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Abstract

In this paper, Particle-in-Cell algorithms for the Vlasov–Poisson system are presented based on its Poisson bracket

structure. The Poisson equation is solved by finite element methods, in which the appropriate finite element spaces are

taken to guarantee that the semi-discretized system possesses a well defined discrete Poisson bracket structure. Then,

splitting methods are applied to the semi-discretized system by decomposing the Hamiltonian function. The resulting

discretizations are proved to be Poisson bracket preserving. Moreover, the conservative quantities of the system are

also well preserved. In numerical experiments, we use the presented numerical methods to simulate various physical

phenomena. Due to the huge computational effort of the practical computations, we employ the strategy of parallel

computing. The numerical results verify the efficiency of the new derived numerical discretizations.

Keywords: Vlasov–Poisson system, Poisson bracket, Finite element method, Structure-preserving algorithm,

Hamiltonian splitting method

1. Introduction

The motion of charged particles under electromagnetic fields is the most fundamental physical process in mag-

netized plasma. If only one particle is concerned, the dynamics can be described by the single particle model. If we

are researching the interactive dynamics of a large number of particles with self-consistent electromagnetic fields, the

kinetic model can be applied. In this model the Vlasov equation is applied together with the Maxwell equations or

the Poisson equation, and the coupled system is called the Vlasov–Maxwell (VM) system or Vlasov–Poisson (VP)

system respectively.

There are two main classes of numerical methods to solve the Vlasov type equations, the Eulerian method and the

particle method. The Eulerian method, also called the grid-based method, is to discretize the PDEs model on fixed

computational grid, and to carry out the time integration of the distribution function on mesh points. Various Eulerian

approaches such as finite element methods, finite volume methods and spectral methods etc. have been developed
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and applied to the plasma problems, see [24, 47, 56] and references therein. Different from the grid-based method

the Particle-in-Cell (PIC) approach is to approximate the distribution function by ‘super particles’ with the weighted

Klimontovich representation, and to follow the trajectories of super particles. Indeed, PIC has a relatively small

computational cost to conduct high dimensional simulations [16, 38]. Although the introduction of super particles

brings computational noise, it has been confirmed that the computational noise will decrease in the rate of 1/
√

Np

along the increasing number Np of particles. The numerical simulation using the PIC technique can reproduce well the

realistic physical phenomena [34, 5], and has been considered as an effective way to simulate plasmas of the kinetic

theory [13].

In most applications, there span a wide range of space and time scales for the problem, which demands numerical

simulations over large time intervals. Classcial numerical methods, such as RK4, can approximate the solution well

in the first few number of iterations. However, the numerical error accumulates rapidly over steps, and usually

leads to wrong numerical results after a large number of iterations [20]. One reason is that these methods can not

preserve the important conservative quantities of the original system. Structure-preserving algorithms (or geometric

numerical integrators) are designed to conserve the intrinsic properties of the original system, including the symplectic

structure, the Poisson structure, the invariant phase space volume, and constants of motions etc.. As a result the long-

term stability of the numerical results can be guaranteed [19, 29, 21]. In [33, 32], the K-symplectic algorithms and

the volume-preserving algorithms have been developed for solving the single particle equations. These numerical

algorithms provide the numerical simulations with bounded energy error, and the trajectories of particles are well

simulated over exponentially long simulation time.

It is known that the Vlasov–Maxwell system can be written as a Hamiltonian system with respect to the Morrison-

Marsden-Weinstein (MMW) Poisson bracket [45, 41]. The Vlasov–Poisson system can be taken as the reduced

Vlasov–Maxwell system. In this paper, we study the Poisson bracket structure of the Vlasov–Poisson system, and

verify that the Poisson bracket of the Vlasov–Poisson system has very closed relation to the MMW Poisson bracket.

As the Poisson bracket is usually not canonical, conventional time integrators are not structure-preserving. However,

the splitting technique [58, 42] can be applied. High-order Hamiltonian splitting methods have been developed for

Vlasov–Maxwell equations [57, 52, 31, 36, 38] and Vlasov–Poisson equations without magnetic fields [14, 8]. Corre-

spondingly, spatial discretizations should also be designed carefully to maintain the structure. For the VM system, with

the help of specially designed finite element spaces, the researchers [31, 36, 7] provide the semi-discrete system which

can conserve the discrete Poisson structure corresponding to the original one. In other ways, a discrete Poisson bracket

can also be obtained by applying discrete exterior calculus [57, 52, 36] and the variational principle [55, 18, 51]. On

the other hand, in simulations of magnetic confinement fusion, Vlasov equation with a strong non-homogeneous

magnetic field has aroused wide interest recently. Asymptotic preserving techniques [35, 59, 22, 28] and uniformly

accurate schemes [3, 9] are efficient and characteristic numerical methods for them.

In this paper, we have developed the Hamiltonian Particle-in-Cell methods for the VP system with an external

magnetic field. We first derive particle equations from the discretisation of the Vlasov equation, then the Poisson
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equation is solved by finite element methods, with the finite element spaces chosen such that the semi-discrete system

is Hamiltonian with a discrete Poisson structure. Furthermore, the Hamiltonian of the semi-discrete system is split into

two parts, each of which possesses the same Poisson structure and can be solved exactly. By composing the solutions

to the subsystems results in the Poisson-structure-preserving discretizations for the semi-discrete equations. In the

numerical simulations, the parallel technique has been employed, and the effectiveness of the resulting numerical

discretizations has been tested in numerical experiments.

The outline of the paper is as follows. In section 2, we introduce the various descriptions for the Vlasov equation.

For the VP equation, in section 3 we present the Hamiltonian formulation which is described with the defined Poisson

bracket structure. Furthermore, we apply the finite element methods to construct the numerical methods for VP

system in Section 4. The corresponding discrete Poisson bracket and the discrete Hamiltonian are also established

in this section. In Section 5, we split the Hamiltonian in order to construct the numerical discretizations which can

preserve the dicrete Poisson bracket. We display the numerical results in Section 6. Finally, we conclude this paper.

2. Equations

In the kinetic model, the Vlasov equation is in the form

∂ f

∂t
+ v · ∂ f

∂x
+

F(x, v, t)

m
· ∂ f

∂v
= 0,

where f (x, v, t) is the distribution function of position x ∈ Ωx ⊂ R3 and velocity v ∈ Ωv ⊂ R3 at time t, and F is the

force field acting on the particles. In most cases, the charged particles are considered to interact with the self-consistent

electromagnetic fields in vacuum. This yields the following Maxwell’s equations,

µ0ǫ0

∂E

∂t
= ∇ × B − µ0q

∫

Ωv

v f dv, ∇ · B = 0,

∂B

∂t
= −∇ × E, ǫ0∇ · E = q

∫

Ωv

f dv − qρ0,

where µ0 is the magnetic permeability, ǫ0 is the vacuum permittivity and the constant ρ0 is the charge density of ions.

