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bDepartment of Mathematics, University of Oslo, Norway

cSimula Research Laboratory, 0164 Oslo, Norway
dSchool of Mathematics, Monash University, 9 Rainforest Walk, Melbourne 3800 VIC, Australia

eInstitute of Computer Science and Mathematical Modelling, Sechenov University, Moscow, Russian Federation

Abstract

In this paper we advance the analysis of discretizations for a fluid-structure interaction model of the mono-
lithic coupling between the free flow of a viscous Newtonian fluid and a deformable porous medium separated
by an interface. A five-field mixed-primal finite element scheme is proposed solving for Stokes velocity-
pressure and Biot displacement-total pressure-fluid pressure. Adequate inf-sup conditions are derived, and
one of the distinctive features of the formulation is that its stability is established robustly in all material
parameters. We propose robust preconditioners for this perturbed saddle-point problem using appropriately
weighted operators in fractional Sobolev and metric spaces at the interface. The performance is corroborated
by several test cases, including the application to interfacial flow in the brain.
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1. Introduction

1.1. Scope

We address the construction of appropriate monolithic solvers for multiphysics fluid-poromechanical cou-
plings interacting through an interface. Particular attention is payed to tracking parameter dependence of
the continuous and discrete formulations so that the resulting numerical methods are robust with respect to
typical scales in material constants spanning over many orders of magnitude. We adopt a multi-domain ap-
proach, where appropriate conditions for the coupling through the shared interface need to be imposed. We
use the conditions proposed in [1] (although, other forms and dedicated phenomena could be incorporated
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without much effort, such as fluid entry resistance [2, 3]). The recent literature contains various numer-
ical methods for (Navier-)Stokes/Biot interface formulations including mixed, double mixed, monolithic,
segregated, conforming, non-conforming, and DG discretizations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

In [12, 16] (and starting from the Biot-Stokes equations advanced in [5, 17]) the authors rewrite the
poroelasticity equations using displacement, fluid pressure and total pressure (also as in the poromechanics
formulations from [18, 19, 20]). Since fluid pressure in the poroelastic domain has sufficient regularity, no
Lagrange multipliers are needed to enforce the coupling conditions, which resembles the different formulations
for Stokes-Darcy advanced in [21, 22, 23, 24]. Another advantage of the three-field Biot formulation is its
robustness with respect to the Lamé constants of the poroelastic structure. This robustness is of particular
importance when we test the flow response to changes in the material properties of the skeleton and when the
solid is nearly incompressible. The work [12] focuses on the stability analysis and its precise implications on
the asymptotics of the interface conditions when the permeability depends on porosity heterogeneity, whereas
[16] addresses the stability of the semi- and fully discrete problems, and the application to interfacial flow
in the eye. Here, we extend these works by concentrating on deriving robust stability, on designing efficient
block preconditioners (robust with respect to all material parameters) following the general theoretical
formalism from [25], and on the simulation of free flow interacting with interstitial flow in the brain. In
such a context (and in the wider class of problems we consider in this paper), tissue permeability is of
the order of 10−15m2, and the incorporation of tangential interface transmission conditions usually involves
terms that scale inversely proportional to the square root of permeability. Moreover, the solid is nearly
incompressible, making the first Lamé parameter significantly larger than the other mechanical parameters
and exhibiting volumetric locking for some types of displacement-based formulations. Other flow regimes
that are challenging include low-storage cases [26]. It is then important that the stability and convergence
of the numerical approximations are preserved within the parameter ranges of interest.

Here we follow [27, 28, 20, 29] and use parameter-weighted norms to achieve robustness. However, as we
will see, combining proper preconditioners for Stokes and Biot single-physics problems is not sufficient for the
interface coupled problem. In fact, the condition number of the preconditioned system, although robust in
mesh size, grows like the square root of the ratio between fluid viscosity and permeability. This phenomenon
is demonstrated in Example 2.1, below. That is, the efficiency of seemingly natural preconditioners varies
with the material parameters. In order to regain stability with respect to all parameters, we include both an
additional fractional term involving the pressure and a metric term coupling the tangential fluid velocity and
solid displacement at the interface, hereby increasing the regularity at the interface in a proper parameter
dependent manner. This strategy draws inspiration from similar approaches employed in the design of robust
solvers for Darcy and Stokes-Darcy couplings [30, 21, 23].

1.2. Outline

We have organised the contents of this paper in the following manner. The remainder of this section
contains preliminaries on notation and functional spaces to be used throughout the manuscript. Section 2
outlines the main details of the balance equations, stating typical interfacial and boundary conditions,
and restricting the discussion to the steady Biot-Stokes coupled problem. There we also include the weak
formulation and demonstrate that simple diagonal preconditioners based on standard norms do not lead
to robustness over the whole parameter range. This issue is addressed in Section 3 where we show well-
posedness of the system using a global inf-sup argument with parameter weighted operators in fractional
spaces, which in turn assist in the design of robust solvers by operator preconditioning. Section 4 discusses
finite element discretization of the coupled problem using both conforming and non-conforming elements;
and it also contains numerical experiments demonstrating robustness of the fractional preconditioner and its
feasibility for simplified simulations of interfacial flow in the brain.

1.3. Preliminaries

Let us consider a spatial domain Ω ⊂ Rd, where d = 2, 3, disjointly split into ΩF and ΩP . These sub-
domains respectively represent the region filled with an incompressible fluid and the elastic porous medium
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Figure 1.1: A configuration of subdomains and boundary partition for the Biot-Stokes coupled problem. (Left) Setup assumed
for the analysis in Theorem 3.1. (Right) Example of another configuration investigated by some of the numerical experiments
in Section 4.4.

(a deformable solid matrix or an array of solid particles). We will denote by n the unit normal vector on
the boundary ∂Ω, and by Σ = ∂ΩF ∩ ∂ΩP the interface between the two subdomains, which is assumed
sufficiently regular. We adopt the convention that on Σ the normal vector points from ΩF to ΩP . We also
define the boundaries ΓF = ∂ΩF \ Σ and ΓP = ∂ΩP \ Σ. The sub-boundary ΓF is further decomposed be-
tween ΓuF and ΓσF where we impose, respectively, no slip velocities and zero normal total stresses. Similarly,
we split ΓP into ΓpPP and ΓdP where we prescribe zero traction and clamped boundaries, respectively. For
the analysis, the setup of trace spaces needs that dist(Σ,ΓpPP ) > 0 and that dist(Σ,ΓσF ) > 0, which can be
satisfied if the interface meets the boundary at the Biot displacement and Stokes velocity boundaries (see
Figure 1.1, left), where ΓdP = Γd1,P ∪ Γd2,P and ΓuF = Γu1,F ∪ Γu2,F . Our numerical tests will also include cases
where the interface intersects boundaries ΓσF and ΓpPP on the Stokes and Biot sides, respectively.

For generic Sobolev spaces X,Y and a scalar ζ > 0, the weighted space ζX refers to X endowed with the
norm ζ‖ · ‖X . The intersection X ∩ Y provided with the norm ‖v‖2X∩Y = ‖v‖2X + ‖v‖2Y , is a Hilbert space
[30, 31].

