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Abstract

The convergence of variable-step L1 scheme is studied for the time-fractional molecular
beam epitaxy (MBE) model with slope selection. A novel asymptotically compatible L2

norm error estimate of the variable-step L1 scheme is established under a convergence-
solvability-stability (CSS)-consistent time-step constraint. The CSS-consistent condition
means that the maximum step-size limit required for convergence is of the same order to
that for solvability and stability (in certain norms) as the small interface parameter ε→ 0+.
To the best of our knowledge, it is the first time to establish such error estimate for nonlinear
subdiffusion problems. The asymptotically compatible convergence means that the error
estimate is compatible with that of backward Euler scheme for the classical MBE model as
the fractional order α→ 1−. Just as the backward Euler scheme can maintain the physical
properties of the MBE equation, the variable-step L1 scheme can also preserve the corre-
sponding properties of the time-fractional MBE model, including the volume conservation,
variational energy dissipation law and L2 norm boundedness. Numerical experiments are
presented to support our theoretical results.
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1 Introduction

Consider the well-known Ehrlich–Schwoebel energy given as [14,23]

E[Φ] =

∫
Ω

ε2

2
|∆Φ|2 + F (∇Φ) dx, (1.1)

where the domain Ω = (0, L)2 ⊂ R2, the constant ε > 0 represents the width of the rounded
corners on the otherwise faceted crystalline thin films, Φ is a scaled height function of a thin
film, and F (v) = 1

4(|v|2 − 1)2 is a nonlinear energy density function. The MBE model with
slope selection can be viewed as the L2 gradient flow associated with the free energy (1.1),

∂tΦ := −κµ with µ :=
δE

δΦ
, (1.2)

where µ is the vatiational derivative of the free energy E, κ is a positive mobility constant,
and the nonlinear vector functional f(v) = F ′(v) = (|v|2 − 1)v. This model is widely used
in material science because it can accurately capture the growth of high-quality crystalline
materials [23]. Under periodic boundary conditions, it is easy to check that the MBE system
(1.2) preserves the volume conservation

(
Φ(t), 1

)
=
(
Φ(0), 1

)
, the energy dissipation law

dE

dt
+ κ
∥∥µ∥∥2

L2 = 0, (1.3)

and the following L2 norm estimate, cf. the derivation of (1.9),

‖Φ‖2L2 ≤ ‖Φ0‖2L2 +
κ

2
|Ω| t, (1.4)

where (·, ·) and ‖·‖L2 hongare the usual inner product and the associated L2 norm.
Recently, many researchers paid great attention to the time fractional phase field models

[2, 3, 5, 7, 12, 29] to accurately describe the long time memory and the anomalously diffusive
effects. In this paper, we aim to develop a reliable numerical scheme for the time-fractional
molecular beam epitaxy (TFMBE) model with slope selection, see [5, 29],

∂αt Φ = −κµ with µ = ε2∆2Φ−∇ · f(∇Φ), (1.5)

subject to the periodic boundary condition and initial condition Φ(x, 0) := Φ0(x). As shown
latter, this TFMBE model (1.5) also retains some of continuous properties of the classical MBE
model (1.2). Here, ∂αt := C

0 Dαt is the Caputo derivative of order α,

∂αt v = C
0 Dαt v := I1−α

t v′ for 0 < α < 1,

where Iβt is the fractional Riemann–Liouville integral operator of order β > 0,

(Iβt v)(t) :=

∫ t

0
ωβ(t− s)v(s) ds with ωβ(t) :=

tβ−1

Γ(β)
.
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1.1 Continuous properties

We describe some continuous properties of the TFMBE model (1.5), which are natural exten-
sions of the physical properties of (1.2), including the volume conservation, energy dissipation
law (1.3) and L2 norm stability (1.4).

Tang, Yu and Zhou [29] have established the volume conservation
(
Φ(t), 1

)
=
(
Φ(0), 1

)
and

the following global energy dissipation law

E[Φ(t)] ≤ E[Φ(0)] for t > 0,

which is quite different from the local energy decaying property (1.3). In order to be compatible
with the classical model, we consider a variational energy functional in [20],

Eα[Φ] := E[Φ] +
κ

2
Iαt
∥∥µ∥∥2

L2 for t > 0. (1.6)

Obviously, this variational energy functional admits a local energy dissipation law

dEα
dt

+
κ

2
ωα(t)

∥∥µ∥∥2

L2 ≤ 0. (1.7)

This type energy functional Eα[Φ] is introduced firstly by Liao et al [20] in exploring the L1-
type formula of Riemann–Liouville derivative for the time-fractional Allen–Cahn equation. If
the fractional order α → 1−, the local energy decaying law (1.7) asymptotically recovers the
classical energy dissipation law in the form of

dE

dt
+ κ ‖µ‖2L2 ≤ 0.

In addition, by taking the L2 inner product of the TFMBE model (1.5) with Φ, and using
the Green’s formula, one gets

(∂αt Φ,Φ) + κε2 ‖∆Φ‖2L2 − κ (f(∇Φ),∇Φ) = 0. (1.8)

For the nonlinear term, one has

(f(v),v) =
(
(|v|2 − 1

2)2 − 1
4 , 1
)
≥ −1

4
(1, 1) = −1

4
|Ω| .

By inserting it into (1.8) and using the inequality (∂αt Φ,Φ) ≥ 1
2∂

α
t ‖Φ‖

2
L2 from [1, Lemma 2],

one can reformulate the equation (1.8) into the following form

∂αt ‖Φ‖
2
L2 ≤

κ

2
|Ω| , t > 0.

By acting the Riemann-Liouville integral operator Iαt on both sides, one has

‖Φ‖2L2 ≤ ‖Φ0‖2L2 +
κ

2
|Ω|ω1+α(t), t > 0. (1.9)

It is seen that, in the fractional order limit α → 1−, the L2 norm stability estimate (1.9) is
asymptotically compatible with (1.4) of the classical MBE equation (1.2).
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1.2 Our contribution

Some numerical methods were also proposed recently in [5,12,29] for the TFMBE equation. The
numerical scheme in [5] utilized the fast L1 algorithm for the Caputo derivative, but the 2−α
order of convergence was verified only experimentally. Ji et al. [12] suggested a variable-step
L1+ scheme for the Caputo derivative with second-order accuracy, and developed two Crank-
Nicolson-type methods based on the energy quadratization strategy. However, due to the lack
of solution estimate, no convergence results are available in the literature for the numerical
solutions of the TFMBE equation (1.5). In this paper, a rigorous L2 norm convergence analysis
is presented for the variable-step L1 scheme. This scheme is asymptotically compatible with the
backward Euler scheme for the classical MBE model (1.2) as the fractional order α→ 1−. Just
as the backward Euler scheme can maintain the physical properties of the MBE equation, the
variable-step L1 scheme can also preserve the corresponding properties of the time-fractional
MBE model, including the volume conservation, varitional energy dissipation law (1.7) and L2

norm stability (1.9) at the discrete levels.