Then the force is given by F = q(E + v × B) with q the charge. Choose the characteristic set of variables as they are

shown in Table 1. Set v̄ = c, we can derive the normalized equations,

∂ f

∂t
+ v · ∂ f

∂x
+ (E + v × B) · ∂ f

∂v
= 0,

∂E

∂t
= ∇ × B −

∫

Ωv

v f dv, ∇ · B = 0,

∂B

∂t
= −∇ × E, ∇ · E =

∫

Ωv

f dv − ρ0.

(1)

In the magnetostatic limit, i.e. the case of ∂B
∂t
→ 0, the magnetic field can be taken as a background field. Denote

the background magnetic field as B = B0(x), the charge density as ρ(x, t) =
∫

Ωv
f dv and the current density as

3



Names Symbols Units

Time t 1/ωp

Position x λ

Velocity v v̄

Distribution function f n0/v̄
3

Electric field E ωpv̄ m
q

Magnetic field B ωp
m
q

Table 1: Units of Normalization. Here, v̄ is the characteristic scale of v, ωp =

√

n0q2/mǫ0 is the electron plasma frequency with total number of

electrons by n0 =

∫

Ωx×Ωv
f dxdv, and λ = v̄/ωp.

J(x, t) =
∫

Ωv
v f dv. The VM system (1) is reduced to

∂ f

∂t
+ v · ∂ f

∂x
+ (E + v × B0) · ∂ f

∂v
= 0, (2)

∂E

∂t
= ∇ × B0 − J, ∇ · B0 = 0, (3)

∇ × E = 0, ∇ · E = ρ − ρ0. (4)

The total charge neutrality of the reduced system is ensured due to
∫

Ωx
(ρ − ρ0)dx = 0.

Notice that Maxwell’s equations (3) and (4) can be decoupled, thus the system can be treated in two different

ways. The first way is to consider Ampère’s equation,

∂E

∂t
= ∇ × B0 − J. (5)

It together with Eq.(2) is called the Vlasov–Ampère equation [17, 10, 11, 49].

Another way is to consider Faraday’s law and Gauss’s equation,

∇ × E = 0, ∇ · E = ρ − ρ0.

By introducing the electric potential φ f , it follows that

E(x, t) = −∇φ f (x, t), −∆φ f = ρ(x, t) − ρ0. (6)

Combining Eqs.(2) and (6) derives the so-called Vlasov–Poisson equations.

As above, we have introduced two different reduced equations: the Vlasov–Poisson equation (2,6) and the Vlasov–

Ampère equation (2,5). Moreover, the two equations are connected. By taking the divergence and curl of Ampère’s

equation (5), Eqs.(4) can be derived under the continuity condition
∂ρ

∂t
+∇ · J = 0 and ∇× J = ∆B0, and the following

restriction of the initial electric field,

∇ · E(x, 0) − ρ(x, 0) + ρ0 = 0, ∇ × E(x, 0) = 0.
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Therefore, the solution of the Vlasov–Ampère equation under the above restrictions is a solution to the Vlasov–

Poisson equation. In one dimensional case, in order to connect the solution of the Vlasov–Poisson equation to the

solution of the Vlasov–Ampère equation [2], we can add the requirement
∫

Ωx
E(x, t)dx = 0 and the initial constraint

∫

Ωx×Ωv
v f (x, v, 0)dxdv = 0.

In this paper, we mainly focus on the numerical study for the Vlasov–Poisson equations described by (2) and (6).

In practical computation, the boundary conditions can be taken as zero, i.e., f (x, v, t) = 0 and φ f (x) = 0 on ∂Ωx. Also

the periodic boundary condition is used frequently.

3. Poisson bracket structure of Vlasov–Poisson equations

In this section, we introduce the Poisson bracket whose fundamental definition can be found in [48]. With the

following defined Poisson bracket, in this section we describe the Vlasov–Poisson equations (2) and (6) as the Poisson

bracket system.

Suppose F and G are two functionals of f , we define the bracket of two functionals as

{{F ,G}}( f ) =

∫

Ωx×Ωv

f

{

δF
δ f

,
δG
δ f

}

xv

dxdv +

∫

Ωx×Ωv

f B0 ·
(

∂

∂v

δF
δ f
× ∂

∂v

δG
δ f

)

dxdv, (7)

where
δG
δ f

is the variational derivative 1, and the operator {·, ·}xv is the canonical Poisson bracket of two functions

m(x, v) and n(x, v), that is

{m, n}xv =
∂m

∂x
· ∂n

∂v
− ∂m

∂v
· ∂n

∂x
.

It can be checked easily that the bracket (7) is bilinear and anti-symmetric. Furthermore, when B0 satisfies ∇ ·B0(x) =

0, the bracket yields the Jacobi identity which has been proved in Appendix A.

With the bracket (7), we can present the following system,

dF
dt
= {{F ,H}}, (8)

where F is any functional of the solution f , andH is the Hamiltonian functional and the global energy of the system,

H[ f ] =
1

2

∫

Ωx×Ωv

v2 f dxdv +
1

2

∫

Ωx

E2dx

=
1

2

∫

Ωx×Ωv

v2 f dxdv +
1

2

∫

Ωx×Ωv

φ f f dxdv − 1

2
ρ0

∫

Ωx

φ f dx.

(9)

In fact, by setting F [ f ] =
∫

Ωx×Ωv
f (x̃, ṽ, t)δ(x − x̃)δ(v − ṽ)dx̃dṽ, and defining the local energy h(x, v) = δH

δ f
(x, v) =

v2/2 + φ f (x), the formulation (8) leads to

∂ f

∂t
= −{ f , h}xv − B0 ·

(

∂ f

∂v
× ∂h

∂v

)

. (10)

1The variational derivative [46, 40]
δG
δ f

of a functional G[ f ] is defined by
∫

Ωx×Ωv

δG
δ f

δ f dxdv = lim
ǫ→0

G[ f + ǫδ f ] − G[ f ]

ǫ
.
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Eq. (10) recovers the Vlasov equation (2).

As a reduced model from the Vlasov–Maxwell equations, conservative properties of the Vlasov–Poisson system is

also of great importance. With the help of the Poisson bracket (7) and the formulation (8), the conservative properties

can be redescribed as follows.