Vector fields and vector-valued spaces will be written in boldface. In addition, by L2(Ω) we will denote
the usual Lebesgue space of square integrable functions and Hm(Ω) denotes the usual Sobolev space with
weak derivatives of order up to m in L2(Ω), and Hm(Ω) denotes its vector counterpart. In addition, L2

t(Σ)
will denote the space of functions z : Ωi → Rd, i ∈ {F, P}, such that z − n(z · n) ∈ L2(Σ).

An L2(Ω) (as well as L2(Ω)) inner product over a generic bounded domain Ω is denoted as (·, ·)Ω. The
symbol 〈·, ·〉Σ will denote the pairing between the trace functional space H1/2(Σ) and its dual H−1/2(Σ), and
we will also write 〈·, ·〉 to denote other, more general, duality pairings. Moreover, for z ∈ H1(Ωi) ∩ L2

t(Σ),
its normal and tangential traces defined by bounded surjective maps, will be denoted by Tnz ∈ H1/2(Σ)
and Ttz ∈ L2(Σ), respectively [23]. We also remark that, while H1/2(Σ) is a subspace of L2(Σ) as a set, the
tangential trace of z ∈ ζ1H1(Ωi)∩ ζ2L2

t(Σ) is in ζ1H
1/2(Σ)∩ ζ2L2(Σ) and that in our setting it is important

to track the parameter dependence for the sake of robustness.

Pertaining to the poroelastic domain, and assuming momentarily that |ΓdP | = 0, we recall from [32,
Section 2.4.2] the definition of the space

H
1/2
00 (Σ) = {η ∈ H1/2(Σ) : E00(η) ∈ H1/2(∂ΩP )}, (1.1)

supplied with the norm
‖η‖1/2,00,Σ := ‖E00(η)‖1/2,∂ΩP ,

3



where E00 : H1/2(Σ)→ H1/2(∂ΩP ) denotes the extension-by-zero operator

E00(η) =

{
η on Σ,

0 on ∂ΩP \ Σ,
∀η ∈ H1/2(Σ).

Furthermore, the restriction of ψ ∈ H−1/2(∂ΩP ) to Σ, defined as

〈ψ|Σ, η〉Σ = 〈ψ,E00(η)〉∂ΩP ∀η ∈ H1/2
00 (Σ),

belongs to the dual [H
1/2
00 (Σ)]′ of H

1/2
00 (Σ). Its norm is

‖ψ|Σ‖−1/2,00,Σ := sup
06=η∈H1/2

00 (Σ)

〈ψ|Σ, η〉Σ
‖η‖1/2,00,Σ

= sup
06=η∈H1/2

00 (Σ)

〈ψ,E00(η)〉∂ΩP

‖E00(η)‖1/2,∂ΩP

. (1.2)

The boundary setup in Figure 1.1 is such that |ΓdP | · |ΓpPP | > 0, and therefore a modification of (1.1)-(1.2)
is required. With that purpose, we note that any η ∈ H1/2(Σ) can be continuously extended to ϕ in the
space

H
1/2
01 (Σ) := {η ∈ H1/2(Σ) : E01(η) ∈ H1/2(Γ1)}, (1.3)

where Γ̄1 := Σ̄ ∪ Γ̄d1,P ∪ Γ̄d2,P (see Figure 1.1, left), and

E01(η) =

{
η on Σ,

0 on ΓdP ,
∀η ∈ H1/2(Σ).

This treatment can be interpreted as replacing H
1/2
00 (Σ) by the space of functions η ∈ H1/2(Σ) such that

ξ−1/2η ∈ L2(Σ), where ξ is a sufficiently regular trace function, positive on Σ, and vanishing only on ΓdP
(see, for example, [33]).

The norm of the resulting extension ϕ ∈ H1/2
01 (Σ) is defined analogously as before,

‖ϕ‖1/2,01,Σ := ‖E01(ϕ)‖1/2,Γ1
, (1.4)

and therefore the restriction of a distribution to the interface, ψ|Σ, is in the dual space [H
1/2
01 (Σ)]′ and its

norm is

‖ψ|Σ‖−1/2,01,Σ := sup
06=η∈H1/2

01 (Σ)

〈ψ|Σ, η〉Σ
‖η‖1/2,01,Σ

= sup
06=η∈H1/2

01 (Σ)

〈ψ,E01(η)〉Γ1

‖E01(η)‖1/2,Γ1

. (1.5)

2. Governing equations and weak formulation

The momentum and mass balance equations for the flow in the fluid cavity are given by Stokes equations
written in terms of fluid velocity u and fluid pressure pF , whereas the non-viscous filtration flow through
the porous skeleton can be described by Darcy’s law in terms of pressure head pP , and the porous matrix
elastostatics are stated in terms of the solid displacement d. The coupled Biot-Stokes equations arising after
a backward Euler semi-discretization in time, with time step ∆t, read

−div[2µfε(u)− pF I] = ρfg in ΩF , (2.1a)

divu = 0 in ΩF , (2.1b)

−div[2µsε(d)− ϕI] = ρsf in ΩP , (2.1c)

ϕ− αpP + λ divd = 0 in ΩP , (2.1d)(
C0 +

α2

λ

) 1

∆t
pP −

α

(∆t)λ
ϕ− div

(
κ

µf
∇pP − ρfg

)
= mP in ΩP , (2.1e)
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where f is a vector field of body loads, g is the gravity acceleration, µf is the fluid viscosity, ε(u) =
1
2 (∇u+∇ut) is the strain rate tensor, and ε(d) = 1

2 (∇d+∇dt) is the infinitesimal strain tensor, ρf , ρs are
the density of the fluid and solid, respectively, λ, µs are the first and second Lamé constants of the solid, κ is
the heterogeneous tensor of permeabilities (satisfying |w|2 . w · κ(x)w a.e. in ΩP and for all w ∈ Rd); mP

is a source/sink term for the fluid pressure (which also includes pressures in the previous backward Euler
time step); and C0, α are the total storage capacity and Biot-Willis poroelastic coefficient. Here we have
used the total pressure ϕ := αpP − λ divd, as an additional unknown [27, 20].

We furthermore supply boundary conditions as follows

u = 0 on ΓuF , (2.2a)

[2µfε(u)− pF I]n = 0 on ΓσF , (2.2b)

d = 0 and
κ

µf
∇pP · n = 0 on ΓdP , (2.2c)

[2µsε(d)− ϕI]n = 0 and pP = p0 on ΓpPP . (2.2d)

In order to close the system, we consider the classical transmission conditions on Σ accounting for the
continuity of normal fluxes, momentum balance, equilibrium of fluid normal stresses, and the so-called
Beavers-Joseph-Saffman condition for tangential fluid forces [7, 2], which in the present setting reduce to

u · n = (
1

∆t
d− κ

µf
∇pP ) · n on Σ, (2.3a)

(2µfε(u)− pF I)n = (2µsε(d)− ϕI)n on Σ, (2.3b)

−n · (2µfε(u)− pF I)n = pP on Σ, (2.3c)

−n · (2µfε(u)− pF I)tj =
γµf√
κ

(u− 1

∆t
d) · tj , 1 ≤ j ≤ d− 1 on Σ, (2.3d)

where γ > 0 is the slip rate coefficient depending on the geometry of the domain, and we recall that the
normal n on the interface is understood as pointing from the fluid domain ΩF towards the porous structure
ΩP , while tj , 1 ≤ j ≤ d− 1 are orthonormal tangent vectors on Σ, normal to n.

