
ETH Library

Stochastic filtering for multiscale
stochastic reaction networks
based on hybrid approximations

Journal Article

Author(s):
Fang, Zhou; Gupta, Ankit ; Khammash, Mustafa Hani 

Publication date:
2022-10-15

Permanent link:
https://doi.org/10.3929/ethz-b-000560749

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Journal of Computational Physics 467, https://doi.org/10.1016/j.jcp.2022.111441

Funding acknowledgement:
182653 - An Advanced Stochastic Filtering Framework for the Analysis of Multiscale Biochemical Reaction Networks (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-1054-6133
https://orcid.org/0000-0002-4855-9220
https://doi.org/10.3929/ethz-b-000560749
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jcp.2022.111441
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Journal of Computational Physics 467 (2022) 111441
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Stochastic filtering for multiscale stochastic reaction networks 

based on hybrid approximations ✩

Zhou Fang, Ankit Gupta, Mustafa Khammash ∗

Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 December 2020
Received in revised form 24 March 2022
Accepted 28 June 2022
Available online 8 July 2022

Keywords:
Multiscale networks
Stochastic chemical reaction networks
Filtering theory
Particle filters

In the past few decades, the development of fluorescent technologies and microscopic 
techniques has greatly improved scientists’ ability to observe real-time single-cell activities. 
In this paper, we consider the filtering problem associate with these advanced technologies, 
i.e., how to estimate latent dynamic states of an intracellular multiscale stochastic reaction 
network from time-course measurements of fluorescent reporters. A good solution to this 
problem can further improve scientists’ ability to extract information about intracellular 
systems from time-course experiments.
A straightforward approach to this filtering problem is to use a particle filter where 
particles are generated by simulation of the full model and weighted according to 
observations. However, the exact simulation of the full dynamic model usually takes an 
impractical amount of computational time and prevents this type of particle filters from 
being used for real-time applications, such as transcription regulation networks. Inspired 
by the recent development of hybrid approximations to multiscale chemical reaction 
networks, we approach the filtering problem in an alternative way. We first prove that 
accurate solutions to the filtering problem can be constructed by solving the filtering 
problem for a reduced model that represents the dynamics as a hybrid process. The model 
reduction is based on exploiting the time-scale separations in the original network and, 
therefore, can greatly reduce the computational effort required to simulate the dynamics. 
As a result, we are able to develop efficient particle filters to solve the filtering problem 
for the original model by applying particle filters to the reduced model. We illustrate 
the accuracy and the computational efficiency of our approach using several numerical 
examples.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In the past few decades, scientists’ ability to look into the dynamic behaviors of a living cell has been greatly improved by 
the fast development of fluorescent technologies [1] and advances in microscopic techniques [2,3]. Despite this big success, 
light intensity signals observed in a microscope can only report the dynamics of a small number of species in a cell, such as 
fluorescent proteins and mRNAs, and, therefore, leave other dynamic states of interest, e.g., gene (on/off) state, transcription 
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factor abundance, or enzyme levels, indirectly observable. Consequently, it is important to establish efficient stochastic filters 
to estimate latent states of intracellular biochemical reaction systems from these partial observations.

The filtering theory is a topic of active research in both control and statistics communities, which dates back to early 
works by Wiener [4] and Kalman [5]. It is acknowledged that apart from some particular systems, e.g., linear systems 
with Gaussian noise and Markov chains with finite states, most nonlinear systems result in infinite-dimensional filters 
[6]; therefore, obtaining numerical solutions to the filtering problem for nonlinear systems is a difficult task. A powerful 
algorithm, called the particle filter (or sequential Monte Carlo method), was introduced in [7], which represent posterior 
distributions using a population of samples (also called particles) generated by importance sampling and resampling (see 
also [8]). Thanks to the ever-increasing computational power, a particle filter can solve the filtering problem efficiently in 
nonlinear non-Gaussian scenarios, and its convergence to the exact solution of the filtering problem is guaranteed under 
some mild conditions [9–16].

An intracellular reaction system is better modeled by a continuous-time Markov chain rather than an ordinary differen-
tial equation due to the presence of low copy number species, and it usually results in an infinite-dimensional filter which 
is not easy to calculate in a straightforward fashion. In this scenario, the particle filter is a good candidate for solving the 
filtering problem. The recent work in [17] is good evidence of this point, where a particle filter was established based on 
exact partial state observations and shown to work well for many biological processes. Despite the success of particle filters 
in solving the filtering problem for intracellular systems, the required heavy computational effort to simulate the system 
in the sampling step usually prevents it from being used for real-time applications. Especially for multi-scale reaction sys-
tems where reactions fire at different timescales, the computational complexity of exact simulation methods (e.g., Gillespie 
stochastic simulation algorithm [18,19] and the next reaction method [20]) is proportional to the rate of the fastest reaction, 
and, hence, the algorithm takes a very long time to output an estimate. A typical way to mitigate this type of problems is 
to replace the underlying system by a more tractable approximation so that a computationally efficient filter can be con-
structed based on the reduced model while the filter’s accuracy is still preserved (see [21, Section 2]). Following this idea, 
a method was proposed to obtain computationally efficient filters for biological systems by approximating the underlying 
Markov jump process by a diffusion process [22–25]. This method was shown to be efficient for broad classes of biochem-
ical reaction systems; however, its drawback is also clear — the diffusion process strategy loses its validity in low copy 
number scenarios. Unfortunately, multi-scale reaction systems, which are common in systems biology [26], usually involve 
species with low copy numbers; this fact precludes the usage of the diffusion approximation to these multi-scale systems 
and requires researchers to build new solutions.

In this paper, we propose another strategy to obtain efficient particle filters based on hybrid approximations of multi-
scale stochastic reaction networks. The hybrid approximation technique treats the firing of fast reactions as continuous 
processes (see [26]) or removes them by quasi-stationary approximations [27,28], as a consequence of which the compu-
tational complexity can be greatly reduced. A systematic approach to constructing such an approximation was provided 
in [26], and strategies for efficient simulation of these approximations were introduced in [29–31]. Such a reduced model 
is called a hybrid approximation as some species exhibit jumping processes due to their low copy numbers, while others 
evolve continuously. Therefore, this model is also called a piecewise deterministic Markov process as it is Markovian and 
governed by a deterministic differential equation between two neighboring jumping points. Besides its application in run-
ning simulations, the hybrid approximation method can also be used to do sensitivity analysis for multi-scale stochastic 
reaction networks [32,33], which implies that this method has potential for broad applications. In this paper, we prove that 
the solution to the filtering problem for the original system can be constructed by solving the filtering problem for the hy-
brid approximation if some mild conditions are satisfied. Notably, while the result seems intuitive, the mathematical analysis 
is non-trivial because the filtering problem focuses on the conditional probability rather than the unconditional probability 
(i.e., the probability of the full system), and the convergence of the latter does not necessarily imply the convergence of 
the former. The obtained result then enables us to develop efficient particle filters to infer system parameters (reaction 
constants) and latent dynamic states of the original model instantaneously by applying particle filters to the reduced model.

Compared with our previous work [34], where system parameters are known and only discrete-time observations are 
considered, here we additionally consider the parameter uncertainty and the case of continuous-time observations. We 
show that in the presence of parameter uncertainties, the proposed filter can efficiently solve the filtering problem in both 
the continuous-time observation case and the discrete-time observation case. Also, several numerical examples of gene 
expression networks are presented to illustrate our approach.

It is worth noting that the idea of applying time-scale separation techniques to developing computationally manageable 
particle filters has already been proposed in [35–37] for diffusion type stochastic models, and its efficiency is proven in the 
literature [38]. Compared with these works, our paper considers a different type of underlying models, the Markov jump 
process, and provides a much-simplified proof for the convergence of the approximate filters (based on the framework by 
[21]). All these references and our paper show the efficiency of applying the time-scale separation technique to the filtering 
problem for multi-scale systems.

The rest of this paper is organized as follows. In Section 2, we first introduce the filtering problem for a chemical reaction 
network system and, also, review the hybrid model reduction technique and the theory of particle filters. Then, our main 
results are presented in Section 3, stating that the filtering problem for a multi-scale reaction system can be accurately 
and computationally efficiently solved by a particle filter to its hybrid approximation. Also, we provide the workflow of our 
approach in Section 3 to guide practitioners to solve their specific problems. To improve the readability of this paper, we put 
2
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proofs of our main results in the appendices. In Section 4, two numerical examples are presented to illustrate our approach. 
Finally, Section 5 concludes this paper.

2. Preliminary

2.1. Notations

In this paper, we denote the natural filtered probability space by (�, F , {Ft}t≥0, P ), where � is the sample space, F is 
the σ -algebra, {Ft}t≥0 is the filtration, and P is the natural probability. Also, we term N>0 as the set of positive integers, 
Rn with n being a positive integer as the space of n-dimensional real vectors, ‖ · ‖ as the Euclidean norm, | · | as the absolute 
value notation, and s ∧ t (for any s, t ∈ R) as min(s, t). For any positive integer n and any t > 0, we term DRn [0, t] as the 
Skorokhod space that consists of all Rn valued cadlag functions on [0, t]. Here, cadlag functions refer to the functions that 
are right continuous and have a left limit.

2.2. Chemical reaction networks and their filtering problems

In this paper, we consider an intracellular system undergoing reactions

v1, j S1 + · · · + vn, j Sn
k j−−→ v ′

1, j S1 + · · · + v ′
n, j Sn, j = 1, . . . , r,

where Si (i = 1, . . . , n) are distinguished species in the systems, vi, j and v ′
i, j are non-negative integers, called stoichiometric 

coefficients, k j are the reaction constants, and r is the number of reactions. Also, we name the linear combination of species 
(e.g., v1, j S1 + · · ·+ vn, j Sn) as a complex. Let X(t) = (X1(t), X2(t), . . . , Xn(t))	 be the numbers of molecules of these species 
at time t , then the system’s dynamics following mass-action kinetics can be expressed as [39]

X(t) = X(0) +
r∑

j=1

(v ′
· j − v · j)R j

⎛
⎝ t∫

0

λ j(X(s))ds

⎞
⎠

where R j(t) ( j = 1, . . . , r) are mutually independent unit rate Poisson processes, λ j(x) � k j
∏n

i=1
xi !(

xi−vi, j
)!1{xi≥vi, j} are 

propensities with 1{·} the indicator function, and the initial condition X(0) has a particular known distribution.
In a practical biochemical reaction system, different species can vary a lot in abundance, and rate constants can also 

vary over several orders of magnitude. To emphasize this phenomenon, we reformulate the dynamical equation as follows 
using the normalized quantities of the aforementioned variables together with their scales. Following [26], we first choose a 
large number N (viewed as the scaling factor) and then normalize all the quantities by a power of N . Specifically, we term 
the variable αi (for i = 1, . . . , n) satisfying X N

i (t) � N−αi Xi(t) = O (1) as the magnitude of species Si , the variable β j (for 
j = 1, . . . , r) satisfying k′

j � k j N−β j = O (1) as the magnitude of the reaction constant k j , the variable γ as the time scale 
of interest, and X N,γ (t) � X N (tNγ ) as the normalized state in the time scale of interest. The choice of the scaling factor N
is problem-specific; a suitable N should clearly separate the scales of species numbers and rate constants. Though such a 
scaling factor might not always exists, it often does for multiscale reaction systems. Also, in this paper, we only consider 
problems in a finite time window where the scales of the species and rate constants do not change over time. Finally, in 
the normalized coordinate, the dynamical equation can be expressed as

X N,γ (t) =X N,γ (0) +
r∑

j=1

�N(v ′
· j − v · j)R j

⎛
⎝ t∫

0

Nγ +ρ̃ j λN
j (X N,γ (s))ds

⎞
⎠ (1)

where �N � diag(N−α1 , . . . , N−αs ), ρ̃ j � β j +∑n
i=1 vijαi is the time scales of reactions, and λN

j (x) � k′
j

∏n
i=1
∏vi, j−1


=0 (xi −

N−αi )1{xi≥N−αi vi, j

} is the normalized propensity and has the constant order. Usually, the precise values of the initial con-

dition X N (0) and reaction constants K�
(
k′

1, . . . ,k′
r

)
are unknown to researchers due to the variability of these parameters 

from cell to cell. Therefore, in this paper, we consider these parameters to be subject to some probability distributions. For 
fixed K, the infinitesimal generator of (1), denoted as LN,γ

K , satisfies1

LN,γ
K f (x) =

r∑
j=0

λN
j (x)Nγ +ρ̃ j

[
f
(

x + �N(v ′
· j − v · j)

)
− f (x)

]

1 Note that the terms λN
j (x) depend on the choice of K.
3
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for any bounded continuous function f on Rn .
We assume that some species in the system are fluorescent reporters, and m channels of light intensity signals of 

these reporters can be observed from a microscopic platform (e.g., the one in [40]). Mainly, two types of observations, 
continuous-time observations and discrete-time observations, are present in practical experiments depending on hardware 
properties. We denote the continuous-time observations by Ẏ N,γ

c (·) and the discrete-time observations by Y N,γ
d (·) and, 

moreover, assume them to satisfy

Y N,γ
c (t) =

t∫
0

h
(

X N,γ (s)
)

ds + B(t) ∀t ∈ [0,+∞) (2)

Y N,γ
d (ti) = h

(
X N,γ (ti)

)
+ W (ti) ∀i ∈ N>0, (3)

where h is an m-dimensional bounded Lipschitz continuous function indicating the relation between the observation and 
the reaction process, B(t) is an m-vector of independent standard Brownian motions, {ti}i∈N>0 is a strictly increasing se-
quence of time points at which the discrete observation comes, and {W
(ti)}i∈N>0 are mutually independent m-variate 
Gaussian random variables whose covariance matrices are equal to the identity matrix. In (2) and (3), the derivative Ẏ N,γ

c (t)(= h
(

X N,γ (t)
)+ Ḃ(t)

)
and Y N,γ

d (ti) model the light signals measured by a microscope in the continuous-time setting and 
the discrete-time setting, respectively. Since Ḃ(t) is mathematically tricky, we write the continuous-time observations us-
ing the integral form in (2) and use the accumulative quantity Y N,γ

c (t) later for inference. For these observations, we 
also assume that these Brownian motions and Gaussian random variables are independent of the Poisson processes R j(·)
( j = 1, . . . , r) and system parameters K and X N (0); in other words, the noise in observations is independent of the underly-
ing reaction system. Also, we term YN,γ

c,t as the filtration generated by the continuous observation {Y N,γ
c (s)}0<s≤t and YN,γ

d,ti

as the filtration generated by the discrete observation {Y N,γ
d (t j)}0< j≤i .