Table 1: The CSS-consistent time-step conditions.

variable-step L1 scheme backward Euler scheme (α→ 1−)

Convergence τn ≤ α
√

2ω2−α(1)ε2/κ τn ≤ 2ε2/κ

Solvability τn ≤ α
√

4ω2−α(1)ε2/κ τn ≤ 4ε2/κ

Energy stability τn ≤ α
√

4ω2−α(1)ε2/κ τn ≤ 4ε2/κ

L2 norm stability τn = O (1) τn = O (1)

Many effective numerical methods [4,8–11,24,26,27,30,32], including convex splitting meth-
ods, stabilized semi-implicit methods, exponential time differencing approaches and energy
quadratization methods, have been explored rigorously for nonlinear phase field equations
including the MBE model. However, compared with the somewhat weak (or no) time-step
constraints for solvability or the energy dissipation law, the associated convergence analyses
always suffer from very severe step-size restrictions with respect to the small interface pa-
rameter ε in the existing works. For example, the stablized method in [9] is unconditional
energy stable with the step-size τ = O(1), but the convergence requires very small time-steps,
nearly τ = O(ε14). It is an obvious defect at least in theoretical manner. By making full use
of the convexity of nonlinear functional f(v), we establish an asymptotically compatible L2

norm error estimate of the variable-step L1 scheme under a convergence-solvability-stability
(CSS)-consistent time-step constraint. The CSS-consistent condition means that the maxi-
mum step-size limit required for convergence is of the same order to that for solvability and
stability as the small interface parameter ε→ 0+. To the best of our knowledge, it is the first
time to establish such error estimate for nonlinear subdiffusion problems. Also, the imposed
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CSS-consistent time-step condition is asymptotically compatible with the time-step constraint
of the backward Euler scheme as the fractional order α→ 1−, see Table 1.2.

In summary, our contribution is three-fold:

• By making use of the convexity of nonlinear bulk, a rigorous L2 norm error estimate of the
varaibel-step L1 scheme is established, maybe at the first time, under a CSS-consistent
time-step condition. This estimate is robust and asymptotically compatible with that of
the backward Euler scheme for the classical MBE model as α→ 1−.

• The variable step L1 scheme is proven to preserve the volume conservation, the variational
energy dissipation law and L2 norm stability so that it is practically reliable in long-time
simulations.

• Several numerical examples are included to show the accuracy and effectiveness of the
variable-step L1 scheme with an adaptive time-stepping strategy.

The rest of the paper is organized as follows. Next section presents the nonuniform L1
implicit scheme and the unique solvability. The asymptotically compatible L2 norm conver-
gence is established in section 3. Section 4 addresses the discrete counterparts of the varitional
energy dissipation law (1.7) and L2 norm stability (1.9) at the discrete levels. Some numerical
examples are included in the last section.

2 The variable-step L1 scheme and solvability

2.1 Nonuniform L1 formula

The TFMBE model (1.5) has multi-scale behavior in a rough-smooth-rough pattern, especially
at an early stage of epitaxial growth on rough surfaces. It is practically useful to adopt some
adaptive time-stepping strategy in the coarsening dynamics approaching the steady state. It
is desirable to investigate the time approximation on a general class of time meshes.

Consider 0 = t0 < · · · < tk−1 < tk < · · · < tN = T for a finite T > 0. Let the variable
time-steps τk := tk − tk−1 for 1 ≤ k ≤ N . We use the maximum step size τ := max1≤k≤N τk,
and the adjoint time-step ratios rk := τk/τk−1 for 2 ≤ k ≤ N . Given a grid function {vk}Nk=0,
let Oτvk = vk − vk−1 and ∂τv

k := Oτvk/τk for k ≥ 1. The nonuniform L1 formula of Caputo
derivative reads, see [16,17],

(∂ατ v)n :=
n∑
k=1

a
(n)
n−kOτv

k for n ≥ 1, (2.1)

where the discrete coefficients a
(n)
n−k are defined by

a
(n)
n−k :=

1

τk

∫ tk

tk−1

ω1−α(tn − s) ds for 1 ≤ k ≤ n. (2.2)

We know that the discrete L1 kernels a
(n)
n−k are positive and monotone on arbitrary time

meshes [18, 21]. To deal with the discrete kernels, we introduce two important discrete tools,
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namely discrete orthogonal convolution (DOC) kernels and discrete complementary convolution

(DCC) kernels. The DOC kernels θ
(n)
n−k are defined via a recursive procedure [19]

θ
(n)
0 :=

1

a
(n)
0

and θ
(n)
n−k := − 1

a
(k)
0

n∑
j=k+1

θ
(n)
n−ja

(j)
j−k for 1 ≤ k ≤ n− 1. (2.3)

There has the following discrete orthogonal identity

n∑
j=k

θ
(n)
n−ja

(j)
j−k ≡ δnk for 1 ≤ k ≤ n, (2.4)

where δnk is the Kronecker delta symbol. The DCC kernels are defined as [18]

p
(n)
n−k :=

n∑
j=k

θ
(j)
j−k for 1 ≤ k ≤ n. (2.5)

As proven in [18, Subsection 2.2], the discrete convolution kernels p
(n)
n−k are complementary to

the discrete L1 kernels a
(n)
n−k in the following sense,

n∑
j=k

p
(n)
n−ja

(j)
j−k ≡ 1 for 1 ≤ k ≤ n. (2.6)

Figure 1 describes the above connections among three types of discrete convolution kernels.

Figure 1: The relationship diagram of DOC and DCC kernels

In the following convergence and stability analysis, we need the following result.