We proceed to test (2.1a)-(2.1e) against suitable smooth functions and to integrate over the corresponding
subdomain. The challenging model parameters are µf , C0, λ, γ, α, and the magnitude of κ. Therefore, we
will concentrate on the specific case where ∆t = 1, and the model parameters (in particular κ) are spatially
constant. Following [24], after applying integration by parts wherever adequate and using the transmission
conditions (2.3a)-(2.3d), we arrive at the following remainder on the interface

〈pP , (v −w) · n〉Σ +
γµf√
κ

d−1∑
j=1

〈(u− d) · tj , (v −w) · tj〉Σ + 〈(u− d) · n, qP 〉Σ,

which is well-defined and therefore no additional Lagrange multipliers are required to realize the coupling
conditions. Also, in view of the character of the resulting variational forms in combination with the specifi-
cation of boundary conditions (2.2), we define the Hilbert spaces

H1
?(ΩF ) = {v ∈ H1(ΩF ) : v|ΓuF = 0}, H1

?(ΩP ) = {w ∈ H1(ΩP ) : w|ΓdP = 0},
H1
? (ΩP ) = {qP ∈ H1(ΩP ) : qP |ΓpPP = 0},

and the product space H

H = H1
?(ΩF )×H1

?(ΩP )× L2(ΩF )× L2(ΩP )×H1
? (ΩP ). (2.4)

Consequently, we have the following weak form for the Biot-Stokes coupling: Find (u,d, pF , ϕ, pP ) ∈ W
such that

2µf (ε(u), ε(v))ΩF +
γµf√
κ
〈Tt(u− d), Ttv〉Σ

5



−(pF ,div v)ΩF + 〈pP , Tnv〉Σ = FF (v) ∀v ∈ H1
?(ΩF ), (2.5a)

γµf√
κ
〈Tt(d− u), Ttw〉Σ + 2µs(ε(d), ε(w))ΩP

−(ϕ,divw)ΩP − 〈pP , Tnw〉Σ = FP (w) ∀w ∈ H1
?(ΩP ), (2.5b)

−(divu, qF )ΩF = 0 ∀qF ∈ L2(ΩF ), (2.5c)

1

λ
(αpP − ϕ,ψ)ΩP − (divd, ψ)ΩP = 0 ∀ψ ∈ L2(ΩP ), (2.5d)

−
(
C0 +

α2

λ

)
(pP , qP )ΩP +

α

λ
(qP , ϕ)ΩP

+〈qP , Tn(u− d)〉Σ −
κ

µf
(∇qP ,∇pP )ΩP = G(qP ) ∀qP ∈ H1

? (ΩP ), (2.5e)

where

FF (v) = ρf (g,v)ΩF , FP (w) = ρs(f ,w)ΩP , G(qP ) = −(mP , qP )ΩP − ρf (g,∇qP )ΩP + ρf 〈g · n, qP 〉Σ.

System (2.5) differs from that analyzed in [16] in the ordering of the unknowns, and in that we obtain
a symmetric multilinear formulation defined by a global operator A (the coefficient matrix of the left-hand
side of (2.5)) of the form

−2µf div ε +
γµf√
κ
T ′tTt − γµf√

κ
T ′t ∇ T ′n

− γµf√
κ
Tt −2µs div ε +

γµf√
κ
T ′tTt ∇ −T ′n

− div
−div − 1

λ
I α

λ
I

Tn −Tn α
λ
I −

(
C0 + α2

λ

)
I + κ

µf
∆


, (2.6)

where the dependence on the model parameters is clearly identified. In particular, the interface coupling
terms on the first off-diagonal blocks depend on the inverse of permeability.

We note that A can be regarded as defining a perturbed saddle-point problem, with

A =

(
A B′

B −C

)
,

where the composing blocks are defined as

A =

(
AFF AFP
APF APP

)
=

(
−2µf div ε 0

0 −2µs div ε

)
+ γ

µf√
κ

(
T ′t
−T ′t

)(
Tt −Tt

)
, (2.7a)

B =

− div 0
0 −div
Tn −Tn

 , C =

0 0 0
0 1

λI −αλ I
0 −αλ I

(
C0 + α2

λ

)
I − κ

µf
∆

 . (2.7b)

In turn, well-posedness of the Biot-Stokes system (2.5) in the product space (2.4) can be established using
the abstract Brezzi-Braess theory [34], after invoking separately the solvability and stability results for the
Stokes subproblem [35] and the Biot subproblem in the three-field total pressure formulation [27]. How-
ever, such a decoupled approach does not lead to stability independent of the material parameters and
consequently, preconditioners based on the standard norms (also referred to as single-physics or sub-physics
preconditioners) are not necessarily parameter robust. This issue is demonstrated next in Example 2.1.

Example 2.1 (Simple preconditioners using standard norms). We consider the Biot-Stokes formulation
(2.5) defined on the subdomains ΩF = (0, 1

2 )× (0, 1), ΩP = ( 1
2 , 1)× (0, 1) with boundary conditions such that

the left edge of ΩF is a no-slip boundary ΓuF while the top and bottom edges will form ΓσF . Similarly, the top
and bottom edges on the Biot side are considered stress-free while the right edge is clamped.

6



Preconditioner (2.8) Preconditioner (2.9)

µf κ
h

2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−5

1
10−4 211 240 258 264 71 82 89 89
10−2 76 76 74 73 50 49 48 48

1 41 41 41 41 37 37 36 36

κ
µf

h
2−2 2−3 2−4 2−5 2−2 2−3 2−4 2−5

1
10−8 394 184 – – 693 471 639 –
10−2 59 59 59 58 58 57 55 55

1 41 41 41 41 37 37 36 36

Table 2.1: Performance of preconditioners (2.8) and (2.9) for the Biot-Stokes system (2.5) in Example 2.1. Only the parameters
µf and κ are varied away from 1. The lack of convergence after 750 MinRes iterations is indicated as –.

Based on the well-posedness of (2.5) in the space H (cf. (2.4)), we can readily consider a solution space
with weighted inner product leading to the Riesz map (diagonal) preconditioner

RD =


AFF

APP
1

2µf
I (

1
λ + 1

2µs

)
I(
C0 + α2

λ

)
I − κ

µf
∆


−1

. (2.8)

We remark that the first and third blocks of RD together define a parameter robust preconditioner for the
(standalone) Stokes problem and the remaining blocks form the robust three-field Biot preconditioner [27].
However, in RD the subproblem preconditioners are decoupled.

Alternatively, after observing that the operator A in (2.7a) defines a norm over the velocity-displacement
space H1

?(ΩF )×H1
?(ΩP ) we will also investigate the (block-diagonal) preconditioner

RC =


AFF AFP
APF APP

1
2µf

I (
1
λ + 1

2µs

)
I(
C0 + α2

λ

)
I − κ

µf
∆


−1

. (2.9)

We note that in (2.9) the tangential components of the Stokes velocity and of the Biot displacement are
coupled. In this sense, the preconditioner captures the interaction between the subsystems and, in particular,
the coupling through the Beavers-Joseph-Saffman condition (2.3d).

To investigate the robustness of these preconditioners, we set typical physical parameters in (2.5) except
for µf and κ, which are to be varied. Using a discretization in terms of the lowest-order Taylor-Hood
elements (see more details in Section 4.1), we next consider the boundedness of the number of iterations of
the preconditioned MinRes solver under mesh refinement and parameter variations. More precisely, using
RD, RC (inverted by LU) we compare the number of iterations required for convergence determined by
reducing the preconditioned residual norm by a factor 108. The initial vector is taken as random.