Energy conservation. The total energy defined in (9) is invariant as

dH
dt
= {{H ,H}} = 0.

Momentum conservation. The total momentum P =
∫

Ωx×Ωv
v f dxdv is invariant when B0 = 0.

In fact, taking the derivative of P gives

dP
dt
= {{P,H}} = −

∫

Ωx

∇φ fρdx +

∫

Ωx×Ωv

(v × B0) f dxdv.

The first term vanishes due to the Poisson equation which is expressed as ∇ · E = ρ − ρ0,∇ × E = 0, because

−
∫

Ωx

∇φ fρdx =

∫

Ωx

E(∇ · E + ρ0)dx

= −
∫

Ωx

(∇ × E) × Edx + ρ0

∫

Ωx

Edx = 0.

Here,
∫

Ωx
Edx = 0 for zero or periodic boundary condition of φ f .

Casimir functional. Any functional in the form C[ f ] =
∫

Ωx×Ωv
C( f )dxdv is invariant, as it is a Casimir functional [46]

w.r.t the Poisson bracket (7) with B0 = 0. In fact, taking the bracket operation between C[ f ] and any functional G[ f ]

gives

{{C,G}} =
∫

Ωx×Ωv

{

f ,
δC
δ f

}

xv

δG
δ f

dxdv.

The above equation vanishes because
δC[ f ]

δ f
= C′( f ) is a function of f . Therefore, C[ f ] is an invariant for any PDE of

f equipped with the Poisson bracket (7), including the Vlasov equation, that is

dC
dt
= {{C,H}} = 0.

This provides a class of conservative quantities of the Vlasov–Poisson system (2,6). For instance, the integral

norm I =
∫

Ωx×Ωv
f pdxdv and the entropy S =

∫

Ωx×Ωv
f ln f dxdv of the system are invariant.

4. Spatial discretization for Vlasov–Poisson equations

In this section, we present the construction of numerical approach for solving the Vlasov–Poisson equations (2)

and (6).

According to the idea of PIC, the distribution function is sampled by a set of super particles. Assume that the

distribution function f is approximated by the Klimontovich representation

fh(x, v, t) =

Np∑

s=1

ωsδ(x − Xs(t))δ(v − Vs(t)), (11)
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where (Xs,Vs) is the s-th super particle’s coordinates in phase space, and ωs is the particle weight, Np is the number

of super particles. The Vlasov equation (2) is then transformed to particle equations,

Ẋs = Vs, V̇s =

∫

Ωx

(E(x, t) + Vs × B0(x)) δ(x − Xs)dx, s = 1, 2, . . .Np. (12)

We use finite element methods to solve the Poisson equation (6) with the Dirichlet boundary condition, i.e.

−∆φ f = ρ − ρ0 in Ωx, φ f (x, t) = 0 on ∂Ωx.

Let V be a Hilbert space and V ′ be the dual space of it. In the framework of finite element, the variational problem of

Poisson equation (6) is to find solutions φ ∈ V such that for any ψ ∈ V the following equation holds

(∇φ,∇ψ) = 〈ρ − ρ0, ψ〉 , ∀ψ ∈ V. (13)

Here, ρ − ρ0 ∈ V ′, ( ·, ·) is the inner product of V and 〈 ·, ·〉 is the pairing of elements of V ′ and V . It is known by the

Lax-Milgram theorem that the solution to the variational problem (13) is unique [39, 6].

In order to determine the proper space V , we refer to [31, 36, 51] where finite element discretizations have

been presented to derive Hamiltonian algorithms for the Vlasov–Maxwell equations. Given a linear operator D ∈
{grad, curl, div}, we denote the Sobolev spaces as

H(D,Ω) := {v ∈ L2(Ω),Dv ∈ L2(Ω)},

H0(D,Ω) := {v ∈ H(D,Ω), trace v = 0 on ∂Ω}.

Denote Hh(D,Ω) as the finite element subspace of H(D,Ω). For the finite element PIC discretisation of the Vlasov–

Maxwell equations (1), we have the following results. Here the perfect conducting boundary (PEC) conditions are

considered.

Proposition 1 ( [31]). Suppose that the fields E and B are discretised in spaces Eh ⊂ H0(curl,Ω) andBh ⊂ H0(div,Ω)

respectively. The approximate problem for Maxwell’s equations is to find (Eh,Bh) ∈ Eh × Bh such that

(∂tEh,Φ) = (Bh,∇ ×Φ) −




∑

s

ωsVsδ(x − Xs),Φ



 , ∀Φ ∈ Eh,

(∂tBh,Ψ) = − (∇ × Eh,Ψ) , ∀Ψ ∈ Bh.

If ∇ × Eh ⊂ Bh and ∇ · Bh = 0, the resulting semi-discrete system is Hamiltonian with a discrete Poisson structure.

To understand the above theorem, we can employ the following diagram. That is, in order to derive a discrete

Hamiltonian system, we need choose the finite element to satisfies the de Rham Complex diagram

H(grad)
grad
−−−−−−→ H(curl)

curl−−−−−−→ H(div)
div−−−−−−→ L2

π

y π

y π

y π

y

Hh(grad)
grad
−−−−−−→ Hh(curl)

curl−−−−−−→ Hh(div)
div−−−−−−→ L2,h

7



According to the above comment and the relation E = −∇φ, for E ∈ H0(curl,Ω) we can choose φ ∈ V =

H0(grad,Ωx).

The approximate problem of (13) is then to find φh ∈ Vh ⊂ H1
0
(Ωx) such that

(∇φh,∇ψh) = 〈ρh, ψh〉 , ∀ψh ∈ Vh. (14)

Here, ρh ∈ L2(Ωx) is the discrete version of ρ− ρ0. The inner product is defined by (f, g) =
∫

Ωx
f · gdx on space L2(Ωx)

and Vh is the finite-dimensional subspace. In particular, for all ψh ∈ H1
0
(Ωx) and ρh ∈ L2(Ωx) ⊂ H−1(Ωx), we have

(ρh, ψh) = 〈ρh, ψh〉, and the solution to the variational problem (14) is unique. Thus, the well studied finite element

spaces including linear element, quadratic Lagrange element, and Spline element etc. can be implemented.

Suppose that {W j(x)}N
j=1

are piecewise polynomial basis functions of the space Vh, then φh ∈ Vh can be expressed

as

φh(x, t) =

N∑

j=1

φ j(t)W j(x). (15)

In order to get an appropriate regularization of ρh, we introduce the regularizing function S ǫ(x) which satisfies
∫

Rd S (x)dx = 1 and S ǫ (x) = 1
ǫd S ( x

ǫ
) [53, 12, 27]. Here ǫ denotes the width of the kernel and d = 1, 2, 3.

