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Abstract

This paper describes a novel subface flux-based Finite Volume (FV) method for discretizing multi-
dimensional hyperbolic systems of conservation laws of general unstructured grids. The subface
flux numerical approximation relies on the notion of simple Eulerian Riemann solver introduced in
the seminal work [G. Gallice; Positive and entropy stable Godunov-type schemes for gas dynamics
and MHD equations in Lagrangian or Eulerian coordinates; Numer. Math., 94, 2003]. The Eulerian
Riemann solver is constructed from its Lagrangian counterpart by means of the Lagrange-to-Euler
mapping. This systematic procedure ensures the transfer of good properties such as positivity
preservation and entropy stability. In this framework, the conservativity and the entropy stabil-
ity are no more locally face-based but result respectively from a node-based vectorial equation
and a scalar inequation. The corresponding multi-dimensional FV scheme is characterized by an
explicit time step condition ensuring positivity preservation and entropy stability. The applica-
tion to gas dynamics provides an original multi-dimensional conservative and entropy-stable FV
scheme wherein the numerical fluxes are computed through a nodal solver which is similar to the
one designed for Lagrangian hydrodynamics. The robustness and the accuracy of this novel FV
scheme are assessed through various numerical tests. We observe its insensitivity to the numerical
pathologies that plague classical face-based contact discontinuity preserving FV formulations.

Key words: Hyperbolic system of conservation laws, Godunov-type scheme, Simple approximate
Riemann solver, Entropy stability, Lagrangian representation, Eulerian representation, Gas
dynamics

1. Introduction

The conservation laws of gas dynamics, magneto-hydrodynamic flows and other branches of
classical physics are typically expressed by nonlinear hyperbolic systems of Partial differential
equations (PDEs) that prepare mathematically a host of wave interactions occurrences. The so-
lutions of nonlinear hyperbolic systems generate jump discontinuities that propagate on as shock
waves for instance. The mathematical theory may be challenging since it is necessary to con-
front weak solutions. In consequence, numerical simulation is often employed to tackle hyperbolic
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problems. A Riemann Solver (RS), should it be exact or approximated, is one of the essential
tool in Computational Fluid Dynamics (CFD). In all generality, it is a method for computing the
evolution of a discontinuity separating two constant physical states, namely a Riemann problem.
S.K. Godunov [21, 20] proposed the first Finite-Volume (FV) scheme to simulate compressible gas
dynamics equations employing a Riemann solver that makes use of the exact solution of a Riemann
problem. This first-order accurate method gained popularity and is now known as the Godunov
method/scheme in CFD. However, this exact Riemann solver may become prohibitively expensive
when the Riemann problem becomes too complex, leading to the subsequent development of alter-
native approximate and less expensive Riemann Solvers following on Godunov approach - to cite
but a few, Roe [41], Harten, Lax and van Leer (HLL) [23], Einfeldt (HLLE) [10], Munz (HLLEM)
[11], Toro (HLLC) [44], Engquist [12], Osher [34] and others and we refer the interested readers to
the book of Toro [45] and Godlewski-Raviart [19].

The aforementioned approximate Riemann solvers are intrinsically one dimensional in their
framework and in spite of this rather good success of approximate schemes, they are presumably
less efficient in multidimensional problems due to the directional bias. The standard way of ex-
tending to multidimensions with the one-dimensional schemes is through flux splitting algorithms
by solving one dimensional Riemann problems in a direction normal to each cell interface for all
faces independently to achieve multidimensional behavior. This notion neglects flow variations that
might be propagating in a transversal direction. Therefore, researchers have been on an endeavor
to develop multidimensional Riemann solvers to solve Riemann problems in different directions of
the interface, hoping to better capture flow characteristics. Among other attempts in contributing
to multidimensional solvers is the generic multidimensional HLLE solver of Balsara [2]. The base
idea is to use the one-dimensional Riemann solver in all directions to coupled with multidimensional
correction terms to constitute a multidimensional solver for conservative hyperbolic systems. The
first truly multidimensional solver by Roe [6] also brought compelling contribution to this topic.
The key element of this solver is to assume continuous piecewise linear space variation of the vari-
ables defined at cell vertices, allowing for a multidimensional generalization without employing 1D
Riemann problems or dimensional splitting.