Lemma 2.1 [16, Lemma 2.1] For any n ≥ 2, the DCC kernels p
(n)
n−k in (2.5) satisfy,

p
(n)
n−k ≥ 0 for 1 ≤ k ≤ n, and

n∑
j=1

p
(n)
n−j ≤ ω1+α(tn).
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2.2 Fully discrete scheme

Fourier pseudo-spectral method in space is adopted here. Consider the discrete spatial grid
Ω̄h := {xh = (ih, jh) | 0 ≤ i, j ≤ M} and Ωh := Ω̄h ∩ Ω, where M is an even positive integer
and the uniform length h := L/M . Let FM be the trigonometric polynomials space (all
trigonometric polynomials of degree up to M/2). Let PM : L2(Ω) → FM and IM : L2(Ω) →
FM be the L2-projection operator and the trigonometric interpolation operator of the periodic
function v(x) ∈ L2(Ω), respectively, that is,

(PMv)(x) =

M/2−1∑
m,n=−M/2

v̂m,nem,n(x), (IMv)(x) =

M/2−1∑
m,n=−M/2

ṽm,nem,n(x),

where the basis function em,n(x) := eiν(mx+ny) with ν = 2π/L, the coefficients v̂m,n denote the
standard Fourier coefficients of v(x), and the pseudo-spectral coefficients ṽm,n are determined
such that (IMv)(xh) = v(xh). In turn, the Fourier pseudo-spectral first- and second-order
derivatives of vh are given by

Dxvh :=

M/2−1∑
m,n=−M/2

(iνm)ṽm,nem,n(x), D2
xvh :=

M/2−1∑
m,n=−M/2

(iνm)ṽm,nem,n(x).

The notations Dy and D2
y would be defined silimarly. Accordingly, the discrete gradient ∇h

and Laplacian ∆h in the point-wise sense are given by

∇hvh := (Dxvh,Dyvh)T and ∆hvh := (D2
xvh,D2

yvh).

In the numerical analysis, let Vh := {v | v = (vh) is L-periodic for xh ∈ Ω̄h} be the space of
L-periodic grid functions. For any functions v, w ∈ Vh, the following discrete Green’s formulas
hold 〈−∆hv, w〉 = 〈∇hv,∇hw〉 and

〈
∆2
hv, w

〉
= 〈∆hv,∆hw〉. Also, we define the discrete inner

product 〈v, w〉 := h2
∑

xh∈Ωh
vhwh, the associated L2 norm ‖v‖ :=

√
〈v, v〉 and the discrete Lp

norm ‖v‖lp := p

√
h2
∑

xh∈Ωh
|vh|p for any grid functions v, w ∈ Vh. The discrete H1 and H2

norms are defined as

‖v‖2H1
h

:= ‖v‖2 + ‖∇hv‖2 , ‖v‖2H2
h

:= ‖v‖2H1
h

+ ‖∆hv‖2 .

We compute the numerical solution φnh ∈ Vh of the TFMBE model (1.5) by the fully implicit
time-stepping scheme

(∂ατ φh)n = −κµnh with µnh = ε2∆2
hφ

n
h −∇h · f (∇hφnh) , (2.7)

with the initial data φ0
h = (PMΦ0)(xh) for xh ∈ Ωh. In order to facilitate our comparisons, we

also describe the backward Euler scheme for the calssical MBE model (1.2),

∂τφ
n
h = −κµnh with µnh = ε2∆2

hφ
n
h −∇h · f (∇hφnh) . (2.8)

7



It is not difficult to check that, if the time-step size τn ≤ 4ε2/κ, the backward Euler scheme
(2.8) is uniquely solvable and fulfills the following energy dissipation law [33]

∂τE[φn] +
κ

2
‖µn‖2 ≤ 0. (2.9)

When the fractional index α→ 1−, the discrete L1 kernels in (2.2) satisfy a
(n)
0 → 1/τn and

a
(n)
n−k → 0 for 1 ≤ k ≤ n − 1. Then, (∂ατ φh)n → ∂τφ

n
h as α → 1−. The nonuniform L1 scheme

(2.7) is asymptotically compatible with the backward Euler scheme (2.8) in the fractional order
limit α→ 1−.

2.3 Unique solvability

The full discrete scheme (2.7) is volume conservative and unique solvable.

Lemma 2.2 The full discrete scheme (2.7) satisfies
〈
φk, 1

〉
=
〈
φ0, 1

〉
for 1 ≤ k ≤ N .

Proof The discrete Green’s formula gives
〈
µn, 1

〉
= 0 from the second equation of (2.7).

Thus the first equation of (2.7) yields 0 =
〈

(∂ατ φ)k , 1
〉

for k ≥ 1. Multiplying both sides of the

above equality by the DOC kernels θ
(n)
n−k and summing k from k = 1 to n, we have

0 =
〈 n∑
k=1

θ
(n)
n−k

k∑
j=1

a
(k)
k−jOτφ

j , 1
〉

=
〈
Oτφ

n, 1
〉

for n ≥ 1,

where the summation order was exchanged and the discrete orthogonal identity (2.4) was
applied in the second equality. It gives 〈φn, 1〉 =

〈
φn−1, 1

〉
and completes the proof.

Theorem 2.1 If the time-step size satisfies

τn ≤ α
√

4ω2−α(1)ε2/κ, (2.10)

the nonuniform L1 scheme (2.7) is uniquely solvable.

Proof We use the minimum principle of convex functional with a subspace of Vh, that
is, V∗h :=

{
z ∈ Vh |

〈
z, 1
〉

=
〈
φn−1, 1

〉}
. Consider a discrete functional G[z] on the space V∗h,

G[z] :=
a

(n)
0

2

∥∥z − φn−1
∥∥2

+
〈
Ln−1, z − φn−1

〉
+
ε2κ

2
‖∆hz‖2 +

κ

4
‖∇hz‖4l4 −

κ

2
‖∇hz‖2 ,

where n ≥ 1 and Ln−1 :=
∑n−1

k=1 a
(n)
n−kOτφ

k. This functional G[z] is strictly convex under the

time-step condition (2.10) or a
(n)
0 ≥ κ/(4ε2). In fact, for any ψh ∈ V∗h,

d2G

ds2
[z + sψ]

∣∣∣∣
s=0

= a
(n)
0 ‖ψ‖

2 + ε2κ ‖∆hψ‖2 + 3κ ‖∇hz · ∇hψ‖2 − κ ‖∇hψ‖2

≥ a(n)
0 ‖ψ‖

2 + ε2κ ‖∆hψ‖2 + κ
〈
ψ,∆hψ

〉
8



≥
(
a

(n)
0 − κ

4ε2
)
‖ψ‖2 ≥ 0,

where the Cauchy–Schwarz inequality and Young’s inequality have been used in third step.
Next, we show that the functional G[z] is coercive on V∗h,