The goal of the filtering problem is to infer latent states of the underlying system, e.g., φ(K, X N,γ (t)) with φ a known 
measurable function from φ :Rr ×Rn to R, based on the collected observations. Specifically, it requires one to compute the 
conditional expectation π N,γ

c,t (φ) � EP

[
φ
(
K, X N,γ (t)

) ∣∣∣YN,γ
c,t

]
based on continuous-time observations, or the conditional 

expectation π N,γ
d,ti

(φ) �EP

[
φ
(
K, X N,γ (ti)

) ∣∣∣YN,γ
d,ti

]
based on discrete-time observations. Also, we call these conditional ex-

pectations as true filters of the chemical reaction network system. For a well-behaved function φ, the conditional expectation 
π

N,γ
c,t (φ) satisfies the Kushner-Stratonovich equation [6]

π
N,γ
c,t (φ) =π

N,γ
c,0 (φ) +

t∫
0

π
N,γ
c,s

(
LN,γ φ

)
ds +

t∫
0

[
π

N,γ
c,s

(
φh	)− π

N,γ
c,s

(
h	)π N,γ

c,s (φ)
](

dY N,γ
c − π

N,γ
c,s (h)ds

)

where LN,γ φ(κ, x) �LN,γ
κ φκ(x) with φκ(·) = φ(κ, ·). The equation is usually infinite-dimensional and has no explicit solu-

tion. In the discrete-time scenario, the conditional distribution satisfies a recursive expression [6, Proposition 10.6], which 
also has no explicit solution in most cases. As a result, we intend to find efficient algorithms that can quickly and accurately 
solve these filtering problems.

Before introducing our main results, we review the setup of hybrid approximations of multi-scale reaction systems and 
the theory of particle filters.

2.3. Hybrid approximations of multi-scale chemical reaction networks

2.3.1. Hybrid approximations at the first timescale
By fixing αi (i = 1, . . . , n) and β j ( j = 1, . . . , r) and changing the scaling factor N , we obtain a one-parameter family of 

models X N,γ (·). To derive reduced models, we first assume the initial conditions of these models satisfy

“ lim
N→∞ X N(0) exists P -almost surely, and its i-th entry is positive if αi > 0.” (4)

which can be simply achieved by setting their initial conditions to be the same.
Following the notations in [26], we term �+

i � { j|v ′
i, j > vi, j} and �−

i � { j|v ′
i, j < vi, j}. Then, the constant αi −

max j∈�+
i ∪�−

i

(
β j + v	

· jα
)

is the timescale of the i-th species, i.e., the minimum γ such that X N,γ
i (t) starts to evolve at 

rate of O (1). Moreover, we term γ1 � mini

(
αi − max j∈�+

i ∪�−
i
ρ̃ j

)
as the parameter of the fastest timescale of the system 

and Dα̃ � diag(1{α1=α̃}, . . . , 1{αn=α̃}) as a diagonal matrix indicating whether a species is at the scale of N α̃ .
By neglecting all slow reactions (ρ̃ j + γ1 < 0) and approximate fast reactions (ρ̃ j + γ1 > 0) by a continuous process, one 

can arrive at a simplified dynamic model as follows.
4
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Xγ1(t) = lim
N→∞ X N(0) +

∑
j:γ1+ρ̃ j>0

t∫
0

λ′
j(Xγ1(s))Dγ1+ρ̃ j

(
v ′

· j − v · j

)
ds

+
∑

j:γ1+ρ̃ j=0

R j

⎛
⎝ t∫

0

λ′
j(Xγ1(s))ds

⎞
⎠ D0
(

v ′
· j − v · j

)
(5)

where λ′
j(x) = limN→+∞ λN

j (x). For any fixed K, the infinitesimal generator of this process, denoted as Lγ1
K , satisfies2

Lγ1
K f (x) =

∑
j:γ1+ρ̃ j=0

λ′
j(x)
[

f
(

x + D0(v ′
· j − v · j)

)
− f (x)

]
+
∑

j:γ1+ρ̃ j>0

λ′
j(x)
[

Dγ1+ρ̃ j

(
v ′

· j − v · j

)]	 ∇ f (x)

for any bounded continuously differentiable function f on R. If we further assume that both X N,γ1 (·) and Xγ1 (·) are non-
explosive, i.e.,

lim
c→∞τ

N,γ1
c = ∞ and lim

c→∞τ
γ1
c = ∞ P -a.s. (6)

where τ N,γ1
c � inf{t∣∣‖X N,γ1(t)‖ ≥ c} and τγ1

c � inf{t∣∣‖Xγ1(t)‖ ≥ c}, then X N,γ1 (·) converges to Xγ1(·) in distribution on any 
finite interval.

Proposition 1 (Adapted from [26]). If conditions (4) and (6) hold, then on any finite interval [0, T ], there holds 
(
K, X N,γ1 (·))⇒(

K, Xγ1 (·)) in the sense of the Skorokhod topology.

Proof. The proof follows easily from [26, Theorem 4.1] �
Note that the convergence result does not always hold on the infinite time interval; one intuitive explanation is that the 

limit model may preclude bi-stability or some other phenomenon that the full model has (see [41, Section VI]).

Remark 1. The computational complexity to simulate Xγ1 (·) can be greatly lower than the complexity to simulate X N,γ1 (·), 
because the former avoids the exact simulation of fast reactions (γ + β j + v	

· jα > 0), which consume a lot of computational 
resources to update the system at a rate proportional to Nγ1+ρ̃ j .

2.3.2. Hybrid model at the second timescale
The second level of model reduction corresponds to the balance of complexes. Similar to the first timescale case, for any 

θ ∈ Rn , we term �+
θ � { j : θ	(v ′

·i − v ·i) > 0} and �−
θ � { j : θ	(v ′

·i − v ·i) < 0}. The timescale of the complex 
∑n

i=1 θi Si is 
denoted by γθ � maxi:θi>0 αi − max j∈�−

θ ∩�+
θ

(
β j + v	

· jα
)

. To avoid the degeneracy in the limit, we only consider those cases 
satisfying

max
j∈�−

θ

(
β j + v	

· jα
)

= max
j∈�+

θ

(
β j + v	

· jα
)

, or γ ≤ γθ , ∀θ ∈Rn≥0, (7)

which prevents the concentration of the complex from exploding or diminishing to zero as the system scale grows [26]. 
Notably, the above condition always holds for γ = γ1 (see [26]). If there exists a constant, γ2, such that

γ2 � inf
θ∈Rn≥0

{γθ |γθ > γ1} > γ1, and γ2 ≤ sup{γ |(7) holds}, (8)

then we term γ2 as the second timescale for the system.
Let ei be a unit vector of Rn with i-th element being 1 and the rest being 0. We denote L1 as the space spanned by 

S1 �
{

ei
∣∣∃ j s.t. e	

j Dr1+ρ̃ j (v ′
· j − v · j) �= 0

}
and L2 as the space spanned by S2 =

{
θ ∈Rn≥0

∣∣θ	Dr1+ρ̃ j (v ′
· j − v · j) = 0

}
. Note 

that the subspaces L1 and L2 are not necessarily orthogonal, because their intersection can contain non-zero vectors. At 
the second timescale, one can easily see that the species correspond to S1 fluctuate dramatically due to the reactions of 
the first timescale (i.e., Dγ1+ρ̃ j being non-zero), however, these reactions do not influence the slow complex corresponding 
to S2.

We further denote the projection operator onto L2 by �2, and the identity operator by I . For any fixed K ∈ Rr
>0 and 

x2 ∈L2, a generator Lγ1
K,x2

with state space {x|x = (I − �2)x̃, �2 x̃ = x2, x̃ ∈Rn} is defined by

2 Note that the propensities λ′
j(x) depend on the choice of K.
5
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Lγ1
K,x2

f (x1) = Lγ1
K f (x1 + x2)

for any bounded continuously differentiable function f on Rn . Also, we assume that for any positive x2 ∈ L2 and almost 
every K with respect to its probability measure, there holds the condition that

Lγ1
K,x2

has a unique stationary distribution V̄ K,x2
1 . (9)

This assumption requires the fast varying species to be stable and, therefore, makes it possible to conclude their dynamic 
effects using a random measure. We further term a random measure V K

1 (dx1, ds) � V̄ K,Xγ2 (s)
1 (dx1)ds. Then, at the second 

timescale, a reduced model on the state space L2 can be derived as follows.

Xγ2(t) = lim
N→∞�2 X N(0) + �2

∑
j:γ2+ρ̃ j>0

⎛
⎜⎝ ∫
L1×[0,t]

λ′
j

(
Xγ2(s) + x1

)
V K

1 (dx1,ds)

⎞
⎟⎠ Dγ2+ρ̃ j (v ′

· j − v · j) (10)

+ �2

∑
j:γ2+ρ̃ j=0

R j

⎛
⎜⎝ ∫
L1×[0,t]

λ′
j

(
Xγ2(s) + x1

)
V K

1 (dx1,ds)

⎞
⎟⎠ D0(v ′

· j − v · j).

Remark 2. Compared with the original model (1), the reduced model (10) not only replaces some fast reactions (γ2 + ρ̃ j > 0
and Dγ2+ρ̃ j �= 0n×n

3) with a continuous process but also removes some fast reactions (γ2 + ρ̃ j > 0 and Dγ2+ρ̃ j = 0n×n) from 
the model. As a result, the reduced model (10) can further accelerate the simulation of the target system.

For the validity of the hybrid model at the second time scale (see (10)), we need to introduce some additional assump-
tions. The first one is an ergodicity assumption on the fast-varying subsystem. For a fixed K, we define a random measure 
on L1 × [0, ∞) by

V N,γ2,K
1 (A × [0, t]) =

t∫
0

1A

(
(I − �2)X N,γ2(s)

)
ds

where 1A is the indicator function. Also, we require that

V N,γ2,K
1 ⇒ V K

1 almost surely. (11)

The above convergence of random measures means that for almost every fixed K, any bounded continuous function f (·), 
and all t > 0, there holds∫

L1×[0,t]
f (x)V N,γ2,K

1 (dx × ds) ⇒
∫

L1×[0,t]
f (x)V K

1 (dx,ds).

Since the set of continuous functions with compact support is a subset of bounded functions, the above condition also 
suggests the convergence of these random measures in distribution (see [42, Theorem 4.5]). The other assumptions are 
technical and can be stated as follows. Let τ N,γ2

c � inf{t∣∣|�2 X N,γ2 (t)| ≥ c} and

lc(y) � sup

⎧⎪⎨
⎪⎩

∑
j∈{�2 Dγ2+ρ̃ j (v ′· j−v · j) �=0}

λN
j (x)

∣∣∣∣∣ |�2x| ≤ c, x − �2x = y

⎫⎪⎬
⎪⎭ .

We assume that for each c there exists a function �c :R≥0 →R≥0 satisfying limr→∞ r−1�c(r) = ∞ such that⎧⎪⎪⎨
⎪⎪⎩

∫
L1×[0,t∧τ

N,γ2
c ]

�c(lc(y))V N,γ2,K
1 (dy × ds)

⎫⎪⎪⎬
⎪⎪⎭ is stochastically bounded. (12)

and

3 Here, 0n means an n × n zero matrix.
6
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∑
j

∣∣∣Nγ2+ρ̃ j �N(I − Dγ1+ρ̃ j − Dγ2+ρ̃ j )(v ′
· j − v · j)

∣∣∣× ∫
L1×[0,t∧τ

N,γ2
c ]

λN
j

(
�2 X N,γ2(s) + y

)
V N,γ2,K

1 (dy × ds) → 0.

(13)

Finally, under the above assumptions and non-explosivity of X N,γ2 and Xγ2 , i.e.,

lim
c→∞τ

N,γ2
c = ∞, and lim

c→∞τ
γ2
c = ∞, a.s. (14)

where τγ2
c � inf{t∣∣‖Xγ2(t)‖ ≥ c}, the process X N,γ2 converges in distribution to Xγ2 on any finite time interval. The details 

are listed in the following proposition.

Proposition 2 (Adapted from [26]). If conditions (4), (8), (9), (11), (12), (13), and (14) are satisfied, then on any finite time interval 
[0, T ], there holds 

(
K,�2 X N,γ2 (·))⇒ (K, Xγ2 (·)) in the sense of the Skorokhod topology.

Proof. The proof follows easily from [26, Theorem 4.4 and Theorem 5.1]. �
Among all these assumptions in the above result, (11), (12), and (13) are the most demanding ones. Verifying them 

usually requires one to construct proper Lyapunov functions for the fast dynamics (see [33, Remark 4.19]) and the full 
dynamics (see [26, Lemma 5.3]). Moreover, since system parameters are random (but fixed over time) in our problem, the 
construction of Lyapunov functions should be robust to the choice of system parameters so that the criteria can work for 
almost every K. The method proposed in [43] where the vector norm serves as the Lyapunov function can be a candidate 
for solving such a problem.

2.3.3. Hybrid approximations at a higher timescale
The key to generating a hybrid approximation of a multiscale system is to assume quasi-equilibrium for the fast sub-

network [33, Section 2.3]. Therefore, following this rule, one can construct a hierarchy of reduced models to depict dynamic 
behaviors at different timescales. For our main results, we assume ourselves in the situation of Proposition 1 and Propo-
sition 2 only, i.e., the first and second timescales. However, these results can be straightforwardly extended to a higher 
timescale using the same proof scheme shown in the appendices.

2.3.4. Observations for reduced models
We can also define filtering problems for the reduced models (5) and (10) as follows. We first define artificial readouts 

for these reduced models by

Y γ

c (t) =

t∫
0

h
(

Xγ
(s)
)

ds + B(t), and Y γ


d (ti) = h
(

Xγ
(ti)
)+ W (ti), 
 = 1,2

and term Yγ


c,t and Yγ


d,ti
(
 = 1, 2) as the filtrations generated by {Y γ


c (s)}0<s≤t and {Y γ


d (t j)}0< j≤i , respectively. Then, for 
reduced models (5) and (10), the filtering problem requires one to compute the conditional expectations

π
γ


c,t(φ) �EP
[
φ
(
K, Xγ
(t)

) ∣∣Yγ


c,t

]
and π

γ


d,ti
(φ) �EP

[
φ
(
K, Xγ
(ti)

) ∣∣∣Yγ


d,ti

]
for 
 = 1, 2 based on the corresponding continuous-time and discrete-time observations, respectively.

Notably, since the reduced model does not exist in reality, one can never collect these “imaginary” readouts Y γ1
c (·), 

Y γ1
d (·), Y γ2

c (·), or Y γ2
d (·) in real experiments. Therefore, solving the filtering problems for the reduced models has no much 

practical meaning. The value of these artificial filtering problems lies in helping us construct an efficient particle filter to 
solve the filtering problems for the original model, which will be discussed in-depth in Section 3.

