocal models are learned from synthetic high-fidelity (multiscale)
data by recovering the sign-changing kernels. In [10], physics-informed neural net-
works (PINNs) were employed to retrieve the effective permittivity parameters from
scattering data in inverse scattering electromagnetic problems. In [7], a neural network
algorithm coupled with an equation-free method has been developed to approximate
homogenized solution of a time-dependent multiscale problem using simulated mul-
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tiscale solution data. Regarding the homogenization on multiscale elliptic equations,
there have been several inversion approaches related to the homogenization problems
in the past several years. The authors in [13, 1, 2] recovered multiscale coefficients
from (noisy) multiscale solution data using corresponding homogenized models based
on numerical homogenization techniques - the finite element heterogeneous method
(FE-HMM) to reduce the computational cost of their forward problems. A Bayesian
estimation has been developed to reconstruct the slowly varying parts of the multiscale
coefficients from the noisy measurement of multiscale solution data in [21]. Nonethe-
less, the majority of the existing methods assume that the multiscale coefficients are
periodic. More general multiscale coefficients such as non-periodic coefficients are
considered in [15]. The authors separated the oscillations of the multiscale coeffi-
cients from the weak L2 limits of them and recovered the part of G-limits from the
contributions of the oscillations. However, they required the multiscale coefficients
to be known during the inversion stage. In addition, the existing inversion methods
often require specialist knowledge, such as numerical multiscale methods or homoge-
nization theory, which can be difficult for application practitioners. These limitations
motivate the development of simple and flexible algorithms for the homogenization of
multiscale elliptic equations with scale separations in more general settings.

The goal in this paper is to develop a simple and flexible framework to learn the G-
limits and corresponding homogenized solutions simultaneously for multiscale elliptic
equations, given multiscale solution data. Unlike other approaches, our approach
does not require the periodicity of the multiscale coefficient or a known multiscale
coefficients during the learning stage. Instead, we assume that the (simulated or
measured) solution data of the multiscale equations are available and the the structure
of corresponding homogenized equations are known. We mainly consider the following
two possible scenarios:

• Noise-free data: In this scenario, we assume that the traditional homoge-
nization methods may not be applicable, e.g., in non-periodic cases, but the
multiscale solution data can be generated by the exisiting forward solver of
the multiscale problem with a known multiscale coefficient. Our goal is to
estimate the corresponding G-limit and the homogenized solutions.

• Noisy data: In this case, we consider that noisy multiscale solution data
(from a specific medium with a fixed finescale size ε) can be collected by
sensors. We aim to learn the G-limit of the unknown multiscale coefficient and
corresponding homogenized solution as they can serve as good approximations
to the effective behavior of the multiscale coefficient when ε is sufficiently
small.

Specifically, we adopt one emerging scientific machine learning framework - the
physics-informed neural network (PINNs) for our problem. They have been success-
fully used for approximating solutions to both forward and inverse problems regarding
PDEs [19, 10, 24]. One key component of PINNs is to provide neural network ap-
proximations to the solutions of forward or inverse problems by incorporating prior
physics knowledge into the loss functional. This feature turns out to be beneficial for
our current setting. Since the multiscale solution data often contains rapid oscillations
or noise, estimating the G-limits and homogenized solutions from the multiscale or
random fluctuations is a fundamental challenge. To address these issues, we trained
the neural works to approximate the G-limit and the corresponding homogenized solu-
tion for the elliptic homogenized equations based on the multiscale solution data. By
incorporating the corresponding homogenized equation into the loss function, PINNs



can encourage the neural network to capture the slowly varying parts of the multiscale
solution data.

It is worth noting that collecting a large number of the multiscale solution data
containing sufficient finescale information is in general difficult, especially when the
finescale parameter ε is very small. In addition, the measurements by sensors are often
corrupted by noises that dominate the finescale fluctuations. Nonetheless, we found
that our approach does not require dense sampling of the multiscale solution data in
space in order to retain the detailed finescale information as we are only interested
in the macroscopic (homogenized) behavior of the multiscale solution data. With the
prior knowlege of the structure of the homogenized equation, PINNs can provide an
effective regularization that can cope with the noise and the multiscale features in the
data. We demonstrate the applicability and performance of our approach via several
benchmark examples with both noise-free and noisy data.

The paper is organized as follows. In Section 2, we introduce the concepts of
G-convergence and G-limit, and the formulation of the inverse problem. In Section 3,
we briefly review the physics-informed neural networks (PINNs) and adopt them in
our context. Finally, we demonstrate the performance of the proposed methods with
several numerical examples, including locally periodic, non-periodic, non-standard,
and random homogenization cases.

2. Background and Problem Setup. In this section, we first introduce the
definition of G-convergence and G-limit in the homogenized equations, given the mul-
tiscale elliptic equations. Then we discuss the convergence of homogenization in a
special case where the periodic multiscale coefficients are given. Finally, we formu-
late the inverse problem to learn the G-limits and the corresponding homogenized
solutions.