G[z] ≥ a
(n)
0

2

∥∥z − φn−1
∥∥2

+
〈
Ln−1, z − φn−1

〉
+
κ

4
‖∇hz‖4l4 −

κ

2
‖∇hz‖2

≥ κ ‖∇hz‖2 −
1

2a
(n)
0

∥∥Ln−1
∥∥2 − 9κ

4
|Ωh| ,

where the inequality ‖∇hz‖4l4 ≥ 6 ‖∇hz‖2 − 9 |Ωh|, due to the fact
〈
(|∇hz|2 − 3)2, 1

〉
≥ 0, was

used in the last step. Thus the functional G[z] exists a unique minimizer, denote by φnh, if and
only if it solves the following equation

dG

ds
[z + sψ]

∣∣∣∣
s=0

=
〈
a

(n)
0 (z − φn−1) +

n−1∑
k=1

a
(n)
n−kOτφ

k + κε2∆hz − κ∇h · f(∇hz), ψ
〉

= 0.

This equation holds for any ψh ∈ V∗h if and only if the unique minimizer φnh ∈ V∗h solves

a
(n)
0 (φnh − φn−1

h ) +
n−1∑
k=1

a
(n)
n−kOτφ

k
h + κε2∆hφ

n
h − κ∇h · f(∇hφnh) = 0,

which is just the scheme (2.7). The proof is completed.
Note that, the time-step restriction (2.10) of solvability is sharp in the sense that it is

compatible with that of the backward Euler scheme (2.8), that is,

τn ≤ α
√

4ω2−α(1)ε2/κ −→ τn ≤ 4ε2/κ as α→ 1−.

3 L2 norm error estimate

This section presents the rigorous convergence analysis in the L2 norm. We use the standard
semi-norms and norms of the Sobolev space Hm(Ω). Let C∞per(Ω) be a set of infinitely differ-
entiable L-periodic functions defined on Ω, and Hm

per(Ω) be the closure of C∞per(Ω) in Hm(Ω),
endowed with the semi-norm |·|Hm

per
and the norm ‖·‖Hm

per
. For the simplicity of notation, we

denote |·|Hm := |·|Hm
per

, ‖·‖Hm := ‖·‖Hm
per

, and ‖·‖L2 := ‖·‖H0 .

We recall the L2-projection operator PM and interpolation operator IM defined in Section
2, and denote the L2-projection of exact solution ΦM := PMΦ. The following lemma lists the
projection error PMv − v, and the interpolation error IMv − v in Sobolev space.

Lemma 3.1 [25] For any v ∈ Hq
per(Ω) and 0 ≤ s ≤ q, it holds that

‖PMv − v‖Hs ≤ Chq−s |v|Hq , ‖PMv‖Hs ≤ C ‖v‖Hs ;

and, in addition if q > 1,

‖IMv − v‖Hs ≤ Chq−s |v|Hq , ‖IMv‖Hs ≤ C ‖v‖Hs .
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3.1 Global consistency error

Numerical tests in [12] show that the TFMBE equation (1.5) admits a weak singularity near
the initial time, like ∂tΦ = O(tα−1). To complete the convergence analysis on nonuniform time
meshes, it is reasonable to assume that,∥∥Φ

∥∥
Hm+4 ≤ Cφ,

∥∥∂αt Φ
∥∥
Hm ≤ Cφ and

∥∥∂(l)
t Φ

∥∥
Hm ≤ Cφ(1 + tα−l), (3.1)

for 0 < t ≤ T and l = 1, 2, where m ≥ 0 is an integer, Cφ denotes a generic positive constant.
Such a regularity assumption on the exact solution of time-fractional phase field models with
the Caputo time derivative is standard in the numerical analysis [3, 7, 13,22,28].

The analytical solution of the TFMBE equation (1.5) is weak singular at the initial time
but regular away from the initial time. We put a grading parameter γ ≥ 1 and assume that

AG. there exists a constant Cγ , independent on the mesh, satisfies that the time-step sizes

τk ≤ τ min{1, Cγt1−1/γ
k } for 1 ≤ k ≤ N and tk ≤ Cγtk−1 for 2 ≤ k ≤ N .

If the parameter γ = 1, that means the mesh is quasi-uniform. As γ increases, the initial
step sizes are graded-like and become smaller compared to the others. On the other side, the
assumption AG restricts only the maximum step size for the time mesh away from the initial
time, so that the step sizes can be adjusted according to the solution behaviors. This point is
very important in simulating the TFMBE model (1.5) because it admits complex multi-scale
behaviors in the long-time coarsening dynamics, cf. Figures 2 and 4 in Section 5.

Let Υj = (∂αt v)(tj) − (∂ατ v)j denote the local consistency error of the variable-step L1
formula (2.1) at the time t = tj . We have the following results for the global convolution

approximation error
∑n

j=1 p
(n)
n−j |Υj |, see [17, Lemma 3.1 and Lemma 3.3].

Lemma 3.2 [17, Lemma 3.1] For v ∈ C2(0, T ] with
∫ T

0 t|vtt| dt < ∞, the global consistency
error of the L1 formula (2.1) is bounded by

n∑
j=1

p
(n)
n−j |Υ

j | ≤ 2

n∑
k=1

p
(n)
n−ka

(k)
0

∫ tk

tk−1

(t− tk−1)|vtt| dt.

We note that, the error bound in Lemma 3.2 is valid on arbitrary time meshes and is
asymptotically compatible with the (global) truncation error of the backward Euler scheme
(2.8). Actually, one has

n∑
k=1

p
(n)
n−ka

(k)
0

∫ tk

tk−1

(t− tk−1)|vtt|dt −→
n∑
k=1

∫ tk

tk−1

(t− tk−1)|vtt| dt as α→ 1−.

As desired, the limit is of temporal order O(τ). On the other hand, the error bound in the next
Lemma is not asymptotically compatible in the fractional order limit α → 1−. This defect is

mainly due to the lack of some proper estimates for the DCC kernels p
(n)
n−k; however, it remains

open to us up to now.
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Lemma 3.3 [17, Lemma 3.3] If v satisfies (3.1) and the meshes satisfy the assumption AG,
then the global consistency error of the L1 formula (2.1) can be bounded by

n∑
j=1

p
(n)
n−j |Υ

j | ≤ Cv
α(1− α)

τmin{2−α,γα} for 1 ≤ n ≤ N.