2.4. Particle filters

The particle filter, also known as the sequential Monte Carlo method, is a protocol used to infer latent dynamic states 
and system parameters by generating samples that mimic dynamic behaviors of the underlying systems. In the sequel, we 
separately review continuous-time particle filters and discrete-time ones, including their derivations and specific algorithms.

2.4.1. Continuous-time particle filters
By denoting a Girsanov random variable

Z N,γ
c (t)� exp

⎛
⎝ t∫

h	(X N,γ (s))dY N,γ
c (s) − 1

2

t∫
‖h(X N,γ (s))‖2ds

⎞
⎠ ,
0 0

7
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whose reciprocal is a martingale under P [6, Lemma 3.9], and a reference probability dP N,γ
c

dP

∣∣∣∣
Ft

�
(

Z N,γ
c (t)
)−1

, one can 

arrive at the Kallianpur-Striebel formula [6, Proposition 3.16] (also see [44])

π
N,γ
c,t (φ)�E

P
N,γ
c

[
Z N,γ

c (t)φ
(
K, X N,γ (t)

) ∣∣∣YN,γ
c,t

]/
E
P

N,γ
c

[
Z N,γ

c (t)
∣∣∣YN,γ

c,t

]
P -a.s and P

N,γ
c -a.s, (15)

which transforms the filtering problem under the natural probability into the filtering problem under the reference prob-
ability. Since under the reference probability, the observations are independent of the underlying system and become an 
m-vector of independent standard Brownian motions [6, Proposition 3.13], the computation of conditional expectations un-
der the reference probability is much simpler than the computation under the original probability P . We can also construct 
reference probabilities for reduced models, which orthogonalizes4 the observations and the underlying systems and provide 
Kallianpur-Striebel formulas for them. The details are shown in Appendix A.

Based on (15), a continuous-time sequential importance resampling (SIR) particle filter can be constructed as Algorithm 1, 
which generates samples under the reference probability and uses Monte Carlo method to solve the filtering problem. 
Specifically, in Algorithm 1, the weights w j(t) (for j = 1, . . . , M) mimic normalized Z N,γ

c (t), and particles (κ j(t), x j(t))
mimic the state (K, X N,γ (t)); thus, the empirical sum of φ(κ j(t), x j(t)) with respect to weights w j(t), approximates the 
true filter by the Kallianpur-Striebel formula (15). Notably, resampling is executed in each iteration to delete non-significant 
particles and mitigate the long-term sample impoverishment at the cost of adding additional noise at the current step [8]. 
The residual resampling scheme is usually preferred in the resampling step, as it generally outperforms other schemes, e.g., 
multinomial resampling scheme, in the sense of asymptotic variances [12].

Algorithm 1 The continuous-time SIR particle filter [6, Chapter 9].
1: Input continuous-time observations Y (·), the model of the underlying system, and a joint distribution of the initial states and reaction constants; set δ

to be a positive constant indicating the length of sub-time intervals.
2: Initialization: Sample M particles (κ̄1(0), ̄x1(0)), . . . , (κ̄M (0), ̄xM (0)) from the input distribution, and set i = 1.
3: while iδ does not exceed the terminal time of the observations do
4: Sampling: Simulate x j(·) ( j = 1, . . . , M) in the time interval ((i − 1)δ, iδ] according to the underlying model with parameters 

κ̄ j((i − 1)δ) and initial conditions x̄ j((i − 1)δ); Set κ j(t) = κ̄ j((i − 1)δ) for t ∈ ((i − 1)δ, iδ]; Calculate weights w j(t) ∝ z j(t) �
exp
(∫ t

(i−1)δ
h	 (x j(s)

)
dY (s) − 1

2

∫ t
(i−1)δ

‖h(x j(s))‖2ds
)

.

5: Output the filter: π̄M,c,t (φ) =∑M
j=1 w j(t)φ(κ j , x j(t)) for t ∈ ((i − 1)δ, iδ].

6: Resampling: Resample {w j(iδ), (κ j(iδ), x j(iδ))} to obtain M equally weighted samples {1/M, (κ̄ j(iδ), ̄x j(iδ))};
7: end while

2.4.2. Discrete-time particle filters

For discrete-time observations, we can also define a random variable Z N,γ
d (ti) �

∏i
j=1 H
(

X N,γ (t j), Y N,γ
d (t j)

)
, in which 

H(x, y) = exp
(
h	(x)y − 1

2 ‖h(x)‖2
)
, and whose reciprocal is a martingale under P .5 Then, a reference probability, P N,γ

d , 

can be constructed by dP N,γ
d

dP

∣∣∣∣
Ft

�
(

Z N,γ
c (t)
)−1

, under which the underlying system and the discrete-time observation 

are independent of each other, and {Y N,γ
d (ti)}i∈N>0 are mutually independent m-variate Gaussian random variables with 

covariance matrices being the identity matrix. Using the Kallianpur-Striebel formula [44], we can express the filter like the 
following

π
N,γ
d,ti

(φ)�E
P

N,γ
d

[
Z N,γ

d (t)φ
(
K, X N,γ (ti)

) ∣∣∣YN,γ
d,ti

]/
E
P

N,γ
d

[
Z N,γ

d (ti)

∣∣∣YN,γ
d,ti

]
P -a.s and P

N,γ
d -a.s, (16)

which transforms the original filtering problem into the filtering problem under the reference probability. For the reduced 
models, we can also construct such reference probabilities and Kallianpur-Striebel formulas, which is discussed in detail in 
Appendix A.

Based on (16), a discrete-time SIR particle filter can be constructed as Algorithm 2 to solve the filtering problem numer-
ically. Algorithm 2 can be viewed as a discrete-time analog of Algorithm 1, where the only difference is substituting the 
discrete-time arguments in Algorithm 2 for the continuous ones in Algorithm 1.

4 Here, “orthogonalize” means making two random variables independent of each other.
5 The martingale property can be easily checked by calculating the characteristic function of the random variable.
8
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Algorithm 2 The discrete-time SIR particle filter [7,8].
1: Input observations {Y (ti)}i∈N>0 , a dynamical model, and a initial distribution;
2: Initialization: The same as the initialization step in Algorithm 1; Also, t0 = 0.
3: while ti does not exceed the terminal time of the observations do
4: Sampling: simulate x j(·) ( j = 1, . . . , M) from time ti−1 to ti according to the underlying model with parameters κ̄ j(ti−1) and initial conditions 

x̄ j(ti−1); Set κ j(ti) = κ̄ j(ti−1); Calculate weights w j(ti) ∝ z j(ti) � H(x j(ti), Y (ti)).

5: Output the filter: π̄M,d,ti (φ) =∑M
j=1 w j(ti)φ(κ j , x j(ti)).

6: Resampling: The same as the resampling in Algorithm 1 (change iδ to ti );
7: end while

3. Main results

The goal of this paper is to construct computationally efficient algorithms to solve filtering problems for multi-scale 
reaction network systems, i.e., calculating π N,γ

c,t (φ) and π N,γ
d,ti

(φ). A straightforward idea to solve this problem is to use 
the particle filters that utilize the full dynamic model (1). However, the computational cost of simulating (1) is extremely 
expensive (see Remark 1), and, therefore, these particle filters are computationally inefficient. Consequently, we need to 
figure out a smarter way to approach this problem.

We first demonstrate that solutions to the filtering problems for original models can be constructed by the solutions to 
the filtering problems for the reduced model. Note that πγ1

c,t (φ), πγ1
d,ti

(φ), πγ2
c,t (φ) and πγ2

d,ti
(φ) are, respectively, Yγ1

c,t , Yγ1
d,ti

, 
Yγ2

c,t , and Yγ2
d,ti

measurable; hence, there exist measurable functions f̂ γ1
φ,c,t(·), f̂ γ1

φ,d,ti
(·), f̂ γ2

φ,c,t(·), and f̂ γ2
φ,d,ti

(·) such that

π
γ


c,t(φ) = f̂ γ


φ,c,t(Y γ


c,0:t) and π
γ


d,ti
(φ) = f̂ γ


φ,d,ti
(Y γ


d,1:i), P -a.s., ∀
 ∈ {1,2},
where Y γ


c,0:t (
 = 1, 2) is the trajectory of Y γ

c (·) from time 0 to t , and Y γ


d,1:i �
(
Y γ


d (t1), . . . , Y γ


d (ti)
)

for 
 = 1, 2. Similarly, 
there also exist measurable functions f̂ N,γ

φ,c,t(·) and f̂ N,γ
φ,d,ti

(·) (for γ ∈R) such that

π
N,γ
c,t (φ) = f̂ N,γ

φ,c,t

(
Y N,γ

c,0:t
)

and π
N,γ
d,ti

(φ) = f̂ N,γ
φ,d,ti

(
Y N,γ

d,1:i
)

, P -a.s.,

where Y N,γ
c,0:t is the trajectory of Y N,γ

c (·) from time 0 to t , and Y N,γ
d,1:i �

(
Y N,γ

d (t1), . . . , Y N,γ
d (ti)

)
. In this paper, we name these 

functions filtering maps, as they map the observations to the solutions of filtering problems. Based on these functions, we 
define artificial filters like the following

π̃
N,γ


c,t (φ) � f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)

and π̃
N,γ


d,ti
(φ) � f̂ γ


φ,d,ti

(
Y N,γ


d,1:i
)

∀
 ∈ {1,2},
which is constructed by plugging the observations of the full model into the filter maps of the reduced models. We can 
show that under some mild conditions, these artificial filters can be arbitrarily close to the exact filters of the original model 
as N goes to infinity. The rigorous statement of this result is presented as follows.

Theorem 1.

1. Assume that (4) and (6) are satisfied. Then, for and any bounded continuous function φ , there hold

f̂ N,γ1
φ,c,t

(
Y N,γ1

c,0:t
)

− f̂ γ1
φ,c,t

(
Y N,γ1

c,0:t
)

P→ 0 as N → ∞, ∀t > 0,

and

f̂ N,γ1
φ,d,ti

(
Y N,γ1

d,1:i
)

− f̂ γ1
φ,d,ti

(
Y N,γ1

d,1:i
)

P→ 0 as N → ∞, ∀i ∈N>0.

2. Assume that conditions (4), (8), (9), (11), (12), (13), and (14) are satisfied, and, moreover, h(x) = h(�2x) ∀x ∈ Rn. Then, for any 
bounded continuous function φ such that φ(κ, x) = φ(κ, �2x) ∀(κ, x) ∈Rr ×Rn, there hold

f̂ N,γ2
φ,c,t

(
Y N,γ2

c,0:t
)

− f̂ γ2
φ,c,t

(
Y N,γ2

c,0:t
)

P→ 0 as N → ∞, ∀t > 0,

and

f̂ N,γ2
φ,d,ti

(
Y N,γ2

d,1:i
)

− f̂ γ2
φ,d,ti

(
Y N,γ2

d,1:i
)

P→ 0 as N → ∞, ∀i ∈N>0.

Proof. The proof is shown in Appendix B. �
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The above theorem indicates that the filtering problem for the original model can be transformed to the problem of 
computing artificial filters π̃ N,γ1

c,t (φ), π̃ N,γ1
d,ti

(φ), π̃ N,γ2
c,t (φ), and π̃ N,γ2

d,ti
(φ). Note that these artificial filters plug observations 

of the original models into filter maps of the reduced models. Therefore, one idea of calculating them is to construct 
particle filters where the observations of original models and the dynamics of the hybrid approximations are inserted. The 
corresponding particle filters are defined as follows.

Definition 1.

• Let π̄ N,γ


M,c,t(φ) (
 = 1, 2) be the output of the particle filter Algorithm 1 where Y N,γ

c (·), the dynamic model of Xγ
 (·), and 

the joint distribution of 
(
K, limN→∞ X N(0)

)
(for 
 = 1) or 

(
K, limN→∞ �2 X N(0)

)
(for 
 = 2) are inserted.

• Let π̄ N,γ


M,d,ti
(φ) (
 = 1, 2) be the output of the particle filter Algorithm 2 where Y N,γ


d (·), the dynamic model of Xγ
 (·), and 
the joint distribution of 

(
K, limN→∞ X N(0)

)
(for 
 = 1) or 

(
K, limN→∞ �2 X N(0)

)
(for 
 = 2) are inserted.

Under some mild conditions, the above-defined particle filters converge to the corresponding artificial filters (see Theo-
rem 2), and, therefore, can accurately approximate the true solutions to the filtering problems for the original model (see 
Theorem 3).

Theorem 2. Let the SIR particle filters defined in Definition 1 utilize the residual resampling scheme in the resampling step. If the 
process Xγ
 (·) (
 ∈ {1, 2}) is almost surely nonexplosive, then for any bounded continuous function φ(κ, x), there hold

EP

[∣∣∣π̄ N,γ


M,c,t(φ) − f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)∣∣∣]≤ c̃t√

M
‖φ‖∞ (∀t > 0) and

EP

[∣∣∣π̄ N,γ


M,d,ti
(φ) − f̂ γ


φ,d,ti

(
Y N,γ


d,1:i
)∣∣∣]≤ d̃ti√

M
‖φ‖∞ ∀(i ∈N>0)

where c̃t and d̃ti are time dependent scalars.

Proof. The convergence of discrete-time particle filters follows immediately from [12, Theorem 1]. The convergence of 
continuous-time particle filters is shown in Appendix C. �
Theorem 3. Let the SIR particle filters defined in Definition 1 utilize the residual resampling scheme in the resampling step.

1. If (4) and (6) are satisfied, then for any bounded continuous function φ(κ, x), there hold

lim
N→∞ lim

M→∞P
(∣∣∣π̄ N,γ1

M,c,t(φ) − π
N,γ1
c,t (φ)

∣∣∣≤ δ
)

= 1, ∀t > 0, ∀δ > 0,

lim
N→∞ lim

M→∞P
(∣∣∣π̄ N,γ1

M,d,ti
(φ) − π

N,γ1
d,ti

(φ)

∣∣∣≤ δ
)

= 1, ∀i ∈N>0, ∀δ > 0.

2. Assume that conditions (4), (8), (9), (11), (12), (13), and (14) are satisfied, and, moreover, h(x) = h(�2x) for all x ∈ Rn. Then, for 
any bounded continuous function φ(κ, x) such that φ(κ, x) = φ(κ, �2x) for all (κ, x) ∈Rr ×Rn, there hold

lim
N→∞ lim

M→∞P
(∣∣∣π̄ N,γ2

M,c,t(φ) − π
N,γ2
c,t (φ)

∣∣∣≤ δ
)

= 1, ∀t > 0, ∀δ > 0,

lim
N→∞ lim

M→∞P
(∣∣∣π̄ N,γ2

M,d,ti
(φ) − π

N,γ2
d,ti

(φ)

∣∣∣≤ δ
)

= 1, ∀i ∈N>0, ∀δ > 0.

