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ABSTRACT

The data-aware method of distributions (DA-MD) is a low-dimension data assimilation procedure
to forecast the behavior of dynamical systems described by differential equations. It combines
sequential Bayesian update with the MD, such that the former utilizes available observations while
the latter propagates the (joint) probability distribution of the uncertain system state(s). The core of
DA-MD is the minimization of a distance between an observation and a prediction in distributional
terms, with prior and posterior distributions constrained on a statistical manifold defined by the MD.
We leverage the information-geometric properties of the statistical manifold to reduce predictive
uncertainty via data assimilation. Specifically, we exploit the information geometric structures
induced by two discrepancy metrics, the Kullback-Leibler divergence and the Wasserstein distance,
which explicitly yield natural gradient descent. To further accelerate optimization, we build a deep
neural network as a surrogate model for the MD that enables automatic differentiation. The manifold’s
geometry is quantified without sampling, yielding an accurate approximation of the gradient descent
direction. Our numerical experiments demonstrate that accounting for the information-geometry
of the manifold significantly reduces the computational cost of data assimilation by facilitating the
calculation of gradients and by reducing the number of required iterations. Both storage needs and
computational cost depend on the dimensionality of a statistical manifold, which is typically small by
MD construction. When convergence is achieved, the Kullback-Leibler and L2 Wasserstein metrics
have similar performances, with the former being more sensitive to poor choices of the prior.

Keywords Method of Distributions · Data assimilation · Uncertainty Reduction ·Machine Learning

1 Introduction

Mathematical models used to represent “reality” are invariably faulty due to a number of mutually reinforcing reasons
such as lack of detailed knowledge of the relevant laws of nature, scarcity (in quality and/or quantity) of observations,
and inherent spatiotemporal variability of the coefficients used in their parameterizations. Consequently, model
predictions must be accompanied by a quantifiable measure of predictive uncertainty (e.g., error bars or confidence
intervals); when available, observations should be used to reduce this uncertainty. The probabilistic framework provides
a natural means to achieve both goals. For example, a random forcing in Langevin (stochastic ordinary-differential)
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equations [1] or fluctuating Navier-Stokes (stochastic partial-differential) equations [2] implicitly account for sub-scale
variability and processes that are otherwise absent in the underlying model.

Solutions of such stochastic models, and of models with random coefficients, are given in terms of the (joint) probability
density function (PDF) or cumulative distribution function (CDF) of the system state(s). They can be computed,
with various degrees of accuracy and ranges of applicability, by employing, e.g., Monte Carlo simulations (MCS),
polynomial chaos expansions (PCE) and the method of distributions (MD) [3]. MCS are robust, straightforward and
trivially parallelizable; yet, they carry (often prohibitively) high computational cost. PCE rely on a finite-dimensional
expansion of the solution of a stochastic model; their accuracy and computational efficiency decrease as the correlation
length of the random inputs decreases (the so-called curse of dimensionality), making them ill-suited to problems
with white noise. The MD yields a (generally approximate) partial differential equation (PDE) for the PDF or CDF
of a system state (henceforth referred to as a PDF/CDF equation). The MD can handle inputs with both long and
short correlations, although the correlation length might affect the robustness of the underlying closure approximations
when the latter are needed. For Langevin systems driven by white noise, the MD yields a Fokker-Planck equation
[1] for a system state’s PDF. For colored (correlated) noise, PDF/CDF equations become approximate [4], although
their computational footprint typically does not change. If a Langevin system is characterized by Nst system states,
then PDF/CDF equations are defined in an augmented Nst-dimensional space. Their MD-based derivation requires a
closure approximation [3, and references therein] such as the semi-local closure [5, 6] used in our analysis because of
its accuracy and manageable computational cost.

The temporal evolution of the PDF of a system state predicted with, e.g., the MD provides a measure of the model’s
predictive uncertainty in the absence of observations of the system state. In the lingo of Bayesian statistics, this PDF
serves as a prior that can be improved (converted into the posterior PDF) via Bayesian update as data become available.
When used in combination with ensemble methods like MCS, standard strategies for Bayesian data assimilation,
e.g., Markov chain Monte Carlo (MCMC) and its variants, are often prohibitively expensive [7]. The computational
expedience is the primary reason for the widespread use of various flavors of Kalman filter, which perform well when
the system state’s PDF is (nearly) Gaussian and models are linear, but are known to fail otherwise. Data-aware MD (DA-
MD) [8] alleviates this computational bottleneck, rendering Bayesian update feasible even on a laptop. DA-MD employs
the MD to propagate the system state PDF (forecast step) and sequential Bayesian update at measurement locations to
assimilate data (analysis step). It offers two major benefits. First, the MD replaces repeated model runs, characteristic
of both MCMC [9] and ensemble and particle filters [10, 11], with the solution of a single deterministic equation for
the evolving PDF. Second, it dramatically reduces the dimensionality of the PDFs involved in the Bayesian update at
each assimilation step because it relies on a single-point PDF rather than a multi-point PDF whose dimensionality is
determined by the discretized state being updated. DA-MD takes advantage of the MD’s ability to handle nonlinear
models and non-Gaussian distributions [12, 13].

DA-MD recasts data assimilation as a minimization problem, whose loss function represents the discrepancy between
observed and predicted posterior distributions. The observed posterior PDF is obtained by direct application of Bayes’
rule at the measurement point, combining the data model and a prior PDF computed via the MD. The predicted PDF is
assumed to obey the PDF equation, which acts as a PDE constraint for the loss function. The parameters appearing
in the MD are the target of minimization and introduce a suitable parameterization for the space of probabilities (a
statistical manifold) with quantifiable geometric properties. The computational effort of DA-MD is thus determined by
the efficiency in the solution of a minimization problem on a manifold. This aspect of DA-MD is the central focus of
our analysis, in which we exploit information-geometric theory to reformulate the optimization problem by relying on
the geometric properties of the MD-defined manifold.

We utilize results from the optimal transport theory and machine learning. Specifically, we employ both the Kullback-
Leibler (KL) divergence and the L2 Wasserstein distance to measure the discrepancy between predicted and observed
posterior distributions at each assimilation point. The former underpins much of information theory [14] and variational
inference [15]1, while the latter has its origins in optimal transport and is now increasingly popular in the wider machine
learning community [16]. We employ gradient descent (GD) and natural gradient descent (NGD) for optimization
[17], with preconditioning matrices expressing the geometry induced on the statistical manifold by the choice of the
discrepancy. These formulations are explicit for univariate distributions; thus, they ideally suit our data assimilation
procedure.

Finally, we construct a surrogate model for the solution of the PDF/CDF equation to accelerate sequential minimization
of loss functions, taking advantage of the relatively small dimensionality of the statistical manifold. We identify a
special architecture of a deep neural network (DNN) that enables the calculation of the terms involved in NGD for both

1Unlike traditional variational inference, our approach utilizes univariate (single-point) distributions that are characterized by a
specific, physics-driven parameterization enabled by the MD.
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discrepancy choices. The use of DNNs obviates the need to resort to sampling when assessing the manifold’s geometry,
a strategy that has a debatable success [18].