3.2 L2 norm error estimate

We are in a position to present the L2 norm error estimate for the variable-step L1 scheme
(2.7). The involving notation Eα(z) :=

∑∞
k=0

zk

Γ(1+kα) denotes the Mittag–Leffler function.

Theorem 3.1 Assume that the unique solution Φ of the TFMBE equation (1.5) satisfies the
regular condition (3.1). If the time-step size

τn ≤ α
√

2ω2−α(1)ε2/κ, (3.2)

then the numerical solution of the adaptive time-stpping L1 scheme (2.7) is unconditionally
convergent in the discrete L2 norm,

‖Φn − φn‖ ≤ 2Eα

( κtαn
2ε2r∗

)(
Cφt

α
nh

m + max
1≤j≤n

j∑
k=1

p
(j)
j−ka

(k)
0

∫ tk

tk−1

(t− tk−1)
∥∥∂ttΦ∥∥dt

)
(3.3)

where r∗ := min1≤k≤N{1, rk} is the minimum step-ratio.

Proof We establish the error estimate for the fully implicit L1 scheme (2.7) with the help
of finite Fourier projection. The whole proof is divided into three steps.

Step1: Consistency error from projection (spatial discretization) Replacing the
solution Φ, the spatial operators ∆ and∇ with the projected solution ΦM , the discrete operators
∆h and ∇h at the collocation points xh ∈ Ωh, respectively, one obtains

∂αt ΦM (xh, t) = −κε2∆2
hΦM + κ∇h · f(∇hΦM ) + ξh. (3.4)

Next, the L2 norm of the consistency error ξh will be evaluated. By subtracting (1.5) from
(3.4), and applying the triangle inequality, one finds

‖ξ‖ ≤ ‖∂αt (Φ− ΦM )‖+ κε2
∥∥∆2Φ−∆2

hΦM

∥∥+ κ ‖∇ · f(∇Φ)−∇h · f(∇hΦM )‖ . (3.5)

Following the proof of [15, Theorem 3.1], one can apply Lemma 3.1 with the assumption (3.1)
to find that∥∥∆2Φ−∆2

hΦM

∥∥ ≤ Cφhm and ‖∇ · f(∇Φ)−∇h · f(∇hΦM )‖ ≤ Cφhm.

The projected time derivative ∂αt ΦM is the truncation of ∂αt Φ, for any t > 0. Similarly, by
using Lemma 3.1 and the setting (3.1), one has∥∥∂αt (ΦM − Φ

)∥∥ ≤ Cφhm ‖∂αt Φ‖Hm ≤ Cφhm.

11



In summary, we obtain that ‖ξ‖ ≤ Cφhm for t > 0 and then

‖ξ(tn)‖ ≤ CΦh
m for n ≥ 1.

Step2: Solution error from projection By replacing the numerical solution with the
projection Φn

M (xh) in the equation (2.7), one has

(∂ατ ΦM )n = −κε2∆2
hΦn

M + κ∇h · f(∇hΦn
M ) + Υn

h + ξnh for n ≥ 1, (3.6)

where Υn
h denotes the temporal consistency error, and ξnh := ξh(tn) is introduced from the

projection equation (3.4). According to Lemma 2.1, it is easy to derive that

n∑
j=1

p
(n)
n−j

∥∥ξj∥∥ =
n∑
j=1

p
(n)
n−j ‖ξ(tj)‖ ≤ Cφω1+α(tn)hm for n ≥ 1. (3.7)

Define Φn
M := ΦM (·, tn). Let enh := Φn

M − φnh be the error between the finite Fourier projection
Φn
M and the numerical solution φn for any xh ∈ Ω̄h. By subtracting the computational scheme

(2.7) from (3.6), we get the following error system

(∂ατ eh)n = −κε2∆2
he
n
h + κ∇h ·

(
f(∇hΦn

M )− f(∇hφnh)
)

+ Υn
h + ξnh ,

with the zero-valued data e0
h = 0. By taking the discrete inner product with en and using the

discrete Green’s formula, one gets

〈(∂ατ e)n, en〉 = −κε2 ‖∆he
n‖2 + κ ‖∇hen‖2 − κ 〈I,∇hen〉+ 〈Υn + ξn, en〉 , (3.8)

where the nonlinear term

I := |∇hΦn
M |2∇hΦn

M − |∇hφn|2∇hφn.

For any vectors u,v ∈ R2, it is not difficult to check that〈
|u|2u− |v|2v,u− v

〉
=

1

2

∥∥|u|2 − |v|2∥∥2
+

1

2

∥∥ |u− v| (|u|2 + |v|2)
∥∥2 ≥ 0,

which implies the nonlinear term 〈I,∇hen〉 ≥ 0. Thus the equation (3.8) reduces into

〈(∂ατ e)n, en〉 ≤ −κε2 ‖∆he
n‖2 + κ ‖∇hen‖2 + 〈Υn + ξn, en〉 , (3.9)

For the term in left side of (3.9), by applying the decreasing property of the L1 kernels a
(n)
n−k,

we get the following inequatity

〈
(∂ατ e)

n, en
〉
≥
∥∥en∥∥ n∑

k=1

a
(n)
n−kOτ

∥∥ek∥∥. (3.10)

For the second term at the right side of (3.9), the Young’s inequality also yields

‖∇hen‖2 ≤ ‖∆he
n‖ ‖en‖ ≤ ε2 ‖∆he

n‖2 +
1

4ε2
‖en‖2 . (3.11)
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Inserting the above estimates (3.10)-(3.11) into (3.9), we obtain

∥∥en∥∥ n∑
k=1

a
(n)
n−kOτ

∥∥ek∥∥ ≤ κ

4ε2
‖en‖2 + ‖Υn‖ ‖en‖+ ‖ξn‖ ‖en‖ ,

which in turn gives the following estimate

n∑
k=1

a
(n)
n−kOτ

∥∥ek∥∥ ≤ κ

4ε2
‖en‖+ ‖Υn‖+ ‖ξn‖ .