Proof. It follows immediately from Theorem 1 and Theorem 2. �
Theorem 3 states that errors between the proposed particle filters (see Definition 1) and the corresponding solutions to 

the target filtering problems are very likely to be small, provided a large scaling factor N and a large particle population 
size M . Therefore, the proposed particle filters can solve the filtering problems of the original model accurately. Apart 
from the accuracy, these SIR particle filters consume much less computational resources than the ones constructed by the 
full dynamical model, as the former ones only require the simulation of a reduced model in the sampling step, which is 
computationally much cheaper than the simulation of the full model (see Remark 1 and Remark 2). Both facts suggest 
that the particle filters proposed in Definition 1 based on hybrid approximations are efficient in solving the target filtering 
problems.

Compared with the model reduction technique via time-scale separations (Proposition 1 and Proposition 2), our main 
result for the filtering problem (Theorem 3) requires two more additional conditions, first that the function φ(·) should 
be bounded, and second that functions h(·) and φ(·) should be irrelevant to the fast subnetwork (for the second time 
10
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scale only). The boundedness of φ(·) is a result of the boundedness condition required for the convergence of filters (see 
Theorem 1 and Theorem 2). This condition is a very common requirement in filtering theory, as it guarantees the true 
filter to be well-defined and simplifies analyses. However, it is not generally satisfied for biological applications, where 
concentrations of most target species have no theoretical upper bounds apart from some exceptions, e.g., gene copies. To 
tackle this problem, we can truncate the target quantity by a large number beyond which the conditional probability is 
comparatively low, and the tail event contributes little to the conditional expectation. Then, an estimate of the truncated 
quantity generated by a particle filter proposed in Definition 1 can provide an accurate approximation to the conditional 
expectation of the target quantity.

The other additional condition that h(·) and φ(·) are irrelevant to the fast subnetwork does not place many obstacles 
to applying the proposed particle filters because of the following reasons. First, most fluorescent reporters are large protein 
molecules which typically have slower dynamics than smaller molecules, such as enzymes and amino acids. Consequently, 
the function h(·), which represents the abundance of fluorescent reporters, is usually irrelevant to the fast fluctuating sub-
network. Meanwhile, researchers are inclined to estimate the state of large molecules, e.g., proteins or DNAs, rather than 
small molecules, as a result of which the function φ(·) is also independent of the fast subnetwork in most cases.

We conjecture that both of the additional conditions in Theorem 3 can be relaxed, and, therefore, the proposed method 
can cover a much broader class of multi-scale reaction systems. In the proof (see Appendix B), we frequently use the 
portmanteau lemma to show the convergence of expectations, which leads to the boundedness condition of φ. Therefore, 
by considering the convergence rate of the hybrid approximation (see [45]), it could be possible to extend the portmanteau 
lemma to work for unbounded functions and, thus, relax the boundedness condition of φ. On the other hand, the fast 
subnetwork state is very much shaped by the state of the slow subnetwork (see (11)). Therefore, it is reasonable to think 
that we can instantaneously get the knowledge of the fast subnetwork by inferring the slow one, which can potentially 
relax the constraint that h(·) and φ(·) are irrelevant to the fast subnetwork. However, to rigorously justify all these points, 
we need to have more elaborate analyses of the problem, because of which we leave it for future work.

We end this section with a simple algorithm that summarizes the procedures to estimate latent states of a multi-scale 
reaction system using the proposed SIR particle filters.

Algorithm 3 The procedure to estimate latent states of a multi-scale reaction network system using SIR particle filters based 
on hybrid approximations.
1: Describe the multi-scale reaction system in terms of scaling parameters αi-s and β j -s and choose the time scale of interest (see Section 2.2). Preferably, 

the chosen time scale is γ1 or γ2.
2: Construct a hybrid approximation of the target system using (5) or (10).
3: Check whether the quantity of interest, φ(K, X N,γ (t)), has a theoretical bound. If not, truncate the function by a large number beyond which the 

system is not likely to reach.
4: Based on the type of the observation and the chosen timescale, pick an appropriate particle filter in Definition 1 to solve the filtering problem. The 

performance of this filter is guaranteed by Theorem 3.

4. Numerical examples

In this section, we illustrate our approach using two numerical examples, a simple gene expression model and a tran-
scriptional regulation network. Such gene expression models are prevalent in systems and synthetic biology and captures 
key biophysical phenomena observed in lab experiments. Since the burst kinetics in gene expression networks are highly 
gene specific [46], the identifiability is usually guaranteed in these systems. Meanwhile, a hybrid approximation based ap-
proach has already been successfully applied to the parameter inference problem for gene expression systems [47]. Thus, it 
is natural to think that our approach that also utilizes hybrid approximations should be applicable to the filtering problem 
for these gene models.

All algorithms mentioned in this section are implemented on Matlab and executed on a high performance comput-
ing cluster with 15-core, 2.25 GHz AMD EPYC 7742 processors. All code applied to perform the analysis is available at 
“github.com/ZhouFang92/Particle-filters-for-multi-scale-CRNs-v.1”.

4.1. A simple gene expression model

We first consider a gene expression model (see Fig. 1 (A)) that contains the basic patterns in the central dogma of 
molecular biology. This model is also known as a telegraph model, which has been widely used in the study of gene 
transcriptional dynamics; also, it can capture important biophysical phenomena (e.g., transcriptional bursting [46,40]). The 
model involves four species: a gene having on and off states (denoted respectively as S2 and S1), the mRNA it transcribes 
(denoted as S3), and a fluorescent protein it expresses (denoted as S4); besides, it has six reactions:

S1
k1−−→ S2 gene activation, S2

k2−−→ S1 gene deactivation,

S2
k3−−→ S3 + S2 gene transcription, S3

k4−−→ S3 + S4 translation,
11
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Fig. 1. (A) shows the biological circuit of the considered network. (B) shows the computational time consumed by different particle filters. The filters were 
run on a 2.25 GHz AMD processors with 15 cores.

Table 1
Scaling exponents for reaction rates of the gene expression model: U is the notation for the uniform 
distribution.

Reaction constants (minute−1) Exponents Scaled rates (minute−1) Reaction scale

k1 U(1 × 10−2,2 × 10−2) β1 0 k′
1 U(0.01,0.02) β1 + α1 0

k2 U(7 × 10−3,1 × 10−2) β2 0 k′
2 U(0.007,0.01) β2 + α2 0

k3 U(7 × 10−1,9 × 10−1) β3 0 k′
3 U(0.7,0.9) β3 + α2 0

k4 U(3 × 10+1,4 × 10+1) β4 1 k′
4 U(0.3,0.4) β4 + α3 1

k5 U(1 × 10−1,3 × 10−1) β5 0 k′
5 U(0.1,0.3) β5 + α3 0

k6 U(3 × 10−1,4 × 10−1) β6 0 k′
6 U(0.3,0.4) β6 + α4 1

S3
k5−−→ ∅ mRNA degradation, S4

k6−−→ ∅ protein degradation.

For this system, we take N = 100, α4 = 1, and αi = 0 for 1 ≤ i ≤ 3, i.e., the cellular system consists of hundreds of fluorescent 
protein molecules but very few copies of other molecules. The values of reaction constants and their scaling exponents are 
shown in Table 1. With this setting, we can easily calculate that γ1 = 0, and the second time scale does not exist. For initial 
conditions, we assume X N

1 (0) to have a binary distribution with mean 1/3, X N
2 (0) to satisfy X N

2 (0) = 1 − X N
1 (0), X N

3 (0) to 
have a Poisson distribution with mean 2, and X N

4 (0) to also have a Poisson distribution with mean 2. Also, we assume that 
all reaction constants and initial conditions except X2(0) are independent of each other.

By (1), we can easily derive the full dynamical model at the fastest time scale γ1 as follows.

X N,γ1
1 (t) =X N,γ1
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⎛
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1
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0
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Moreover, by (5), the reduced dynamical model satisfies

Xγ1
1 (t) = lim

N→∞ X N,γ1
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Fig. 2. Simulation results for the simple gene expression model with continuous-time observations: Panel (A) shows the accumulative observation signal 
Y N,γ

c (t), which is the integral of the time-course measurement from time 0 to time t . Panel (B) shows the performance of both filters in estimating reaction 
constants, where error bars represent 95% confidence intervals. In this panel, we draw the relative values of these estimates 

(
the estimate

the true parameter

)
so that all 

the true parameters are rescaled to 1. The rest of the panels compare performances of different particle filters in estimating dynamic states, where black 
lines are the true values of the underlying system, red lines are the estimates by the particle filter using the full dynamic model, and the blue lines are the 
estimates by the particle filter using the reduced dynamic model. Specifically, (C), (E), and (G) show the estimates of the conditional means of Activated 
DNAs, mRNAs, and fluorescent proteins, respectively; (D), (F), and (H) present the estimates of the conditional standard deviations of these quantities. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Xγ1
2 (t) = lim

N→∞ X N,γ1
2 (0) + R1

⎛
⎝k′

1

t∫
0

Xγ1
1 (s)ds

⎞
⎠− R2

⎛
⎝k′

2

t∫
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Xγ1
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⎞
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Xγ1
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Xγ1
2 (s)ds
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4 (0) +

t∫
0

k′
4 X N,γ1

3 (s)ds −
t∫

0

k′
6 X N,γ1

4 (s)ds.

In this example, we also assume that light intensity signals can be observed continuously or discretely from a microscope, 
satisfying (2) or (3) where h(x) = (10 × x4)∧ 103 with 103 being the measurement range, B(t) is a Brownian motion, ti = 2i
(i.e., discrete-time observations come every two minutes), and {W (ti)}i∈N>0 is a sequence of mutually independent standard 
Gaussian random variables.

In this numerical example, we first randomly chose a set of system parameters, simulated the system for 90 minutes, 
and generated observations for both continuous-time and discrete-time scenarios. Then, based on these observations, we 
13
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Fig. 3. Simulation results for the simple gene expression model with discrete-time observations. The meaning of each panel is the same as the corresponding 
one in Fig. 2, except that panel (A) draws the raw data of the observation instead of the accumulative observation signal.

Table 2
Relative L1 distance between both kinds of particle filters in estimating the simple gene expression system. 
The relative L1 distance between two signals f1(t) and f2(t) is defined by ‖ f1− f2‖L1‖ f1‖L1

. The results show that 
these two kinds of particle filters provide very consistent estimate to the dynamical states with relative 
errors no greater than 8%.

Activated DNA mRNA Protein

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Continuous-time observations 1.21% 6.17% 2.00% 4.65% 0.25% 4.91%
Discrete-time observations 1.16% 6.44% 3.76% 7.12% 0.07% 1.55%

used particle filters that applies the hybrid approximations to infer dynamic states and reaction constants. Throughout this 
experiment, we set particle population to be 100,000. Meanwhile, we took the particle filter that applies the full dynamic 
model as a benchmark.

Numerical simulation results are presented in Fig. 1, Fig. 2, and Fig. 3. From Fig. 1, we see that particle filters applying 
reduced models is much faster than particle filters applying full dynamical models. Moreover, both kinds of filters provide 
very consistent estimates to the dynamical states in both continuous-time and discrete-time scenarios (see Fig. 2 and Fig. 3); 
their relative L1 distances in estimating different parts of the system are summarized in Table 2. Besides, we also observe 
from Fig. 2 and Fig. 3 that both particle filters accurately track the trajectories of the mRNA and protein, and they also 
successfully identify the change of the gene state after a short time period. The relatively slow convergence of the estimate 
to the gene state is attributed to the long time delay between the DNA dynamics and the observation processes, which 
14
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Fig. 4. Particle distributions in the simple gene expression example. The first two columns show the results for the continuous-time observation case, and 
the last two columns show the results for the discrete-time observation case. The first row shows particle distributions in k′

3–k′
4 plane at the final time, 

where the black dot shows the true value, and the colored dots show the particles from the filters. The transparency of a colored dot indicates the number 
of particles located in this specific site; the more transparent it is, the fewer particles are located. The second row shows the time evolution of the particle 
diversity in parameters (i.e., the number of distinguishable particles for estimating model parameters). This figure tells that for both observation types 
and both particle filters, the particle diversity in parameters decays dramatically over time. Finally, hundreds of distinguishable particles are left, and their 
distributions are not very consistent.

Table 3
Performance of our filter when Gaussian-noise assumption is violated (for the simple gene expression model). This table shows 
the relative L1 distance between our filter and the benchmark, when the observation noise has non-Gaussian distributions shown 
in the first column. In these experiments, our filter utilizes the reduced model and updates weights as if the noise is Gaus-
sian; in contrast, the benchmark filter utilizes the original model and updates weights according to the exact distribution of the 
observation noise.

Activated DNA mRNA Protein

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

T distribution (with 4 degrees of freedom) 1.48% 8.07% 4.64% 10.06% 0.33% 24.11%
Laplace distribution (Laplace(0,1)) 1.33% 7.90% 4.38% 8.41% 0.33% 23.88%
Log-normal distribution (Lognormal(0,0.25)) 1.32% 5.75% 1.90% 3.76% 3.13% 42.21%

makes the observation less informative about the DNA dynamics. Particularly, in the beginning, the filters are not certain 
about the gene state until they identify the growth of mRNA copies at about the sixth minute, which suggests that the gene 
has already been activated. This delay also occurs at the final time when the gene is deactivated — the filters can not be 
sure of the gene state until they identify a sharp decrease of the mRNA copies at a time point when the gene has been shut 
down for a while.

Moreover, both filters also provide consistent and accurate estimates to model parameters (see Fig. 2(B) and Fig. 3(B)). 
Despite this success, in these filters, we still observe a well-known phenomenon, called sample degeneracy, that the particle 
diversity in parameters drops quickly over time (see the second row of Fig. 4). This degeneracy usually has adverse effects 
on parameter inference. Fortunately, in this case study, there are still hundreds of distinguishable particles left at the final 
time. Therefore, sample degeneracy only slightly affects the estimate to the posterior of model parameters (see the first row 
of Fig. 4) and does not affect their mean estimates very much (see Fig. 2(B) and Fig. 3(B)). We leave the problem of how to 
combat sample degeneracy for future work.