The paper is organized as follows. In section 2, we briefly overview the tools and concepts from information geometry
and optimal transport that are directly relevant to the subsequent analysis. In section 3, we summarize the DA-MD
approach (with details in appendix A) and illustrate how the information-geometric tools and the MD can be naturally
combined to reduce predictive uncertainty. Section 4 contains results of our numerical experiments conducted on a
Langevin equation with either white or colored noise. Main conclusions drawn from this study are summarized in
section 5.

2 Preliminaries

Let pP(Rd) denote the probability space of PDFs f on Rd with finite pth moments, where p ≥ 1. Our key objective is
to minimize loss functions involving PDFs f belonging to pP(Rd). In this section, we summarize definitions, tools and
theoretical results that will be subsequently used in concert with DA-MD.

Measures of discrepancy. Alongside classic measures of discrepancy between generic integrable functions
f1(X), f2(X) : Rd → R+ such as the L1 and the L2 norms,

d1(f1, f2) :=

∫

Rd
|f1(X)− f2(X)|dX and d2(f1, f2) :=

(∫

R2

|f1(X)− f2(X)|2dX

)1/2

,

we utilize measures of discrepancy that are tailored to the underlying geometry of the probabilistic space pP(Rd). The
KL divergence,

dKL(f1, f2) :=

∫

Rd
f1(X) ln

f1(X)

f2(X)
dX, (1)

expresses the discrepancy between the PDFs f1 and f2 in terms of relative entropy. Used to quantify how well f1 :
Rd → pP(Rd) approximates f2 : Rd → pP(Rd), the KL divergence is not a distance since dKL(f1, f2) 6= dKL(f2, f1).

Another discrepancy measure is the p-Wasserstein distance,

Wp(f1, f2) :=

(
inf

γ∈Γ(f1,f2)

∫

Rd×Rd
‖X−Y‖pγ(dX, dY)

)1/p

, p ≥ 1, (2)

where Γ is the set of joint probability measures γ on Rd × Rd whose marginals are univariate probability measures
corresponding to f1 and f2. Originating in the field of optimal transport, (2) quantifies the optimal (infimum) cost
of shifting the mass distribution of f1 to f2. Such minimum exists and is unique under regularity conditions for the
univariate PDFs for p > 1, i.e., f must be absolutely continuous with respect to the Lebesgue measure [19]. For d = 1,
(2) reduces to [20]

Wp(f1, f2) = ‖F−1
1 (Y )− F−1

2 (Y )‖p =

(∫ 1

0

|F−1
1 (Y )− F−1

2 (Y )|pdY
)1/p

, p ≥ 1, (3)

where Fi(X) =
∫X
−∞ fi(X)dX with i = 1, 2 is the CDF corresponding to the PDF fi(X); and F−1

i (Y ) is the inverse
of Fi defined as F−1

i (Y ) = inf{X : Fi(X) ≥ Y, Y ∈ (0, 1)}.
Since DA-MD deals with univariate distributions, we are concerned with d = 1.

Approximation of distributions. Various fields of science and engineering—e.g., machine learning [21, 22], es-
timation theory [23], and optimal transport and control theory [19, 24, 25]—deal with a problem of approximating
an (empirical) target PDF f̂(X) with a PDF f(X;ϕ) : R→ Pϕ(R) defined on the parameterized probability space
Pϕ. The latter consists of PDFs that are uniquely characterized by a set of Npar parameters ϕ ∈ Φ ⊂ RNpar with
Npar ≥ 1. This functional approximation is recast as a problem of finding a parameter set that minimizes a function
C(ϕ) depending on a selected measure of discrepancy D(ϕ) between the target PDF f̂(X) and its approximation
f(X;ϕ),

argmin
ϕ∈Φ

C(D(ϕ)), with D(ϕ) = D(f(X;ϕ), f̂(X)), (4)

with f(X;ϕ) belonging to Pϕ. We assume Pϕ to be a subset of 2P(R). The use of the KL and W2 metrics in
place of D in (4) introduces known geometries to the statistical manifold of parameterized PDFs, facilitating the
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deployment of predictable optimization algorithms that exploit this geometric structure. Specifically, one of the
geometric properties of the KL divergence is its parameterization invariance, i.e., the equivalency between computation
of the discrepancy C(ϕ) ≡ D(ϕ) ≡ dKL(f(X;ϕ), f̂(X)) in the PDF space Pϕ and in the parameter space Φ; this
property facilitates minimization of the loss function via natural gradient descent [26, Sec. 2.1.3]. Moreover, a solution
of the minimization problem (4) with C(ϕ) ≡ dKL(f(X;ϕ), f̂(X)) corresponds to the maximum likelihood estimate
of the parameters ϕ [27]. This analogy elucidates the connection between Bayesian inference and information geometry.
When f̂ is obtained empirically (e.g., from sampling or repeated experiments), the use of the Wasserstein distance,
C(ϕ) ≡ D2(ϕ)/2 ≡ W 2

2 (f(X;ϕ), f̂(X))/2, is more computationally expedient [19, 21, 22, 24], while possessing
geometric properties almost as rigorous as KL [17].

Statistical manifolds. Let the PDF f(X;ϕ) be smooth and have a support Ω := {X ∈ R|f(X) > 0}. We assume
this support to be compact, Ω = [Xmin, Xmax] ⊂ R, and the dimensionality of the parameter space Φ ⊂ RNpar to
be finite, Npar < +∞. An Npar-dimensional manifold is an Npar-dimensional topological space that behaves locally
like the Euclidean space RNpar . A smooth manifold is equipped with a metric tensor G(ϕ)—which facilitates the
calculation of distances on the local approximation of the manifold, i.e., the tangent plane—and an affine connection
∇ϕ—which enables differentiation. The second-order tensor G is positive definite and varies smoothly with ϕ. A
statistical manifoldM is a manifold with coordinates ϕ = (ϕ1, . . . , ϕNpar) ∈ RNpar where each point represents a PDF
with assigned support and defined features. A divergence on the statistical manifoldM is a non-negative function
D(f(X;ϕ), f(X;ϕ′)) :M×M→ R+, which is equal to zero if and only if f(X;ϕ) ≡ f(X;ϕ′) and which can
be approximated locally (i.e., when ϕ and ϕ′ are close) via the components Gij of the second-order tensor G as
D(f(ϕ), f(ϕ′)) = Gij(ϕ)∆ϕi∆ϕj/2 + O(|∆ϕ|3), where ∆ϕ = ϕ − ϕ′ and the Einstein summation is implied
over the repeated indices i, j = 1, . . . , Npar. The tensor G defines a Riemannian metric on the statistical manifoldM,
andM is said to be Riemannian.

Information geometry of statistical manifolds. If the KL divergence is used to quantify the discrepancy between
two PDFs on the manifoldM, then the tensor metric G(ϕ) (a geometric structure) of the space Pϕ of parameterized
univariate PDFs f(X;ϕ) is called Fisher information matrix,

GF (ϕ) =

∫

Ω

1

f(X;ϕ)
(∇ϕf(X;ϕ))

>∇ϕf(X;ϕ)dX. (5)

The resulting statistical manifold M is invariant, i.e., for ϕi ∈ Φ and fi ≡ f(ϕi) with i = 1, 2, the divergence
dKL(f1, f2) on the manifoldM equals the distance |ϕ1 −ϕ2| in the parameter space Φ. This property underpins the
Riemannian natural gradient descent (NGD) method (a.k.a. Fisher-Rao gradient descent) for parameter identification
[28, and references therein]. The method uses the metric tensor GF as a pre-conditioner for gradient descent algorithms
to solve (4) with C ≡ D ≡ dKL,

ϕk+1 = ϕk − ηG−1
F (ϕk)∇ϕdKL(f(X;ϕ), f̂)|ϕk , (6)

where η is the descent step and G−1
F is the inverse of GF . The technique presents strong theoretical analogies with

classic filtering techniques (namely Kalman filter and extended Kalman filter) [29, 30]. In the absence of an analytical
expression for GF , the matrix can be approximated empirically, although with debatable accuracy [18].