By the same token, the dimensionally split approximate Riemann solvers also give rise to the
occurrence of various forms of numerical shock instabilities when simulating shock wave propaga-
tion, i.e., odd-even decoupling and carbuncle, refer to [38]. Such instabilities appear as serrated
disturbance of a flow featured as a nonphysical default. The earliest report on numerical instabil-
ities by Quirk [38] states that low-dissipative schemes causing expansive growth of acoustic waves
may be the root of the carbuncle phenomenon. Thus, there is a strong need for really multidi-
mensional formulations that resolve all characteristic fields while instituting necessary dissipation.
For instance, Rodionov [40] constructs a multipurpose remedy by adding artificial viscosity. Al-
ternatively, Fleischmann [13] also proposes a modification of the HLLC Riemann solver with a
centralized reformulation of the numerical flux that reduces the acoustic dissipation, offering a
shock-stable solver. In this current work, we will be bringing into play a node-based conservation
condition by involving all materials surrounding a node. Upon that, transversal information are
not omitted and this strategy substantiates the pre-existing assumption that multidimensional
dissipation takes effect on shock instabilities problem.

One common feature of most of the present solvers is that they were developed in the Eulerian
framework point of view. Contrastingly, it is possible to adopt a different approach by tackling the
resolution of the Riemann problem from the Lagrangian standpoint such as in the works of Gal-
lice [17]. The main feature of Lagrangian numerical methods lies in the fact that the motion of the
fluid is intrinsically linked to the geometrical transformation that follows the fluid path, providing a
natural framework to track interfaces of multi-dimensional flows. The simplicity of the Lagrangian
formulation not only allows for a direct estimation of waves speeds in an ordered manner but it
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also facilitates the study of particular properties (conservation, positivity-preserving and entropy
stable). Recurrently, numerical approximations may generate negative density or pressure which
then leads to instability or code crash. This event is more critical in the Lagrangian framework
on account of to the moving and deforming grid during computation. The positivity-preserving
property can be assessed easily in the Lagrangian framework. Once a Lagrangian Riemann solver
is built, the Eulerian counter-part that inherits the properties of the Lagrangian one can be ob-
tained [15, 16, 17, 4]. Besides Gallice, only few authors have been working adopting the resolution
from a Lagrangian standpoint, for instance, Cheng and Shu [5] developed positivity-preserving
HLLC approximate Riemann solver for the Lagrangian scheme in one and two dimensional for
compressible Euler equations with general equations of state. In [46] the authors also worked on
positivity-preserving approximate Riemann solvers conducted for both ideal gas and non ideal gas
equations of state and extending to high-order accuracy with appropriate limitation.

As for the multidimensional Lagrangian case, the one-dimensional solver cannot be implemented
directly due to the vast number of neighboring cells sharing a node. Hence, in this framework,
the numerical fluxes are evaluated by means of an approximate Riemann solver located at the grid
nodes that provides the nodal velocity required to move the grid in a compatible manner. Two
main approaches are classically used, namely the staggered scheme and cell-centered FV schemes.
This paper focuses on the cell-centered approach. Different techniques may be employed to build
the numerical fluxes and move the grid through the use of approximate Riemann solvers with
respect to the Geometrical Conservation Law. In [8] and [29], truly multidimensional Lagrangian
schemes that are arbitrary for unstructured mesh are proposed. In this approach, for the two-
dimensional case, the FV scheme is established using subface fluxes that are expressed in terms of
the difference between the velocity in the cell and the nodal velocity, instigating non-conservativity
of the scheme. Consequently, the conservation of the scheme is retrieved via a nodal conservation
condition stating that the sum of the subface fluxes impacting a node must be equal to zero.
This gives birth to a nodal solver, the cornerstone of Lagrangian schemes in order to evaluate the
velocity of displacement of the nodes, thus allowing the movement of the grid. This new approach
endorsed the construction of multidimensional FV schemes for Lagrangian gas dynamics that is
more robust than the classical ones.

Lately, Shen and his collaborators [43] were inspired by the aforementioned FV schemes for
Lagrangian gas dynamics and they adapted it by extending to the case of Eulerian gas dynamics.
They employed a HLLC-like approximate Eulerian Riemann solver using subface fluxes of which
the approximation is based on [29] nodal solver, making it possible to ensure the conservation of the
scheme. However, the construction of their scheme does not guarantee wave speeds ordering and
lacks an in-depth study of important properties such as positive density and internal energy and
entropy inequality. Nevertheless, the numerical results proved to be promising with this method
and encouraged us to carry out an extensive work not only to correct the previous flaws, but also to
propose a generalization of formulation of multidimensional FV scheme for all types of hyperbolic
systems.

In the present work, we shall describe a peculiar multidimensional subface flux-based FV scheme
for which the subface flux results from an approximate Riemann solver. With reasonable assump-
tions on this solver, we are able to exhibit a time step condition ensuring that the cell-centered
solution at time tn+1 consists of a convex combination between the solution at time tn and the
intermediate states of the Riemann solver at each subfaces. An entropy inequality as well as an
entropy flux can be identified. The conservation and the entropy control of this FV formulation
are obtained by means of node-based conservation conditions that take into account the states and
geometry of the cells surrounding a node.