We report the results in Table 2.1. It can be seen that the number of MinRes iterations produced with the
diagonal preconditioner RD is rather sensitive to variations in both µf and κ. In comparison, when fixing
µf = 1, the iterations appear to be more stable in κ when (2.9) is used. However, if κ = 1 is set, there is a
clear deterioration of the performance for small values of µf also with the preconditioner RC .

The improved performance of the preconditionerRC , which preserves the tangential coupling of the Stokes
and Biot problems in (2.3d), over RD, where the components are decoupled, suggests to strengthening the

7



coupling (involving the tangential traces) in order to obtain parameter robustness. However, from the point
of view of the interface conditions (2.3a)-(2.3d), it is clear that the coupling in the normal direction is missing
in RC .

With the above idea in mind, we proceed to establish well-posedness of (2.5) in the product space
equipped with non-standard norms that include additional control at the interface reflecting/arising from
the mass conservation condition (2.3a).

3. Well-posedness of the Biot-Stokes system

Let us group the variables as ~u = (u,d) and ~p = (pF , ϕ, pP ) and introduce the weighted norm

‖(~u, ~p)‖2Hε
:= ‖~u‖2A + |~p|2B + |~p|2C , (3.1)

with

‖~u‖2A := 2µf‖ε(u)‖20,ΩF +

d−1∑
j=1

γµf√
κ
‖(u− d) · tj‖20,Σ + 2µs‖ε(d)‖20,ΩP , (3.2a)

|~p|2B :=
1

2µf
‖pF ‖20,ΩF +

1

2µs
‖ϕ‖20,ΩP +

(
1

2µf
+

1

2µs

)
‖pP |Σ‖2− 1

2 ,01,Σ, (3.2b)

|~p|2C :=
1

λ
‖ϕ− αpP ‖20,ΩP + C0‖pP ‖20,ΩP +

κ

µf
‖∇pP ‖20,ΩP , (3.2c)

where the fractional norm is defined in (1.5).

In turn, we define the weighted product space Hε as the space that contains all (~u, ~p) that are bounded
in this norm. The subscript ε encodes the collection of weighting parameters κ, α, γ, µf , µs, C0, λ. Moreover,
the space allows for the natural decomposition:

Hε = ~V × ~Q.

Theorem 3.1. Problem (2.5) is well-posed in the space Hε equipped with the norm (3.1). In other words,
the operator A : Hε → H′ε in (2.6) is a symmetric isomorphism satisfying

‖A‖L(Hε,H′
ε)
≤ C1, (3.3a)

‖A−1‖L(H′
ε,Hε) ≤ C2, (3.3b)

where C1, C2 are positive constants independent of ε.

Proof. The operator norm is defined as

‖A‖L(Hε,H′
ε)

:= sup
(~u,~p),(~v,~q)

〈A(~u, ~p), (~v, ~q)〉
‖(~u, ~p)‖Hε ||(~v, ~q)||H′

ε

,

and condition (3.3a) states the continuity of A. To show this, we first use the Cauchy-Schwarz inequality to
derive

〈A~u, ~v〉 ≤ ‖~u‖A‖~v‖A, 〈C~p, ~q〉 ≤ |~p|C |~q|C . (3.4)

It therefore remains to show that B is continuous. Another application of the Cauchy-Schwarz inequality
on the different terms together with a trace inequality provides this result.

In order to prove the second relation (3.3b), we aim to verify the assumptions of the Banach-Nečas-
Babuška (BNB) theorem (see, e.g., [36]). In particular, we aim to prove that

sup
(~v,~p)

〈A(~u, ~p), (~v, ~q)〉
‖(~v, ~q)‖Hε

& ‖(~u, ~p)‖Hε , ∀(~u, ~p) ∈ Hε. (3.5)
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We do this by assuming that (~u, ~p) ∈ Hε is given and by constructing an appropriate test function
(~v, ~q) ∈ Hε. Following, e.g., [37, 27], we choose ~q = −~p and ~v = ~u, giving

〈A(~u, ~p), (~u,−~p)〉 = 〈A~u, ~u〉+ 〈B~u, ~p〉 − 〈B~u, ~p〉+ 〈C~p, ~p〉
= ‖~u‖2A + |~p|2C . (3.6)

Next, the inf-sup condition proven in Lemma 3.1, below, allows us to construct ~vp such that

〈B~vp, ~p 〉 = |~p|2B , ‖~vp‖A ≤ β−1
0 |~p|B . (3.7)

We now use this test function, scaled by a constant δ > 0 to be chosen later, and using (3.2a)-(3.2c) along
with (3.4) and (3.7), we derive

〈A(~u, ~p), (δ~vp,~0)〉 = 〈A~u, δ~vp〉+ δ[B~vp, ~p]

≥ −δ‖~u‖A‖~vp‖A + δ|~p|2B
≥ −1

2
‖~u‖2A −

1

2
δ2‖~vp‖2A + δ|~p|2B

≥ −1

2
‖~u‖2A + (δ − 1

2
β−2

0 δ2)|~p|2B ,

where we have also used Cauchy-Schwarz and Young’s inequality. Setting δ = β2
0 gives us

〈A(~u, ~p), (δ~vp,~0)〉 ≥ −1

2
‖~u‖2A +

1

2
β2

0 |~p|2B . (3.8)

Finally, we take (~v, ~q) = (~u+ δ~vp,−~p) and put together (3.6) and (3.8) to arrive at

〈A(~u, ~p), (~v, ~q)〉 ≥ 1

2
‖~u‖2A +

1

2
β2

0 |~p|2B + |~p|2C
& ‖(~u, ~p)‖2Hε

,

‖(~v, ~q)‖2Hε
≤ 2

(
‖(~u, ~p)‖2Hε

+ δ2‖~vp‖2A
)

≤ 2
(
‖(~u, ~p)‖2Hε

+ β2
0 |~p|2B

)
. ‖(~u, ~p)‖2Hε

.

The combination of these two bounds shows that (3.5) holds. The BNB theorem now provides (3.3b).

Lemma 3.1. There exists a β0 > 0 such that

sup
06=~v

〈B~v, ~p〉
‖~v‖A

≥ β0|~p|B ∀~p ∈ ~Q.

Proof. The proof follows similarly to [21, Section 3]. Let ~p = (pF , ϕ, pP ) ∈ ~Q be given. We proceed in five
steps.

1. With a given total pressure ϕ in the Biot domain, we set up an auxiliary Stokes problem: Find
(z0, s0) ∈ H1(ΩP )× L2(ΩP ) that weakly satisfy

−div (ε(z0) + s0I) = 0,

div z0 = −ϕ in ΩP ,

subject to the mixed boundary conditions

z0 = 0 on ΓdP ∪ Σ, and (ε(z0) + s0I)n = 0 on ΓpPP .

By the well-posedness of this auxiliary problem (for a proof see, e.g., [35, Chapter I]), the first compo-
nent of the solution satisfies

‖z0‖1,ΩP . ‖ϕ‖0,ΩP .
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2. We next consider that the trace of pP is a distribution in H−1/2(∂ΩP ), and focus on its restriction to

the interface, pP |Σ, belonging to [H
1/2
01 (Σ)]′ (cf., the end of Section 1).