Geometric structure, including the metric tensor GW (ϕ), of the finite-dimensional Wasserstein manifolds of Gaussian
PDFs was studied in [31, 32]. These results were subsequently generalized to construct GW (ϕ) for the manifoldsM
of generic discrete [28] and continuous [17] distributions. Specifically, when d = 1, the Wasserstein manifold’s metric
tensor GW has an explicit form,

GW (ϕ) =

∫
1

f(X;ϕ)
(∇ϕF (X;ϕ))

>∇ϕF (X;ϕ)dX. (7)

Under some mild regularity assumptions, the finite-dimensional Wasserstein manifoldM in the parameter space Φ is
Riemannian [17]. It introduces an NGD in the space Φ,

ϕk+1 = ϕk − ηG−1
W (ϕk)∇ϕC(ϕ)|ϕk , with C ≡ 1

2
D2 and D ≡W2. (8)

Remark 2.1 Regardless of whether one chooses the KL divergence or the W2 distance, NGD orients the optimization
problem (8) according to the topology of the statistical manifoldM as expressed by its metric tensor Gi (i = F or W ),
thus accelerating the solution. The computational cost of both (6) and (8) depends on the overall number of iterations
and on the calculation of Gi (storage cost O(N2

par) per iteration) and its inverse G−1
i (inversion cost O(N3

par) per
iteration) [26]. Thus, the overall cost of optimization is a trade-off between the number of iterations, arguably reduced
on information-geometric grounds, and the cost of inverting the metric tensor Gi.
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Remark 2.2 The finite-dimensional L2-Wasserstein manifoldM is not exactly geodesic (unless PDFs are Gaussian),
and as such the geodesic distance on the manifold is not identical to W2 [17]. As demonstrated by [17, Th. 1 and Prop.
6], the natural gradient trajectory approximates the geodesic distance up to second order information.

Remark 2.3 A unifying framework connecting the KL and W2 metrics for manifolds of discrete distributions is
proposed in [33, 34].

3 DA-MD with DNN Surrogates

Consider a state variable x(t) : R+ → R, whose dynamics is governed by a stochastic/random ordinary differential
equation

dx(t)

dt
= s(x(t);w(t),θ), t > 0; (9a)

subject to a (possibly uncertain, i.e., random) initial condition

x(t = 0) = x0, x0 ∈ R. (9b)

The system is driven by the stationary (statistically homogeneous) random process w(t) characterized by a single-point
PDF fw(W ; t) and a two-point auto-correlation function ρw(|t1 − t2|); these functions involve meta-parameters ϕw
such as the mean, variance, and correlation length of w(t). The deterministic function s(x; ·), parameterized by a set of
Nθ (possibly uncertain, i.e., random) coefficients θ ∈ RNθ , is such that a solution to (9) is smooth almost surely in the
probability space of both w(t) and, possibly, θ and x0. If θ and x0 are random, then they are characterized by PDFs
fθ(Θ) and f0(X), with meta-parameters ϕθ and ϕ0, respectively. In all, the statistics of x(t) depends on the set of
Npar meta-parameters ϕ = (ϕw,ϕθ,ϕ0) ∈ Φ ⊂ RNpar .

In addition to being described by the model (9), the system state x(t) is sampled at Nmeas times t1, . . . , tNmeas . The
noisy observations x̂ = {x̂1, . . . , x̂Nmeas} satisfy the data model

x̂m = x(tm) + εm, m = 1, . . . , Nmeas, (10)

where the Gaussian measurement errors εm are mutually uncorrelated and have zero mean and variance σ2
ε .

A goal of data assimilation (DA) is to improve model predictions by augmenting them with observations. Some DA
methods yield the “best” (i.e., unbiased) prediction and quantify its predictive uncertainty in terms of, respectively, the
ensemble mean, 〈x(t)〉, and the standard deviation, σx(t), of the state variable x(t). These statistics provide but limited
information about x(t), unless its single-point PDF f(X; t) is Gaussian or a known map thereof. Bayesian update
and particle filters are examples of DA strategies that overcome this limitation by seeking a solution of (9) in terms of
the PDF f(X; t)—or the corresponding CDF F (X; t) = P[x(t) ≤ X]—updated with the data x̂ in (10). Computing
such distributions with ensemble methods requires a large number of repeated solves of (9), which can be prohibitively
expensive.

Data assimilation via DA-MD [8] aims to significantly accelerate the computation. Like many other DA strategies,
DA-MD comprises two steps: forecast and analysis. The first of these steps relies on the model (9) and makes a
prediction of the system state at time t in terms of f(X; t) or F (X; t). Rather than using, e.g., Monte Carlo simulations,
the MD [3] implements this step by deriving a deterministic equation for f(X; t) or F (X; t). Thus, the single-point
CDF F (X; t) of the state variable x(t) in (9) satisfies (sometime approximately) a parabolic PDE (appendix A)2

∂F

∂t
+ U(X, t;ϕ)

∂F

∂X
=

∂

∂X

(
D(X, t;ϕ)

∂F

∂X

)
, t > 0, X ∈ Ω = [Xmin, Xmax], (11a)

subject to initial and boundary conditions

F (X; 0) = F0(X), F (Xmin, t) = 0, F (Xmax, t) = 1. (11b)

The drift velocity, U(X, t;ϕ) : Ω× R+ → R, and the diffusion coefficient, D(X; t,ϕ) : Ω× R+ → R+, are smooth
functions of their arguments, which involve a set of the meta-parameters ϕ. The functional forms U and D depend on
that of s(x; ·), on the statistical characterization of the random parameters epitomized by the statistical parameters ϕ
of their distributions, and on the degree of approximation introduced by the closure strategy. If the initial state of the
system, x0, is known with certainty, then its CDF F0(X) is the Heaviside step function, F0(X) = H(X − x0).

2For spatially-dependent physical models, space would appear as a coordinate in a CDF or PDF equation [8]. For systems, the
MD would yield a PDF equation for the joint PDF of the interacting system states [35, 36].
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Remark 3.1 The CDF equation (11) maps the meta-parameters ϕ onto F (X; t,ϕ), the CDF of the system state x(t).
In other words, a point ϕ ∈ Φ ⊂ RNpar can be thought of as a coordinate on the statistical manifoldM of the CDF
F (X; t,ϕ) at time t. At any time t′, a solution to (11) provides an estimate of the CDF F (X; t′,ϕ) dependent on
the current characterization of the random inputs expressed by ϕ. Equivalently, points ϕ̃ = {t,ϕ} define a dynamic
statistical manifoldMt of the CDF F (X; ϕ̃).