2.1. G-convergence and G-limit. We first briefly review the general theory of
homogenization and introduce the notion of the G-convergence and G-limit (homoge-
nized coefficient). Let us consider a sequence of the following second order multiscale
elliptic equations:

−div

(
Aε(x)∇uε(x)

)
= f(x) in Ω,

uε(x) = 0 on ∂Ω,

(2.1)

where Ω ∈ RN is the domain and Aε : Ω → RN×N is a symmetric multiscale coef-
ficient with finescale size ε. We consider the sequence of coefficients Aε(x) and the
corresponding solution uε(x) of (2.1). The G-convergence of the sequence Aε(x) is
defined as follows [26, 27]:

Definition 2.1. A sequence of coefficient Aε(x) in (2.1) is said to G-converge
to a limit A∗(x) as ε tends to 0, if the sequence of solution uε(x) converges weakly in
H1

0 (Ω) to u0(x), the unique solution of the following homogenized equation,

−div

(
A∗(x)∇u0(x)

)
= f(x) in Ω,

u0(x) = 0 on ∂Ω,

(2.2)

for any source term f(x). The limit matrix A∗(x) is called the G-limit of Aε(x).

We now define the following class of matrices.

3
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Definition 2.2. A matrix function A(x) is said to belong to E(α, β,Ω) if the
followings are satisfied for some α, β > 0.

A(x) ∈ L∞(Ω)N×N ,

A(x)k · k ≥ α|k|2, for all k ∈ RN , a.e. x ∈ Ω

|A(x)k| ≤ β|k|, for all k ∈ RN , a.e. x ∈ Ω.

(2.3)

We have the following theorem that justifies the definition of G-convergence [11].
Theorem 2.3. Let Aε(x) be a sequence of functions that belong to E(α, β,Ω).

Then there exist a function A∗(x) ∈ E(α, β,Ω) such that Aε(x) G-converges to A∗(x)
up to subsequence.

The following theorem guarantees the uniqueness of the G-limit.
Theorem 2.4. The G-limit of a G-converging sequence is unique.
Proof. See [11, Section 7]
The following remark provides important properties of the G-limit and one mo-

tivation for the recovery of the G-limit.
Remark 2.1. The G-limit A∗(x) does not depend on the source term f(x) by

definition. It is also known that it also does not depend on the boundary conditions
[5, Chapter 1]. Thus, the G-limit recovered with specific source term f(x) and the
boundary condition g(x) in (2.1) can be reused with the different source terms in the
same medium.

From Theorem 2.3, we know that a well-posed homogenized limit (2.2) exists, but
in general, there is no systemic way to find the explicit formula for the G-limit A∗(x).
In addition, the G-convergence is only guaranteed up to a subsequence in the theorem.
For (locally) periodic media, the G-convergence is well studied and the G-limit can
be computed by the periodic homogenization methods [22, 17]. We remark that even
though it might not be clear that how to construct the explicit form of the the G-limit
A∗(x) in general, (2.2) does provide the structure of the homogenized equation served
as a generic priori knowledge for PINNs.

2.2. Homogenization for periodic media. In this section, we present the
outline and the convergence results of the standard periodic homogenization. We
let Ω ∈ RN be a bounded domain and Y be a unit cube in RN . We consider the
homogenization of the following multiscale elliptic equation:

−div

(
Aε(x)∇uε(x)

)
= f(x) in Ω,

uε(x) = 0 on ∂Ω.

(2.4)

Here, ε represents the fine scale of the system. The coefficient has the scale separation
and is defined by Aε(x) = A(x, xε ), where A(x, y) is Y -periodic with respect to the fast
variable y. Thus, we consider the coefficient Aε(x) with smooth finescale oscillations.
We further assume that Aε(x) is in C∞(Ω) and uniformly positive, i.e., Aε(x) > c > 0
for some constant c.

We consider the following two-scale asymptotic expansion of the solution uε(x).

uε(x) = u0(x) + εu1(x,
x

ε
) + ε2u2(x,

x

ε
) + . . . , (2.5)

where ui(x,
x
ε ), (i = 1, 2, . . . ) are Y -periodic with respect to y = x

ε . We can derive the
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following homogenized equation with the G-limit A∗(x) using the above expansion:

−div

(
A∗(x)∇u0(x)

)
= f(x) in Ω,

u0(x) = 0 on ∂Ω,

(2.6)

where the G-limit A∗(x) is defined as follows:

A∗ij(x) =

∫
Y

A(x, y)(δij +
∂χj(x, y)

∂yi
)dy, (2.7)

where χi(x, y) is the solution of the following cell problem:

divy

(
A(x, y)∇yχi(x, y)

)
= −divy(A(x, y)ei), (2.8)

on Y with periodic boundary condition. Here, ei is the standard basis vector in Rn.
This homogenized equation does not depend on the fine scale ε and the solu-

tion u0(x) represents the macroscopic behavior of the solution uε(x) to the multiscale
equation (2.4) when ε is sufficiently small. This can be rigorously explained by the
following theorem on the convergence of the multiscales solution uε(x) to the ho-
mogeinzed solution u0 [22].

Theorem 2.5. Assume Aε(x) ∈ L∞(Ω), f(x) ∈ L2(Ω). Let uε(x) and u0(x)
be the solutions to (2.4) and (2.6) respectively. Then as ε → 0, the sequence uε(x)
converges weakly in H1(Ω) to u0(x).

Above result is obtained under minimal regularity assumptions on the multiscale
coefficient and the source term. However, in practice, it is often the case that we can
achieve the strong convergence of the multiscale solution to the homogenized solution.
For example, we have the following convergence estimates [22, Chapter 6].

Remark 2.2. Let uε(x) and u0(x) be the solutions to (2.4) and (2.6) respectively.
Assuming Aε(x) and f(x) are smooth, we have the following convergence rate.