Then, we define f ǫ
h
= fh ∗ S ǫ , that is f ǫ

h
(x, v, t) =

Np∑

s=1

ωsS ǫ(x − Xs(t))δ(v − Vs(t)). By means of S ǫ , we can choose

ρh(x) =
Np∑

s=1

ωsS ǫ (x − Xs) − ρ0 derived from ρh(x, t) =
∫

Ωv
f ǫ
h

(x, v, t)dv − ρ0. On the other hand, ρh can be projected to

the space Vh, which gives ρh(x) =
N∑

i=1

ρ jW j(x). This will help us in computation due to that (Wi,W j) can be calculated

easily, and ρh ∈ Vh ⊂ H1
0
⊂ L2.

Substitute Eq.(15) into Eq.(14) and take ψh = Wi, then we get the following approximate problem in matrix

formulation,
N∑

j=1

(

∇W j,∇Wi

)

φ j = (ρh,Wi) , i = 1 . . .N, (16)

where the solutions {φ j}Ni=1
are the functions of particle positions Xs, s = 1, 2, . . . ,Np. In order to get a vector

expression for the particles, we denote X = (XT
1
,XT

2
, . . . ,XT

Np
)T ∈ R3Np and V = (VT

1
,VT

2
, . . . ,VT

Np
)T ∈ R3Np . Then the

approximate electric field is

Eh(x,X, t) = −
N∑

j=1

φ j(X(t))∇W j(x). (17)

Substituting Eh into Eq. (12), we get the discrete particle equations for s = 1, 2, . . .Np,

Ẋs = Vs,

V̇s = −
N∑

j=1

φ j(X)∇W j(Xs) + Vs × B0(Xs).
(18)

Define the discrete bracket by discretizing the Poisson bracket (7) shown in Appendix B. Moreover, it is proved in

Appendix C that the following discrete bracket is Poisson as long as ∇ · B0(x) = 0. With the defined discrete Poisson

8



bracket, the semi-discrete system (18) is a Hamiltonian ODE system. For two arbitrary functions F and G of (X,V),

it reads

{F,G} (X,V) =

Np∑

s=1

1

ωs

(

∂F

∂Xs

· ∂G

∂Vs

− ∂G

∂Xs

· ∂F

∂Vs

)

+

Np∑

s=1

1

ωs

B0(Xs) ·
(

∂F

∂Vs

× ∂G

∂Vs

)

. (19)

Accordingly, by inserting (11) into (9) we can derive the following discrete Hamiltonian function,

H(X,V) = H[ fh] =
1

2

∫

Ωx×Ωv

v2 fhdxdv +
1

2

∫

Ωx

(∇φh) · (∇φh)dx

=
1

2

Np∑

s=1

ωsV
2
s +

1

2

N∑

j=1

N∑

k=1

φ j(X)φk(X)

∫

Ωx

∇W j(x) · ∇Wk(x)dx

(20)

For the finite element discretization, the discrete Hamiltonian function (20) is natural, and can be rewritten in matrix

form easily. With the discrete Poisson bracket (19) and the discrete Hamiltonian (20), the semi-discrete equations of

motion (18) can be recovered by

Ẋs = {Xs,H}, V̇s = {Vs,H}. (21)

As follows, we express the semi-discretised equations (21) by their matrix formulation. Introduce the following

notations for the field basis and variables:

Φ(X) = (φ1, φ2, . . . , φN)T(X) ∈ RN , M ∈ RN×N , with M jk =

∫

Ωx

∇W j(x) · ∇Wk(x)dx,

G(X) =





∇W1(X1) ∇W2(X1) · · · ∇WN(X1)

∇W1(X2) ∇W2(X2) · · · ∇WN(X2)

· · · · · · · · · · · ·
∇W1(XNp

) ∇W2(XNp
) · · · ∇WN(XNp

)





∈ R(3NP)×N ,

B̂(X) = diag(B̂0(X1), B̂0(X2), . . . , B̂0(XNp
)) ∈ R(3Np)×(3Np).

where B̂0 is the hat matrix w.r.t the vector B0. The hat matrix of a vector B = (Bx, By, Bz) is defined as

B̂ =





0 Bz −By

−Bz 0 Bx

By −Bx 0





. (22)

Denote the diagonal weight matrix Ω = diag(ω1, ω2, . . . , ωNp
) ∈ RNp×Np , and I as the 3-dimensional identity matrix.

Let

N = Ω ⊗ I ∈ R(3Np)×(3Np).

Therefore, the discrete Poisson bracket (19) can be reformulated in matrix form as

{F,G} (Z) =

Np∑

s=1

1

ωs

(
(
∂F
∂Xs

)T
,

(
∂F
∂Vs

)T
)





0 I

−I B̂0(Xs)









∂G
∂Xs

∂G
∂Vs





=
∂F

∂Z

T

K(X)
∂G

∂Z
,

(23)
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where Z = (X,V), and K(X) =





0 N−1

−N−1 N−1B̂(X)




is the Poisson matrix. With the above notations, the discrete

Hamiltonian (20) can be rewritten as,

H(X,V) =
1

2
VT

NV +
1

2
Φ(X)T

MΦ(X). (24)

The corresponding system (18) can be rewritten with Poisson matrix K(X), which is

Ẋ = V,

V̇ = G(X)Φ(X) + B̂(X)V.

(25)

With the help of the discrete Poisson bracket, the conservation of the discrete energy H(X,V) in Eq.(20) can be

easily verified, that is
dH

dt
= {H,H}(X,V) = 0.

Similarly, the total charge C =
∫

Ωx×Ωv
fhdxdv =

∑Np

s=1
ωs is invariant, as it is a Casimir function of the discrete Poisson

bracket (19),
dC

dt
= {C,H}(X,V) ≡ 0.

5. Temporal discretization for Vlasov–Poisson equations

In this section we are designing temporal discretisation for the Vlasov–Poisson equations that can preserve the

Poisson bracket structure. As the Poisson bracket is not canonical, traditional time integrators such as Runge-Kutta

methods can not be used to construct Poisson-structure-preserving methods. The idea of splitting technique is to split

the original system into several subsystems. Each subsystem can be solved exactly, and has the same structure as ones

for the original system [58, 42]. Thus, the composition of solutions to subsystems leads to numerical methods which

can preserve the structure of the original systems. High-order Hamiltonian splitting methods have been developed

for Vlasov–Maxwell equations [30, 38] and Vlasov–Poisson equations without magnetic fields [14, 8]. In this sec-

tion, for the non-canonical Hamiltonian ODE system (18) we establish the Poisson-structure-preserving methods via

Hamiltonian splitting.