The second step of DA-MD, analysis via Bayesian update, is performed sequentially for each of theNmeas measurements
x̂m in (10). At mth assimilation step, the updated meta-parameters ϕ(m) are computed by solving the minimization
problem (4) for the discrepancy D between the CDF F (X; tm,ϕ) predicted by the model (11) and the observational
CDF obtained with Bayes’ rule,

F̂ (X; tm) =

∫ X

Xmin

f̂(X; tm)dX with f̂(X; tm) =
fL(x̂m|x(tm) = X)f(X; tm,ϕ

(m−1))∫
Ω
fL(x̂m|x(tm) = X)f(X; tm,ϕ(m−1))dX

. (12)

Here the likelihood function fL(x̂m|x(tm) = X) specifies a data model; and the PDF f(X; tm,ϕ
(m−1)), computed

by solving the CDF equation (11) with the parameter set ϕ(m−1) from the previous assimilation step, serves as a
prior. In [8], the discrepancy D was expressed in terms of the L2 norm; a consequence of this choice was significant
computational cost of solving the minimization problem (4). A main innovation of this study is to exploit the geometric
structure of the statistical manifolds in the parameter space Φ by using either the KL divergence (1) or the Wasserstein
distance (3) at each assimilation time. This enables us to solve (4) via NGD, which we henceforth refer to as NGD-KL
and NGD-W2 depending on which metric is used. The update of the meta-parameters ϕ is done using NGD-KL (6) or
NGD-W2 (8), taking advantage of the explicit formulations for the manifold’s metric tensors GF in (5) and GW in (7).

Remark 3.2 The analysis step of DA-MD is performed on univariate (one-point) distributions (d = 1) regardless
of the size of the physical parameter and meta-parameter sets, Nθ and Npar. That drastically reduces (to one) the
dimensionality of the update effort in classical Bayesian DA. Moreover, availability of a CDF/PDF equation removes
the need for Gaussianity and linearity assumptions on the physical model and its random parameters. The CDF/PDF
equation is assumed to be valid throughout the assimilation process.

Remark 3.3 Parameter update via discrepancy minimization places DA-MD in the company of many machine-learning
and optimal-transport techniques (see the references above). Unlike these methods, DA-MD uses CDF or PDF equations
and their parameters to define the parameter space for a statistical manifold ϕ, such that the discrepancy minimization
is constrained by these PDEs. Learning occurs on the statistical manifold defined by ϕ and proceeds by sequential
updates of these meta-parameters.

X =





X
t
ϕ0

ϕ1

Y
t
ϕ0

ϕ1





= Y

NHL hidden layers

Figure 1: Fully-connected DNN used to approximate a solution of the CDF equation (11), with NHL hidden layers and
Nnphl nodes per hidden layer. Inputs are X{X = F−1(Y ; t,ϕ), t,ϕ, }, and outputs are Y = {Y = F (X; t,ϕ), t,ϕ}.
This illustration has Npar = 2, with ϕ = {ϕ0, ϕ1}. The DNN parameters, in both the illustration and our numerical
examples, are set to NHL = 7, Nnphl = 20.
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Loss function minimization. We use a surrogate model to accelerate the calculation of the discrepancies
dKL(f(X;ϕ), f̂) or W2(f(X;ϕ), f̂), their respective gradients ∇ϕdKL or ∇ϕW2, and the preconditioning tensor
metrics GF or GW . Specifically, a fully-connected deep neural network (DNN), whose architecture is illustrated in
fig. 1, is used to approximate the solution of the CDF equation given the set of inputs X = {X, t,ϕ}. The number of
outputs in this DNN equals the number of inputs, Y = {Yj : j = 1, . . . , Npar + 2} = {Y = F (X; t,ϕ), t,ϕ}, such
that dim(X) = dim(Y) = Npar + 2. We require the resulting vector function Y = F(X) to be one-to-one except at
singularity points, and its derivative to be an invertible linear map in local, identifiable regions. These requirements
fulfill the hypotheses of the Inverse Function Theorems [37, Th. 1-2 in sec. 3.2] for vector functions. Under these
conditions, the vector function Y = F(X) is invertible, its inverse is differentiable, and the derivative of the inverse is
equal to the inverse of the derivative [37, Th. 3 in sec. 3.2]. Automatic differentiation is employed both to verify the
inversion theorem hypotheses and to calculate the terms appearing in the minimization algorithms. This is especially
useful, since NGD-KL utilizes the derivatives of the forward pass, whereas NGD-W2 requires the derivatives of the
inverse function. A differentiable DNN allows accurate calculation of the metric tensors for both geometries, eliminating
potential problems related to their empirical approximation.

The DNN is trained on a data set consisting of Nts pairs (Xi
ts,Y

i
ts), for i = 1, . . . , Nts. This training set is generated by

solving the CDF equation (11) for Nts combinations of meta-parameters ϕ, i.e., at points ϕi ∈ Φ with i = 1, . . . , Nts.3
The DNN training is accomplished by solving an optimization problem [38],

argmin
w,b

(MSEts + MSER + MSEaux + SMR), (13a)

with respect to the weights and biases of the DNN, w and b, respectively. Here,

MSEts =

n+2∑

j=1

λj
1

Nts

Nts∑

i=1

|Yj(Xi
ts)− Y ij,ts|2, λj = (maxYj,ts)

−1 (13b)

MSER =
1

NR

NR∑

i=1

|R(Xi
R)|2 (13c)

MSEaux =
1

Naux

Naux∑

i=1

|Y (Xi
aux)− Y iaux|2 (13d)

SMR =

(
max

∣∣∣∣
∂Y

∂X
(XSMR)

∣∣∣∣
)−1 NSMR∑

i=1

max

(
0,− ∂Y

∂X
(Xi

SMR)

)
, (13e)

and Y(Xi) represents the Npar + 2 outputs of the DNN with inputs Xi. The mean square errors MSER and MSEaux

enforce the fulfillment of the CDF equation and its initial/boundary conditions at collocation points {Xi
R}
NR
i=1 and

{Xi
aux}

Naux
i=1 , respectively.4 The residual is defined as

R(Xi
R) =

∂Y (Xi
R)

∂t
+

(
U(Xi

R)− ∂D
∂X

(Xi
R)

)
∂Y

∂X
(Xi

R)−D(Xi
R)
∂2Y

∂X2
(Xi

R), (14)

and Y iaux represent the auxiliary conditions for the CDF equation at points Xi
aux, which represents initial or boundary

conditions (11b). The term SMR is a soft constraint [39] that regularizes the DNN by enforcing monotonicity of
the output Y = F (X; t,ϕ) along the X direction at points {Xi

SMR}
NSMR
i=1 = {{Xi

ts}
NR
i=1, {Xi

R}
NR
i=1, {Xi

aux}
Naux
i=1 }. The

physics-aware component of (13), MSER + MSEaux, makes training less data-intensive and increases confidence in the
predictions of the DNN outside the training range (but within the residual points range).

4 Numerical Experiments

In this section, we apply the information-theoretic DA strategy introduced above to three problems described by (9).
Section 4.1 contains an example of deterministic nonlinear dynamics starting from a random initial condition; this
setting provides an ideal testbed for the information-geometric analysis by virtue of lending itself to analytical treatment.