Under the time-step restriction (3.2), the well-known discrete fractional Grönwall inequality [16,
Theorem 3.2] yields

‖en‖ ≤ 2Eα

( κtαn
2ε2r∗

)(
Cφt

α
nh

m + max
1≤j≤n

j∑
k=1

p
(j)
j−ka

(k)
0

∫ tk

tk−1

(t− tk−1)
∥∥∂ttΦ∥∥dt

)
, (3.12)

where Lemma 3.2 and the bound (3.7) were applied.
Step3: Error estimate Lemma 3.1 gives the error of finite Fourier projection,

‖Φn
M − Φn‖ = ‖IM (Φn

M − Φn)‖L2 ≤ Cφ ‖Φn − Φn
M‖L2 ≤ Cφhm |Φn|Hm . (3.13)

The triangle inequality with the estimates (3.12) and (3.13) gives the claimed result.
The L2 norm error estimate (3.3) is asymptotically compatible with that of the backward

Euler scheme (2.8) in the limit α → 1−. As remarked for Lemma 3.2, we see that the error
estimate (3.3) of the variable-step L1 scheme (2.7) is α-robust (not necessarily at the optimal
convergence rate) in the sense of [6], in which an α-robust bound was derived for the L1 formula.
Interested readers can follow the approach of [6] to obtain the α-robust estimate with optimal
convergence order on graded meshes. We emphasize that the presented α-robust error estimate
(3.3) is also mesh-robust for any finite r∗.

Corollary 3.1 Assume that the unique solution Φ of the TFMBE equation (1.5) satisfies the
regular condition (3.1). If the meshes satisfy AG and (3.2), it holds that

‖Φn − φn‖ ≤
Cφ

α(1− α)
Eα

( κtαn
2ε2r∗

)(
tαnh

m + τmin{2−α,γα}) for 1 ≤ n ≤ N.

The optimal accuracy is O(τ2−α) if the grading parameter γ ≥ max{1, (2− α)/α}.

4 Energy dissipation law and L2 norm stability

The following lemma shows a discrete gradient structure of the L1 fromula (2.1), which plays
an important role in the construction of discrete variational energy law.

Lemma 4.1 For any real sequence {vk}nk=1, it holds that

2vn

n∑
j=1

a
(n)
n−jvj ≥ a

(n)
0 v2

n +
n∑
k=1

p
(n)
n−k

( k∑
j=1

a
(k)
k−jvj

)2
−
n−1∑
k=1

p
(n−1)
n−1−k

( k∑
j=1

a
(k)
k−jvj

)2
.
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Proof From [21, Lemma 2.4], for any real sequence {wk}nk=1, it holds

2wn

n∑
k=1

θ
(n)
n−kwk ≥

n∑
k=1

p
(n)
n−kw

2
k −

n−1∑
k=1

p
(n−1)
n−1−kw

2
k +

1

θ
(n)
0

( n∑
k=1

θ
(n)
n−kwk

)2
, (4.1)

where θ
(n)
n−k are the DOC kernels with respect to the L1 kernels a

(n)
n−j . We define

vj :=

j∑
k=1

θ
(j)
j−kwk.

Multiplying both sides of this identity by the L1 kernels a
(n)
n−j and summing j from j = 1 to n,

we obtain

n∑
j=1

a
(n)
n−jvj =

n∑
j=1

a
(n)
n−j

j∑
k=1

θ
(j)
j−kwk =

n∑
k=1

wk

n∑
j=k

a
(n)
n−jθ

(j)
j−k = wn.

The desired inequality is verified by inserting the above formulas of vj and wn into (4.1).
We define a discrete counterpart of the variational energy (1.6) as follows

Eα[φ0] := E[φ0] and Eα[φn] := E[φn] +
κ

2

n∑
j=1

p
(n)
n−j
∥∥µj∥∥2

for n ≥ 1, (4.2)

where E[φn] denotes the discrete counterpart of free energy (1.1),

E[φn] :=
ε2

2
‖∆hφ

n‖2 +
1

4

∥∥ |∇hφn|2 − 1
∥∥2
.

Here, the DCC kernels p
(n)
n−j would be regarded as the discrete kernels of the Riemann-Liouville

fractional integral Iαt , see [16], (Iαt v)(tn) ≈
∑n

j=1 p
(n)
n−jv

j .

Theorem 4.1 Under the time step restriction (2.10), the L1 scheme (2.7) preserves the vari-
ational energy dissipation law at each time level,

∂τEα[φn] ≤ 0 for 1 ≤ n ≤ N. (4.3)

Proof By taking the inner product of (2.7) with Oτφn, it is easy to find〈 n∑
k=1

a
(n)
n−kOτφ

k,Oτφ
n
〉

+ κε2 〈∆hφ
n,∆hOτφ

n〉+ κ 〈f(∇hφn),∇hOτφn〉 = 0. (4.4)

For the first term on the left hand side, by taking vk = Oτφk in Lemma 4.1, we have

〈 n∑
k=1

a
(n)
n−kOτφ

k,Oτφ
n
〉
≥ κ2

2

n∑
k=1

p
(n)
n−k
∥∥µk∥∥2 − κ2

2

n−1∑
k=1

p
(n−1)
n−1−k

∥∥µk∥∥2
+
a

(n)
0

2
‖Oτφn‖2 .
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By using Young’s inequality, one has〈
|∇hφn|2∇hφn,∇hφn−1

〉
≤ 3

4
‖∇hφn‖4l4 +

1

4

∥∥∇hφn−1
∥∥4

l4
.

Then the nonlinear term can be bounded by〈
|∇hφn|2∇hφn,∇hOτφn

〉
= ‖∇hφn‖4l4 −

〈
|∇hφn|2∇hφn,∇hφn−1

〉
≥ 1

4

(
‖∇hφn‖4l4 −

∥∥∇hφn−1
∥∥4

l4

)
.

Furthermore, the identity 2a(a− b) = a2 − b2 + (a− b)2 yields

ε2
〈
∆hφ

n,∆hOτφ
n
〉

=
ε2

2

(
‖∆hφ

n‖2 −
∥∥∆hφ

n−1
∥∥2

+ ‖∆hOτφ
n‖2

)
,

−
〈
∇hφn,∇hOτφn

〉
=

1

2

( ∥∥∇hφn−1
∥∥2 − ‖∇hφn‖2 − ‖∇hOτφn‖2

)
.

Thus collecting the above estimates, it follows from (4.4) that

Eα[φn]− Eα[φn−1] +
ε2

2
‖∆hOτφ

n‖2 − 1

2
‖∇hOτφn‖2 +

a
(n)
0

2κ
‖Oτφn‖2 ≤ 0. (4.5)

By using the Young’s inequality, one gets

‖∇hOτφn‖2 ≤ ‖∆hOτφ
n‖ · ‖Oτφn‖ ≤ ε2 ‖∆hOτφ

n‖2 +
1

4ε2
‖Oτφn‖2 .