We split the Hamiltonian as,

H = Hv + He, where Hv =
1

2

Np∑

s=1

ωsV
2
s , He =

1

2
Φ(X)MΦ(X).

With each part of the Hamiltonian, we can split the system into two parts,

Ż = {Z,Hv}, Ż = {Z,He}.

Each subsystem possesses the same Poisson bracket structure as the system (18). Thus the composition of solutions

to each subsystem preserves the Poisson bracket of the original system due the group property of Poisson bracket

structure.
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Associated with the Hamiltonian Hv, the subsystem is Ḟ = {F,Hv}. For the s-th particle it is,

Ẋs = Vs,

V̇s = Vs × B0(Xs).

(26)

When B0 is constant and |B0| = b, the exact update mapping of this subsystem (26) with step size ∆t is

φHv (∆t) :

Xs(t + ∆t) = Xs(t) + (∆tI +
1 − cos b∆t

b2
B̂0 +

b∆t − sin b∆t

b3
B̂2

0)Vs(t),

Vs(t + ∆t) = (I +
sin b∆t

b
B̂0 +

1 − cos b∆t

b2
B̂2

0)Vs(t).

(27)

where B̂0 is the hat matrix as in Eq.(22). Following the idea, we can also consider the problem in which B0 is

non-homogeneous. In this case, we need to split the subsystem corresponding to Hv further according to its new

decomposition Hv =
1
2
ωsV

2
sx +

1
2
ωsV

2
sy +

1
2
ωsV

2
sz. More detail can be seen in [30].

The equation Ḟ = {F,He} associated with the Hamiltonian He is

Ẋs = 0,

V̇s = −
N∑

j=1

φ j(X(t))

∫

Ωx

∇W j(x)δ(x − Xs)dx.
(28)

The exact update of this subsystem (28) with step size ∆t is

φHe(∆t) :

Xs(t + ∆t) = Xs(t),

Vs(t + ∆t) = Vs(t) − ∆t

N∑

j=1

φ j(X(t))

∫

Ωx

∇W j(x)δ(x − Xs)dx.
(29)

With the given exact solutions to the subsystems, Poisson integrators can be derived by the compositions of the

sub-flows (27) and (29). For example, the Poisson method of first order can be constructed by

Φ(∆t) = φHe(∆t) ◦ φHv(∆t),

and a second order symmetric method can be derived from

Φ(∆t) =φHv(∆t/2) ◦ φHe(∆t) ◦ φHv(∆t/2).

From the above, it is clear that these methods constructed by splitting can be implemented easily. More important,

these methods can preserve the discrete Poisson bracket.

At the end of this section, we present the algorithm framework which helps to understand the computation proce-

dure.

6. Numerical experiments

In this section, we present numerical experiments by using numerical methods presented in the previous section.

The resulting numerical discretizations are derived by combining splitting method in time and finite element dis-

cretization in space. To derive the numerical results more efficiently we employ the parallel technique which is run on

high performance computing workstation of LSEC Lab.
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Algorithm 1 Algorithm framework

Input: f (x, v, t = 0)

1: Approximate the initial condition f0 by the distribution f ǫ
h

(x, v, t = 0) =
∑Np

s=1
ωsS ǫ (x −Xs(0))δ(v−Vs(0)) where

(Xs(0),Vs(0)) is a set of particles distributed in the phase space according to the density function f0.

2: Generate finite element mesh and assemble stiffness matrix M.

3: Compute the density ρh =
∑Np

s=1
ωsS ǫ(x − Xs) − ρ0.

4: Assemble the load matrix F according to the density ρh. That is Fi = (ρh,Wi), i = 1 . . .N.

5: Solve the large sparse linear system Mφh = F. (A lot of linear solvers can be used such as Conjugate Gradient.)

6: Interpolate the electric field at the particle position by using discrete electric potential φh. We can just use the

information of ∇Wi(x), i = 1 . . .N.

7: Update the position and velocity of particles by solving particle equation. High order symplectic algorithms can

be considered.

8: Repeat steps 3-7 till the final time T.

Output: f ǫ
h

(x, v, t = T ) or other required data

6.1. Test problems in 1+1-dimensional phase space

In this case, we perform various problems: Landau damping, Two-stream stability and Bump-on-tail instability.

In the numerical simulation for all problems, we use periodic boundary condition. The number of particles is chosen

as Np = 106. The system considered here is modelled by Vlasov equation coupled with normalized Poisson equation

E = −∂φ, −∂2φ = ρ − 1.

Landau damping. Landau damping is referred to as the damping of a collective mode of oscillations in plasmas

without collisions of charged particles. It, commonly believed, is caused by the energy exchange between electro-

magnetic wave and particles. Landau damping is also a very popular benchmark problem for testing the numerical

methods applied to the Vlasov–Poisson equation due to that there are many analytical results in literature [23, 16].

Here, we consider the case of one spatial dimension. In this case, we take the initial distribution function as

f0(x, v) =
1
√

2π
exp(−v2

2
)(1 + α cos(kx)),

where the perturbation parameter α = 0.001 and k is the wave number.

We use the time step ∆t = 0.01. To solve the Poisson system we use Nx = 128. We choose the computation

domain as [0, 2π/k] × [−6, 6]. We are interested in the evolution of the square root of the electric energy which is

measured by Ed(t) =
√

Φ(X)T
MΦ(X) with Φ(X) and M mentioned in Section 4. In Figure 1, we calculate the value

of log(Ed(t)) along time t where the red line is the theoretical damping rate. It is observed that the electric energy is

exponentially decreasing, and the damping rate coincides with the analytical values which are γ = 0.0127 for k = 0.3

and γ = 0.154 for k = 0.5 [25, 4, 16].
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Figure 1: Electric energy as a function of time for the linear Landau damping. (a) k = 0.3; (b) k = 0.5.
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Figure 2: Convergence rates of numerical solutions with respect to time step. (a): Error of position; (b): Error of velocity. The solid colored lines

refer to the corresponding theoretical value.