3For each i, the data pairs (Xi
ts,Y

i
ts) are extracted from these solutions at regularly-spaced time intervals and at spatial locations

(in the X direction) refined with a cosine mapping around a solution of (9) with mean parameters.
4We select a regularly spaced set of points for the enforcement of (13c) in all but the X direction, wherein points are refined

around the solution of (9) with mean parameters; Naux points are regularly spaced in all directions.
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Section 4.2 deals with a Langevin equation with white noise w(t), a problem for which the CDF equation (11) is exact.
In other words, the forecast component of DA-MD is exact, whereas the analysis step introduces an approximation.
In section 4.3, we consider a Langevin equation with colored noise w(t) that is modeled as an Ornstein-Uhlenbeck
process; the derivation of the CDF equation (11) requires a closure approximation. In this case, the performance of
DA-MD depends also on the accuracy and robustness of the CDF equation as forecasting tool.

In all cases, one realization (x?0 or θ?) of the relevant random parameters, x0 or θ, represents ground truth. Statistical
models for these parameters are chosen such that the state variable x(t) has a compact support Ω ⊂ R+. This ensures
that the information geometry induced by the W2 divergence is rigorously defined. The Nmeas observations x̂ are taken
at regular time intervals, with the time step ∆t = tNmeas/(Nmeas + 1). They are generated by adding zero-mean Gaussian
noise with standard deviation σε to the solution of (9) with x?0 or θ? (i.e., the synthetic truth). This procedure results in
the Gaussian likelihood function fL, although other choices are possible. While not investigated here, data models
constructed on repeated observations of the same phenomenon might be more suitable for processes that are inherently
random like those described by Langevin equations.

For the Langevin scenarios in sections 4.2 and 4.3, we employ the JITCSDE Python module [40] to solve the stochastic
ordinary differential equation (9). The corresponding CDF equations (11) are solved with a finite volumes (FV)
scheme, implemented using the Fipy library [41], to provide a training set for the surrogate model. DNN is trained by
employing Tensorflow; optimization in (13) is performed using L-BFGS-B method [42], with a random initialization
of w and b; and the network topology is shown in fig. 1. Automatic differentiation is used to compute both the
derivatives in the residual R in (14) and the PDF from CDF. Minimization of the KL and W2 discrepancies is
performed using both standard gradient descent (GD) and NGD. In the case of NGD, convergence is accelerated by
the use of the pre-conditioners GF and GW in (6) and (8). For each direction established by the gradient of the
loss function (adjusted by the pre-conditioners when NGD is used) we employ the Scipy library’s implementation
of step calculation [43, Sec. 5.2]. A convergence criterion for NGD in (6) and (8) is defined by |∇ϕD| ≤ ε.
Because of the different order of magnitude of the KL and W2 discrepancies D, the convergence threshold ε is
discrepancy-specific; we select a KL-based minimization threshold, εKL, and assign the threshold for W2, εW2 , such
that εW2

/C(W2(f(X; t1,ϕ
(0)); f̂(X; t1))) = εKL/C(dKL(f(X; t1,ϕ

(0)); f̂(X; t1))).

4.1 Deterministic dynamics with random initial state

The dynamics of state variable x(t) is described by
dx
dt

= −2x2, x(0) = x0, (15)

The random initial state x0 has compact support Ω0 ⊂ R+, which ensures that x(t) has a compact support Ω ⊂ R+. To
be specific, and without loss of generality, we take the CDF of x0, F0(X;ϕ0), to be Gaussian, with assigned prior mean
(µ(0)

0 ) and standard deviation (σ(0)
0 ) acting as the sole meta-parameters for the model, i.e., ϕ(0)

0 = {µ(0)
0 , σ

(0)
0 } = ϕ(0).

For this problem, the general CDF equation (11) is exact, reduces to (appendix A.1)
∂F

∂t
− 2X2 ∂F

∂X
= 0, F (X; t = 0) = F0(X); (16)

and has an analytical solution F (X; t,ϕ) and the corresponding analytical expression for the PDF f(X; t,ϕ) = dF/dX .
As a consequence, there is no need for a surrogate model of the solution to this CDF equation. The data assimilation
problem has a computable Bayesian solution

f0(X0|x̂) =
fL(x̂|x(t1:Nmeas , X0))f0(X0)∫

Ω
fL(x̂|x(t1:Nmeas , X0))f̂0(X0)dX0

=

∏Nmeas
m=1 fL(x̂m|x(tm, X0))f0(X0)∫ ∏Nmeas
m=1 fL(x̂m|x(tm, X0))f0(X0)dX0

, (17)

where the prior PDF f0(X) is computed as f0 = dF0/dX , and the i.i.d. measurements x̂m are assigned the likelihood
function

fL(x̂|x(t1:Nmeas , X0)) =

Nmeas∏

m=1

fL(xm|x(tm, X0)).

We use the exact Bayesian posterior (17) to gauge the accuracy of the sequential Bayesian update of the meta-parameters
ϕ = ϕ0 via GD for (4) with C ≡ dKL or W 2

2 /2, NGD-KL (6), and NGD-W2 (8). Assigned meta-parameters ϕ0
uniquely identify a distribution for the state x(t) through the (analytical) solution to the CDF equation (16). A forecast
PDF at the measurement time tm, and the corresponding observational PDF f(X; tm) is obtained via Bayes’rule

f̂(X; tm|xm) =
fL(x̂m|x(tm) = X)f(X; tm,ϕ

(m−1))∫
Ω
fL(x̂m|x(tm) = X)f(X; tm,ϕ(m−1))dX

, (18)
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in which the priors f(X; tm,ϕ
(m−1) are computed analytically. The availability of analytical expressions for F (X; t)

and f(X; t) facilitates the (semi-)analytical computation of both the metric tensors GF and GW in (5) and (7), and the
the gradient of the discrepancy, ∇ϕD, for the KL an W2 measures. The integrals in the metric tensors, the discrepancy
gradient, and the normalization constant in (18), are computed via numerical quadrature from the Fortran library
QUADPACK.

Figure 2 exhibits prior and posterior PDFs of the random initial state x0, obtained alternatively with the four DA-
MD implementations—GD for (4) with D ≡ dKL or W2, NGD-KL (6), and NGD-W2 (8)—and with the analytical
Bayesian update (17). The information-geometric optimization strategies NGD-KL and NGD-W2 have comparable
performance, both reproducing accurately the exact Bayesian posterior and having negligible difference in the identified
meta-parametersϕ at the end of the assimilation window. After assimilation ofNmeas = 10 measurements, the unknown
ground truth x?0 = 0.954 is approximated by the mean of the posterior PDF, µ(Nmeas)

0 ≡ ϕ(Nmeas)
1 ; the standard deviation of

this PDF, σ(Nmeas)
0 ≡ ϕ(Nmeas)

2 , provides a measure of predictive uncertainty. These statistics are ϕ(Nmeas) = {0.88, 0.09}
for all optimization algorithms.

Figure 2: Prior and posterior PDFs of the initial state x0 after assimilation of Nmeas = 10 observations, computed
with the information-geometric optimization strategies NGD-KL (left) and NGD-W2 (right). Also plotted are the
analytically derived Bayesian posterior (solid line) and the posteriors obtained with GD-KL (dash-dotted line on the
left) and GD-W2 (dash-dotted line on the left). The ground truth, x?0 = 0.954, is indicated by the starred vertical line.
Simulation parameters are set to σε = 0.1, tNmeas = 2, ϕ(0) = (0.5, 0.15), εKL = 10−3.