‖uε(x)− u0(x)‖L∞(Ω) ≤ Cε, (2.9)

where C > 0 is independent of ε.
In (locally) periodic media, we solve the cell problems (2.8) to compute the G-

limit when the explicit form of the multiscale coefficient Aε(x) is known. Without the
periodicity assumption or a known multiscale coefficient Aε(x), traditional homoge-
nization methods are typically not applicable. Despite the fact that the convergence
result (2.9) holds only for periodic cases, we can still expect the multiscale solution
data to be close to the homogenized solution for sufficiently small ε even if the peri-
odic assumption is violated. This motivates us to utilize multiscale solution data as a
surrogate for the corresponding homogenized solution data for more general scenarios
beyond the periodicity assumptions.

2.3. Inverse Problem formulation. Equipped with the background knowl-
edge introduced above, we now consider the multiscale elliptic equations (2.1) and
assume a well-posed homogenized limit (2.2) exists. We also assume the multiscale
coefficient is smooth, but no geometric assumptions, such as periodicity, are required.

In this work, we consider the following inverse problem setting: given a set of
observations/data points, our goal is to learn the G-limit A∗(x) and the homogenized
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solution u0(x) of the homogenized limit (2.2). As we mentioned before, the homoge-
nized solution data are often not available. Instead, we utilize the multiscale solution
data of the equation (2.1) as a surrogate for the homogenized solution data.

We remark that even though the multiscale solution data are close to the homoge-
nized solution in most of the regions in our domain for sufficiently small ε, our solution
data contains multiscale or noise fluctuations that do not present in the homogenized
solution. This introduces additional difficulties because one needs to approximate the
slowly varying functions from multiscale solution. It is preferable for a method to be
less sensitive to these finescale oscillations and the noise in our multiscale solutions
data. Motivated by recent developments of the physics-informed neural networks
(PINNs) [19, 24], we propose to develop PINNs for estimating the G-limits, which not
only simultaneously match the measurements/data while respecting the underlying
physics in the problem, but also provide an effective regularization to mitigate the
adversarial effects due to the multiscale fluctuations or noise in the data.

3. Method. Next, we will briefly review physics-informed neural networks (PINNs)
[19, 10] and adopt it to tackle the inverse problems to learn the G-limits in the ho-
mogenized equation (2.2), given the corresponding multiscale solution data.

3.1. Feed-forward neural network. We shall use feed-forward neural net-
works to approximate the solution u0(x) and the effective coefficients A∗(x) in (2.2).
The feed-forward neural network with L layers and Nl neurons in the lth layer is a
function Nθ(x) : RN0 → RNL defined by

Nθ(x) = WLNL−1(x) + bL,

N l(x) = σ(W lN l−1(x) + bl),

N 1(x) = W 1x+ b1,

(3.1)

for 1 < l < L. The matrix W l ∈ RNl−1×Nl and the vector bl ∈ RNl represent the
weight and bias in l-th layer and σ is a nonlinear activation function, such as ReLU
function, the hyperbolic tangent function, and the sine function [14]. We further
define the set of tunable weights and biases of the neural network, θ = {W l, bl} for
1 ≤ l ≤ L.

3.2. PINNs for inverse problems. For ease of presentation, we consider the
following partial differential equation for the solution u(x) with an unknown coefficient
A(x):

F [u(x);A(x)] = 0, in Ω, (3.2)

given a Dirichlet boundary condition,

u(x) = g(x), on ∂Ω. (3.3)

Given the observation data on the solution u(x) is available, we are interested in
recovering the unknown coefficient A(x) and the entire solution field u(x).

PINNs employ the feed-forward networks Nθu(x) and NθA(x) to approximate
the solution and the unknown coefficients respectively, where θu and θA represent the
trainable network parameters for each network. Then we train the networks to get the
approximations û(x) for solutions and Â(x) for unknown coefficients by minimizing
the following loss functional, including data misfit, the PDE residual loss (3.2) and
the boundary condition loss (3.3) over the training set T :

L(θu, θA; T ) = λrLr(θu, θA; Tr) + λdLd(θu, θA; Td) + λbLb(θu, θA; Tb), (3.4)
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where

Lr(θu, θA; Tr) =
1

|Tr|
∑
xri∈Tr

∣∣∣F (û(xri ); Â(xri )
)∣∣∣2 ,

Ld(θu, θA; Td) =
1

|Td|
∑
xdi∈Td

|û(xdi )− u(xdi )|2,

Lb(θu, θA; Tb) =
1

|Tb|
∑
xbi∈Tb

|û(xbi )− g(xbi )|2,

(3.5)

where λr, λd and λb denote the weights for each loss term. The training points
T = Tr ∪ Td ∪ Tb. Td, Tr, and Tb denote data/measurement points, PDE residual
points, and boundary data points. Both Tr ∈ Ω, and Tb ∈ ∂Ω are predfined and
can be chosen from mesh grid points or randomly. The parameters θu and θA can be
found by minimizing the loss function (3.4), and the resulting networks û(x) and Â(x)
are the approximations to the solution u(x) and the coefficient A(x) of the equation
(3.2).

3.3. Learning the G-limits via PINNs. Following that, we adopt the PINNs
framework to tackle the inverse problem of estimating the G-limit A∗(x) for the mul-
tiscale elliptic equation (2.1). One issue is that the measurements of the homogenized
solution are often not available. Motivated by the convergence results for periodic me-
dia in (2.9), we employ the multiscale solution data uε of the multiscale equation (2.1)
as the training data, which is expected to be a good surrogate for the homogenized
solution data when ε is sufficiently small.