Finally, we investigate the performance of our filter when the observation noise is non-Gaussian. In real experiments, 
though the scale of observation noise can be reliably quantified, identifying its probability distribution can be difficult. 
When the Gaussian-noise assumption is violated, the weight updating step which utilizes the Gaussian likelihood might 
be problematic and introduce extra errors to the estimate. To consider this factor, we replaced Gaussian noise with several 
other types of noise (shown in Table 3) and then tested our filter (which applies the reduced model and updates weights 
by the Gaussian likelihood) in these settings. In these numerical experiments, we restricted ourselves to the discrete-time 
observation case and took the particle filter applying the full model and updating weights by the exact distribution of 
observation noise as a benchmark. Numerical results are presented in Table 3, which show the relative L1 distance between 
these two filters. Note that the observation noise directly affects our belief about on the fluorescent proteins — the stronger 
the noise intensity is, the larger conditional variance will be. The shape of the observation noise also matters. Therefore, it is 
not surprising to see that the non-Gaussian noise mainly affects the performance of our filter in estimating the conditional 
standard deviation of fluorescent proteins (see Table 3). However, our filter still provides accurate estimate for the mean 
dynamics of proteins with relative errors no greater than 4%. Moreover, our filter is still consistent with the benchmark in 
15



Z. Fang, A. Gupta and M. Khammash Journal of Computational Physics 467 (2022) 111441
Fig. 5. (A) shows the biological circuit of the considered network. (B) shows the computational time consumed by different particle filters. Notably, y-axis 
tick values grow exponentially rather than linearly. The filters were run on a 2.25 GHz AMD processors with 15 cores.

Table 4
Scaling exponents for reaction rates of the gene expression model: U is the notation for the uniform 
distribution.

Reaction constants (minute−1) Exponents Scaled rates (minute−1) Reaction scale

k1 U(4 × 10−1,5 × 10−1) β1 0 k′
1 U(0.4,0.5) β1 + α3 0

k2 U(6 × 10−3,9 × 10−3) β2 −1 k′
2 U(0.6,0.9) β2 + α1 0

k3 U(7 × 10−3,9 × 10−3) β3 −1 k′
3 U(0.7,0.9) β3 + α5 −1

k4 U(3 × 10−3,5 × 10−3) β4 −1 k′
4 U(0.3,0.5) β4 + α3 −1

k5 U(1 × 10−2,3 × 10−2) β5 −1 k′
5 U(1,3) β5 + α2 + α4 0

k6 U(3 × 10−1,5 × 10−1) β6 0 k′
6 U(0.3,0.5) β6 + α5 0

k7 U(6 × 10−2,9 × 10−2) β7 −1 k′
7 U(6,9) β7 + 2α1 1

k8 U(4 × 10−1,6 × 10−1) β8 0 k′
8 U(0.4,0.6) β8 + α2 1

estimating the DNA and mRNAs with relative errors no greater than 11%. Notably, this consistency between our filter and 
the benchmark holds for both white noise (the t-distribution and Laplace distribution) and colored noise (the log-normal 
distribution). To conclude, our method is still accurate for this gene expression model when the Gaussian-noise assumption 
is violated.

In summary, our particle filter applying the reduced model is both accurate and computationally efficient in solving 
filtering problems for this multiscale gene expression model. Moreover, when the Gaussian-noise assumption is violated, 
our filter can still provide reliable estimates to dynamical states regardless of whether the observation noise is white or 
colored.

4.2. A transcription regulation network

We then consider a transcription regulation network (called Goutsias’ model [48]) where the gene product affects its 
own gene activation process (see Fig. 5 (A)). Such an autoregulation mechanism (where the gene product auto-regulates its 
own gene expression) is very common in living cells, which occurs over 40% of known E. coli’s transcription factors [49]. 
Moreover, it has various biological functions, including speeding up the response time of gene expression [50], inducing 
genetic oscillators [51], and achieving adaptation to periodic external stimuli [52]. The model considered in this subsection 
involves five species: the protein monomer (denoted by S1), the dimer (also the transcription factor, denoted by S2), the 
mRNA (S3), the unbound DNA (S4), and the bound DNA (also the activated state, denoted by S5); moreover, it has eight 
reactions:

S3
k1−−→ S1 + S3 translation, S1

k2−−→ ∅ protein degradation,

S5
k3−−→ S5 + S3 gene transcription, S3

k4−−→ ∅ mRNA degradation,

S2 + S4
k5−−→ S5 DNA activation, S5

k6−−→ S2 + S4 DNA inactivation,

2S1
k7−−→ S2 dimerization, S2

k8−−→ 2S1 dedimerization.

We take N = 100, α1 = α2 = 1 and αi = 0 for 3 ≤ i ≤ 5; in other words, the cellular system consists of hundreds of 
protein molecules but very few copies of other molecules. The values of reaction constants and their scaling exponents 
are shown in Table 4. With this setting, we can easily check that γ1 = 0, γ2 = 1, L1 = span{e1, e2, e4, e5}, and L2 =
span{e1 + 2e2, e3, e4 + e5}, where ei is the unit vector with the i-th entry being one and the rest being zero. For initial 
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conditions, we assume X N
1 (0) to have a Poisson distribution with mean 1, X N

2 (0) to have a Poisson distribution with mean 
10, X N

3 (0) to have a Poisson distribution with mean 2, X N
4 (0) to have a binary distribution with mean 1/10, and X N

5 (0) to 
satisfy X N

4 (0) = 1 − X N
1 (0). Also, we assume that all reaction constants and initial conditions except X5(0) are independent 

of each other.
In this case, we are interested in system dynamics at the second time scale. By (1), the full dynamics of the transcription 

regulation network at the second time scale can be written as
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Then, we derive the hybrid model at the second time scale. By (5), the reduced model at the first time scale satisfies
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Also, it is easy to check that the operator LN,γ1
K ,y for y ∈L2 admits a unique stationary distribution
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Table 5
Relative L1 distance between both kinds of particle filters in estimating the transcription regulation network. The rela-

tive L1 distance between two signals f1(t) and f2(t) is defined by ‖ f1− f2‖L1‖ f1‖L1
. The results show that these two kinds of 

particle filters provide very consistent estimate to the dynamical states with relative errors no greater than 9%.

Activated DNA mRNA Total mass of proteins

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

Continuous-time observations 0.20% 6.14% 1.55% 1.19% 0.06% 1.42%
Discrete-time observations 0.30% 8.32% 2.44% 2.01% 0.80% 1.39%

Table 6
Performance of our filter when Gaussian-noise assumption is violated (for the transcription regulation model). This table 
shows the relative L1 distance between our filter and the benchmark, when the observation noise has non-Gaussian 
distributions shown in the first column. In these experiments, our filter utilizes the reduced model and updates weights 
as if the noise is Gaussian; in contrast, the benchmark filter utilizes the original model and updates weights according 
to the exact distribution of the observation noise.

Bound DNA mRNA Total mass of proteins

Mean Standard 
deviation

Mean Standard 
deviation

Mean Standard 
deviation

T distribution (with 6 degrees of freedom) 0.56% 16.74% 15.01% 13.02% 0.69% 20.18%
Laplace distribution (Laplace(0,1)) 0.41% 10.93% 10.17% 5.52% 0.70% 21.17%
Log-normal distribution (Lognormal(0,0.25)) 0.27% 9.01% 13.05% 10.57% 3.44% 47.93%

where x1 ∈ {x|x = (I − �2)x̃, �2 x̃ = y, x̃ ∈R}, −y4 ≤ q ≤ y4, and
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Therefore, by (10), the reduced model at the second time scale satisfies
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Let S1 and S2 be both fluorescent reports, and light intensity signals satisfy (2) or (3) where h(x) = (x1 + 2x2) ∧ 103

with 103 being the measurement range, B(t) is a Brownian motion, ti = 2i (i.e., discrete-time observations come every 200 
seconds or 3.33 minutes), and {W (ti)}i∈N>0 is a sequence of mutually independent standard Gaussian random variables.

In this example, we also randomly chose a set of system parameters, simulate the system for 2.5 hours (9000 seconds), 
and generate observations for both continuous-time and discrete-time scenarios. Then, we use SIR particle filters that apply 
the reduced model at the second time scale to infer non-fast fluctuating dynamic states and reaction constants K. Through-
out this numerical example, we set the population of particles to be 10,000. Finally, we take the particle filter that applies 
the full dynamic model as a benchmark.

Numerical simulation results are presented in Fig. 5, Fig. 6, and Fig. 7. From Fig. 5, we can observe that particle filters 
applying the reduced dynamics consumes far less computational time than particle filters applying the full dynamic model. 
Meanwhile, we can learn from Fig. 6 and Fig. 7 that both particle filters can follow the trend of true dynamic states, and 
their trajectories almost merge together (whose relative L1 distances are presented in Table 5). These observations imply 
that these filters perform quite the same in estimating hidden dynamic states. Moreover, from Fig. 6(B), and Fig. 7(B), we can 
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Fig. 6. Simulation results for the transcription regulation network with continuous-time observations: Panel (A) shows the accumulative observation signal 
Y N,γ

c (t), which is the integral of the time-course measurement from time 0 to time t . Panel (B) shows the performance of both filters in estimating reaction 
constants, where error bars represent 95% confidence intervals. Here we draw the relative values of these estimates 

(
the estimate

the true parameter

)
so that all the true 

parameters are rescaled to 1. The rest of the panels compare performances of different particle filters in estimating dynamic states, where black lines are 
the true values of the underlying system (the panel (G) shows 1 minute moving average of the true value), red lines are the estimates by the particle 
filter using the full dynamic model, and the blue lines are the estimates by the particle filter using the reduced dynamic model. Specifically, (C), (E), and 
(G) show the estimates of the conditional means of the total mass of proteins (S1 + 2S2), mRNAs, and the activated Genes, respectively; (D), (F), and (H) 
present the estimates of the conditional standard deviations of these quantities.

observe that both filters also provide consistent and accurate estimates to model parameters. However, sample degeneracy 
still occurs in this case, which makes the estimated posterior of model parameters not very consistent (see Fig. 8).

Finally, we investigate the performance of our filters when the observation noise is non-Gaussian. Similar to the previous 
case study, we restricted ourselves to the discrete-time observation case and replaced the Gaussian noise with three other 
types of noise (shown in the first column of Table 6). In these numerical experiments, we compared our filter that uses 
the reduced model and updates weights by the Gaussian likelihood with a benchmark filter, which uses the full dynamical 
model and updates weight by the exact distribution of observation noise. Their relative L1 distances are presented in Table 6. 
From the result, we observe that in this case, our method still provides a relatively accurate estimate to the DNA state and 
mRNAs with relative L1 errors less than 16%. The non-Gaussian noise mainly affects the estimation of the conditional 
standard deviation of fluorescent proteins; however, our filter still provides accurate estimates to the conditional mean of 
proteins with relative errors no greater than 4%. To conclude, when the Gaussian noise assumption does not hold, our filter 
is still reliable for this transcription regulation network, and this result holds for both white noise (the t-distribution and 
Laplace distribution) and colored noise (the log-normal distribution).

In summary, our particle filter applying the reduced model is both accurate and computationally efficient in solving 
filtering problems for this transcription regulation model. Moreover, when the Gaussian-noise assumption does not hold, 
our filter can still provide reliable estimates to dynamical states no matter whether the observation noise is white or 
colored.
19



Z. Fang, A. Gupta and M. Khammash Journal of Computational Physics 467 (2022) 111441
Fig. 7. Simulation results for the transcription regulation network with discrete-time observations. The meaning of each panel is the same as the corre-
sponding one in Fig. 6, except that panel (A) draws the raw data of the observation instead of the accumulative observation signal.

5. Conclusion

In this paper, we established efficient particle filters to solve filtering problems for multiscale stochastic reaction net-
work systems by using the time-scale separation technique. We first showed that the solution of the filtering problem for 
the original system can be accurately approximated by the solution of the filtering problem for a reduced model that rep-
resents the dynamics by a hybrid approximation (see Theorem 1). The reduced model is based on exploiting the time-scale 
separation in the original network and can greatly reduce the required computational effort to simulate the dynamics. Con-
sequently, these results enabled us to develop efficient particle filters to solve the original filtering problem by applying the 
particle filter to the reduced model (see Theorem 3). Finally, we used two numerical examples to illustrate our approach. 
Both examples show that the constructed filter can accurately and computationally efficiently solve the corresponding filter-
ing problems and, therefore, imply that our approach can improve scientists’ ability to extract dynamic information about 
intracellular systems from time-course experiments.

There are a few topics deserving further investigation in future work. First, it is worthwhile to further improve the 
performance of particle filters in estimating system parameters. From numerical experiments, we observed that the SIR 
particle filter is less accurate in estimating the posterior of system parameters due to sample degeneracy. A standard method 
to mitigate this problem is to use regularized particle filters instead of SIR ones [53]. Usually, to guarantee the performance 
of a regularized particle filter, one needs to show some regularity conditions of the transition kernel of the dynamic model 
(see [11, Lemma 2.38]), which requires researchers to do more elaborate analyses of the underlying system. As our first 
attempt to solve this problem, we provided in a follow-up paper [54] several regularity conditions for SRNs using parameter 
sensitivity analysis and proved the convergence of regularized particle filters under these conditions. Another direction for 
future research is to utilize adaptive model reduction algorithms (e.g., [30]) to speed up the particle filters further. It will 
be very helpful to systems where magnitudes of concentration levels vary over time, such as toggle switches [55] and 
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Fig. 8. Particle distributions in the transcription regulation network example. The first two columns show the results for the continuous-time observation 
case, and the last two columns show the results for the discrete-time observation case. The first row shows particle distributions in k′

3–k′
4 plane at the final 

time, where the black dot shows the true value, and the colored dots show the particles from the filters. The transparency of a colored dot indicates the 
number of particles located in this specific site; the more transparent it is, the fewer particles are located. The second row shows the time evolution of the 
particle diversity in parameters (i.e., the number of distinguishable particles for estimating model parameters). This figure tells that for both observation 
types and both particle filters, the particle diversity in parameters decays dramatically over time. Finally, about a hundred distinguishable particles are left, 
and their distributions are not very consistent. For instance, (C) has very few particles in the far north, whereas (D) has many particles in that region.

repressilator [56]. Finally, one can also implement our algorithms on a Cyberloop platform [40] and apply them to biological 
studies, e.g., identifying intracellular reaction mechanisms and guiding cell differentiation. In this scenario, one need to deal 
with hundreds of cellular systems under the microscope and, therefore, solve hundreds of filtering problems simultaneously, 
which requires the algorithm to be parallelized efficiently.
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Appendix A. Change of measure methods for reduced models

In this section, we introduce reference probabilities and Kallianpur-Striebel formulas for the reduced models, which will 
be helpful in later analysis.