We check the convergence order of splitting methods in Figure 2 for Landau damping with k = 0.5. We start from

choosing ∆t0 = 0.5 and once again conduct four runs by decreasing the time step with each run. That is, the time

steps can be chosen as ∆ti = 2−(i+1), i = 1, 2, 3, 4. We use ex
i

to denote the error of position with time step ∆ti. For a

fixed final time T , the error order can be calculated by log(ex
j
/ex

j+1
)/ log(∆t j/∆t j+1), j = 0, 1, 2, 3, 4. Similarly, we can

calculate the error order of velocity. As it shown in the figure, the numerical results by Strang splitting perform much

better than the ones by Lie-Trotter splitting due to the higher-order accuracy of Strang splitting method. However, the

damping rates by both approaches can match the analytical ones.

Two-stream instability. Two-stream is a common instability in plasma physics which occurs when an energetic

particle stream injects into a plasma, or a current is set along the plasma. The phenomena can be investigated when

there exists (time-depending) difference of drift velocity between two plasma components. In our simulation, for the
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initial value we set a perturbation as a vortex creation at the center of concerned domain. That is, the initial datum can

be set as

f0(x, v) =
1
√

2π
v2 exp(−v2

2
)(1 + α cos(kx)),

where perturbation parameter α = 0.01 and wave number k = 0.5. The computation domain is [0, 2π/k]× [−5, 5]. We

take ∆t and Nx as shown in the above experiments.

Figure 3: Evolution of the distribution f for time t = 0, 10, 15, 20.

In Figure 3, we plot the distribution function f for time t = 0, 10, 15, 20. It is observed that the instability appears

quickly, and the obvious vortex structure can be captured clearly. This coincides with the instability phenomenon

shown in literature [4, 16].

In Figure 4, we plot the total energy and momentum. We can observe that our method can preserve the energy and

momentum well over long-time even when the instability occurs.

Bump-on-tail instability. Bump-on-tail instability is a fundamental example of wave-particle interaction, the in-

stability can be investigated when the wave and particles interact. In this test, for studying the Bump-on-tail instability

we take the following initial conditions [54]

f0(x, v) = (1 + α cos(kx))d0(v),
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Figure 4: Time evolutions of conservative quantities for Two-stream instability. (a): Error of energy; (b): Error of momentum. The red line shows

the error by the Lie-Trotter splitting while the blue line refers to the ones by the Strang splitting.

where perturbation parameter α = 0.04 and wave number k = 0.3. In the above initial value, d0 denotes a bump on

the tail of distribution function formed by energetic particles, which has the following expression

d0 =
1
√

2π

(

0.9 exp

(

−v2

2

)

+ 0.2 exp(−2(v − 4.5)2)

)

.

In this experiment, computation domain [0, 6π/k] × [−8, 8] is considered. We choose ∆t = 0.01 and Nx = 256

to simulate this problem. In Figure 5, we plot the distribution function f for time t = 0, 10, 15, 20. It is observed

that our numerical discretization can describe the evolution of instability and the occurrence phenomena. Clearly, it is

investigated that there appear three vortices which extending arms embrace the neighbouring vortices.

It should be noticed that implementing our numerical method involves computations in a large amount of cycles

which can be treated in parallel. As follows, we show the efficiency of our numerical computation together with the

parallel approach. Based on MPI, we take two natural parallel strategies for the collective communications in the

cycle. For particle deposition part, the computational domain is subdivided into regions while for pushing particle

part, the particles are divided into groups. For the first strategy, we can also improve it by using, for instance, the

adaptive scheme presented in [43]. In Figure 6, we present the speed-up comparison for our numerical computation

and the ideal ones. By comparison, it can be seen that our speed-up result is quite good due to the so-called cache

effects.
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Figure 5: Time evolution of the distribution f for time t = 0, 10, 15, 20.
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Figure 6: Speed-up of numerical computing for simulating Bump-on-tail instability on LSSC-IV. The computation is done by taking 105 particles

in phase space.
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6.2. Test problems in 2+2-dimensional phase space

In this experiment, we consider the Vlasov–Poisson system in 2+2-dimension which means 2D in space and also

2D in velocity one. We assign Nx = Ny = 256 for the initial particle grid and 250 particles per cell. This means that

we take over 107 particles for the simulation.

Diocotron instability. The diocotron instability is a plasma instability which occurs when two sheets of charges

slipping past each other. This stability is usually described by the guiding center model [37, 22, 1] and has been

extensively simulated [15, 22, 26, 1, 9]. Here, we consider the model of two dimensional Vlasov–Poisson system

together with an external magnetic field. This system can be taken to model the instability which is usually encoun-

tered in magnetic fusion devices such as tokamaks. In this example, we also consider the effect of magnetic field to

the instability. Thus, we consider the case with strong magnetic field. As the instability usually is explained as the

analog of the Kelvin-Helmholtz instability in fluid mechanics, it can be observed directly in the nature [50]. In this

situation, the energy of system is dissipated as the two surface waves propagate in two opposite directions with one

flowing over the other. By investigation, there appears the vortex structure in the surface of distribution function when

the instability happens [22, 26, 1].

The Vlasov equation in this simulation is with an external magnetic field Bext which reads

ε
∂ f

∂t
+ v · ∂ f

∂x
+ (E(t, x) +

1

ε
v × Bext(t, x)) · ∂ f

∂v
= 0.

Here, ε is the strength of magnetic field. As the parameter ε is usually small, the existence of term ε in front of the

time derivative of f requires the numerical simulations to have long-time stability. There have been many numerical

methods for studying this instability. Among them, the asymptotic preserving schemes are introduced in [26], and the

uniformly accurate methods are introduced in [9].

We take the initial distribution function as

f0(x, v) =
d0(x)

2π
exp(−‖v‖

2

2
), x = (x, y) ∈ R2,

where the initial density is

d0(x) =






(1 + α cos(lθ)) exp(−4(‖x‖ − 6.5)2) if r− ≤ ‖x‖ ≤ r+,

0 otherwise,

with θ = atan(y/x) and l the number of vortices. In our simulation, we take r− = 5, r+ = 8, α = 0.2 and Bext = (0, 0, 1).

In Figure 7, we consider the case where ε is taken as ε = 1. We use ∆t = 0.1 and l = 7 for this case. It can be

observed that the plasma is not well confined. This can be explained that the enforced magnetic field is not strong

enough. This phenomena is also performed in [22]. Though the vortices will not occur, it still can be observed that

for the case of l = 7 there are seven clear clusters changing along the time.

Then, we take a small value of ε = 0.1 in Figure 8 and ε = 0.01 in Figure 9. In our computation, we use ∆t = 0.1

and ∆t = 0.01 respectively.
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Figure 7: Time evolution of the density ρ for time t = 0, 0.1, 15, 30 and l = 7 with strength of magnetic field ε = 1.