We construct two feed-forward neural networks Â∗(x) = NθA∗ (x) and û0(x) =
Nθu0 (x) to approximate the G-limit and the solution of the homogenized equation
(2.2). Since we consider Dirichlet boundary condition (3.3) in this work, the boundary
condition can be embeded into the neural network exactly. Specifically, we follow the
approach suggested in [20] by modifying the solution network output Nθu0 :

û0(x) = g(x) + l(x)Nθu0 , (3.6)

where u0(x) = g(x) is a Dirichlet boundary condition, and l(x) is a function that
satisfies the following conditions.

l(x) = 0 on ∂Ω, l(x) > 0 in Ω− ∂Ω. (3.7)

With a simple domain, we can analytically choose l(x) [18]. For example, for the
domain [a, b]2, we can choose l(x) = (x1−a)(b−x1)(x2−a)(b−x2), where x = (x1, x2).

We then seek a set of network parameters θu0
and θA∗ that minimize the loss

function defined as follows:

L(θu0
, θA∗ ; T ) = λrLr(θu0

, θA∗ ; Tr) + λdLd(θu0
, θA∗ ; Td), (3.8)

where

Lr(θu0
, θA∗ ; Tr) =

1

|Tr|
∑
xri∈Tr

∣∣∣∣div

(
Â∗(xri )∇û0(xri )

)
+ f(xri )

∣∣∣∣2 ,
Ld(θu0 , θA∗ ; Td) =

1

|Td|
∑
xdi∈Td

|û0(xdi )− uε(xdi )|2.
(3.9)
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Fig. 3.1: The schematic architecture of PINNs for learning the G-limit A∗(x) in the
homogenized equation (2.2) by the neural network Â∗(x). The boundary condition
u0(x) = g(x) is strictly imposed using (3.6).

Here, uε(xdi ) denotes the (noise-free/noisy) multiscale solution data at xdi . Note that
since the neural network û0(x) satisfies the boundary condition exactly, there are only
two terms in the loss function. The first term (3.8) encourages the neural network
to respect the homogenized equation (2.2). The second term makes sure that the ap-
proximated homogenized solution is not far from the multiscale solution data uε(x).
The choice of the regualization parameters λr and λd could affect the training perfor-
mance considerably. We adopted the adaptive weight techniques [28] in this work. In
summary, Figure 3.1 presents the schematic deisgn of the PINNs for our problem.

4. Numerical Examples. In this section, we present several numerical exam-
ples to illustrate the effectiveness and applicability of our method, including the el-
liptic equations with locally periodic, non-periodic, and ergodic random multiscale
coefficients. The noise-free measurements are generated from the multiscale solution
data of the multiscale elliptic equation by the underlying forward FEM simulation.
For noisy scenario, we corrupt the noise-free data with independent, and identically
distributed normal noise with different noise levels.

To estimate the accuracy of the recovered G-limit Â∗(x) and the homogenized
solutions û0(x), we use the following relative L2-errors computed over a predefined
mesh grid in spatial domain:

eÂ∗ =
‖Â∗(x)−A∗(x)‖L2(Ω)

‖A∗(x)‖L2(Ω)
, eû0 =

‖û0(x)− u0,h(x)‖L2(Ω)

‖u0,h(x)‖L2(Ω)
. (4.1)

Here, A∗(x) is the reference G-limit that is either exact or pre-computed by FEM via
traditional homogenization methods. The reference homogenized solutions, u0,h(x),
are computed by FEM using the reference G-limits.

During the training stage, we alternatively use ADAM and L-BFGS as suggested
in [19, 25]. A hyperbolic tangent function is used as the activation in all examples. In
addition, the architectural parameters of neural network were tuned to achieve reason-
able results. The architecture parameters and other hyperparameters used for each
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example are listed in Table A.1 in the appendix. Advanced hyperparameter selection
techniques can further improve the results, which, however, is not the focus of this
work. In addition, the multiple restarts approach is adopted to prevent the results
from being affected by how the weights are (randomly) initialized. More specifically,
we train the nets with a number of random initialization using Glorot normal initial-
izer, and report the best possible results for each example. All examples are carried
out on Google’s Colab [9] using the library SciANN [16].

4.1. Homogenization of a slowly varying periodic coefficient. To test
the basic capability of our proposed method, we first consider the following multiscale
elliptic equation with a slowly varying periodic coefficient:

− d

dx

(
1 + x2

2 + sin(2π xε )

d

dx
uε(x)

)
= cos(πx) in Ω = [0, 1],

uε(0) = uε(1) = 0.

(4.2)

In this example, the permeability coefficient depends on both x and x
ε , and is periodic

with respect to x
ε . The analytical G-limit is known as A∗(x) = x2+1

2 . We compute
the reference homogenized solution u0,h(x) using FEM via the exact G-limit.

To generate the noise-free data, we compute the multiscale solution to the equa-
tion (4.2) for each finescale parameter value ε by FEM with mesh size h = 1/105

and obtain equally spaced data sampled from the multiscale solution as the training
data. For noisy data, we corrupt the measurements with different noise levels. The
architecture parameters and other hyperparameters of PINNs are listed in Table A.1
in appendix. The relative L2 errors for both G-limit and homogenized solution are
computed on a mesh with size h = 1/105.