Let ζ ∈ H1/2
01 (Σ) be the Riesz representative of pP |Σ ∈ [H

1/2
01 (Σ)]′, and consider a Stokes-extension of

ζ into ΩP by setting up another auxiliary Stokes problem (and still in the Biot domain): Find a pair
(z1, s1) ∈ H1(ΩP )× L2(ΩP ) that weakly satisfies

−div (ε(z1) + s1I) = 0, (3.10a)

div z1 = 0 in ΩP ,

subject to the mixed-type boundary conditions

z1 = ζn on Σ, (3.10b)

z1 = 0 on ΓdP , (ε(z1) + s1I)n = 0 on ΓpPP .

Again, we use the well-posedness of the auxiliary problem (in this case, (3.10)) to conclude that the
extension function z1 satisfies a continuous dependence on data

‖z1‖1,ΩP . ‖ζ‖ 1
2 ,01,Σ = ‖pP ‖− 1

2 ,01,Σ.

3. We combine the two previous steps to form a Biot velocity as vP := 1
2µs

(z0 + z1). By construction,
this function has the following properties

〈B(vP ,0), ~p〉 = −(div vP , ϕ)ΩP + 〈n · vP , pP 〉Σ
=

1

2µs
(−(div z0, ϕ)ΩP + 〈n · z1, pP 〉Σ)

=
1

2µs

(
‖ϕ‖2ΩP + ‖pP |Σ‖2− 1

2 ,01,Σ

)
,

‖(vP ,0)‖2A = 2µs‖ε(vP )‖20,ΩP
≤ 1

2µs
2
(
‖z0‖21,ΩP + ‖z1‖21,ΩP

)
. 1

2µs

(
‖ϕ‖2ΩP + ‖pP |Σ‖2− 1

2 ,01,Σ

)
.

4. Next, we repeat the first three steps with pF substituted for ϕ, −ζ for ζ, ΩF instead of ΩP (as well
as the relevant boundaries), and µf substituted for µs. In particular, for step 2 we note that the
Riesz representative ζ is constructed relatively to ∂ΩP , but the trace of H1

?(ΩF ) can be regarded as
equivalent to the trace of H1

?(ΩP ) provided that the shapes and measures of each subdomains are
similar (see [38, 39], where the argument is applied to a normal velocity trace on the interface). Then

one can also consider ζ ∈ H1/2
01 (Σ), as relative to ∂ΩF .

In this case we end up with a Stokes velocity vF satisfying the relations

〈B(vF ,0), ~p〉 =
1

2µf

(
‖pF ‖2ΩF + ‖pP |Σ‖2− 1

2 ,01,Σ

)
,

‖(vF ,0)‖2A . 1

2µf

(
‖pF ‖2ΩF + ‖pP |Σ‖2− 1

2 ,01,Σ

)
.

5. For the final step it suffices to combine steps 3 and 4, and choose as test function the pair of functions
constructed above ~v = (vF ,vP ), which leads to

〈B~v, ~p 〉 = |~p|2B , ‖~v‖2A . |~p|2B . (3.11)

Equation (3.11) also contains the right scaling through the use of the | · |B seminorm. This step concludes
the proof.
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According to the general operator preconditioning framework from [25], Theorem 3.1 yields that a
parameter-robust preconditioner can be constructed based on the Riesz map R : H′ε → Hε satisfying

‖R‖L(H′
ε,Hε) ≤ 1, ‖R−1‖L(Hε,H′

ε)
≤ 1,

which implies that
cond(RA) = ‖RA‖L(Hε,Hε)‖(RA)−1‖L(Hε,Hε) ≤ C1C2.

Following Theorem 3.1 a natural block-diagonal preconditioner for the Biot-Stokes problem is therefore the
Riesz map with respect to the inner product in Hε

R =



AFF AFP
APF APP

1
2µf

I(
1
λ + 1

2µs

)
I −αλ I

−αλ I
(
C0 + α2

λ

)
I − κ

µf
∆ + 1

µ (−∆Σ,01)−
1
2



−1

, (3.12)

where we have defined µ−1 := (2µs)
−1 + (2µf )−1. We remark that the fractional operator (−∆Σ,01)−1/2

induces a norm on the space [H
1/2
01 (Σ)]′ (see also [40] for the case of [H

1/2
00 (Σ)]′).

4. Discretization and robust preconditioners for Biot-Stokes

4.1. Preliminaries and accuracy verification

In order to define a finite element method for the Biot-Stokes system (2.5) we will use two families of
Stokes-stable elements. The generalized Taylor-Hood (THk) type for the pairs [fluid velocity, fluid pressure]
and [porous displacement, total pressure], while using continuous and piecewise polynomials of degree k+ 1
for the porous fluid pressure; as well as non-conforming discretizations based on the lowest-order Crouzeix-
Raviart (CR) elements for the pairs [fluid velocity, fluid pressure] and [porous displacement, total pressure]
(using for velocity and displacement the facet stabilization described in [41], see also (B.1)), and continuous
and piecewise linear elements for the Biot fluid pressure. A requirement is that the meshes for the Biot
and Stokes subdomains match at the interface. For sake of completeness, the precise definition of the finite
element subspaces is given in Appendix A. We remark that the non-conforming CR element discretization
is not covered by the theory presented in this paper and is as such an interesting test case.

For the numerical realization of the methods discussed above, we have used the open source finite element
library FEniCS [42, 43], as well as the specialised module FEniCSii [44] for handling subdomain- and boundary-
restricted terms and variables.

We verify the error decay using the THk spaces with polynomial degrees k = 1, 2, and the CR family.
For this we simply use unity parameters. We consider synthetic forcing terms and boundary data such that
the exact manufactured solutions to (2.1) are

u =

(
cos(πx) sin(πy)
− sin(πx) cos(πy)

)
, pF = exp(xy) + cos(πx) cos(πy),

d =

(
cos(πx) sin(πy) + y(x−0.5)

λ
− sin(πx) cos(πy)

)
, pP = cos(π(x2 + y2)), ϕ = αpP − λ divd.

(4.1)

Note that these exact solutions require non-homogeneous transmission conditions.

We construct a series of uniformly successively refined triangular meshes for Ω = (0, 1)2, defining the
interface as the segment {0.5}× (0, 1) and considering the left half of the domain as ΩF and the right half as

11
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Figure 4.1: Error convergence of the finite element approximation of (2.5) with the manufactured solution (4.1) using (left)
TH1, (center) TH2 and (right) CR families for discretization. Optimal convergence is observed in all cases. The legend is shared
between the subplots.

ΩP . Then, we proceed to measure individual errors between closed-form and approximate solutions in the
usual norms

e(u) = ‖u− uh‖1,ΩF , e(pF ) = ‖pF − pF,h‖0,ΩF ,
e(d) = ‖d− dh‖1,ΩP , e(ϕ) = ‖ϕ− ϕh‖0,ΩP , e(pP ) = ‖pP − pP,h‖1,ΩP .

Figure 4.1 reports the approximation errors for the three discretizations. In all cases the expected order
k + 1 for THk can be observed. For the CR family we obtain the expected linear convergence.