Figure 3 shows the number of iterations, Niter, it takes each of the four DA methods to converge at each assimilation
step of DA-MD. If the KL divergence is used as a discrepancy metric, NGD converges in consistently fewer iterations
than GD does; if the W2 distance is used instead, then NGD and GD require on average the same number of iterations
to converge. That is possibly because the W2-induced loss function C(ϕ) ≡W2(f(X;ϕ), f̂(X))2/2 is smoother than
its KL-induced counterpart (as shown in fig. 4 for m = 1) and, hence, the availability of the analytical gradient∇ϕD is
as helpful as the preconditioning. NGD is expected to become more beneficial when the loss functions is more sensitive
to some parameters than to others, or when parameters vary in widely different ranges.

The total computational cost depends not only on the number of iterations, but also on the time required to compute the
necessary terms at each iteration. Each NGD iteration is more expensive than GD’s because it requires the calculation
of a preconditioning matrix (i.e., the metric tensors for the geometry of the manifold), with a number of operations
O(N3

par) (see remark 2.1). When the evaluation of either the loss function or its gradient is computationally expensive,
the computational time for GD would significantly increase.

As a final note, we found the calculation of the KL loss to be more sensitive to the initial guess, with poor choices of the
prior often resulting in poor convergence of the DA-MD procedure. That is caused by the high sensitivity of the KL
divergence to the shape of the distributions, especially when they are very far apart and/or very sharp, resulting in poor
numerical accuracy of the integration (1).

9
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Figure 3: Number of iterations to solve the minimization problem (4) at the mth assimilation step with GD (dash-dotted
line) and NGD (dashed line) when the KL (left) and W2 (right) discrepancies are used. The simulation parameter values
are the same as in fig. 2.

Figure 4: Loss functions for KL (left) and W2 divergence (right) for the random initial condition test case in the
parameter space ϕ = ϕ0 = {µ0, σ0} at m = 1 (assimilation of the first measurement). The small (full) circle in both
panels indicates the prior parameters ϕ(0), the star indicates the true value {x?0, 0}. The large (empty) circle represents
the first update of the parameters, ϕ(1), obtained via NGD optimization. The blank region is to guarantee that x0 is
positive almost surely. The simulation parameter values are the same as in fig. 2.

4.2 Langevin equation with white noise

The dynamics of state variable x(t) is described by a Langevin equation,

dx
dt

= −a(t)x(t), x(0) = x?0, (19)

where the statistically homogeneous (stationary) random process a(t) = µa + σaw(t) has mean µa and standard
deviation σa, with w(t) denoting standard Gaussian white noise. The initial state x?0 ∈ R+ is deterministic. The process
a(t) is almost surely positive, which ensures that x(t) has a compact support Ω ⊂ R+ and, hence, the information
geometry induced by the W2 distance is rigorously defined.

The single-point CDF F (X; t) of the state variable x(t) in (19) satisfies exactly a CDF equation (appendix A)

∂F

∂t
− µaX

∂F

∂X
=

1

2

∂

∂X

(
σ2
aX

2 ∂F

∂X

)
, (20a)

subject to initial and boundary conditions

F (x; 0) = H(X − x?0), F (Xmin; t) = 0, F (Xmax; t) = 1. (20b)
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In this example, CDF F is parameterized by ϕ = {µa, σa}, which, as before, we make explicit by writing F (X; t,ϕ).
The values of ϕ are refined by assimilating observations x̂.

A physics-informed DNN (fig. 1) serves as a surrogate model that approximates the solution of the CDF equation (20).
The training set consists of the finite-volumes solutions [44] of (20) at selected points (X, t), computed for a number of
different combinations of meta-parameters ϕ. The details of this and other computations are provided in the opening of
section 4. In this experiment, DNN function approximation is considered satisfactory upon reaching a value of the loss
function of 4 · 10−4. This high accuracy enables the deployment of the DNN surrogate for both the analysis and forecast
steps, further accelerating the information-geometric optimization of (4) with the Scipy conjugate gradient routine.

Remark 4.1 For more complex problems, it might be advantageous to use the surrogate model only for the approxima-
tion of the gradients, while retaining the finite-volume solution of the CDF equation for prediction. Alternatively, it
might be necessary to construct a surrogate model for the local CDF at each assimilation step m, hence constructing a
surrogate model for the CDF solution at time tm thus reducing the dimensionality of the input for the DNN.

Figure 5 shows the updated ϕ(m) as function of the assimilation step m for both KL and W2 metrics of discrepancy,
either taking advantage (NGD) or not taking advantage (GD) of the information-geometric structure of the statistical
manifold of F . The starred values in this figure correspond to the statistical parameters used to generate the observations.
All minimization algorithms converge to the exact mean µa, whereas the identification of the standard deviation σa is
slightly more erratic. This is due to the inherent randomness of the physical process which calls for an improved data
model, for example utilizing multiple observations at each observation time tm.

Figure 5: Estimation of meta-parameters ϕ = {µa, σa} for the Langevin equation with white noise. The parameters
ϕ(m) are plotted as function of the assimilation step m for the four information-geometric optimization strategies: GD
and NGD, for the KL and W2 discrepancies. The simulation parameter values are set to x?0 = 1, ϕ? = {0.44, 0.088},
ϕ(0) = {1.25, 0.2} , σε = 0.1, Nmeas = 10, tNmeas = 2, εKL = 10−2, NT = 18850, NB = 5632, NI = 1280, and
NR = 47872.

Like before, the number of iterations over the assimilation time window is smaller for NGD than for GD for both
choices of loss function (fig. 6), albeit the difference is not as pronounced. The physics-driven parameterization of
the statistical manifold yields an isotropic geometry of the loss function in the search area, which reduces the benefits
of preconditioning. This is shown in fig. 7, where the KL and W2 loss functions are plotted, at the first and last
assimilation steps, as function of the meta-parameters ϕ, also highlighting the true solution and the prior location.5
Although superficially similar throughout the assimilation process, the minor differences in the topology of the KL
and W2 loss functions are enough to prevent convergence for the KL loss function for a slightly worst choice of the
prior (P2 in the Figure), which results in divergence of the DA-MD procedure for both GD and NGD. This is because
the KL divergence is more sensitive to numerical errors in the calculation of the integrals, especially for sharp or
non-overlapping distributions, which mislead the direction of the search.

The posterior NGD parameters ϕ(Nmeas) are used to compute the posterior CDF and PDF of x(t) in fig. 8. NGD
yields accurate posteriors, with the W2 optimization (8) performing better than the KL optimization (6). In order to

5The loss functions at assimilation step m = 1 are obtained using the initial ϕ(0) for the calculation of the observational
PDF/CDF, whereas the loss functions at assimilation step Nmeas = 10 are computed using ϕ(Nmeas−1) for the prior obtained using
either NGD-KL or NKD-W2. The initial guess of the prior ϕ(0) is the same for both KL and W2 metrics (P1 in the Figure), and
yields similar outcomes in terms of identification of the meta-parameters, as illustrated above.
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Figure 6: Number of iterations per assimilation step m for the four information-geometric optimization strategies: GD
and NGD, for the KL and W2 discrepancies. The simulation parameter values are the same as in fig. 5.