We first plot the relative L2 errors with respect to the size of training data with
ε = 2−7 in Figure 4.1. For the noise-free case, the proposed method can achieve
the errors at the level of O(10−3) for the G-limit and O(10−4) for the homogenized
solution. As the data set was enriched, the error level saturated. With noisy data,
the error increases with the noise level and can be reduced as additional data are
available, particularly for a high noise level. With 5% noise, the relative errors for the
approximated G-limit and solution are roughly 4% and 1% respectively, given enough
data. To further demonstrate the performance of the method, Figure 4.2 plots the
G-limits and the homogenized solution recovered by PINNs for ε = 2−7, where both
G-limit and homogenized solution are well approximated under the different noise
levels. As shown in Figure 4.2e and 4.2f, even when the multiscale data contain non-
negligible random fluctuations, PINNs can still capture the macroscopic variation of
the data thanks to the regularization provided by the homogenized equation.

To investigate the impacts of the finescale parameter ε of the multiscale data
on the performance of our algorithm, we plot the relative errors for the G-limit and
the homogenized solution with different values of ε in Figure 4.3. For each ε value,
|Td| = 160 multiscale solution data collected at fixed spatial locations are used. In
noise-free cases, the errors for homogenized solutions tend to decrease when ε becomes
smaller. This is expected as multiscale solution data are closer to the homogenized
solution for smaller ε.

Figure 4.4 further shows the learned G-limit and homogenized solution with dif-
ferent finescale parameters ε. We can observe that the multiscale data converge to
the reference homogenized solution as ε becomes smaller. For example, when ε = 2−7,
our data almost overlap with the reference homogenized solution (Figure 4.4f) and
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a. G-limits b. Homogenized solutions

Fig. 4.1: Problem (4.2): the relative L2 errors for the G-limits and the homogenized
solutions with different number of multiscale data points corrupted by different noise
levels for ε = 2−7 and the number of PDE residual points is |Tr| = |Td|+ 30.

a. G-limits (noise-free) b. G-limits (1%-noise) c. G-limits (3%-noise)

d. Solutions (noise-free) e. Solutions (1%-noise) f. Solutions (3%-noise)

Fig. 4.2: Error results for problem (4.2): comparison of the reference solutions (A∗(x)
and u0,h(x)) and the counterparts (Â∗(x) and û0(x)) learned by PINNs with different
noise levels in the data. (a. b. c.): the G-limit; (d. e. f.): the homogenized
solution, where ε = 2−7 and the number of multiscale data and PDE residual points
are |Td| = 160, |Tr| = 190.

both G-limit and the homogenized solution learned by PINNs agree very well with
their references. Furthermore, despite the presence of noticeable multiscale oscilla-
tions in the data, PINNs can still provide reasonably good results for larger epsilons
(ε = 2−3, 2−5). This is because the proposed PINN tends to promote the smooth
macroscale behavior of the data rather than their microscale fluctuations shown in
Figure 4.4d and 4.4e.
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a. G-limits b. Homogenized solutions

Fig. 4.3: Error results for problem (4.2): the relative L2 errors for the G-limits and
the homogenized solutions with different finescale parameter ε and noise levels, when
the number of multiscale data and PDE residual points are |Td| = 160 and |Tr| = 190.

a. G-limit (ε = 2−3) b. G-limit (ε = 2−5) c. G-limit (ε = 2−7)

d. Solutions (ε = 2−3) e. Solutions (ε = 2−5) f. Solutions (ε = 2−7)

Fig. 4.4: Problem (4.2) with noise-free data: comparison of the reference solutions
(A∗(x) and u0,h(x)) and the counterparts (Â∗(x) and û0(x)) learned by PINNs with
different values of ε. (a. b. c.): the G-limit; (d. e. f.): the homogenized solution, when
the number of multiscale data and PDE residual points are |Td| = 160, |Tr| = 190.

For noisy scenarios, the approximation quality deteriorates with the noise level
as seen in Figure 4.3. We also observe that the impact of the finescale size ε of
the medium becomes negligible once the noise level is large enough, suggesting that
the magnitude of the noises is dominant over the multiscale oscillations in our data.
Nonetheless, our approach can still provide reasonably good approximations under a
mild noise level.
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4.2. Homogenization of a heavily oscillatory coefficient. Next, we con-
sider the following elliptic equation with a heavily oscillatory permeability coefficient
introduced in [12]:

− d

dx

(
Aε(x)

d

dx
uε(x)

)
= 3 + sin(x) in Ω ∈ [0, 1],

uε(0) = 0, uε(1) = 0,

(4.3)

where Aε(x) =
∫
Y

(
1 + 1

2 sin

((
y + 1

2ε sin
(
π
√

2
εx
))2

))
ey(1+sin x)dy. The coeffi-

cient Aε(x) is quite oscillatory. Figure 4.5 illustrates the multiscale coefficients Aε(x)
and the effective coefficients A∗(x) for ε = 2−3, 2−5. Due to strong oscillations in the
coefficients, direct numerical simulation of this problem is very expensive when the
formula for Aε(x) is known. This homogenization problem is in general challenging:
(1) The explicit integral of the multiscale coefficient is not available. (2) This problem
cannot be handled by the traditional homogenization method, such as the two-scale
convergence method, because the oscillations in Aε(x) cannot be captured by any test
functions admissible for the two-scale convergence [4]. For this example, it can be
shown that the analytical G-limit coincides with the weak L2 limit of Aε(x) given by

A∗(x) = e(1+sin x)−1
1+sin x [12], but this is not the case in general [5, Chapter1].

a. Aε(x) and A∗(x), ε = 2−3 b. Aε(x) and A∗(x), ε = 2−5

Fig. 4.5: The G-limits A∗(x) and multiscale coefficients Aε(x) with ε = 2−3 and
ε = 2−5 for problem (4.3)

The synthetic training data set are equally spaced sampled from the multiscale
solution for each finescale parameter value ε computed by FEM with a mesh size
of h = 1/105. The reference homogenized solution is computed by FEM with the
same mesh based on the analytic G-limit. The architecture parameters and other
hyperparameters of PINNs are listed in Table A.1 in appendix. The relative L2 errors
for both G-limit and homogenized solution are computed based on the same mesh
aforementioned.

