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Abstract

Interpolating unstructured data using barycentric coordinates becomes infeasible at high dimensions due to the prohibitive memory
requirements of building a Delaunay triangulation. We present a new algorithm to construct ad-hoc simplices that are empirically
guaranteed to contain the target coordinates, based on a nearest neighbor heuristic and an iterative dimensionality reduction through
projection. We use these simplices to interpolate the astrophysical cooling function Λ and show that this new approach produces
good results with just a fraction of the previously required memory.
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1. Introduction

The so-called cooling function Λ describes the energy loss
of a gas cloud per unit volume and time and is an important
consideration in cosmological simulations (e.g. [1]). Besides
density and temperature, Λ depends on many additional, local
properties, such as the chemical composition of the gas cloud
and various spectral energy distributions that shape the radia-
tion background. As a result, Λ is time consuming to compute
and has a complicated functional form. This includes large gra-
dients that can span more than three orders of magnitude. At
the same time a cosmological simulation may require its calcu-
lation on the order of a billion times or more. As such, Λ is
usually interpolated from regular grids of precalculated values,
which typically omit higher dimensions to avoid memory issues
and only provide approximative results.

In [2] we improved on this with the Cloudy based Heuris-
tic and Iterative Parameterspace Sampler (CHIPS, https:

//github.com/Vetinar1/CHIPS) that eschews regular grids
in favor of amorphous sample distributions that take the shape
of Λ into account. This both reduced the number of required
samples and increased the interpolation accuracy. There exist a
variety of methods for interpolating the resulting unstructured
data [3]. We achieved the best results using a simple Delaunay
tessellation based method that executes a directed search for the
simplex containing the target point and then interpolates it using
barycentric coordinates[4]. This resulted in our Delaunay In-
terpolation Program DIP (https://github.com/Vetinar1/
DIP).

In cosmology, tessellation based interpolation has been pre-
viously applied to velocity fields and density distributions
(e.g. [5], [6], [7] [8]). The simplest approach is Voronoi Tessel-
lation Field Estimation (VTFE), in which the functional value
of a point is used to approximate the function within the entire
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corresponding cell. This zeroth-order interpolation is equiv-
alent to a nearest neighbor estimation and produces sufficient
approximations for slow-changing functions, but is not satis-
factory for the highly varied cooling function.

In contrast, Delaunay Tessellation Field Estimation (DTFE)
is a first order approach, equivalent to linear interpolation in
higher dimensions. Unlike VTFE it does not produce disconti-
nuities at cell edges. DIP is similar to existing DTFE software
[8], but does not consider the location of the points themselves
as data, and has been developed specifically to be integrated in
cosmological simulation software.

The main downside of a Delaunay based approach is the
space complexity of the triangulation which scales strongly
with sample count and dimensionality, making it infeasible for
high dimensional parameter spaces. While space efficient De-
launay algorithms such as Del_graph [9] can alleviate this is-
sue, they can not completely remedy it, as sample counts may
reach millions depending on the desired accuracy. Since build-
ing small-scale triangulations near the target is impractical due
to the associated runtime, we developed a novel simplex con-
struction heuristic that can be used instead, allowing for much
higher sample counts and dimensions. We call it the Projective
Simplex Algorithm and implement it in the Projective Simplex
Interpolation (PSI) package which is made available as part of
DIP.

2. Description of the Algorithm

Let f be some function known at points P ∈ RD and let the
target point t be a point within the convex hull of P. Our goal
is to approximate f (t) without building a triangulation on P or
a subset of P.

We apply the following three step process:

1. Identify Pk, the k nearest neighbors of t in P.
2. Construct a simplex S out of the points in Pk such that t is

contained within S .
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3. Calculate the barycentric coordinates of t relative to S and
use them to interpolate.

Finding the k nearest neighbors of a given point is a well
researched problem and we chose to use ball trees for this pur-
pose, see [10] for further information.