Figure 7: The KL (left column) and W2 (right column) loss functions at the first (m = 1, top row) and last (m = Nmeas)
steps of DA. The star indicates the true values of the meta-parameters (used to generate the synthetic reality). The points
P1 and P2 indicates the priors ϕ(0) for which the optimization of the KL loss function converges and fails to converge,
respectively. The larger (empty) circles indicate the posterior parameters at the mth assimilation step, ϕ(m+1), and the
smaller (full) circles in the bottom row indicate ϕ(Nmeas−1). The blank region in all panels is to enforce almost surely
the non-negativity of a(t). The simulation parameter values are the same as in fig. 5.
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highlight the accuracy of the DNN surrogate model, we show the finite-volume solution of the CDF equation (20) with
ϕ = ϕ(Nmeas) and its corresponding PDF computed via numerical differentiation, and their DNN-based counterparts. In
agreement within [17], we found the W2 minimization to be more robust to the choice of the prior.

Figure 8: Prior and posterior distributions (PDFs on the left, and corresponding CDFs on the right) at time tNmeas

obtained via NGD minimization for the KL and W2 loss functions, with either the FV solution of the CDF equation (20)
or its NN surrogate. Black stars and circles mark the exact value x(tNmeas) and its noisy observation xNmeas , respectively.
The simulation parameter values are the same as in fig. 5.

Remark 4.2 An additional advantage of the W2 loss function stems from its reliance on a CDF rather than a PDF
that enters the KL loss function. CDFs are smoother and easier to compute as a solution of the CDF equation than
PDFs, which are obtained by solving the PDF equation. This facilitates the generation of a training set and the training
of a surrogate model. On the other hand, approximation of the solution to a CDF equation with a DNN surrogate
possesses a potential challenge for the W2 optimization, since (4) calls for invertible surrogate models. We overcome
this difficulty by selecting a special structure for the DNN that guarantees automatic inversion, as detailed in section 3.

The computational cost of the different optimization strategies depends on the number of iterations (fig. 6); on the
computational cost per iteration; and, in case of information-geometric optimization, on the cost of computing the
tensor metrics. Since the function- and gradient-evaluations for this example are not expensive, the computational
gain of having a smaller number of evaluations is not significant, and it is compensated by the additional cost of the
calculation of the preconditioning matrices.

4.3 Langevin equation with colored noise

The dynamics of state variable x(t) is described by (9) with s(x(t);w(t),θ) ≡ −a(t)x(t), where a(t) = µa+w(t) with
µa ∈ R+, and w(t) is the derivative of an Ornstein–Uhlenbeck process characterized by the exponential auto-covariance
function

Cw(t, τ) =
σ2
a

2θa

[
e−θa|t−τ | + e−θa(t+τ)

]
,

with parameters σa and θa ∈ R+. By construction, the latter is also the auto-covariance function of a(t), Cw(t, τ) =
Ca(t, τ). Taking the initial state x0 to be deterministic, the stochastic solution of this problem depends on three
meta-parameters ϕ = {µa, σa, θa}. One realization of this solution, drawn from the distribution with the “true”
meta-parameters ϕ?, serves as ground truth for which observations x̂ are constructed in accordance with (10).

We show in appendix A.3 that the CDF F (X; t) of x(t) satisfies the CDF equation (11) with

U(X, t;ϕ) = −µaX +X

∫ t

0

Cw(t, τ)dτ and D(X, t;ϕ) = X2

∫ t

0

Cw(t, τ)dτ. (21)

The FV solution of this equation and its DNN surrogate are used to assimilate observations x̂ via our information-
geometric DA-MD framework. Similar to the case of white noise (section 4.2), we found the KL-based implementation
of DA-MD to be less robust to the choice of the prior. Hence, only the W2-based results are displayed below.

Figure 9 exhibits the convergence of the meta-parameters ϕ as function of the data assimilation step m. Since the
W2 loss function is relatively insensitive to the third meta-parameter θa, we present the convergence results for
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σ̃ =
√
σ2/(2θa) instead.6 Both GD-W2 and NGD-W2 converge after assimilation of about 20 observations, which

are generated every ∆t = 0.055. NGD converges, for the given combination of observations and the prior, in fewer
iterations over the assimilation window (fig. 9d) than GD.

Figure 9: Estimation of meta-parameters ϕ = {µa, σa, σ̃ =
√
σ2
a/(2θa)}, as function of the assimilation step m, with

GD and NGD for the W2 loss functions. The bottom right panel shows the number of iterations per assimilation step
for GD and NGD. The simulation parameter values are set to x?0 = 1, ϕ∗ = {0.5, 0.1, 0.05}, ϕ(0) = {1.5, 0.4, 0.14},
σε = 0.05, Nmeas = 41, tNmeas = 2.2, εKL = 10−2, NT = 13550, NB = 29282, NI = 6655, NR = 248897.

In fig. 10, we present the posterior PDF and CDF of the state x(t) at the final assimilation time tNmeas . The CDF
is computed as a FV solution of the CDF equation with meta-parameters ϕ(Nmeas), and the PDF as its derivative.
Observations x̂ are assimilated, alternatively, via the GD-W2 and NGD-W2 optimization strategies. Both approaches
yield posterior distributions that are close to the true state, with negligible differences between NGD-W2 and GD-W2.
The use of the FV solution of the CDF equation leads to a slightly wider posterior than the reliance on its DNN surrogate
does, possibly because of numerical diffusion.

Although not shown here, we found the KL- and W2-based loss functions at at the first and later assimilation steps to be
smooth and not significantly different from each other. Yet, similar to the example in section 4.2, the differences are
sufficient to prevent convergence in the KL case for poor choices of the prior.

5 Discussion and Conclusions

We presented an information-geometric implementation of DA-MD, which yields computationally efficient data
assimilation and parameter estimation for nonlinear problems with non-Gaussian system states. The forecast step is
performed by employing the MD, an uncertainty propagation technique that yields a deterministic evolution equation
for the CDF (or, equivalently, the PDF) of the state. This equation maps a set of meta-parameters (statistical properties
of the random inputs) onto the system-state distribution, and defines a parameter space for a dynamic manifold of

6This lack of sensitivity reflects the challenge of inferring the correlation length, 1/θa, from observations over a time window
spanning only two true correlation lengths, 1/θ?a.
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Figure 10: Prior and posterior distributions at time tNmeas (both PDFs, on the left, and CDFs, on the right) obtained
via GD-W2 and NGD-W2 minimization for the Langevin equation with colored noise. For each distribution, both the
FV solution and NN approximation are shown. Black stars and circles mark the exact value x(tNmeas) and its noisy
observation xNmeas , respectively. The simulation parameter values are the same as in fig. 9.

distributions. The analysis step is performed on this statistical manifold; it is formulated as sequential minimization of
the discrepancy between an observational distribution and a predictive posterior distribution obeying the CDF equation
with unknown (posterior) parameters. The observational PDF is the Bayesian posterior obtained as the product of the
data model (i.e., the likelihood function) and the prior distribution obeying the CDF equation with the parameters from
the previous assimilation step.

Reliance on statistical discrepancy measures—the Kullback-Leibler divergence and the L2 Wasserstein distance—
confers exploitable geometric properties to the manifold of distributions. Specifically, it enables the use of NGD, an
efficient optimization technique. Our numerical experiments revealed the W2-based DA-MD to be more robust to the
choice of a prior than its KL-based counterpart.