We first consider the case with a relatively small finescale size ε = 2−7. Figure 4.6
presents the relative L2 errors for the G-limit and homogenized solution with respect
to the number of multiscale solution data. With noise-free data, we can achieve an
error level of O(10−3) for both homogenized coefficient and the homogenized solution.
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It appears that 80 multiscale data are enough to obtain good approximations. With
a high noise level, PINNs can still achieve satisfactory approximations when the data
set is large enough. This can be further supported by the corresponding G-limit and
homogenized solution obtained by PINNs under different levels of noise corruptions
in Figure 4.7. It is clear that the proposed method can still capture the G-limit and
the smooth homogenized solution accurately under mild noise corruptions. This can
be further evidenced by Figure 4.7e and 4.7f where the learned homogenized solutions
tend to fit the macroscopic behavior of the noisy data that is close to the reference
solution.

a. G-limits b. Homogenized solutions

Fig. 4.6: Error results for problem (4.3): the relative L2 errors for the G-limits and the
homogenized solutions with different number of multiscale data corrupted by different
noise levels, when ε = 2−7 and the number of PDE residual points is |Tr| = |Td|+ 30.

Figure 4.8 presents errors of the estimated G-limit and the homogenized solution
with respect to the finescale parameter ε and 160 multiscale solution data collected
at fixed spatial locations for all ε, i.e., |Td| = 160. As expected, better approximation
of the G-limit and the homogenized solution can be delivered as ε becomes smaller
in noise-free case. In addition, Figure 4.9 again shows that the learned homogenized
solutions tend to fit the multiscale solution data. We note that even if the finescale
oscillations in our data are not visible in the figures, a relatively large ε (=2−3, 2−5)
could result in the non-negligible difference between the reference homogenized solu-
tion and our data. As a result, approximations of G-limits and homogenized solutions
are less accurate but satisfactory for larger ε. In contrast to noise-free scenarios, the
finescale size ε has much less impact on both learned G-limit and the homogenized
solution as the noise level increases as shown in Figure 4.8.

4.3. Homogenization of a 2D non-periodic coefficient. We next consider
the following 2D multiscale elliptic equation with a non-periodic coefficient introduced
in [23]:

−div

(
Aε(x) · ∇uε(x)

)
= 1 in Ω = [1, 2]2

uε(x) = 0 on ∂Ω,

(4.4)

where Aε(x) =
(

1 + 0.9 sin(2π x1

ε ) sin(2π
x2
2

ε )
)

. Figure 4.10 illustrates the multiscale

coefficient Aε(x) when ε = 2−3. The G-limit A∗ =
(A11(x) A12(x)
A21(x) A22(x)

)
that is a 2 × 2
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a. G-limits (noise-free) b. G-limits (1% noise) c. G-limits (3% noise)

d. Solutions (noise-free) e. Solutions (1% noise) f. Solutions (3% noise)

Fig. 4.7: Problem (4.3): comparison of the reference solutions (A∗(x) and u0,h(x))

and the counterparts (Â∗(x) and û0(x)) learned by PINNs with different noise levels
in the data. (a. b. c.): the G-limit; (d. e. f.): the homogenized solution, when
ε = 2−7 and the number of multiscale data and PDE residual points are |Td| = 160,
|Tr| = 190.

a. G-limits b. Homogenized solutions

Fig. 4.8: Error results for problem (4.3): the relative L2 errors for the G-limits and the
homogenized solutions with different finescale parameter ε and noise levels of data,
when the number of multiscale data and PDE residual points are |Td| = 160 and
|Tr| = 190.

matrix function, can be found via the λ-scale convergence technique [23]. Since Aε(x)
is periodic with respect to x1, we know that the G-limit only depends on x2, i.e.,
A∗(x) = A∗(x2). We assume a priori that the non-diagonal entries of the G-limit are
zeros i.e., A12(x2) = A21(x2) = 0. Therefore, we shall only approximate the diagonal
entries of the G-limit. The reference G-limit is computed by the λ-scale convergence
method. Specifically, we solved local cell problems at 129 equidistant points of x2 and
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a. G-limits (ε = 2−3) b. G-limits (ε = 2−5) c. G-limits (ε = 2−7)

d. Solutions (ε = 2−3) e. Solutions (ε = 2−5) f. Solutions (ε = 2−7)

Fig. 4.9: Problem (4.3) with noise-free data: comparison of the reference solutions
(A∗(x) and u0,h(x)) and the counterparts (Â∗(x) and û0(x)) learned by PINNs with
different values of ε. (a. b. c.): the G-limit; (d. e. f.): the homogenized solution, when
the number of multiscale data and PDE residual points are |Td| = 160, |Tr| = 190.

Fig. 4.10: The multiscale permeability coefficient Aε(x) in (4.4) when ε = 2−3.

each problem is solved by FEM with a mesh size of h = 1/1000. With the reference
G-limit, we computed the reference homogenized solution by FEM with a mesh size
h = 1/128.