The barycentric coordinates λi of a simplex are homogeneous
coordinates relative to its D+1 vertices. They refer to that point
in space which would be the center of mass (“barycenter”) of
the simplex if each vertex vi had the mass of the associated
barycentric coordinate λi. If their sum is normalized to unity
they can be used to linearly interpolate on the D-dimensional
hyperplane spanned up by the simplex. A good introduction on
the subject can be found in [11].

The contribution of this paper is a new heuristic to directly
select points for the simplex, the Projective Simplex Algorithm.
The underlying idea is that the nearest neighbor of the target
point is likely to be part of a small, high quality simplex con-
taining t. The dimension along the vector between t and the
nearest neighbor is then eliminated through projection and the
problem is reduced to an equivalent but lower dimensional one.
Algorithm 1 shows the steps of the algorithm in detail.

Algorithm 1 The Projective Simplex Algorithm.

Require: Set of points Pk in RD, target point t, S = ∅

1: Let d equal the number of dimensions
2: P := Pk, t′ := t
3: while d > 1 do
4: Let a be the nearest neighbor of t′ in P
5: S ← S ∪ {p ∈ Pk | a is projection of p}
6: P ← P \ {a}
7: ~n := a − t′, P′ := ∅
8: for all ~p ∈ P do
9: Project ~p on ~n: ~p⊥ := ~p·~n

~n·~n · ~n
10: Shift to origin: ~p⊥,0 := ~p⊥ − t′

11: if ~p⊥,0 · ~n < 0 then
12: Add projected point: P′ ← P′ ∪ {~p − ~p⊥}
13: end if
14: end for
15: Project target point: t′ ← t′ − t′·~n

~n·~n · ~n
16: P ← P′

17: d ← d − 1
18: end while
19: The remaining projected points are on a line in RD. Add

the nearest neighbor in each direction on the line to S , if
they exist

20: return S

First, working copies P and t′ are made that the algorithm
can modify in-place. We find the current nearest neighbor of
t′ in P and add it to our simplex S . It is removed from further
considerations.

Next, the vector ~n pointing from t′ to the nearest neighbor is
calculated. This vector is the normal vector defining a (d − 1)-
dimensional hyperplane through t′ that splits P into two sets.
The points “above” the plane are in the half space that contains

the nearest neighbor and the normal vector. All other points are
considered to be below the plane.

If ~n points to the tip of a pyramid-like simplex Sd with its
base inside the plane, then this base face is itself a (d − 1)-
dimensional simplex Sd−1 consisting of d points. If Sd−1 con-
tains t′ then t′ is on the surface of Sd, which we consider to
be “inside”. It is now easy to see that if any of the vertices
of the base face were moved perpendicularly below the plane,
the resulting S′d would still contain the target point, since this
deformation can never lead to any of the faces crossing t′.

This property is the core idea of the algorithm. However, in-
stead of picking points on the plane and then moving their po-
sition, the points in P are projected onto the plane and selected
to form a valid simplex face containing t′.

First, each p ∈ P is projected on ~n, giving the part of p per-
pendicular to the plane. It is shifted to the origin in order to
compare it to ~n. If the scalar product with ~n is positive, p is
above the plane and is discarded. If it is negative the projection
is completed and the projected point is added to a new set P′.
After all points have been processedP is updated toP′. Finally,
t′ is also updated through projection.

Now that the dimension along ~n has been eliminated, the goal
is to select d points on the (d − 1)-dimensional projection plane
such that they contain t′, i.e. to find a simplex containing t′

using the points in P. This is equivalent to the original problem
and thus the proceess can repeat. Figure 1 visualizes these steps
using a small example distribution.

At d = 1 all points are on a line in RD and the procedure
can not be applied anymore. However, the simplex can be com-
pleted easily by finding the nearest neighbor in either direction
on this line, e.g. by taking the scalar product of all difference
vectors pi − t′ and a vector parallel to the line, then picking the
pi with the absolute smallest positive and negative result.

Sometimes one or both of these neighbors may not exist. In
general, if there are less than d+1 points left after the projection
step the algorithm should abort or restart with a larger k. There
are several reasons why this might occur:

• If t is near the edges of P there may not be enough points
in the vicinity for the algorithm to work at all.