We plot the development of the diocotron instability at different time with l = 5 in Figure 8. It is observed that the

five vortex structures are well captured by our method. If we change the direction of magnetic field, it can be observed

in this figure that the vortex structure will move on the reversed direction.

From Figure 9, it can be observed that the vortex structures become smaller when the magnetic field is stronger.

Also, the image becomes not clear. To improve this more particles in practical computation are needed and finer

resolution should be applied. The computational cost can still be distributed efficiently due to the parallel approach

used in this paper.

7. Conclusion

In this work, we have developed the symplectic Particle-in-Cell methods for solving the Vlasov–Poisson system

according to its Poisson bracket. We use the appropriate finite element spaces so that the semi-discrete system is

equipped with a discrete Poisson structure. With regard to temporal discretization, we apply the splitting technique. As

each subsystem can be solved exactly, the resulting discretization can preserve the Poisson structure of the concerning

system. In order to implement efficiently our algorithm, parallel computing technique has been designed, and applied

to various problems. The parallel efficiency of practical computation has been verified via the numerical results of

this experiments. We also show the convergence rates of splitting methods of first and second order which are taken

as a benchmark test. The numerical results perform that they all match the theoretical order very well. To verify
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Figure 8: Time evolution of the density ρ along the time. (a): Bext = (0, 0, 1), t = 30; (b): Bext = (0, 0,−1), t = 30; (c): Bext = (0, 0, 1), t = 50; (d)

Bext = (0, 0,−1), t = 50. Here l = 5 and the strength of magnetic field is ε = 0.1.

the advantage of Poisson bracket preserving methods constructed in this paper, we study the preservation of energy

both theoretically and numerically. This guarantees the numerical simulation over long-time. We also present a 2+2-

dimensional example, in this example the external magnetic field can be strong. The error and stability analysis of the

derived numerical methods will be reported in the future publications.
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Appendix A. Jacobi identity of the continuous bracket

In this section we prove the Jacobi identity of the bracket (7) when ∇ · B0 = 0. To simplify the notation, we use

[·, ·] to replace the continuous bracket {{·, ·}} in this section.

Following the idea in [44], we rewrite the continuous bracket (7) as two parts,

[F ,G] = [F ,G]xv + [F ,G]B.
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Figure 9: Time evolution of the density ρ for time t = 5, 10, 15, 20 and l = 7 with strength of magnetic field ε = 0.01.

Each part in the form can be written as

[F ,G]xv( f ) =

∫

Ωx×Ωv

f

{

δF
δ f

,
δG
δ f

}

xv

dxdv

[F ,G]B( f ) =

∫

Ωx×Ωv

f B0 ·
(

∂

∂v

δF
δ f
× ∂

∂v

δG
δ f

)

dxdv.

Then the Jacobi identity reads

,H] + cyc = [[F ,G]xv,H]xv
︸             ︷︷             ︸

1

+ [F ,G]xv,H]B
︸           ︷︷           ︸

2

+ [[F ,G]B,H]xv
︸            ︷︷            ︸

3

+ [[F ,G]B,H]B
︸           ︷︷           ︸

4

+ cyc,

where the symbol cyc means cyclic permutation.

Term 1 vanishes because of the Jacobi identity of {·, ·}xv. It is also the bracket of VP equation under B0 = 0,

see [40, 8].

Next, we simplify the notations. Let δF = δF
δ f
, δG = δG

δ f
, δH = δH

δ f
and α = ∂

∂v
δF , β = ∂

∂v
δG, γ = ∂

∂v
δH . And we

use Bi or αi to denote the i-th component of B0 or α. Then term 2+3 reads

∫

Ωx×Ωv

f B0 · (
∂

∂v
{δF , δG}xv × γ) + f {B0 · (α × β), δH}xvdxdv.
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Notice that (u × v)i =
∑

jk ǫi jku jvk for two vectors u, v,

B0 · (
∂

∂v
{δF , δG}xv × γ) + {B0 · (α × β), δH}xv

=

∑

i jk

ǫi jkBi({α j, δG}xv + {δF , β j}xv)γk +

∑

i jk

ǫi jk{Biα jβk, δH}xv,

where ǫi jk is the Levi-Civita symbol. As B0 is independent of v, the third term on the right side of the above equality

reads

{Biα jβk, δH}xv

=

∑

l

(
∂

∂xl

(Biα jβk)γl − Bi

∂

∂vl

(α jβk)
∂

∂xl

δH)

=Bi{α jβk, δH}xv +

∑

l

∂

∂xl

Bi(α jβkγl).

By Leibniz’ rule of {·, ·}xv, it is known that

{α j, δG}xvγk + {δF , β j}xvγk + {α jβk, δH}xv

={α j, δG}xvγk + {δF , β j}xvγk + {βk, δH}xvα j + {α j, δH}xvβk

= ({α j, δG}xvγk + {βk, δH}xvα j)
︸                                ︷︷                                ︸

A

+ ({δF , β j}xvγk + {α j, δH}xvβk)
︸                                ︷︷                                ︸

B

.

The terms
∑

i jk ǫi jkBiA and
∑

i jk ǫi jkBiB cancel out by permutingF ,G andH . Notice that
∑

i jk

∑

l ǫi jk
∂
∂xl

Bi(α jβkγl) =
∑

l
∂
∂xl

B0 · (α× β)γl and (α× β)iγ j + cyc = δi j(α× β) · γ, the summation of terms 2 and 3 leads to
∫

Ωx×Ωv
f (∇ ·B0)((α×

β) · γ)dxdv which vanishes when ∇ · B0 = 0.

According to the above notations, term 4 reads

∫

Ωx×Ωv

f B0 · (
∂

∂v
(B0 · (α × β)) × γ)dxdv

By calculation, it is

B0 · (
∂

∂v
(B0 · (α × β)) × γ)

=

∑

i jk

∑

lmn

ǫi jkǫlmnBiBl(
∂

∂v j

αmβn)γk

=

∑

i jk

∑

lmn

ǫi jkǫlmnBiBl(αm jβnγk + αmβn jγk),

where αm j means ∂
∂v j
αm.

By shifting the indices i → l, j → m, k → n, l → i, m → k, n → j and αβγ → γαβ, ǫi jkǫlmnBiBlαmβn jγk →
ǫlmnǫik jBlBiγkα jmβn.

Then term 4 vanishes accordingly due to the anti-symmetry of the Levi-Civita symbol.