The training data are equally spaced sampled from the multiscale solution for
each finescale parameter value ε obtained by the forward FEM simulation of the
problem (4.4) with a fine mesh size 1/8000. The architecture parameters and other
hyperparameters of PINNs are listed in Table A.1 in appendix. We compute the errors
on a mesh with size h = 1/128 in the spatial domain.
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Figure 4.11 presents the error convergence of the G-limit and the homogenized
solutions for ε = 2−7 with different numbers of training data. With noise-free data,
400 data points appear to be sufficient to obtain good approximations with errors of
less than 10−3 for both G-limit and homogenized solution. Increasing the amount of
training data helps improve the accuracy for noisy data cases. Even with 5%-noise in
the data, our proposed method can still achieve an error less than O(10−2) for both
coefficient and the solution, when the number of available data is large enough. We
also plot the G-limits and the homogenized solutions at x2 = 1.25 shown in Figure
4.12 when ε = 2−7. Both diagonal entries of the G-limit and homogenized solution
agree well with their references. Again, we observe that the learned solutions tend to
fit the macroscale behaviors of the data, even when non-negligible noises present in
4.12e and 4.12f.

a. G-limits b. Homogenized solutions

Fig. 4.11: Error results for problem (4.4): the relative L2 errors for the G-limits
and the homogenized solutions with different number of multiscale data corrupted
by different noise levels, when ε = 2−7 and the number of PDE residual points is
|Tr| = |Td|.

Figure 4.13 shows the relative L2 errors for the learned G-limits and the homog-
enized solutions for different finescale parameter ε and 1600 multiscale solution data
collected at fixed spatial locations for all ε, i.e., |Td| = 1600. For noise-free scenarios,
the error decays as the finescale size ε decreases. To further examine this effect, we
plot the corresponding the learned G-limit and homogenized solutions in Figure 4.14.
In particular, the approximation quality of G-limits appears to be more sensitive to
the size of ε for the noise-free case. When the noise dominates over the multiscale
oscillations in the data, the results are no longer sensitive to the size of finescale.
Nonetheless, we can still achieve the errors of less than 1% for both G-limit and the
homogenized solutions under a 5% noise level.

To further highlight the performance of the proposed method, we also show the
learned homogenized solution with the reference solutions in Figure 4.15. As we can
see, our solutions agree very well with the reference solutions. Overall, our results
show that when mild noise and multiscale fluctuations are presented in the data, the
PINNs can provide good estimations of the G-limit for the 2D non-periodic example.

4.4. Homogenization of an ergodic random coefficient. Finally, we con-
sider the following two-scale elliptic equation with an ergodic coefficient, inspired by



17

a. G-limits (noise-free) b. G-limits (1% noise) c. G-limits (3% noise)

d. Solutions (noise-free) e. Solutions (1% noise) f. Solutions (3% noise)

Fig. 4.12: Problem (4.4): comparison of the reference solutions (the diagonal entries of
A∗(x) and u0,h(x)) and the counterparts learned by PINNs with different noise levels.
(a. b. c.): the G-limit; (d. e. f.): the homogenized solution at x1 = 1.25, where
ε = 2−7, the number of multiscale data and PDE residual points are |Td| = 1600,
|Tr| = 1600.

a. G-limits b. Homogenized solutions

Fig. 4.13: Error results for problem (4.4): the relative L2 errors for the G-limits and
the homogenized solutions with different finescale parameter ε and noise levels in the
data when the number of multiscale data and PDE residual points are |Td| = 1600
and |Tr| = 1600.

the exmaple in [8, Section 4.2]:

− d

dx

(
Aε(x, ω) · d

dx
uε(x)

)
= 1 in Ω = [0, 1],

uε(0) = uε(1) = 0,

(4.5)
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a. G-limits (ε = 2−3) b. G-limits (ε = 2−5) c. G-limits (ε = 2−7)

d. Solutions (ε = 2−3) e. Solutions (ε = 2−5) f. Solutions (ε = 2−7)

Fig. 4.14: Problem (4.4) with noise-free data: comparison of the reference coefficient
and homogenized solutions (the diagonal entries of A∗(x) and u0,h(x)) and counter-
parts learned by PINNs with different values of ε. (a. b. c.): the G-limit; (d. e.
f.): the homogenized solution at x1 = 1.25, where the number of multiscale data and
PDE residual points are |Td| = 1600, |Tr| = 1600.

where Aε(x, ω) = A(x, T x
ε
(ω)) = 3.1 + (x + 1) sin(2π(ω1 + x

ε )) + sin(2π(ω2 +
√

2xε ))

for ω = (ω1, ω2) drawn from a uniform distribution over [0, 1]2. Here the ergodic
dynamical system T : R×Z → Z is given by

T (x)ω = ω + (1,
√

2)x. (4.6)

Notably, the G-limit A∗(x) of this ergodic homogenization problem is determin-
istic and independent of the realization of ω [17]. In this example, it is known that
the exact G-limit is given by 1/E [1/A(x, ω)], where E denotes the expectation with
respect to the realizations of ω [3]. Traditional approaches for ergodic homogenization
usually first compute the local cell problems for many different realizations of the co-
efficient Aε(x, ω) to obtain the realization dependent approximations to the G-limits.
Then the G-limit can be approximated by taking its expectation. This procedure
requires solving a lot of cell problems at many different points x with thousands of
realizations of ω. For PINNs, on the other hand, we just need to collect the multiscale
solution data based on a single realization of the coefficient for PINNs.