• Heterogeneous data may lead to the neighbors not being
distributed evenly enough around t.

• k is too small.

The first case can be avoided by padding the edges of the
point cloud. The optimal amount of padding depends on the
sampling density.

If heterogeneities are an issue one might select the nearest
neighbors using a radius criterion instead of choosing the k
nearest.

In the latter two cases increasing k and re-running the algo-
rithm usually leads to a valid solution1. The size of k carries a

1We also tried “rewinding” the algorithm and choosing the second nearest
neighbor for the simplex, in order to get a better split. This did not significantly
improve results.
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(a) (b) (c) (d)

Figure 1: This 3-dimensional example illustrates the core idea of the Projective Simplex Algorithm. (a) The red arrow represents a vector pointing from the target
point t to the nearest neighbor. Interpreted as a normal vector it defines a plane. Points below this plane remain (blue dots), while points above the plane are removed
(orange crosses). (b) The remaining points are projected into the plane (pink points). (c) We can construct a simplex containing t in R3 by finding a triangle in the
projection plane that contains t and adding the nearest neighbor to form a “pyramid”. The problem of finding this triangle in the 2-dimensional subspace of the
projection plane is equivalent to the original problem of finding a simplex. (d) If the simplex found using the projections in (c) contains t then the simplex using the
original points represented by these projections must also contain t since all the original points are below the plane.

tradeoff between simplex quality and runtime, where smaller k
leads to better simplices but larger runtimes due to re-runs. We
recommend doubling k after each failed run and choosing the
initial value such that on average the algorithm runs 1.2 - 1.5
times.

In case neither of these approaches succeed, an alternative
way of choosing the first vertex can eliminate most of the re-
maining failures, at the cost of relaxing the nearest neighbor
condition. Instead of choosing the nearest neighbor, choose
that point for which the most points remain in the point set af-
ter the first iteration. This can be achieved by determining the
mean difference vector between the target point and its neigh-
bors, which describes the overall directional bias of the neigh-
bor distribution, and using it to select the point that lies farthest
in the opposite direction.

This approach incurs additional runtime cost (but no ad-
ditional complexity) over the regular algorithm, and leads to
slightly poorer numerical results. It is, however, more reliable.
We thus recommend using this option as a backup. Choosing
additional vertices this way does not seem to provide any fur-
ther advantages.

Thus, the algorithm is not guaranteed to find a solution.
However, according to our testing the solutions it does find are
guaranteed to be valid (i.e. contain t), and the simplex con-
struction succeeds in the overwhelming majority of cases (see
3).

Overall, the algorithm has a time complexity of O(kD2). Pro-
jecting and filtering the points takes kD operations, and find-
ing the nearest neighbor using brute force also takes kD oper-
ations2. Both of these are executed D times. In practice, how-
ever, significant time can be saved in the first iteration since
the nearest neighbor is already known from finding Pk. Also, k
merely represents an upper limit since the number of points in
the working copy reduces each iteration. To find the barycentric
coordinates of t after the simplex has been constructed, a linear

2Building a kd-tree here did not improve performance since k is usually
small, see table 1.

equation system needs to be solved. This adds an additonal
term O(D3). The time required for finding Pk with the ball tree
is negligible. The space complexity for saving n D-dimensional
points is O(Dn).

By comparison a directed search through a full Delaunay tri-
angulation has a time complexity of O(FD3), where F is the
dimension dependent number of simplices evaluated before the
simplex containing t is found. In general, F << k for all D if
the initial simplex is chosen well. The space complexity of a
Delaunay triangulation is at least O(DndD/2e).

3. Performance of the Algorithm

We implemented the algorithms described in the previous
section in the Projective Simplex Interpolation program (PSI).
We compare the performance of PSI with our previous Delau-
nay Interpolation Program (DIP). To this end we run both algo-
rithms on different data sets of varying dimensionalities3.