The construction of approximate Riemann solvers characterized by good properties regarding
positivity and entropy stems from the seminal work [17]. More precisely, we impose those properties
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onto the approximate Lagrangian Riemann solver and derive its Eulerian counter part using the
Lagrange-to-Euler mapping. The node-based conservation and entropy conditions for a simple
multidimensional Riemann solver are then put forward once again by calling upon the Lagrangian
formulation. This original framework is incorporated into the system of equations for gas dynamics
to put into effect the construction, bringing about a first-order multidimensional Eulerian FV
scheme that is provably preserving the physical admissible states and impervious to numerical
instabilities. Numerical tests will be carried out to illustrate and validate this original FV scheme.

Therefore, the aim of this current work is to formulate a generic multidimensional FV scheme
for hyperbolic systems on unstructured grids based on subface fluxes that guarantees good prop-
erties. We will be recalling the Lagrange-to-Euler mapping that allows us to develop a Lagrangian
Riemann solver and the Eulerian counterpart, both sharing interesting properties. On that, a first-
order Godunov-type FV scheme which is positivity preserving and entropy stable with an explicit
CFL like condition is developed. Then, the Lagrangian nodal solver is convened in order to fulfill
the node-based conservation and entropy condition in the original FV scheme with the intention
of working as a cure for numerical instabilities. We want assess the accuracy and the robustness
of the scheme on different test cases applied to the gas dynamics system.

The rest of this paper is organized as follows. After this introduction, we present a multidimen-
sional Godunov-type scheme for solving hyperbolic systems of conservation laws on unstructured
grids. A generic FV scheme characterized by a corner flux associated to an approximate Riemann
solver is developed and the conservation condition and its entropy stability is studied. The third
section introduces the construction of the one-dimensional approximate Riemann solver by means
of the Lagrange-to-Euler mapping. More precisely, the notion of simple approximate Riemann
solver in the Lagrangian framework is derived along with some properties, and the Eulerian ver-
sion is proposed by making use of the Lagrangian one as a building block. The fourth section
revisits the Lagrangian node-based conservation and entropy conditions in the case of simple Rie-
mann solvers. To complete the design, the node-based conservation condition is applied on the gas
dynamics system discretized onto unstructured grids, calling upon the Lagrangian nodal solver. A
test campaign to assess the performances of the scheme, especially to study instability behaviors
of the newly developed scheme is provided. Concluding remarks and perspectives are drawn in the
last section.

2. Multi-dimensional Godunov-type Finite Volume scheme for solving hyperbolic sys-
tems of conservation laws on unstructured grids

2.1. Governing equations and notation
We aim at designing multi-dimensional Finite Volume schemes for solving the hyperbolic system

of conservation laws
∂U
∂t

+ ∇ · F(U) = 0. (1)

Here, U = U(x, t), for x ∈ Rd and t ≥ 0, is the vector of conservative variables which takes values
in Rq and F = F(U) is the flux tensor in Rq ×Rd. The positive integers d and q denote respectively
the space dimension and the size of the foregoing hyperbolic system. Let ej , for j = 1 . . . d, be
the the j-th vector of the Cartesian basis of Rd then Fj = Fej ∈ Rq is the j-th component of the
tensor flux and its divergence writes

∇ · F(U) =
d�

j=1

∂Fj

∂xj
.
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Figure 1: Geometrical entities attached to the polygonal cell ωc.

We assume that system (1) is equipped with the entropy-entropy flux pair (Σ, Q). Namely, U �→
Σ(U) is convex and the following compatibility condition holds true for the entropy flux [19]

�
∂Fj

∂U

�t
∂Σ
∂U = ∂Qj

∂U , for j = 1 . . . d,

where Qj = Q · ej . We are looking for the entropic solutions of (1), that is the ones satisfying the
following entropy inequality

∂Σ
∂t

+ ∇ · Q(U) ≤ 0, (2)

which turns into an equality for smooth solutions.
Let D ⊂ Rq be the domain of definition of F(U), Σ(U) and Q(U). We assume that D is a

convex subset of Rq.
For the sake of simplicity, we shall limit the presentation of the numerical methods to the two-

dimensional case, i.e., d = 2, knowing that the three-dimensional extension is quite straightforward.
The computational domain is a polygonal portion of R2 and we pave it with a collection of non
overlapping polygonal cells ωc where c is the generic label of the cell. Let P(c) be the set of
vertices (points) of ωc. The generic label of a point is p and xp denotes its vector position. In
the counterclockwise ordered list of points of ωc, p− and p+ are respectively the previous and the
next points with respect to p, refer to figure 1. The subcell ωpc related to cell c and point p is the
quadrangle formed by joining the cell centroid, xc, to the midpoints of [xp− , xp], [xp, xp+ ] and to
xp. The set of subcells ωpc for p ∈ P(c) constitutes a partition of the cell ωc, that is,

ωc =
�

p∈P(c)

ωpc.