Then we have

Eα[φn]− Eα[φn−1] +
1

2κ

(
a

(n)
0 − κ

4ε2
)
‖Oτφn‖2 ≤ 0. (4.6)

Under the time-step restriction (2.10), the claimed inequality follows immediately.

Note that the DCC kernels satisfy p
(n)
n−j → τj for 1 ≤ j ≤ n as α→ 1−. Then one has

Eα[φn] −→ E[φn] +
κ

2

n∑
j=1

τj
∥∥µj∥∥2

as α→ 1−. (4.7)

We see that the discrete variational energy dissipation law (4.3) is asymptotically compatible
with the classical energy law (2.9) of the backward Euler scheme, that is,

∂τEα[φn] ≤ 0 −→ ∂τE[φn] +
κ

2
‖µn‖2 ≤ 0 as α→ 1−.

Theorem 4.2 The discrete solution φn of the variable-step L1 scheme (2.7) is unconditionally
L2 norm stable in the sense that∥∥φn∥∥2 ≤

∥∥φ0
∥∥2

+
κ

2
|Ωh|ω1+α(tn). (4.8)
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Proof By taking the L2 inner product of the nonuniform L1 scheme (2.7) with φn, then
adding up two results and using the discrete Green’s formula, we obtain〈 n∑

k=1

a
(n)
n−kOτφ

k, φn
〉

+ κε2 ‖∆hφ
n‖2 + κ 〈f(∇hφn),∇hφn〉 = 0. (4.9)

One applies the decreasing property of a
(n)
n−k to get

〈 n∑
k=1

a
(n)
n−kOτφ

k, φn
〉
≥ 1

2

n∑
k=1

a
(n)
n−kOτ

∥∥φk∥∥2
. (4.10)

For the nonlinear term at the left hand side, it holds that

〈f(∇hφn),∇hφn〉 =
∥∥|∇hφn|2 − 1

2

∥∥2 − 1

4
|Ωh| ≥ −

1

4
|Ωh| . (4.11)

Inserting above estimates (4.10) and (4.11) into (4.9), one yields,

n∑
k=1

a
(n)
n−kOτ

∥∥φk∥∥2 − κ

2
|Ωh| ≤ 0. (4.12)

We replace the index n with j in above inequality, then multiply by p
(n)
n−j and sum over j from

1 to n to obtain

n∑
j=1

p
(n)
n−j

j∑
k=1

a
(j)
j−kOτ

∥∥φk∥∥2 − κ

2
|Ωh|

n∑
j=1

p
(n)
n−j ≤ 0. (4.13)

By exchanging the order of summation, one applies the complementary identity (2.6) to get

n∑
j=1

p
(n)
n−j

j∑
k=1

a
(j)
j−kOτ

∥∥φk∥∥2
=

n∑
k=1

Oτ
∥∥φk∥∥2

n∑
j=k

p
(n)
n−ja

(j)
j−k =

n∑
k=1

Oτ
∥∥φk∥∥2

=
∥∥φn∥∥2 −

∥∥φ0
∥∥2
.

Thus, by using Lemma 2.1, it follows from (4.12) that∥∥φn∥∥2 ≤
∥∥φ0

∥∥2
+
κ

2
|Ωh|ω1+α(tn).

The proof is completed.
As the fractional order α→ 1−, the L2 norm boundedness (4.8) is asymptotically compatible

with the L2 norm solution estimate of backward Euler scheme, that is,∥∥φn∥∥2 ≤
∥∥φ0

∥∥2
+
κ

2
|Ωh| tn.

This estimate can be derived by following the proof of Theorem 4.2.
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Remark 1 Consider the convex splitting scheme [8, 11] for the TFMBE model (1.5),

(∂ατ φh)n = −κµnh with µnh = ε2∆2
hφ

n
h −∇h · (|∇hφnh|∇hφnh) + ∆hφ

n−1
h .

It is not difficult to check that this scheme is volume conservative and unconditionally solvable.
With slight modifications to the proofs of Theorems 4.1 and 4.2, one can show that the convex
splitting scheme is unconditionally stable with respect to the discrete energy and the L2 norm.
That is to say, the time-step requirements for the solvability and stability are about τn = O(1).
Nonetheless, the α-robust, first-order convergence still requires the time-step restriction (3.2).
In this case, the condition (3.2) is not a CSS-consistent time-step constraint.

5 Numerical experiments

In this section, we present several numerical examples to test the accuracy and efficiency of the
L1 scheme (2.7) for the TFMBE model (1.5). We use a simple fixed-point iteration algorithm
with the termination error 10−12 to solve the resulting nonlinear equations at each time step.
Also, the sum-of-exponentials technique [17] with the absolute tolerance error ε = 10−12 is
employed to speed up the convolution computation of the L1 formula (2.1).

5.1 Convergence test

We present an accuracy check for the L1 scheme (2.7). The time accuracy is focused on and
the spatial error (standard spectral accuracy produced by the Fourier pseudo-spectral method)
is negligible. The experimental convergence order in time is computed by

Order :=
log (e(N)/e(2N))

log (τ(N)/τ(2N))
,

where the discrete L2 norm error e(N) := max1≤n≤N ‖Φn − φn‖ and τ(N) denotes the maxi-
mum time-step size for total N subintervals.

Table 2: Temporal error of (2.7) for α = 0.8 with γopt = 1.5.

N τ
γ = 1

τ
γ = 1.5

τ
γ = 2

e(N) Order e(N) Order e(N) Order

40 2.50e-02 1.76e-01 − 4.77e-02 4.12e-02 − 5.81e-02 1.54e-02 −
80 1.25e-02 1.01e-01 0.80 2.48e-02 1.79e-02 1.27 2.75e-02 6.20e-03 1.22
160 6.25e-03 5.82e-02 0.80 1.24e-02 7.80e-03 1.19 1.41e-02 2.64e-03 1.28
320 3.13e-03 3.34e-02 0.80 6.33e-03 3.40e-03 1.24 7.05e-03 1.14e-03 1.20

min{γα, 2− α} 0.80 1.20 1.20

Example 5.1 To calculate the errors in the mesh refinement tests, we consider an exact so-
lution Φ = ω1+α(t) sin(x) sin(y) of the TFMBE model with a proper forcing term g(x, t), i.e.,
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Table 3: Temporal error of (2.7) for α = 0.4 with γopt = 4.