The non-uniform data sets (NU) were generated using
CHIPS[2] and provide real-world scenarios. They are charac-
terized by an overdense slice of samples through the parameter
space corresponding to the ionization temperature of hydrogen
(cf. fig. 2). We intend to use PSI with larger versions of data
sets like these. The uniform data sets (U) were generated us-
ing a uniform random number generator and are supposed to
provide PSI with ideal conditions. Both cover realistic param-
eter spaces (comparable to [2]) and contain accurate values for
the cooling function log Λ, calculated using version 17.02 of
Cloudy[12]. Typical values for log Λ range from -40 to -15.
We tested against evaluation sets containing 1000 known val-
ues at randomly distributed points.

The metrics we use to evaluate PSI and DIP are memory
use, runtime, simplex quality, and interpolation error. There
are multiple ways to judge the quality of a simplex (e.g. [13]).

3All data sets available at https://www.usm.uni-muenchen.de/

~dolag/Data/PSI
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Figure 2: Two 2D projections of the 3D data set NU 3D. As a result of the
adaptive sampling algorithm CHIPS the hydrogen ionization feature is visible
in the point distribution as an overdensity at T ≈ 104K. Interpolating accurately
is particularly difficult here. The effects are more pronounced at high densities
(nH & 1cm−3) and less pronounced at high metallicities (Z & 0.5Z�). Note
that the values of Λ span 14 orders of magnitude.

Here, we use the ratio of the inradius ρ to the longest edge hmax
[14]:

Q = αρ/hmax (1)

with the dimension dependent normalization factor α =
√

(2d(d + 1)). The values of this measure range from 0 for de-
generate simplices to 1 for the regular n-simplex.

Using our data sets, we found that choosing k such that the
algorithm runs between 1.2 and 1.5 times on average produces
a good tradeoff between runtime and simplex quality. Better
quality simplices correspond to higher interpolation quality, but
for our data this correlation was weaker than we expected. We
set PSI to double k if it failed to build a valid simplex, with a
maximum of four doublings. If a valid simplex was found or
the maximum was reached, k was reset. With this configuration
all but 20 evaluations found valid simplices (5 in NU 5D, 2 in
NU 6D, 9 in NU 7D, 4 in U 7D). Across all runs, PSI did not
construct any simplices that did not contain their target point.
The results of our tests are shown in Table 1.

The memory requirements of both algorithms are compa-
rable at low dimensions. However, the space complexity of
the Delaunay triangulation becomes an issue past five dimen-
sions. The triangulation alone takes up several gigabytes of
data. Since PSI only needs to save the points themselves it is
much more efficient here, and can easily scale to both high di-
mensions and point counts in comparison to DIP.

Across all dimensions DIP is consistently faster than PSI by
an order of magnitude. It not only loads the triangulation itself
into memory, but also caches a lot of intermediate information
about the simplices to speed up calculations4. Such caching is
not possible with PSI. This is most pronounced between 3D and
5D. We suspect that at higher dimensions the amount of points
removed in each iteration of the projective simplex algorithm
counteracts the increasing complexity. However, we have no
explanation for the fact that PSI took more time to complete for
NU 5D than NU 6D. The runtimes in table 1 do not include
the setup time of DIP, which depends on the number of dimen-
sions rather than the number of interpolations, and could be two
hours long or more at 6D and above. The setup time of PSI is
negligible in comparison.

The simplex quality is a more abstract measure and is closely
related to the interpolation quality. A low quality simplex is
long and elongated; using such a simplex to interpolate might
produce worse results than a more compact simplex, since the
vertices are further away from the target point. A Delaunay tri-
angulation guarantees an optimal triangulation by maximizing
the sum of the interior angles of the simplices, avoiding long
thin simplices as much as possible. The Projective Simplex Al-
gorithm makes no such guarantee. Instead, distance informa-
tion is lost through each projection, which can favor elongated
simplices particularly for large k. As such, the quality of the
simplices used in PSI is worse on average and less consistent
than the ones used in DIP (cf. Fig. 3). In the 5D, non-uniform
case a worrying number of simplices have a quality of zero.
However, as the dimensionality increases to 7D the mean qual-

4Such as centroids, face-midpoints, transformation matrices, and normal
vectors.