Specifically, the reference G-limit A∗(x) is computed as the expectation by roughly
200, 000 Monte Carlo samples over 2000 equidistant points in the spatial domain.
Based on this G-limit, we compute the reference homogenized solution by FEM with
mesh size h = 1/2000. For PINNs, we learned the G-limit based on only one re-
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a. û0, noise-free data b. u0,h c. |u0,h(x)− û0(x)|
(noise-free data)

d. û0, 3%-noise data e. u0,h f. |u0,h(x)− û0(x)|
(3%-noise data)

Fig. 4.15: The 2D Homogenized solutions of problem (4.4) obtained with noise-free
and 3%-noise data. (a. d.): Homogenized solution obtained by PINNs; (b. e.): the
reference homogenized solution;(c. f.): the absolute error between the two solutions,
when ε = 2−7, the number of multiscale solution data and PDE residual points used
are |Td| = 1600, |Tr| = 1600.

a. G-limits b. Homogenized solutions

Fig. 4.16: Error results for problem (4.5): the relative L2 errors for the G-limits
and the homogenized solutions with different number of multiscale data corrupted
by different noise levels for ε = 2−10 and the number of PDE residual points is
|Tr| = |Td|+ 20.

alization of ω = (0.5, 0.5). The training data are equally spaced sampled from the
multiscale solution for each finescale parameter value ε computed by FEM with a
mesh size h = 1/105. The architecture parameters and other hyperparameters of
PINNs are listed in Table A.1 in the appendix. The relative L2 errors are computed
using a mesh of size h = 1/2000.

Figure 4.16 shows the error convergence of the learned G-limits and homogenized
solution for ε = 2−10. For the noise-free case, an error level O(10−3) for both G-limit
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a. G-limits (noise-free) b. G-limits (1% noise) c. G-limits (3% noise)

d. Solutions (noise-free) e. Solutions (1% noise) f. Solutions (3% noise)

Fig. 4.17: Problem (4.5): comparison of the reference coefficient and solutions (A∗(x)
and u0,h(x)) and the counterparts learned by PINNs with different noise levels in the
data. (a. b. c.): the G-limit; (d. e. f.): the homogenized solution, where ε = 2−10 and
the number of multiscale data and PDE residual points are |Td| = 160, |Tr| = 180.

a. G-limits b. Homogenized solutions

Fig. 4.18: Error results for problem (4.5): the relative L2 errors for the G-limits and
the homogenized solutions with different finescale parameter ε and noise levels in the
data when the number of multiscale data and PDE residual points are |Td| = 160 and
|Tr| = 180.

and the homogenized solution can be achieved. For noisy data, while the errors for
the G-limit and homogenized solution tend to stagnate after more than 80 multiscale
data points are used, we can still achieve errors of O(10−2) for both G-limit and the
homogenized solution with 5%-noise corruption in the data.

We also compare the learned G-limits and the homogenized solutions with their
references for ε = 2−10 and |Td| = 160 data with different noise levels in Figure
4.17. While the learned G-limit is close to the reference coefficient, the approximated
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homogenized solution almost overlaps with the data. Again, we observed PINNs tend
to learn the macroscopic behavior of the noisy data that is close to the reference
homogenized solution.

The error results with finescale parameter ε are presented in Figure 4.18. For
both noise-free and noisy scenarios, the errors tend to decay as the finescale size ε
decreases, particularly for homogenized solutions. The effect of ε is less pronounced
when the noise level is high because the noise dominates over the fine scale size of ε.
Notably, with 5%-noise corruption, we can still achieve the relative errors less than
5% for both G-limit and homogenized solution by incorporating the corresponding
homogenized equation.

5. Conclusion. In this paper, we proposed a simple and flexible approach to
estimate the G-limit and approximate the homogenized solution for multiscale elliptic
equations from data, by adopting physics-informed neural networks (PINNs). Due to
the lack of the homogenized solution data or measurements, we employ the multiscale
solution data as the surrogate of the homogenized solution. Despite the rapid multi-
scale and noisy fluctuations presented in the data, we demonstrated that PINNs are
capable to effectively extract the macroscopic (homogenized) behavior from data and
provide good approximations to the G-limits and the homogenized solution. The ap-
plicability and performance of the method have been demonstrated through a number
of different benchmark problems. Finally, we remark that except for the assumption
of the existence and structure of the homogenized equation, our approach does not
rely on the periodicity or the explicit formula of the underlying multiscale coefficient
during the learning stage, which can be applicable to more general settings beyond
periodic cases.

Acknowledgments. XZ was supported by Simons Foundation.

Appendix A. Hyperparameters used in each numerical example.

Table A.1: Hyperparameters used for each numerical example: For each example, the
learning rate is decayed when the training loss plateaus.

1D locally periodic coefficient (Section 4.1)
NN depth NN width

Initial learning rate # of epochs Batch size
Â∗(x) û0(x) Â∗(x) û0(x)

3 3 30 30 0.001 40000 64
1D heavily oscillatory coefficient (Section 4.2)

NN depth NN width
Initial learning rate # of epochs Batch size

Â∗(x) û0(x) Â∗(x) û0(x)
3 3 50 50 0.0001 80000 64

2D non-periodic coefficient (Section 4.3)
NN depth NN width

Initial learning rate # of epochs Batch size
Â∗ii(x) û0(x) Â∗ii(x) û0(x)

2 4 40 45 0.001 100000 200
1D ergodic random coefficient (Section 4.4)

NN depth NN width
Initial learning rate # of epochs Batch size

Â∗(x) û0(x) Â∗(x) û0(x)
2 3 10 30 0.001 60000 64
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