N τ
γ = 3

τ
γ = 4

τ
γ = 5

e(N) Order e(N) Order e(N) Order

40 5.95e-02 5.03e-02 − 6.13e-02 1.35e-02 − 6.65e-02 9.27e-03 −
80 3.06e-02 2.19e-02 1.25 3.02e-02 4.44e-03 1.56 3.56e-02 3.75e-03 1.45
160 1.55e-02 9.54e-03 1.22 1.66e-02 1.47e-03 1.86 1.64e-02 1.18e-03 1.49
320 7.60e-03 4.15e-03 1.17 8.49e-03 4.88e-04 1.64 8.09e-03 3.78e-04 1.62

min{γα, 2− α} 1.20 1.60 1.60

∂αt Φ + κ
(
ε2∆2Φ−∇ · f(∇Φ)

)
= g(x, t). We solve it in the domain Ω = (0, 2π)2 with periodic

boundary condition by taking the model parameters κ = 1 and ε = 0.5.

The spatial computational domain is divided into a 1282 uniform mesh. The finial time
is set as T = 1. We divided the time interval [0, T ] into two parts, [0, T0] and [T0, T ], with
total N subintervals. In the interval [0, T0], we apply the graded time mesh tk = (k/N0)γ

for 0 ≤ k ≤ N0, where T0 = min{1/γ, T} and N0 = d N
T+1−γ−1 e. The random time meshes

with τN0+k := (T − T0)εk/S1 for 1 ≤ k ≤ N1 are used in the remainder interval [T0, T ] where
N1 := N −N0, S1 =

∑N1
k=1 εk and εk ∈ (0, 1) are random numbers.

By setting different grading parameters γ, the numerical results in Table 2 and Table 3 are
computed for the cases of α = 0.8 and α = 0.4, respectively. It is seen from the tables that
when the graded parameters γ < γopt := (2−α)/α, the L1 scheme (2.7) is of order O(τγα). In
addition, when γ ≥ γopt, the optimal accuracy can reach to O(τ2−α). These results perfectly
support the sharpness of our theoretical findings.

5.2 Simulation of coarsening dynamics

In this subsection, we will simulate the coarsening dynamics of the TFMBE model. We choose
some appropriate adaptive time-stepping strategy and depict the numerical behaviors of the
original energy E and the variational energy Eα during the coarsening process.

Example 5.2 We carry out a standard benchmark problem with the model parameters κ = 1
and ε2 = 0.1, and the initial data φ(x, 0) = 0.1 (sin (3x) sin (2y) + sin (5x) sin (5y)) .

Table 4: Comparisons of CPU time (in seconds) and total time steps.

Adaptive parameter η = 10 η = 102 η = 103 uniform step

CPU time 178.07 222.81 329.54 1666.83
Time steps 1156 1496 2669 20048

The TFMBE model has obvious multi-scale behaviors in time [12] and the variable-step
L1 scheme (2.7) is shown to be robustly stable and convergent on arbitrary time meshes, see
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Figure 2: Numerical comparisons of energy evolutions using uniform time step and adaptive
time-stepping strategy with different adaptive parameters η.

Theorems 4.1 and 3.1. So certain adaptive time-stepping approach is reasonably adopted in
our numerical simulations because it not only can capture the rapid changes of energy and
numerical solution in a short time, but also can improve the calculation efficiency with large
time-steps when the solution varies slowly.

We select the time steps according to the change rate of the numerical solution with the
following adaptive time-stepping strategy, cf. [21],

τada = max

{
τmin,

τmax√
1 + η‖∂τφn‖2

}
,

where τmax and τmin are the predetermined maximum and minimum size of time-steps, and η
is a user parameter to be determined. The space domain (0, 2π)2 is discretized by 128 × 128
meshes during calculation. In additional, let τN0 := τmin when the graded mesh is applied in
the initial cell [0, T0] and the adaptive time-stepping strategy is employed in the remainder
interval [T0, T ], in which N0 is determined by τN0 = tN0 − tN0−1.

In order to determine a suitable parameter η, we take τmax = 10−1, τmin = 10−3, and
consider three different parameters η = 10, 100 and 103. The reference solution is computed
by using the uniform time step τ = 5 × 10−3. As seen in Figure 2, the value of parameter η
evidently influences on the adaptive sizes of time steps. Specially, when η = 103, the time-steps
have the smallest fluctuation, and the L1 scheme can accurately capture the changes of original
energy E and modified energy Eα over the time.

The corresponding CPU cost (in seconds) and the number of adaptive time levels are listed
in Table 4. We observe that, at least for this example, η = 103 is a good choice because it
seems computationally more efficient than other cases using the parameters η = 10, η = 102,
and using the uniform step size. As desired, the original energy E monotonously decays over
the time although we can not verify it theoretically. On the other hand, as expected by our
analysis, the modified energy Eα monotonously decays in the coarsening dynamics.

Next, by taking τmax = 10−1, τmin = 10−3 and the parameter η = 103 in the above
adaptive time-stepping strategy, we run the L1 scheme (2.7) for three different fractional orders
α = 0.4, 0.7 and 0.9 until the final time T = 100. The profiles of coarsening dynamics with
different fractional orders α = 0.4, 0.7 and 0.9 for the TFMBE model (1.5) are shown in Figure
3, where the snapshots of solution profiles are taken at time t = 1.3, 3.0, 10 and 50, respectively.
We observe that the coarsening rates are always dependent on the fractional order and the time
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Figure 3: Time snapshots of TFMBE model (5.2) with ε2 = 0.1 at t = 1.3, 3.0, 10, 50 (from left
to right) for fractional orders α = 0.4, 0.7, 0.9 (from top to bottom), respectively.

Figure 4: Curves of original energy E(t), variational energy Eα(t) and adaptive time steps τn
generated for different fractional orders α.

period, but they all approach the steady state near t = 50. The curves of original energy E and
the variational energy Eα over the time interval t ∈ [0, 100] are depicted in Figure 4. The initial
energy decays rapidly in all cases, while it decays slower for the smaller fractional order α. As
the time goes on, the evolution dynamics reach the same steady state in the end for different
fractional orders. These results are in accordance with the previous observations in [5, 12].
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