Having defined suitable finite element discretization for the Biot-Stokes system, we next investigate
robustness of the fractional preconditioner (3.12) which was established theoretically in Theorem 3.1 with
the assumption of specific boundary conditions on the sub-boundaries intersecting the interface, namely,
that Σ meets the intersection between the Biot displacement and the Stokes velocity boundaries. However,
the theory and in turn the R preconditioners can be extended to more general boundary conditions as we
will demonstrate by the numerical experiments. In particular, in Section 4.4 we consider the setup where the
interface intersects boundaries ΓσF , ΓpPP see Figure 1.1. Then, in Section 4.6 the interface is a closed curve.

Due to the Laplace operator on the interface, the discretization of preconditioners R (3.12) is not im-
mediately evident. Before discussing the results let us therefore comment on the construction of the critical
component, that is, the fractional operators.

4.2. Discrete preconditioner

From (3.12) we observe that in the pressure block of the preconditioner R the operator acting on (ϕ, pP ),((
1
λ + 1

2µs

)
I −αλ I

−αλ I
(
C0 + α2

λ

)
I − κ

µf
∆ + µ−1(−∆Σ,01)−

1
2

)−1

, (4.2)

contains a sum of a bulk term coupling the two pressures and a fractional interface term µ−1(−∆Σ,01)−1/2.
Thus, the action of the operator implicitly involves the trace of the Biot pressure at the interface Σ. In
the discrete setting mirroring this property requires a discrete trace space Sh and a restriction operator. In
the following we choose Sh as the space of piecewise continuous polynomials of order k + 1 whenever the
THk family is used. For the CR family, Sh is constructed from piecewise continuous linear functions. The
restriction operator is then realized as an L2-projection.

Once on the interface we approximate the fractional operator based on the spectral decomposition, see,
e.g., [45]. That is,

〈µ−1(−∆Σ,01)−1/2u, v〉Σ :=
∑
i

λ
−1/2
i (µ−1ui, u)Σ(µ−1ui, v)Σ ∀u, v ∈ Sh, (4.3)
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where (ui, λi) ∈ Sh × R are solutions of the generalized eigenvalue problem

(µ−1∇ui,∇v)Σ = λi(µ
−1ui, v)Σ ∀v ∈ Sh, (4.4)

satisfying the orthogonality condition (µ−1ui, uj)Σ = δij . Note that in (4.4) the Dirichlet boundary con-
ditions are prescribed on ∂Σ reflecting the trace spaces of velocity and displacement when ΓuF and ΓdP are
incident to Σ (as was assumed in Theorem 3.1).

Going beyond the theoretical analysis, we demonstrate in Section 4.4 that for the configuration with
ΓσF , ΓpPP intersected by the interface, the operator (4.2) (and in turn the preconditioner (3.12)) needs to
be modified. Specifically, the fractional term then reads µ−1(−∆Σ + IΣ)−1/2. The operator is defined
analogously to (4.3), where, in contrast, the H1-norm (cf. the H1-seminorm in (4.4)) is now used in the
eigenvalue problem: Find (ui, λi) ∈ (Sh,R) such that

(µ−1∇ui,∇v)Σ + (µ−1ui, v)Σ = λi(µ
−1ui, v)Σ ∀v ∈ Sh (4.5)

and (µ−1ui, uj)Σ = δij . Note that here the Neumann boundary conditions are prescribed on ∂Σ.

We remark that the fractional operators and in particular the boundary conditions in (4.4) and (4.5)
must be set based on the configuration of the boundaries with respect to the interface. The fact that the
conditions cannot be chosen freely is investigated next in Example 4.1 together with the observation that
parameter stability of the preconditioners (3.12) is affected by enforcement of Dirichlet boundary conditions
in construction of the fractional operators via the eigenvalue problems (4.4) and (4.5).

Example 4.1 (Boundary conditions in fractional operators). In the following, given the geometry of Example
2.1, let C0 = 0, κ = 10−10 while the remaining problem parameters of the the Biot-Stokes system (2.5) are
set to unity. This choice is made to put emphasis on the fractional term in the preconditioner (3.12).

Assuming first that Σ intersects ΓσF and ΓpPP , we consider (2.5) either with a preconditioner (3.12), where
Dirichlet boundary conditions are (strongly) enforced on the fractional operator, or a modified preconditioner
which uses the operator µ−1(−∆Σ + IΣ)−1/2 constructed with the Neumann boundary conditions, see (4.5).
Using a discretization by TH1 we observe in Table 4.1 that the Dirichlet conditions result in a lack of
boundedness in the mesh size. On the other hand, when Neumann boundary conditions are imposed on the
fractional operator the spectral condition numbers of the preconditioned problem seem to converge along with
mesh refinement.

Repeating the experiment for the configuration where the interface is incident to ΓuF and ΓdP , it can be
seen that Neumann boundary conditions lead to a growth similar to what was observed in the previous setup
with Dirichlet datum. Furthermore, in Table 4.1 the condition numbers blow up also with µ−1(−∆Σ,01)−1/2.
However, in this case the growth can be traced to the (two) eigenvalues that correspond to the degrees of
freedom5 of the space Sh on ∂Σ which are set strongly by the Dirichlet boundary conditions. This observation
motivates using the Nitsche technique [46] in order to enforce the conditions on µ−1(−∆Σ,01)−1/2. With
a suitably chosen Nitsche penalty parameter, Table 4.1 (column DNitsche) reveals that (3.12) yields mesh
independence.

The fact that for Σ intersecting ΓuF and ΓdP the numerical issues with Dirichlet boundary conditions of the
fractional operators are related to their strong enforcement, can be further illustrated using a discretization
for which the intermediate trace space Sh has no degrees of freedom on the boundary ∂Σ. To this end, we here
consider a modification of the CR family where the Biot fluid pressure space is made of piecewise constants.
The discrete Laplace operator in (2.5) as well as in the eigenvalue problem (4.4) is then defined analogously
to the finite volume method, and in particular utilizing two-point flux approximation, see, e.g., [47]. After
using µ−1(−∆Σ,01)−1/2 with Dirichlet boundary conditions enforced weakly, stable condition numbers are

achieved, as observed in column CR] of Table 4.1.

5The number of unbounded modes is finite (and independent of refinement) when Σ is a curve. However, when the interface
is a manifold in 3d the number of unbounded modes grows with h (as ∂Σ is refined).
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log2 h
−1 ΓσF ,Γ

pP
P ΓuF ,Γ

d
P ΓuF ,Γ

†
P

D N D N DNitsche D with CR] D
2 10.61 16.67 3369 24.48 7.02 8.07 6.77
3 12.17 17.58 13879 30.29 7.43 8.45 7.31
4 13.90 18.12 56254 35.91 7.59 8.60 7.53
5 15.73 18.53 – 41.66 7.67 8.60 7.64
6 17.63 18.83 – 47.66 7.71 8.57 7.69
7 19.58 19.06 – 53.96 7.72 8.54 7.71

Table 4.1: Spectral condition numbers for the Biot-Stokes problem (2.6) with fractional preconditioners (3.12). Boundary

condition configurations from Figure 1.1 are considered; Σ intersects ΓσF and Γ
pP
P or ΓuF and ΓdP . In addition, on Γ†P we prescribe

both d and pP . The fractional preconditioners differ by the boundary conditions enforced on ∂Σ; Dirichlet condition, cf. (4.4),
enforced strongly (D) or with Nitsche’s method (DNitsche) or Neumann condition (N), cf. (4.5). Systems are discretized by TH1

family except for CR] where the modified CR family is used with the Biot pressure space constructed from piecewise constant
functions. For the finest refinement level the discrete linear system contains approximately 350 thousand degrees of freedom.