A.1. Continuous-time observations

We first consider the scenario where observations are continuous with respect to time. For reduced models (5) and (10), 
we define Girsanov’s random variables, Zγ


c (t) (
 = 1, 2), like the following

Zγ

c (t) � exp

⎛
⎝ t∫

0

h	(Xγ
 (s))dY γ

c (s) − 1

2

t∫
0

‖h(Xγ
(s))‖2ds

⎞
⎠

whose reciprocals are martingales with respect to Ft under P [6, Lemma 3.9]. Then, reference probabilities for reduced 
models (5) and (10) are respectively defined by
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dPγ1
c

dP

∣∣∣∣∣
Ft

�
(

Zγ1
c (t)
)−1

and
dPγ2

c

dP

∣∣∣∣∣
Ft

�
(

Zγ2
c (t)
)−1

.

Under the reference probability Pγ

c (
 = 1, 2), the observation Y γ


c (·) is independent of the underlying system (K, Xγ
 )

and becomes an m-vector of independent standard Brownian motions [6, Proposition 3.13]. For these reduced models, 
Kallianpur-Striebel formulas are expressed as [6, Proposition 3.16] (also see [44])

π
γ


c,t = EP
γ

c

[
Zγ


c (t)φ(K, Xγ
(t))
∣∣Yγ


c,t

]/
EP

γ

c

[
Zγ


c (t)
∣∣Yγ


c,t

]
P -a.s and P

γ1
c -a.s, (A.1)

for 
 = 1, 2 and any bounded measurable function φ.
Note that the terms on the right hand sides of (15) and (A.1) are respectively YN,γ

c,t , and Yγ


c,t measurable. Therefore, for 
any bounded measurable function φ, there exist measurable functions ĝN,γ

φ,c,t (·), ĝγ


φ,c,t(·) satisfying

ĝN,γ
φ,c,t(Y N,γ

c,0:t) =E
P

N,γ
c

[
Z N,γ

c (t)φ
(
K, X N,γ (t)

) ∣∣∣YN,γ
c,t

]
, ∀γ ∈R (A.2)

ĝγ


φ,c,t(Y γ


c,0:t) =EP
γ

c

[
Zγ


c (t)φ(K, Xγ
(t))
∣∣Yγ


c,t

]
, 
 = 1,2, (A.3)

where Y N,γ
c,0:t is the trajectory of Y N,γ

c (·) from time 0 to t , and Y γ


c,0:t (
 = 1, 2) is the trajectory of Y γ

c (·) from time 0 to t . 

Moreover, by (15) and (A.1), we can conclude that for all bounded measurable function φ, there hold

f̂ N,γ
φ,c,t(Y N,γ

c,0:t) = ĝN,γ
φ,c,t(Y N,γ

c,0:t)

ĝN,γ
1,c,t(Y N,γ

c,0:t)
, P -a.s, P N,γ

c -a.s ∀γ ∈ R, (A.4)

f̂ γ


φ,c,t(Y γ


c,0:t) = ĝγ


φ,c,t(Y γ


c,0:t)
ĝγ


1,c,t(Y γ


c,0:t)
, P -a.s, Pγ
-a.s ∀
 ∈ {1,2}. (A.5)

A.2. Discrete-time observations

Then, we consider the case where the observations are discrete with respect to time. For reduced models (5) and (10), 
we define random variables

Zγ1
d (ti) =

i∏
j=1

H
(

Xγ1(t j), Y γ1(t j)
)

and Zγ2
d (ti) =

i∏
j=1

H
(

Xγ2(t j), Y γ2(t j)
)

where H(x, y) = exp
(
h	(x)y − 1

2 ‖h(x)‖2
)
, and whose reciprocals are martingales under P .6 Hence, the reference probabili-

ties for reduced models (5) and (10) can be respectively defined by

dPγ1
d

dP

∣∣∣∣∣
Fti

�
(

Zγ1
d (ti)
)−1

and
dPγ2

d

dP

∣∣∣∣∣
Fti

�
(

Zγ2
d (ti)
)−1

.

Under the reference probability Pγ


d (
 = 1, 2), the observations Y γ


d (ti) are independent of the underlying system (K, Xγ
 (·))
and are mutually independent m-variate Gaussian random variables whose coefficient matrices are the identity matrix.7

Then, for these reduced models, Kallianpur-Striebel formulas are expressed as

π
γ


d,ti
(φ) = EP

γ

d

[
Zγ


d (ti)φ
(
K, Xγ
(ti)

)∣∣Yγ


d,ti

]/
EP

γ

d

[
Zγ


d (ti)
∣∣Yγ


d,ti

]
P -a.s. and P

γ


d -a.s. (A.6)

for 
 = 1, 2 and any bounded measurable function φ.
Note that terms on the right hand sides of (16) and (A.6) are respectively YN,γ

d,ti
and Yγ


d,ti
measurable. Therefore, for any 

bounded measurable function φ, there exist measurable functions ĝN,γ
φ,d,ti

(·) and ĝγ


φ,d,ti
(·) satisfying

ĝN,γ
φ,d,ti

(Y N,γ
d,1:i) = E

P
N,γ
d

[
Z N,γ

d (ti)φ
(
K, X N,γ (ti)

) ∣∣∣YN,γ
d,ti

]
, ∀γ ∈ R,

ĝγ


φ,d,ti
(Y γ


d,1:i) = EP
γ

d

[
Zγ


d (ti)φ(K, Xγ
(ti))

∣∣∣Yγ


d,ti

]
, 
 = 1,2,

6 The martingale property can be easily checked by looking at their characteristic functions.
7 It can be easily checked by looking at the joint characteristic function of the observation and the underlying system.
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where Y N,γ
d,1:i =

(
Y N,γ

d (t1), . . . , Y N,γ
d (ti)

)
and Y γ


d,1:i = (Y γ


d (t1), . . . , Y γ


d (ti)
)

(
 = 1, 2). Moreover, by (16) and (A.6), we can 
conclude that for any bounded measurable function φ, there hold

f̂ N,γ
φ,d,ti

(Y N,γ
d,1:i) = ĝN,γ

φ,d,ti
(Y N,γ

d,1:i)

ĝN,γ
1,d,ti

(Y N,γ
d,1:i)

, P -a.s, P N,γ
d -a.s. ∀γ ∈ R, (A.7)

f̂ γ


φ,d,ti
(Y γ


d,1:i) = ĝγ


φ,d,ti
(Y γ


d,0:i)
ĝγ


1,d,ti
(Y γ


d,1:i)
, P -a.s, Pγ


d -a.s. 
 = 1,2. (A.8)

Appendix B. The proof of Theorem 1

In this section, we present the proof of Theorem 1.

B.1. The proof framework

To prove the result, we borrow the proof framework proposed in [21], which deals with the convergence of filters 
via constructing auxiliary probability spaces that have nice properties. Specifically, the framework establishes a common 
probability space, on which some random variables are constructed to mimic the system state and observations on the 
natural probability space. Then, by showing the convergence of the filters on the common probability space, one can arrive 
at the convergence of the filters on the natural probability space.

For continuous observations, the framework requires us to construct random variables K̃N,γ
 , K̃γ
 , X̃ N,γ
 (·), X̃γ
 (·), Ỹ γ

c (·), 

Z̃ N,γ

c (t), Z̃γ


c (t) on a common probability space 
(
�̃

γ


t , F̃γ


t , Q̃γ


t

)
for any t > 0 and 
 = 1, 2 such that

(A.1.1)
(
K̃N,γ
 , X̃ N,γ
 (·), Ỹ γ


c (·), Z̃ N,γ

c (t)

)
∈ Rr

>0 × DRn [0, t] × DRm [0, t] × R has the same law as 
(
K, X N,γ
 (·), Y N,γ


c (·),
Z N,γ


c (t)
)

on 
(
�, Ft , P

N,γ

c

)
,

(A.1.2)
(
K̃γ
 , X̃γ
 (·), Ỹ γ


c (·), Z̃γ

c (t)
)

∈ Rr
>0 × DRn [0, t] × DRm [0, t] × R has the same law as 

(
K, Xγ
 (·), Y γ


c (·), Zγ

c (t)
)

on (
�,Ft ,P

γ

c
)
,

(A.1.3) f̂ N,γ


φ,c,t (Ỹ γ


c,0:t) → f̂ γ


φ,c,t(Ỹ γ


c,0:t) in Q̃γ


t -probability where Ỹ γ


c,0:t is the trajectory of Ỹ γ

c (·) from time 0 to t,

(A.1.4) limN→∞EQ̃
γ

t

[∣∣∣ Z̃ N,γ

c (t) − Z̃γ


c (t)
∣∣∣]= 0.

For discrete-time observations, the framework requires us to construct random variables K̃N,γ
 , K̃γ
 , X̃ N,γ
 (·), X̃γ
 (·), Ỹ γ


d (·), 
Z̃ N,γ


d (ti), Z̃γ


d (ti) in a common probability space 
(
�̃

γ


ti
, F̃γ


ti
,Q̃γ


ti

)
for any i ∈N>0 and 
 = 1, 2 such that

(A.2.1)
(
K̃N,γ
 , X̃ N,γ
 (·), Ỹ γ


d,1:i, Z̃ N,γ


d (ti)
)

∈Rr≥0 ×DRn [0, ti] ×Rm×i ×R, where Ỹ γ


d,1:i =
(

Ỹ γ


d (t1), . . . , Ỹ γ


d (ti)
)

, has the same 

law as the random variables 
(
K, X N,γ
 (·), Y N,γ


d,1:i , Z N,γ


d (ti)
)

on 
(
�,Fti ,P

N,γ2
)
,

(A.2.2)
(
K̃γ
 , X̃γ
 (·), Ỹ γ


d,1:i, Z̃γ


d (ti)
)

∈ Rr≥0 × DRn [0, ti] × Rm×i × R has the same law as 
(
K, Xγ
 (·), Y γ


d,1:i, Zγ


d (ti)
)

on (
�,Fti ,P

γ2
)
,

(A.2.3) f̂ N,γ


φ,d,ti
(Ỹ γ


d,1:i) → f̂ γ


φ,d,ti
(Ỹ γ


d,1:i) in Q̃γ


ti
-probability.

(A.2.4) limN→∞EQ̃
γ

ti

[∣∣∣ Z̃ N,γ


d (ti) − Z̃γ


d (ti)

∣∣∣]= 0.

If we succeed in finding the above random variables, then the convergence results in Theorem 1 are guaranteed by the 
following theorem. Consequently, the rest of this section contributes to constructing random variables such that the above 
conditions are satisfied.

Theorem 4 (Adapted from [21]).

1. For both 
 = 1, 2, a time point t > 0, and a particular measurable function φ , if (A.1.1), (A.1.2), (A.1.3), and (A.1.4) are satisfied, then 
f N,γ


φ,c,t

(
Y N,γ


c,0:t
)

− f γ


φ,c,t

(
Y N,γ


c,0:t
)

P→ 0 as N goes to infinity;

2. For both 
 = 1, 2, a integer i > 0, and a particular measurable function φ , if (A.2.1), (A.2.2), (A.2.3), and (A.2.4) are satisfied, then 
f N,γ


(
Y N,γ


)
− f γ


(
Y N,γ


)
P→ 0 as N goes to infinity;
φ,d,ti d,1:i φ,d,ti d,1:i
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Proof. The proofs of these two results are in the same spirit. Therefore, we only show the proof of the first result.

Let us construct a probability measure P̃γ


t on the measurable space 
(
�̃

γ


t , F̃γ


t

)
by dP̃

γ

t

dQ̃
γ

t

= Z̃γ

c (t). Note that Zγ


c (t) is 

Pγ

c -almost surely positive, so Z̃γ


c (t) is Q̃γ


t -almost surely positive by (A.1.2), which implies the measures P̃γ


t and Q̃γ


t to 
be equivalent.

Let us denote εN = f̂ N,γ


φ,c,t

(
Y N,γ


c,0:t
)

− f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)

and ε̃N = f̂ N,γ


φ,c,t

(
Ỹ γ


c,0:t
)

− f̂ γ


φ,c,t

(
Ỹ γ


c,0:t
)

. Then, for any δ > 0, we can 
calculate that

lim
N→∞P (‖εN‖ > δ) = lim

N→∞EQ̃
γ

t

[(
Z̃ N,γ


c (t) − Z̃γ

c (t)
)

1{‖ε̃N ‖≥δ}
]
+ lim

N→∞EQ̃
γ

t

[
Z̃γ


c (t)1{‖ε̃N ‖≥δ}
]

≤ lim
N→∞EQ̃

γ

t

[∣∣∣( Z̃ N,γ

c (t) − Z̃γ


t (t)
)∣∣∣]+ P̃

γ


t

(‖ε̃N‖ ≥ δ
)

where the equality follows from (A.1.1). Finally, the last line in the above formula tends to zero by (A.1.3), (A.1.4), and the 
equivalence between P̃γ


t and Q̃γ


t , which proves the result. �
B.2. Constructing auxiliary random variables

This subsection contributes to constructing random variables and probability spaces that satisfy (A.1.1), (A.1.2), (A.2.1) 
and (A.2.2). We first apply Skorokhod’s representation theorem to construct the required random variables.

Lemma 1.

1. If (4) and (6) hold, then for any t > 0, there exist Rr
>0 ×DRn [0, t]-valued random variables 

(
K̃N,γ1 , X̃ N,γ1 (·)

)
and 
(
K̃γ1 , X̃γ1 (·)

)
defined on a common probability space 

(
�̃

γ1
t,1, F̃

γ1
t,1,Q̃

γ1
t,1

)
, such that 

(
K̃N,γ1 , X̃ N,γ1 (·)

)
and 
(
K̃γ1 , X̃γ1 (·)

)
have the same laws as (

K, X N,γ1 (·)) and 
(
K, Xγ1 (·)), respectively, and

lim
N→∞

(
K̃N,γ1 , X̃ N,γ1(·)

)
=
(
K̃γ1 , X̃γ1(·)

)
Q̃

γ1
t,1-almost surely.

2. If conditions (4), (8), (9), (11), (12), (13), and (14) are satisfied, then for any t > 0, there exist Rr
>0 × DRn [0, t]-valued 

random variables 
(
K̃N,γ2 , X̃ N,γ2 (·)

)
and 
(
K̃γ2 , X̃γ2 (·)

)
defined on a common probability space 

(
�̃

γ2
t,1, F̃

γ2
t,1,Q̃

γ2
t,1

)
, such that (

K̃N,γ2 , X̃ N,γ2 (·)
)

and 
(
K̃γ2 , X̃γ2 (·)

)
have the same laws as 

(
K, X N,γ2 (·)) and 

(
K, Xγ2 (·)), respectively, and

lim
N→∞

(
K̃N,γ2 ,�2 X̃ N,γ2(·)

)
=
(
K̃γ2 , X̃γ2(·)

)
Q̃

γ2
t,1-almost surely.