Data N S PSI S DIP tPSI tDIP QPSI QDIP |∆PSI| |∆DIP| k
NU 2D 489 0.02 0.04 74 10 0.53±0.05 0.66±0.03 0.066±0.008 0.061±0.008 15
NU 3D 2692 0.11 0.78 787 13 0.37±0.04 0.49±0.03 0.11±0.02 0.098±0.016 50
NU 4D 16950 0.83 29.8 3568 55 0.35±0.03 0.45±0.03 0.32±0.15 0.31±0.16 100
NU 5D 26047 1.40 312 12957 172 0.34±0.03 0.40±0.02 0.35±0.15 0.35±0.15 200
NU 6D 37519 2.1 3500 12157 1296 0.31±0.02 0.42±0.01 0.44±0.18 0.42±0.2 250
NU 7D 67970 4.2 56000 38680 DNF 0.31±0.02 DNF 0.53±0.23 DNF 350
U 2D 500 0.03 0.05 68 10 0.59±0.05 0.68±0.03 0.066±0.013 0.068±0.015 10
U 3D 2500 0.10 0.76 351 15 0.49±0.04 0.57±0.02 0.095±0.022 0.089±0.017 20
U 4D 15000 0.69 27.7 1853 65 0.42±0.03 0.51±0.02 0.14±0.04 0.13±0.04 40
U 5D 25000 1.10 314 5794 197 0.38±0.02 0.47±0.02 0.19±0.07 0.17±0.05 80
U 6D 40000 2.90 3920 12563 623 0.35±0.02 0.43±0.01 0.24±0.10 0.22±0.08 160
U 7D 80000 4.6 67000 38477 DNF 0.32±0.02 DNF 0.26±0.1 DNF 250

Table 1: Results for DIP and PSI on several uniform and nonuniform data sets. Shows the number of points N, the choice of k for PSI, the storage requirements S
for both algorithms in megabyte, the runtime t for both algorithms in milliseconds, the resulting simplex qualities according to eq. 1, and the mean absolute errors
of the interpolation ∆. Data sets NU 6D and NU 7D required modifying our previously Delaunay based sampling code to use the projective simplex algorithm.
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Figure 3: Simplex quality distributions. The upper row shows the uniform data
sets while the lower row shows the non-uniform data sets. The left column
shows PSI, while the right column shows DIP. Both the Delaunay and PSA
simplices suffer in quality as dimension increases.

ity appears to converge to 0.3. DIP shows a similar effect at
0.4. This indicates that PSI could produce reasonable simplices
even at much higher dimensions.

Despite the lower quality simplices, the absolute interpola-
tion error ∆ of PSI is similar to the one of DIP. Fig. 4 shows
the cumulative sums of the error distributions of both DIP and
PSI for the different data sets. For the non-uniform data sets
PSI performs as well as DIP, except in the 3D case where it
performs slightly worse. For the uniform data sets it performs
almost as well as DIP in all cases except U 2D, where it per-
forms even better. In practical applications the accuracy can be
improved further by increasing sample counts. Due to its lower
space complexity PSI can potentially achieve higher accuracy
than DIP, which can not support as many samples.

Overall, PSI performs better than we expected against its pre-
decessor, and we intend to integrate it into our version of the
cosmological simulation software OpenGadget3[15] soon.

4. Conclusion

We developed a new algorithm that constructs a simplex
around a target point using an iterative dimensionality reduc-
tion through projection, bypassing the need to build a full tri-
angulation. We successfully implemented this algorithm in the
Projective Simplex Interpolation program (PSI) and used it to
interpolate the cooling function Λ needed in galaxy evolution
simulations. PSI completely resolved the excessive memory
requirements of the previous implementation with acceptable
losses in accuracy, allowing us to interpolate the cooling func-
tion in higher dimensions than previously possible. However,
the loss of distance information associated with the projection
step can impact the point selection in later iterations, leading to
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Figure 4: Cumulative sums of the absolute interpolation errors of DIP and PSI.

lower quality simplices. This might be explored in future work
to further improve the algorithm.
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