In order to show that strong enforcement of the Dirichlet boundary conditions can be used depending on
the boundary configuration, we finally consider a setup where the interface meets ΓuF on the Stokes side while

on the incident Biot boundary (which we denote by Γ†P ) we assume Dirichlet data on the displacement d
and on the pressure pP . Then, using a TH1 discretization together with the preconditioner (3.12), bounded
condition numbers are produced, which can be observed in the last column of Table 4.1.

We finally remark that the spectral realization (4.3) is not scalable to problems where the interface and
the trace space are large. However, the representation is well suited for the applications pursued here,
specifically the robustness study where we are interested in exact (inverted by LU) preconditioners.

4.3. Parameter sensitivity

We demonstrate robustness of the fractional preconditioner (3.12) by a sensitivity study where the phys-
ical parameters in (2.5) are varied such that 10−9 ≤ µf , κ ≤ 1, 1 ≤ λ ≤ 1012, 10−2 ≤ γ ≤ 102, 10−8 ≤ α ≤ 1.
Since µs is commonly used for rescaling we fix its value to 1. Moreover, the storage capacity is set to 0
as this is the more challenging limit of the parameter’s range. The Biot-Stokes system is then considered
on the geometry from Example 2.1 with the boundary configuration satisfying the assumptions in Theorem
3.1. That is, the interface intersects ΓuF on the Stokes side and ΓdP on the Biot side. In turn, the fractional
operator is constructed as given in (4.3). Finally, following Example 2.1, the convergence criterion for the
MinRes solver is a reduction of the preconditioned residual norm by factor 108. The action of the precondi-
tioner (3.12) is then computed by LU factorization of the 2× 2 velocity-displacement and the 3× 3 pressure
blocks, respectively.

Using TH1 elements, Figures 4.2 and 4.3 present slices of the explored parameter space. More precisely,
in each subplot column-indexed by fixed value of µf and row-indexed by scalar permeability κ we plot
dependence of the MinRes iterations on system size for varying Lamé parameter λ (indicated by color), the
Biot-Willis coefficient α (in Figure 4.2, γ is set to 1) and the slip-rate coefficient γ (in Figure 4.3, α is set
to 1). We observe that the iterations are stable for all the parameter combinations. In fact, the iterations
remain bounded between 21-56 across the entire considered parameter range.

4.4. Other boundary configurations

The Biot-Stokes preconditioner (3.12) can be extended beyond the boundary configurations assumed in
the theoretical analysis, namely, the requirement that Σ is incident to ΓuF and ΓdP . We illustrate this here
by letting the interface intersect the boundaries ΓσF , ΓpPP . Following Section 4.2, the configuration leads to
the fractional operator µ−1(−∆Σ + IΣ)−1/2, see (4.5).

Employing the experimental setup of Section 4.3 the performance of the (4.5)-adapted preconditioner
(3.12) is illustrated in Figure 4.4 where the slice of the parameter space for C0 = 0, γ = 1 is shown (cf.
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Figure 4.2: Performance of the Biot-Stokes preconditioner (3.12). Geometry of Example 2.1 is used with Σ intersecting ΓuF and

ΓdP . We set µs, γ to 1 while C0 = 0. The parameters µf , κ, λ, α are varied. Values of the Biot-Willis coefficient are indicated
by markers. In this case, the discretization uses TH1 elements.

Figure 4.2 where Γ is incident to ΓuF and ΓdP ). Using the preconditioner the iterations remain bounded
between 23 and 58.

For CR family, the MinRes iterations are reported in Figure B.2. Here, for the sake of brevity we present
results only for the stronger tangential coupling, i.e. γ is fixed at 102 and we explore robustness for varying
µf , κ, λ and α. It can be seen that the fractional preconditioner leads to bounded iterations (between 22
and 57 iterations are required for convergence). We remark that the stability of CR discretization for the
three-field Biot formulation is explored in Appendix B.
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Figure 4.3: Performance of the Biot-Stokes preconditioner (3.12). The problem is setup on the geometry from Example 2.1
with boundary conditions prescribed such that Σ intersects ΓuF and ΓdP . We set µs, α to 1 while C0 = 0. Parameters µf , κ, λ,
γ are varied. Values of the slip-rate coefficient γ are indicated by markers. A discretization by TH1 is used.

4.5. Diagonal pressure preconditioner

From the point of view of computational efficiency a possible drawback6 of preconditioner (3.12), is the
fact that due to the C-seminorm in (3.1) the pressure block contains a 2×2 operator (4.2). However, for the
three-field Biot problem, the authors in [27] show that parameter robustness can be obtained also if (ϕ, pP )
are controlled in a simpler norm, cf. the Biot block of the operator RD in (2.8). Following this observation

6In addition to the presence of the fractional operator on the interface.
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Figure 4.4: Performance of the Biot-Stokes preconditioner (3.12). Geometry of Example 2.1 is used with Σ intersecting ΓσF and

Γ
pP
P . The fractional operator is changed to µ−1(−∆Σ + IΣ)−1/2. We set µs, γ to 1 while C0 = 0. The parameters µf , κ, λ, α

are varied. Values of the Biot-Willis coefficient are indicated by markers. In this case, the discretization uses TH1 elements.

we next consider a Biot-Stokes preconditioner of the form

R̃ =



AFF AFP
APF APP

1
2µf

I(
1
λ + 1

2µs

)
I(
C0 + α2

λ

)
I − κ

µf
∆ + 1

µ (−∆Σ,01)−
1
2



−1

, (4.6)

and we note that the pressure block is diagonal.

Using the computational setup of Section 4.3 we compare the preconditioner (3.12) derived in Theorem
3.1 with the [27]-inspired operator R̃ (4.6). For the simple geometry of Example 2.1 the operators are
compared in Figure 4.5. We observe that the preconditioners yield practically identical number of MinRes
iteration counts, except for λ = 1, α = 1 where (4.6) requires more iterations for convergence.
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Figure 4.5: Comparison of Biot-Stokes preconditioners (3.12) (solid lines) and (4.6) (dashed lines). Geometry of Example 2.1
is used with Σ intersecting ΓσF and Γ

pP
P . The fractional operator in both preconditioners is changed to µ−1(−∆Σ + IΣ)−1/2.

We set µs, γ to 1 while C0 = 0. The parameters µf , κ, λ, α are varied. Values of the Biot-Willis coefficient are indicated by
markers. The system is discretized by TH1 elements.

4.6. Interfacial flow in the brain

In the examples presented thus far the fractional preconditioners were applied to the Biot-Stokes problem
posed in geometries where the interface formed a simple curve (a straight segment in fact). In addition, the
number of degrees of freedom associated with Σ, and in turn the discrete fractional operators, were small.