Proof. By Proposition 1 and Proposition 2, we have (K, X N,γ1 (·)) ⇒ (K, Xγ1(·)) and (K, �2 X N,γ2 (·)) ⇒ (K, Xγ2(·)). There-
fore, by Skorokhod’s representation theorem [57, Theorem 1.8 in Chapter 3], the result is proven. �

In continuous-time observation scenarios, we further term Ỹ γ

c (·) (
 = 1, 2) as m-vectors of independent standard Brow-

nian motions on a certain filtered probability space, denoted as 
(
�̃

γ


c,2, F̃
γ


c,2, {F̃γ


t,c,2}t ,Q̃
γ


c,2

)
. Furthermore, for any t > 0, we 

define product probability spaces 
(
�̃

γ


t , F̃γ


t ,Q̃γ


t

)
�
(
�̃

γ


t,1 × �̃
γ


c,2, F̃
γ


t,1 × F̃γ


t,c,2,Q̃
γ


t,1 × Q̃γ


c,2

)
and Girsanov’s random vari-

ables

Z̃ N,γ

c (t) � exp

⎛
⎝ t∫

0

h	 ( X̃ N,γ
 (s)
)

dỸ γ

c − 1

2

t∫
0

‖h( X̃ N,γ
 (s))‖2ds

⎞
⎠ 
 = 1,2

Z̃γ

c (t) � exp

⎛
⎝ t∫

0

h	( X̃γ
 (s))dỸ γ

c − 1

2

t∫
0

‖h( X̃γ
(s))‖2ds

⎞
⎠ 
 = 1,2

on these product probability spaces. Then, we can show that the above-defined random variables satisfy (A.1.1) and (A.1.2).

Lemma 2. [Verifying (A.1.1) and (A.1.2)]

1. If (4) and (6) hold, then for any t > 0, the above-defined probability space 
(
�̃

γ1
t , F̃γ1

t ,Q̃γ1
t

)
and random variables K̃N,γ1 , K̃γ1 , 

X̃ N,γ1 (·), X̃γ1(·), Ỹ γ1
c (·), Z̃ N,γ1

c (t), and Z̃γ1
c (t) satisfy (A.1.1) and (A.1.2) for 
 = 1.
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2. If (4), (8), (9), (11), (12), (13), and (14) hold, then for any t > 0, the above-defined probability space 
(
�̃

γ2
t , F̃γ2

t ,Q̃γ2
t

)
and random 

variables K̃N,γ2 , K̃γ2 , X̃ N,γ2 (·), X̃γ2(·), Ỹ γ2
c (·), Z̃ N,γ2

c (t), and Z̃γ2
c (t) satisfy (A.1.1) and (A.1.2) for 
 = 2.

Proof. This lemma follows immediately from Lemma 1 and definitions of these random variables. �
Similarly, in discrete time observations scenarios, we term {Ỹ γ


d (ti)}i∈N>0 (
 = 1, 2) as mutually independent m-variate 
Gaussian random variables whose covariance matrices equal to the identical matrix. We denote the filtered probability 
space where {Ỹ γ


d (ti)}i∈N>0 is located by 
(
�̃

γ


d , F̃γ


d,2, {F̃γ


ti ,2
}i,Q̃

γ


d,2

)
. Moreover, for any i ∈N>0, we define probability spaces (

�̃
γ


ti
, F̃γ


ti
,Q̃γ


ti

)
�
(
�̃

γ


ti ,1
× �̃

γ


d,2, F̃
γ


ti ,1
× F̃γ


ti ,d,2,Q̃
γ


ti ,1
× Q̃γ


d,2

)
and random variables

Z̃ N,γ


d (ti) =
i∏

j=1

H
(

X̃ N,γ
 (t j), Ỹ γ
(t j)
)

and Z̃γ


d (ti) =
i∏

j=1

H
(

X̃γ
(t j), Ỹ γ
(t j)
)

for 
 = 1, 2. Then, we can also show that (A.2.1) and (A.2.2) are satisfied under some mild conditions.

Lemma 3. [Verifying (A.2.1) and (A.2.2)]

1. If (4) and (6) hold, then for any i ∈N>0 , the above-defined probability space 
(
�̃

γ1
ti

, F̃γ1
ti

,Q̃γ1
ti

)
and random variables K̃N,γ1 , K̃γ1 , 

X̃ N,γ1 (·), X̃γ1(·), Ỹ γ1
d (·), Z̃ N,γ1

d (ti), Z̃γ1
d (ti) satisfy (A.2.1) and (A.2.2) for 
 = 1.

2. If (4), (8), (9), (11), (12), (13), and (14) hold, then for any i ∈ N>0 , the above-defined probability space 
(
�̃

γ2
ti

, F̃γ2
ti

,Q̃γ2
ti

)
and 

random variables K̃N,γ2 , K̃γ2 , X̃ N,γ2 (·), X̃γ2(·), Ỹ γ2
d (·), Z̃ N,γ2

d (ti), Z̃γ2
d (ti) satisfy (A.2.1) and (A.2.2) for 
 = 2.

Proof. This lemma follows immediately from Lemma 1 and definitions of these random variables. �
B.3. The convergence of the constructed auxiliary random variables

This subsection contributes to showing that the random variables constructed above satisfy (A.1.3) (A.1.4), (A.2.3), and 
(A.2.4) and, therefore, prove Theorem 1. We first prove (A.1.4) and (A.2.4).

Lemma 4. [Verifying (A.1.4) and (A.2.4)]

1. For 
 = 1 (the first time scale), if (4) and (6) hold, then the random variables and probability spaces defined in Appendix B.2 satisfy 
(A.1.4) for any t > 0 and (A.2.4) for any i ∈N>0 .

2. For 
 = 2 (the second time scale), if the conditions of the second part of Theorem 1 hold, then the random variables and probability 
spaces defined in Appendix B.2 satisfy (A.1.4) for any t > 0 and (A.2.4) for any i ∈N>0 .

Proof. The proofs for (A.1.4) and (A.2.4) are identical; therefore, we only show the proof for (A.1.4) and leave the other for 
readers.

By Cauchy-Schwarz inequality, we have that

EQ̃
γ

t

[∣∣∣ Z̃ N,γ

c (t) − Z̃γ


c (t)
∣∣∣]≤
√
EQ̃

γ

t

[(
Z̃ N,γ


c (t)/ Z̃γ

c (t) − 1

)2]
EQ̃

γ

t

[(
Z̃γ


c (t)
)2]

,

for 
 = 1, 2. Note that EQ̃
γ

t

[(
Z̃γ


c (t)
)2]

is bounded due to the boundedness of h(·). Therefore, to prove the result, we only 

need to show EQ̃
γ

t

[(
Z̃ N,γ


c (t)/ Z̃γ

c (t) − 1

)2]
to converge to zero. By the definition of Z̃ N,γ


c (t) and Z̃γ

c (t), we can arrived 

at

EQ̃
γ

t

[(
Z̃ N,γ


c (t)/ Z̃γ

c (t) − 1

)2]

= EQ̃
γ

t

[
EQ̃

γ

t

[(
Z̃ N,γ


c (t)/ Z̃γ

c (t) − 1

)2 ∣∣∣F̃γ


t,1

]]

=
2∑

j=0

(
j
2

)
(−1) jEQ̃

γ

t

[
exp

⎛
⎝ j

2

t∫
0

‖h( X̃ N,γ
 (s)) − h( X̃γ
 (s))‖2ds + j

2

t∫
0

‖h( X̃γ
(s))‖2 − ‖h( X̃ N,γ
 (s))‖2ds

⎞
⎠]
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where 
(

j
2

)
are binomial coefficients, the first equality follows from the law of total expectation, and the second equality 

follows from the fact that Ỹ γ
 (·) are m-vectors of independent standard Brownian motions and independent of X̃ N,γ
 (·) and 
X̃γ
 (·). Finally, the right hand side of the last equality goes to zero by the boundedness and Lipschitz continuity of h(·) and 
the almost sure convergence of X̃ N,γ
 (·) to X̃γ
 (·) (see Lemma 1). (For 
 = 2, we also need the condition h(x) = h(�2x) for 

all x ∈Rn .) Consequently, EQ̃
γ

t

[(
Z̃ N,γ


c (t)/ Z̃γ

c (t) − 1

)2]→ 0 and the lemma is shown. �
Then, we work on (A.1.3) and (A.2.3) using the fact that AN B N → AB in probability if AN → A and B N → B in probability. 

Specifically, we use this fact to prove (A.1.3) by taking

AN = ĝN,γ


φ,c,t(Ỹ γ


c,0:t), A = ĝγ


φ,c,t(Ỹ γ


c,0:t), B N = 1/ĝN,γ


1,c,t (Ỹ γ


c,0:t), B = 1/ĝγ


1,c,t(Ỹ γ


c,0:t)

(see (A.4) and (A.5)). To prove (A.2.3), we take

AN = ĝN,γ


φ,d,ti
(Ỹ γ


d,1:i), A = ĝγ


φ,d,ti
(Ỹ γ


d,1:i), B N = 1/ĝN,γ


1,d,ti
(Ỹ γ


d,1:i), B = 1/ĝγ


1,d,ti
(Ỹ γ


d,1:i)

(see (A.7) and (A.8)). In the following propositions, we show AN → A in probability, which, together with the continuous 
mapping theorem, also suggests B N → B in probability.

Proposition 3.

1. At the first time scale, if (4) and (6) hold, then for any bounded continuous function φ , there hold

ĝN,γ1
φ,c,t (Ỹ γ1

c,0:t)
Q̃

γ1
t−→ ĝγ1

φ,c,t(Ỹ γ1
c,0:t) as N → ∞, ∀t > 0, and

ĝN,γ1
φ,d,ti

(Ỹ γ1
d,1:i)

Q̃
γ1
ti−→ ĝγ1

φ,d,ti
(Ỹ γ1

d,1:i) as N → ∞, ∀i ∈N>0.

Moreover by the continuous mapping theorem, there hold

1

ĝN,γ1
1,c,t (Ỹ γ1

c,0:t)
Q̃

γ1
t−→ 1

ĝγ1
1,c,t(Ỹ γ1

c,0:t)
as N → ∞, ∀t > 0, and

1

ĝN,γ1
1,d,ti

(Ỹ γ1
d,1:i)

Q̃
γ1
ti−→ 1

ĝγ1
1,d,ti

(Ỹ γ1
d,1:i)

as N → ∞, ∀i ∈N>0.

2. At the second time scale, assume that the conditions of the second part of Theorem 1 hold. Then, for any bounded continuous function 
φ such that φ(κ, x) = φ(κ, �2x) ∀(κ, x) ∈Rr ×Rn, there hold

ĝN,γ2
φ,c,t (Ỹ γ2

c,0:t)
Q̃

γ2
t−→ ĝγ2

φ,c,t(Ỹ γ2
c,0:t) as N → ∞, ∀t > 0, and

1

ĝN,γ1
1,d,ti

(Ỹ γ1
d,1:i)

Q̃
γ1
ti−→ 1

ĝγ1
1,d,ti

(Ỹ γ1
d,1:i)

as N → ∞, ∀i ∈N>0.

Moreover by the continuous mapping theorem, there hold

1

ĝN,γ2
1,c,t (Ỹ γ2

c,0:t)
Q̃

γ2
t−→ 1

ĝγ2
1,c,t(Ỹ γ2

c,0:t)
as N → ∞, ∀t > 0, and

1

ĝN,γ2
1,d,ti

(Ỹ γ2
d,1:i)

Q̃
γ2
ti−→ 1

ĝγ2
1,d,ti

(Ỹ γ2
d,1:i)

as N → ∞, ∀i ∈N>0.

Proof. The proofs for the results in the continuous-time and discrete-time scenarios are the same. Therefore, we only 
present the proof for the result in the continuous-time case and leave the other for readers.

By Equation (A.2), (A.3), and Lemma 2 (i.e., (A.1.1) and (A.1.2)), we have that

ĝN,γ


φ,c,t(Ỹ γ


c,0:t) =EQ̃
γ

t

[
Z̃ N,γ


c (t)φ
(
K̃N,γ
 , X̃ N,γ
 (t)

) ∣∣∣Ỹγγ

c,t

]
Q̃

γ


t -a.s.

ĝγ


φ,c,t(Ỹ γ


c,0:t) =EQ̃
γ

t

[
Z̃γ


c (t)φ
(
K̃γ
 , X̃γ
(t)

) ∣∣∣Ỹγ


c,t

]
Q̃

γ


t -a.s.
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for any t > 0, 
 = 1, 2, and any continuous function φ given in the lemma. In the above formulas, Ỹγ


c,t is the filtration 
generated by the process {Ỹ γ


c (t)}t>0. Therefore, by Jensen’s inequality and the triangle inequality, we can further arrive at

EQ̃
γ

t

[∣∣∣ĝN,γ


φ,c,t(Ỹ γ
c,0:t) − ĝγ


φ,c,t(Ỹ γ


c,0:t)
∣∣∣]

≤EQ̃
γ

t

[∣∣∣( Z̃γ

c (t) − Z̃ N,γ


c (t)
)

φ(K̃γ
 , X̃ N,γ
 (t))
∣∣∣]+EQ̃

γ

t

[∣∣∣ Z̃γ

c (t)
(
φ
(
K̃N,γ
 , X̃ N,γ
 (t)

)
− φ
(
K̃γ
 , X̃γ
(t)

))∣∣∣]
≤ ‖φ‖∞EQ̃

γ

t

[∣∣∣( Z̃γ

c (t) − Z̃ N,γ


c (t)
)∣∣∣]+EP̃

γ

t

[∣∣∣φ (K̃N,γ
 , X̃ N,γ
 (t)
)

− φ
(
K̃γ
 , X̃γ
(t)

)∣∣∣]

where ‖φ‖∞ is the supremum norm of φ, and the measure P̃γ


t is defined by dP̃
γ

t

dQ̃
γ

t

= Z̃γ

c (t). Note that P̃γ


t and Q̃γ


t are 

equivalent due to the almost sure positiveness of Z̃γ

c (t). Finally, terms on the right hand side of the second inequality 

converge to zero by Lemma 4, Lemma 1, and the dominant convergence theorem. �
By Proposition 3, we can verify conditions (A.1.3) and (A.2.3).

Lemma 5. [Verifying (A.1.3) and (A.2.3)]

• For 
 = 1 (the first time scale), assume that (4) and (6) hold. Then, for any t > 0 and any bounded continuous function φ , the 
random variables and probability space defined in Appendix B.2 satisfy (A.1.3) and (A.2.3).