By the above calculation, we conclude that the continuous bracket (7) is Poisson if ∇ · B0 = 0.
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Appendix B. Derivation of the discrete Poisson bracket

As follows, we prove that the particle system (12) with the approximate electric field (17) is still a Hamiltonian

system with the defined discrete Poisson bracket. Under the approximation (11), we denote a functional of fh as

F [ fh] = F(ω,X,V).

Denote

fs(x, v, t) = ωsδ(x − Xs)δ(v − Vs), s = 1, 2, . . . ,Np.

The discrete variables can be reexpressed by ωs =

∫

fsdxdv, Xs =
1
ωs

∫

x fsdxdv and Vs =
1
ωs

∫

v fsdxdv. Taking their

derivatives w.r.t fs providing

δωs

δ fs

= 1,
δXs

δ fs

=
x − Xs

ωs

,
δVs

δ fs

=
v − Vs

ωs

.

Notice that δF
δ fh
=

∑

s
δF
δ fs

. Using the chain rule of variation to calculate δF
δ fs

gives

δF
δ fs

=
δωs

δ fs

∂F

∂ωs

+
δXs

δ fs

∂F

∂Xs

+
δVs

δ fs

∂F

∂Vs

=
∂F

∂ωs

+
x − Xs

ωs

∂F

∂Xs

+
v−Vs

ωs

∂F

∂Vs

.

It leads to

{

δF
δ fs

,
δG
δ fs

}

xv

=

{

∂F

∂ωs

+
x − Xs

ωs

∂F

∂Xs

+
v−Vs

ωs

∂F

∂Vs

,
∂G

∂ωs

+
x − Xs

ωs

∂G

∂Xs

+
v−Vs

ωs

∂G

∂Vs

}

xv

=
1

ω2
s

(

∂F

∂Xs

· ∂G

∂Vs

− ∂F

∂Vs

· ∂G

∂Xs

)

,

Then
∫

Ωx×Ωv

fh

{

δF
δ fh

,
δG
δ fh

}

xv

dxdv =

Np∑

s=1

1

ωs

(

∂F

∂Xs

· ∂G

∂Vs

− ∂F

∂Vs

· ∂G

∂Xs

)

.

And ∫

Ωx×Ωv

fhB0(x) ·
(

∂

∂v

δF
δ fh
× ∂

∂v

δG
δ fh

)

dxdv =

∫

Ωx×Ωv

fhB0(x) ·
(

1

ω2
s

∂F

∂Vs

× ∂G

∂Vs

)

dxdv

=

Np∑

s=1

1

ωs

B0(Xs) ·
(

∂F

∂Vs

× ∂G

∂Vs

)

.

Therefore, we can define the following discrete bracket operator as

{F,G} (X,V) =

Np∑

s=1

1

ωs

(

∂F

∂Xs

· ∂G

∂Vs

− ∂G

∂Xs

· ∂F

∂Vs

)

+

Np∑

s=1

1

ωs

B0(Xs) ·
(

∂F

∂Vs

× ∂G

∂Vs

)

.

Appendix C. Jacobi identity of the discrete bracket

As follows, we prove that the discrete bracket (19) is a Poisson bracket under ∇ · B0(x) = 0.
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At the end of section 4, we connect the discrete Poisson bracket (19) which derivation has been shown in

Appendix B to a matrix K which is called the Poisson matrix. Thus, the discrete bracket is Poisson if and only

if for the component of matrix K the following identity holds for all i, j, k

6Np∑

l=1

(
∂Ki j

∂Zl
Klk +

∂K jk

∂Zl
Kli +

∂Kki

∂Zl
Kl j) = 0,

where Zl is the l-th component of Z, see [48, 29].

It can be known that

6Np∑

l=1

(
∂Ki j

∂Zl
Klk +

∂K jk

∂Zl
Kli +

∂Kki

∂Zl
Kl j)

=

3Np∑

l=1

(
∂N−1

B̂(X)i j

∂Xl
N
−1
lk +

∂N−1
B̂(X) jk

∂Xl
N
−1
li +

∂N−1B̂(X)ki

∂Xl
N
−1
l j ).

Due to that N is a diagonal constant matrix, the right term of the above equality leads to

∂N−1B̂(X)i j

∂Xk
N
−1
kk +

∂N−1B̂(X) jk

∂Xi
N
−1
ii +

∂N−1B̂(X)ki

∂X j
N
−1
j j .

If Xi and X j are not the components for the same particle position Xs, then
∂N−1

B̂(X)i j

∂Xk N−1
kk
+

∂N−1
B̂(X) jk

∂Xi N−1
ii
+

∂N−1
B̂(X)ki

∂X j N−1
j j
= 0 due to that the value of all partial derivatives of functions is zero. Therefore, we only need to

consider the case in which Xi,X j,Xk are the components for the same particle position Xs. This reads

1

ω2
s

(
∂B̂i j

∂Xk
+
∂B̂ jk

∂Xi
+
∂B̂ki

∂X j
) = 0.

In the above equality, if the two of three indexes are equal the terms related cancel out because of the skew-symmetry

of matrix B̂. With the Levi-Civita symbol ǫi jk, it is known that B̂i j has the expression B̂i j = ǫi jkB0(Xs)k when the three

indices are different. Then
∂B̂i j

∂Xk +
∂B̂ jk

∂Xi +
∂B̂ki

∂X j = 0 if and only if ∇Xs
· B0(Xs) = 0. This implies the bracket defined by

K is Poisson if ∇ · B0(x) = 0.
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on hierarchical finite element interpolation. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment, 558(1):188–191, 2006.

[44] P. J. Morrison. A general theory for gauge-free lifting. Physics of Plasmas, 20(1):012104, 2013.

[45] Philip J. Morrison. The Maxwell–Vlasov equations as a continuous Hamiltonian system. Physics Letters A, 80(5):383–386, 1980.

[46] Philip J. Morrison. Hamiltonian description of the ideal fluid. Review of Modern Physics, 70:467–521, Apr 1998.

[47] Philip J. Morrison. Structure and structure-preserving algorithms for plasma physics. Physics of Plasmas, 24:055502, 2017.

[48] Peter J. Olver. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics. Springer, New York, 1986.

[49] M. Perin, C. Chandre, P. J. Morrison, and E. Tassi. Hamiltonian fluid closures of the Vlasov–Ampère equations: From water-bags to n

moment models. Physics of Plasmas, 22(9):092309, 2015.

[50] Anthony J. Peurrung and Jack Fajans. Experimental dynamics of an annulus of vorticity in a pure electron plasma. Physics of Fluids A: Fluid

Dynamics, 5(2):493–499, 1993.
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