To apply the proposed fractional preconditioners in a more practical setting our final example concerns
the interfacial flow in a brain. As realistic brain geometries currently cannot be tackled with our approach
(4.3) due to the size of the interface7 we choose the problem geometry as two-dimensional slices, see Figure
4.6, left panels. We then model flow of a water-like fluid in free-flow domain that is the space surrounding
the brain known as the subarachnoid space and in the poroelastic domain that is the brain parenchyma. We

7The coarsest yet still reasonably well resolved surface mesh of a 3d brain at our disposal has circa 50 thousand cells. The
resulting eigenvalue problem is roughly 4 times larger than what can be computed on a computer with 24GB RAM.
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h [mm] |Hε,h| |Sh| R RD RC
4.72 5114 134 65 369 82

3.21 12919 266 77 445 98

1.93 41545 530 75 473 104

1.05 134980 1066 81 513 114

0.53 482371 2118 83 525 119

0.27 1840764 4234 82 521 119

h [mm] |Hε,h| |Sh| R RD RC
2.46 11681 178 81 413 101

1.67 36677 355 85 458 113

0.86 132775 710 91 494 126

0.44 496680 1420 91 507 131

0.21 1895459 2838 93 511 134

Figure 4.6: Idealized brain sized geometry. The brain is enclosed in a water-filled fluid space. For horizontal slice (top)
|Σ| ≈ 690mm, |ΓuF | ≈ 391mm, |ΓσF | ≈ 140mm while in coronal slice (bottom) |Σ| ≈ 825mm, |ΓuF | ≈ 440mm, |ΓσF | ≈ 24mm. The
outer boundary of the fluid space is assumed impermeable except for orange and red segments that form ΓσF . Gradually refined
meshes of the geometry are generated with mesh size in mm given in the h column of the table. The dimensionalities of the
corresponding finite element solution space based on TH1 elements are shown together with the size of the trace space Sh, cf.
Section 4.2. The fractional preconditioner (3.12) leads to bounded iterations, and also fewer iterations are required compared
to the simple preconditioners from Example 2.1.

remark that the interface thus forms a closed surface. The material parameters of the Biot model are set
following [48] and we fix the slip-rate coefficient as γ = 1. The boundary of the outer spaces is assumed
impermeable with u = 0 prescribed on most of the surface, except for regions (marked with red and orange
in Figure 4.6, left) where traction is set in order to drive the flow.

Having discretized the system by TH1 elements, the flow problem is solved by a preconditioned MinRes
solver starting from a 0 initial vector with relative tolerance of 10−8. As the preconditioner (3.12) is used,
where the fractional term reads µ−1(−∆Σ + IΣ)−1/2, cf. Section 4.4. Note that, while Σ is now a closed
surface, the fractional operator is well defined (and invertible) as the spectrum of the eigenvalue problem
(4.5) is positive due to the H1-inner product used in the definition.

The number of iterations required for convergence is tabulated in Figure 4.6, right. The iterations are
bounded in mesh size and (while the interface is more complex and the interface problem much larger)
are in fact comparable to those in the simple setup of Example 2.1 and Section 4.3. We note that the
fractional preconditioner leads to faster convergence of the MinRes solver especially compared to the simple
block-diagonal preconditioner RD, see Example 2.1.

The resulting flow and pressure fields for the two sets of simulations are shown in Figure 4.7, exhibiting
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Figure 4.7: Interfacial flow in an idealized geometry. The traction boundary conditions in the top right and bottom left corners
(horizontal slices), respectively at the bottom (coronal slices), induce the fluid flow (left) and the brain displacement (right).

localization of pressure, permeating into the porous domain following the directions dictated by the brain
displacement.
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Figure B.1: Total pressure Biot formulation (B.1) with preconditioner from [27], and using a discretization by CR family.

Appendix A. THk and CR finite element families

We denote by {Th}h>0 a shape-regular family of partitions of Ω̄, conformed by tetrahedra (or triangles in
2D) K of diameter hK , with mesh size h := max{hK : K ∈ Th}, and denote T Fh and T Ph the restrictions of
the mesh elements to the subdomains ΩF and ΩP , respectively. Similarly, by EFh and EPh we will denote the
restrictions to the mesh facets (edges in 2D) to the Stokes and Biot subdomains, respectively. We assume
that the two partitions match at the interface. Given an integer k ≥ 1 and a subset S of Rd, d = 2, 3, by
Pk(S) we will denote the space of polynomial functions defined locally in S and being of total degree up to
k. The methods that we use are based on the generalized Taylor-Hood [49] and Crouzeix-Raviart [50] finite
element families that give an overall k + 1 order of convergence

THk


~Vh = {(vh,wh)∈ ~V : vh|K ∈ Pk+1(K)d,wh|L ∈ Pk+1(L)d,∀K ∈ T Fh , L ∈ T Ph },
~Qh = {~qh ∈ ~Q ∩ [C(ΩF )× C(ΩP )× L2(ΩP )] :

qF,h|K ∈ Pk(K), ψh|L ∈ Pk(L), qP,h|L ∈ Pk+1(L),∀K ∈ T Fh , L ∈ T Ph },

CR


~Vh = {(vh,wh)∈L2(ΩF )× L2(ΩP ) : vh|K ∈ P1(K)d,wh|L ∈ P1(L)d,∫

e
[[vh · ne]] = 0,

∫
`
[[wh · n`]] = 0 ∀e ⊂ ∂K, ` ⊂ ∂L, K ∈ T Fh , L ∈ T Ph },

~Qh = {~qh ∈ ~Q ∩ [L2(ΩF )× L2(ΩP )× C(ΩP )] : qF,h|K ∈ P0(K),

ψh|L ∈ P0(L), qP,h|L ∈ P1(L),∀K ∈ T Fh , L ∈ T Ph }.

Appendix B. CR discretization for Biot system

We investigate numerically the stability of the three-field (total pressure) formulation of Biot equations
discretized by the CR family. Assuming momentarily that ∂ΩP = ΓdP the discrete weak problem reads: Find
(dh, pP,h, ϕh) ∈Wh ×QPh × Zh such that for all (wh, qP,h, Zh) ∈Wh ×QPh × Zh it holds that∫

ΩP

2µsε(dh) : ε(wh) +

∫
EPh

2µf
h

[[dh · n]][[wh · n]]−
∫

ΩP

ϕh divwh =

∫
ΩP

f ·wh,

−
∫

ΩP

α2

λ
pP,hqP,h −

∫
ΩP

κ

µf
∇pP,h · ∇qP,h +

∫
ΩP

α

λ
ϕhqP,h = 0,∫

ΩP

ψh

(
− divdh +

α

λ
pP,h −

1

λ
ϕh

)
= 0.

(B.1)

Note that the momentum balance equation includes a stabilization as described in [41].

In Figure B.1 we report the number of iterations required for convergence of MinRes solver started
from random initial vector until reducing the preconditioned residual norm by a factor of 108. Here the
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Figure B.2: Performance of Biot-Stokes preconditioner (3.12). Geometry of Example 2.1 is used with Σ intersecting ΓσF and

Γ
pP
P . The fractional operator is changed to µ−1(−∆Σ + IΣ)−1/2. We set µs = 1, C0 = 0, γ = 102. The parameters µf , κ, λ,
α are varied. Values of the Biot-Willis coefficient are indicated by markers. The discretization is done using the CR family.

preconditioner analyzed in [27] (that is, the preconditioner is formed by the second, fourth and final blocks
of the operator RD in (2.8)) is used. We remark that in the numerical experiment ΩP = (0, 1)2, and
|ΓpPP | · |ΓdP | > 0. We observe that the iterations are bounded with respect to the mesh size as well as to
variations in material parameters.
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