For one-dimensional (univariate) distributions, W2 is defined in terms of system-state CDFs, and KL in terms of
corresponding PDFs. This argues in favor of the W2-based DA-MD, since CDFs are smoother and numerical solution
of CDF equations is easier. This facilitates the use of invertible DNNs as a surrogate model in the probabilistic space to
facilitate and accelerate optimization and calculation of the geometric metric tensors.

Future work will focus on the identification of ambiguity sets and their dynamics on statistical manifolds [25], their
evolution and their update with observations. We also plan to explore the use of different data models, the impact
of alternative parameterizations of a statistical manifold on DA-MD performance, and the latter’s implications for
sensitivity analysis.

A CDF equation for the stochastic ODE

We summarize the MD for the three test problems from section 4. The original derivations can be found in [3], [45]
and [6], respectively. The first two results are exact, whereas the third one is approximate and has been verified against
Monte Carlo simulations in [5, 6].

A.1 Stochastic ODE with random initial conditions

We consider (9) with a smooth deterministic function s(x, t;θ); random initial state x0 ∈ R is described by a given
CDF F0(X;ϕ0) with statistical parameters ϕ0. To derive an equation for F (X; t), the CDF of x(t), we first define the
raw CDF Π = H(X − x(t)) whose ensemble mean is 〈Π(X; t)〉 = F (X; t). Next, we multiply (9) by −∂Π/∂X and
use the properties of the Heaviside functionH(·) to obtain

∂Π

∂t
+ s(X, t;θ)

∂Π

∂X
= 0. (22)

Since s(·) is deterministic, the ensemble average of (22) yields (16), which is a special case of (11) with U = s(X, t;θ)
and D = 0.
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The derivation of a corresponding PDF equation starts with the definition of a raw PDF π = δ(X − x(t)), where δ(·) is
the Dirac distribution. A procedure similar to above yields [3, sec. 2.1]

∂f

∂t
+
∂s(X, t;θ)f

∂X
= 0. (23)

This equation can also be obtained by differentiation of (16) with respect to X .

A.2 MD for the Langevin equation with white noise

Consider a Langevin equation, (9) with s(x;w) ≡ sd(x, t) + sw(x, t)w(t) where w(t) is a white standard Gaussian
process (with zero mean and unit variance). The deterministic functions sd and sw are such that s(x;w) is integrable
with respect to t in the mean square sense [45, Sec. 4.1]. The derivation of a PDF equation for x(t) is relatively
straightforward, and leads to the Fokker-Planck equation (a.k.a. Kolmogorov’s forward equation) [45, Sec. 4.9]

∂f

∂t
+
∂ sd(X, t)f

∂X
=

1

2

∂2s2
w(X, t)f

∂X2
, (24)

It is formally valid if f(X; t) is well-behaved at infinity, and is subject to initial and boundary conditions condition
f(X; 0) = f0(x) and f(±∞; t) = 0.

An equivalent CDF version of the Fokker-Planck equation (24) can be obtained via integration of (24) over X ∈ Ω

∂F

∂t
+ sd(X, t)

∂F

∂X
=

1

2

∂

∂X

(
s2
w(X, t)

F

∂X

)
, (25)

subject to F (x; 0) = F0(X), F (Xmin, t) = 0, and F (Xmax, t) = 1.

In (19), s(x;w) = −a(t)x(t) where the random process a(t) has the constant mean µa and standard deviation σa. This
translates into sd(x, t) = −µax and sw = −σax, so that the coefficients U and D in (11) become U = −µaX and
D = (σ2

a/2)X2, with ϕ = {µa, σa}.

A.3 MD for the Langevin equation with colored noise

Consider (9) with s(x;w) ≡ −a(t)x(t), where a(t) = µa + w(t) and w(t) is a correlated standard Gaussian process.
The MD for stochastic/random (Langevin) ODEs with temporally correlated forcings requires closure approximations.
These include the semi-local approximation [5, 6], which compares favorably with Monte Carlo simulations and a
local closure approximation in terms of both accuracy and computational efficiency. For the sake of completeness, we
summarize the derivation of the PDF equation and its semi-local closure approximation for the specific form of the
Langevin equation described above. We start by deriving an equation for the raw PDF π(X, t) = δ(X − x(t)), whose
ensemble mean is the PDF, f(X; t) = 〈π〉. Multiplying our ODE by −∂π/∂X and using the properties of the Dirac
delta function δ(·), we obtain

∂π

∂t
+ a(t)

∂π

∂X
= 0. s(X, t) = 〈s(X, t)〉+ s′(X, t;w); 〈s〉 = −µaX, s′ = −w(t)X (26)

We use the Reynolds decomposition A = 〈A〉 + A′ to represent relevant random processes A as the sums of their
ensemble means 〈A〉 and zero-mean fluctuations around these means, A′. Since π = f + π′, taking the ensemble mean
of this equation yields an unclosed equation for the PDF f(X; t),

∂f

∂t
+ µa

∂f

∂X
+
∂〈w′(t)π′(X, t)〉

∂X
= 0, subject to f(X; 0) = f0. (27)

A closure approximation is needed to render the cross-correlation term 〈w′(t)π′(X, t)〉 computable. Subtracting (27)
from (26), we obtain an equation for random fluctuations π′(X, t),

∂π′

∂t
+ µa

∂π′

∂X
=
∂(〈s′(X, t)π′(X, t)〉 − s′π)

∂X
, subject to π′(X, t = 0) = 0. (28)

The deterministic Green’s function for (28), G(X, t; Ξ, τ), is a solution of

∂G

∂τ
+ µa

∂G

∂Ξ
= −δ(X − Ξ)δ(t− τ) (29)
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with homogeneous initial (at τ = t) and boundary conditions at infinity. Its analytical solution, obtained, e.g., via the
method of characteristics, is G(X, t; Ξ, τ) = H(t− τ)δ(X − Ξ exp(−µa(t− τ))). Hence, the path-wise solution of
(28) is

π′(X, t) =

∫ t

0

∫ ∞

−∞
G(X, t; Ξ, τ)

∂

∂Ξ
[〈w′(Ξ, τ)π′(Ξ, τ)〉 − w′(Ξ, τ)π(Ξ, τ)] dτdΞ. (30)

A closure approximation for 〈w′(t)π′(X, t)〉 is constructed by multiplying (30) with w′(t), taking the ensemble mean,
and neglecting the third-order correlation term,

〈w′(X, t)π′(X, t)〉 = −
∫ t

0

∫ ∞

−∞
G(X, t; Ξ, τ)

∂

∂Ξ
(Cw(X, t; Ξ, τ)f(Ξ, τ)) dΞdτ, (31)

where Cw(X, t; Ξ, τ) = 〈w′(X, t)w′(Ξ, τ)〉 is the auto-covariance of the random noise w(t). Substituting this
expression into (27) yields a nonlocal (integro-differential) PDF equation. Accounting for the analytical expression for
G, (31) is approximated semi-locally as

〈w′(X, t)π′(X, t)〉 = −Xf(X, t)

∫ t

0

Cw(t, τ)dτ −X2 ∂f(X, t)

∂X

∫ t

0

Cw(t, τ)dτ. (32)

This yields the closed CDF equation (11) with (21). If w(t) were white noise, i.e., if Cw(t, τ) = δ(t − τ), then the
resulting PDF equation would reduce to the Fokker-Planck equation.
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