• For 
 = 2 (the second time scale), assume that the conditions of the second part of Theorem 1 hold. Then, for any t > 0 and any 
bounded continuous function φ such that φ(κ, x) = φ(κ, �2x) ∀(κ, x) ∈ Rr × Rn, the random variables and probability space 
defined in Appendix B.2 satisfy (A.1.3) and (A.2.3).

Proof. By (A.4) and (A.5) and Lemma 2, we have that

f̂ N,γ


φ,c,t (Ỹ N,γ


c,0:t ) = ĝN,γ


φ,c,t(Ỹ γ


c,0:t)

ĝN,γ


1,c,t (Ỹ γ


c,0:t)
for all bounded measurable function φ and 
 = 1,2,

f̂ γ


φ,c,t(Ỹ γ


c,0:t) = ĝγ


φ,c,t(Ỹ γ


c,0:t)
ĝγ


1,c,t(Ỹ γ


c,0:t)
for all bounded measurable function φ and 
 = 1,2,

Qγ


t -a.s.. Therefore, (A.1.3) follows immediately from Proposition 3. Similarly, we can also show (A.2.3), which proves the 
lemma. �
B.4. The proof of the target theorem

With these preparations, we can finally prove Theorem 1.

The proof of Theorem 1. The result follows immediately from Theorem 4, Lemma 2, Lemma 3, Lemma 4, and Lemma 5. �
Appendix C. The proof of the continuous-time part of Theorem 2

This section contributes to showing the convergence of the proposed continuous-time SIR particle filters, i.e., the 
continuous-time part of Theorem 2. For diffusion systems, the convergence of continuous-time SIR particle filters is shown 
in [6, Chapter 9] by using backward Zakai’s equation. In this section, we use a similar proof scheme to extend the re-
sult to piecewise deterministic Markov processes. Though we still follow the main idea of backward stochastic differential 
equations, we present the proof in the forward fashion so that notations can be simplified, and the discussion about the ex-
istence of the solution of the backward stochastic differential equation can be avoided. Throughout this section, we assume 
that there hold the non-explosive condition (6) for the first time scale and (14) for the second time scale. Also, the scaling 
factor N is fixed in this section, so we drop the argument N for most variables that have a dependence on N to simplify 
the notation.

In general, the proof follows from the law of large numbers. We first show the filter generated by these particles can 
accurately approximate the true filter under some mild conditions (see Theorem 5), which require

• the particle filter to accurately approximate the true filter at the initial time (C.C.1),
• the error between the particle filter and the true one to grow mildly over time (C.C.2),
• the resampling to perturb the particles mildly (C.C.3).
27



Z. Fang, A. Gupta and M. Khammash Journal of Computational Physics 467 (2022) 111441
Fortunately, these conditions can be easily verified by the law of large numbers and the nature of the residual resampling 
method, which finally proves the result (see the proof of Theorem 3 at the end of this section).

Notably, when analyzing the propagation of the particle filter’s error over time (i.e., (C.C.2)), we need to use particles 
obtained at an earlier time to predict the particle filter’s performance at a later time. The particle filter at the later time 
contains some information about the observation that is unavailable at the earlier time. As a result, we need to extend the 
capability of the particle filter so that it can generate an estimate of a random variable that is measurable with respect to a 
σ -algebra at a later time. This fact leads to some complicated notations, which we introduce as follows.

For particle filters π̄ N,γ


M,c,t(φ) (
 = 1, 2) (see Algorithm 1 and Definition 1), we term variables 
(
κ

γ


j (t), xγ


j (t), zγ


j (t), wγ


j (t)
)

(for t > 0) as particles (the first two variables), Girsanov-like variables, and weights obtained in the sampling step, (
κ̄

γ


j (iδ), x̄γ


j (iδ)
)

as resampled particles for i ∈ N>0 or initial particles for i = 0, F̄γ


c,t (i ∈ N>0) as the σ -algebra gen-

erated by random variables {
(
κ

γ


j (t), xγ


j (t)
)
} j=1,...,M , and F̄γ


c,(iδ)+ (for i ∈ N>0 ∪ {0}) as the σ -algebra generated by all 

random variables 
{(

κ̄
γ


j (iδ), x̄γ


j (iδ)
)}

j=1,...,M
. Also, for any measurable function ψt,τ : Rr × Rn × DRm [t, τ ] → R where 

τ > t , we denote

π̄
N,γ


M,c,t,τ (ψt,τ ) �
M∑

j=1

wγ


j (t)ψt,τ

(
κ

γ


j (t), xγ


j (t), Y N,γ


c,t:τ
)

,

p̄N,γ


M,c,t,τ (ψt,τ ) �
M∑

j=1

zγ


j (t)ψt,τ

(
κ

γ


j (t), xγ


j (t), Y N,γ


c,t:τ
)

,

p̂N,γ


M,c,iδ,τ (ψiδ,τ ) �
M∑

j=1

1

M
ψt,τ

(
κ

γ


j (iδ), xγ


j (iδ), Y N,γ


c,iδ:τ
)

, i ∈N>0 ∪ {0},

where Y N,γ


c,t:τ is the trajectory of Y N,γ

c from time t to τ . The quantities π̄ N,γ


M,c,t,τ (ψt,τ ) and p̂N,γ


M,c,iδ,τ (ψiδ,τ ) utilize particles 
to generate estimates of conditional expectations and are, respectively, F̄γ


c,t
∨

YN,γ
c,τ and F̄γ


c,(iδ)+
∨

YN,γ
c,τ measurable. In this 

section, we only consider those ψt,τ such that

bψt,τ � sup
(κ,x)∈Rr×Rn

EP

[∣∣∣ψt,τ

(
κ, x, Y N,γ


c,t:τ
)∣∣∣2]< +∞. (C.1)

Note that when ψt,τ (κ, x, y) = φ(κ, x), the variable π̄ N,γ


M,c,t,τ (ψt,τ ) results in the SIR particle filter π̄ N,γ


M,c,t(φ), and, obviously, 
such a ψt,τ satisfies (C.1) if φ is uniformly bounded.

For 
 ∈ {1, 2}, we construct random variables (K̂, X̂γ
 (·)) in the natural probability space such that they have the same 
law as (K, Xγ
 (·)) and are independent of Y N,γ


c (·). Recall that processes Y γ

c (·) and Y

γN,

c (·) (under Pγ


c and P N,γ

c , re-

spectively) are m-vectors of independent standard Brownian motions, and, moreover, the former is independent of the 
underlying system (K, Xγ
 (·)) (Appendix A). Then, by (A.3), (A.5) and the equivalence between P and P N,γ


c , there holds

f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)

= EP

[
Ẑγ


c (t)φ(K̂, X̂γ
(t))
∣∣∣YN,γ


c,t

]/
EP

[
Ẑγ


c (t)
∣∣∣YN,γ


c,t

]
P -a.s., P N,γ


c -a.s., (C.2)

where

Ẑγ

c (t) � exp

⎛
⎝ t∫

0

h	(Xγ
 (s))dY N,γ

c (s) − 1

2

t∫
0

‖h(Xγ
(s))‖2ds

⎞
⎠

Furthermore, by the boundedness of h(·), we can show the moments of Ẑγ

c (t2)/ Ẑγ


c (t1) (0 ≤ t1 ≤ t2) to be uniformly 
bounded in the sense that

EP

[(
Ẑγ


c (t2)/ Ẑγ

c (t1)
)q ∣∣∣K̂ = κ, X̂γ
(t1) = x

]
≤ e2mq2‖h‖2∞(t2−t1) (C.3)

for any integer q and any (κ, x) ∈Rr ×Rn where ‖ · ‖∞ is the supremum norm.
Also, for any measurable function ψt,τ :Rr ×Rn ×DRm [t, τ ] →R, we term

p̃N,γ


c,t,τ (ψt,τ )�EP

[
Ẑγ


c (t)ψt,τ (K̂, X̂γ
(t), Y N,γ


c,t,τ )

∣∣∣YN,γ

c,τ

]
(C.4)

π̃
N,γ


c,t,τ (ψt,τ )�
p̃N,γ


M,c,t,τ (ψt,τ )

p̃N,γ


M,c,t,τ (1)
. (C.5)
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Moreover, for any measurable ψt,τ and any i ∈N>0 such that iδ < t , we define function ψ̄ t
iδ,τ :Rr ×Rn ×DRm [iδ, τ ] →R

as

ψ̄ t
iδ,τ (κ, x, y) = EP

[
Ẑγ


c (t)

Ẑγ

c (iδ)

ψt,τ

(
K̂, X̂γ
(t), Y N,γ


c,t:τ
) ∣∣∣K̂ = κ, X̂γ
(iδ) = x, Y N,γ


c,iδ:τ = y

]
(C.6)

which, by Jensen’s inequality, the law of total expectation, and (C.3), satisfies

bψ̄t
iδ,τ

� sup
(κ,x)∈Rr×Rn

EP

[∣∣∣ψ̄ t
iδ,τ

(
κ, x, Y N,γ


c,iδ:τ
)∣∣∣2]≤ e8m‖h‖2∞(t−iδ)bψt,τ (C.7)

if ψt,τ satisfies (C.1). Moreover, using the law of total expectation and Markov property of X̂γ
 (·) (inherited from the Markov 
property of Xγ
 (·)), one also has

p̃N,γ


c,t,τ (ψt,τ ) = p̃N,γ


c,iδ,τ

(
ψ̄ t

iδ,τ

)
(C.8)

where iδ < t . Notably, in cases where ψt,τ (κ, x, y) = φ(κ, x) and φ is bounded, π̃ N,γ


c,t,τ (ψt,τ ) leads to f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)

(see (C.2)

and (C.5)). Consequently, our task can be transformed into showing the convergence of π̄ N,γ


M,c,t,τ (ψt,τ ) to π̃ N,γ


c,t,τ (ψt,τ ) as 
M → ∞.

We first present a theorem adapted from [9].

Theorem 5 (adapted from [9]). We assume that Xγ
 (
 ∈ {1, 2}) is almost surely non-explosive. Then, for any t > 0 and any bounded 
measurable function φ , there holds the relation

EP

[∣∣∣π̄ N,γ


M,c,t(φ) − f̂ γ


φ,c,t

(
Y N,γ


c,0:t
)∣∣∣]≤ c̃t√

M
‖φ‖∞

where c̃t is a time dependent number, if the following conditions are satisfied.

(C.C.1) For any τ > 0 and any measurable function ψ0,τ :Rr ×Rn ×DRm [0, τ ] →R satisfying (C.1), there holds

EP

[∣∣∣p̂N,γ


M,c,0,τ (ψ0,τ ) − ψt,τ

(
K, Xγ1(0), Y N,γ


c,0:τ
)∣∣∣2]≤ bψ0,τ

M

(C.C.2) For any τ > 0 and any measurable function ψt,τ :Rr ×Rn ×DRm [t, τ ] →R satisfying (C.1), there holds

EP

[∣∣∣p̄N,γ


M,c,t,τ (ψt,τ ) − p̂N,γ


M,c,�t/δ�δ,τ
(
ψ̄ t�t/δ�δ,τ

)∣∣∣2]≤ c2

M
bψiδ,τ

where ψ̄�t/δ�δ,τ is defined by (C.6) and c2 is a constant.
(C.C.3) For any i ∈N>0 and any measurable function ψiδ,τ :Rr ×Rn ×DRm [iδ, τ ] →R satisfying (C.1), there holds

EP

[∣∣∣p̄N,γ


M,c,iδ,τ (ψiδ,τ ) − p̂N,γ


M,c,iδ,τ (ψiδ,τ )

∣∣∣2]≤ c3

M
bψiδ,τ

where c3 is a constant.

Proof. The proof is almost the same as the one of [9, Theorem 2.3.1]; therefore, we only single out the proof framework 
and leave the details for readers.

In principle, the proof is shown by mathematical induction. Specifically, the condition (C.C.1) guarantees the particle filter 
to accurately approximate the true filter at the initial time. The condition (C.C.2) suggests the error between the particle 
filter and the true filter to grow mildly over time. The condition (C.C.3) suggests that resampling perturbs the particles 
mildly so that the particle filter’s accuracy will not be influenced too much. Notably, compared with [9, Theorem 2.3.1], 
this theorem considers the boundedness of ψt,τ in the sense of (C.1) rather than the supremum norm. Consequently, all the 
discussions concerning boundedness in the supremum norm in the proof of [9, Theorem 2.3.1] are replaced by the argument 
of (C.1). �

Finally, by verifying all the conditions in the above theorem, we can prove the continuous-time part of Theorem 2.

The proof of the continuous-time part of Theorem 2. To prove the result, we need to verify all the conditions in Theorem 5. 
The condition (C.C.1) follows immediately from the central limit theorem. The condition (C.C.2) follows from the fact that
29
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EP

[(
p̄N,γ


M,c,t,τ (ψt,τ ) − p̂N,γ


M,c,�t/δ�δ,τ
(
ψ̄ t�t/δ�δ,τ

))2 ∣∣∣F̄γ


c,(�t/δ�δ)+
]

= 1

M2
EP

⎡
⎣ M∑

j=1

(
zγ


j (t)ψt,τ

(
κ

γ


j (t), xγ


j (t), Y N,γ


c,t:τ
))2 ∣∣∣F̄γ


c,(�t/δ�δ)+

⎤
⎦

− 1

M
EP

[(
p̂N,γ


M,c,�t/δ�δ,τ
(
ψ̄ t�t/δ�δ,τ

))2 ∣∣∣F̄γ


c,(�t/δ�δ)+
]

≤ exp
(
8m‖h‖2∞(t − �t/δ�δ))

M
bψt,τ

where the equality is due to the independence of the motion of the particles, and the inequality follows from (C.7). Finally, 
if we use the multinomial resampling, then we can have the relation

EP

[(
p̄N,γ


M,c,iδ,τ (ψiδ,τ ) − p̂N,γ


M,c,iδ,τ (ψiδ,τ )
)2 ∣∣∣F̄γ


c,iδ ∨YN,γ


c,iδ

]
≤ 1

M2
EP

⎡
⎣ M∑

j=1

(
ψiδ,τ (κ

γ


j (iδ), xγ


j (iδ), Y N,γ


c,t,τ )
)2 ∣∣∣F̄γ


c,iδ

⎤
⎦

≤ 1

M
bψt,τ

due to the fact that all the resampled particles are independently and identically distributed under the multinomial resam-
pling. Moreover, by [6, Exerice 9.1], the above relation also works for the residual resampling, and, therefore, the condition 
(C.C.3) holds with c3 = 1. �
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