We also introduce the set of faces of cell ωc and denote it F(c), for instance [xp, xp+ ] belongs to
F(c). Each face f of cell c is decomposed into subfaces by means of the partition of c induced by
the subcells pc for p ∈ P(c). This leads us to define SF(pc) the set of subfaces attached to the
corner pc, which is nothing but the set of faces of subcell ωpc impinging at point p, for instance
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[xp, 1
2 (xp + xp+)] belongs to SF(pc). We denote respectively by lpcf and npcf the measure and the

unit outward normal of the subface f . We observe that the set of subfaces SF(pc) for p ∈ P(c)
constitutes a partition of the set of faces of ωc, that is,

F(c) =
�

p∈P(c)

SF(pc).

2.2. Subface-based Finite Volume discretization
Integrating the system of conservation laws (1) over ωc and employing Green formula leads to

|ωc|dUc

dt
+

�

∂ωc

F(U)n ds = 0, (3)

where Uc(t) = 1
|ωc|

�

ωc

U(x, t) dv is the cell-averaged value of U over ωc. Employing a classical

first-order explicit time integration turns (3) into

Un+1
c − Un

c + Δt

|ωc|

�

∂ωc

F(Un)n ds = 0. (4)

Here, Un
c denotes the approximation of Uc(t) at time tn, and, tn+1 = tn + Δt where Δt > 0 is the

time step.
The design of the Finite Volume scheme (4) requires to construct an approximation of the

normal flux integral. In what follows, we are going to define an original node-based approximation
of this integral term relying on the partition of ωc into subcells, that is,

�

∂ωc

F(Un)n ds =
�

p∈P(c)

�

∂ωpc∩∂ωc

F(Un)n ds. (5)

The surface integral term at the right-hand side of (5) is approximated along the subfaces as follows
�

∂ωpc∩∂ωc

F(Un)n ds =
�

f∈SF(pc)

lpcf Fpcf ,

where Fpcf is the subface flux related to the subface f attached to the corner pc. Substituting this
subface-based approximation of the flux into (4) yields the subface-based generic Finite Volume
scheme

Un+1
c − Un

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf Fpcf = 0, (6)

which is characterized by the subface flux Fpcf displayed in figure 1 by the blue rectangles. Viewed
from cell ωc, this peculiar Finite Volume discretization introduces two subface fluxes per cell face.
We observe that this type of Finite Volume discretization which consists in splitting the faces
into subfaces has been already utilized not only in the framework of cell-centered Lagrangian
hydrodynamics [8, 29, 27] but also for developing cell-centered diffusion schemes [30, 24]. We note
in passing that this formalism encompasses the classical face-based Finite Volume discretization
[19]. It remains to provide a consistent numerical approximation of the subface flux.

6



2.3. Subface flux approximation by means of a Riemann solver
Let f be the generic subface attached to cell c and vertex p, characterized by its unit outward

normal npcf . We assume that the subface flux Fpcf attached to the subcell f depends respectively
on the adjacent cell averaged values Uc, Ud(c,f), where d(c, f) is the neighbor of cell c such that
f ⊂ (ωc ∩ ωd), on the unit normal npcf and also on the vectorial parameter vp ∈ R2 related to
node p. This leads us to write

Fpcf = Fpcf (Uc, Ud(c,f), npcf , vp). (7)

Contrary to the classical face-based Finite Volume discretization, the foregoing subface flux ex-
pression exhibits a dependency on the nodal vectorial parameter vp, which is unknown for the
moment. Such dependency has been already employed for designing flux approximation dedicated
to the cell-centered discretization of Lagrangian hydrodynamics [29] and also more recently, in-
spired by the latter works, in the framework of cell-centered Eulerian hydrodynamics [43]. In both
cases, the parameter vector, vp, corresponds to a nodal approximation of the velocity field. For
Lagrangian hydrodynamics discretization, the nodal velocity approximation is required to move
the computational grid, whereas for Eulerian hydrodynamics its need is less obvious. We shall see
later the fundamental role played by this nodal vector parameter.

Bearing this in mind, the subface flux numerical approximation is constructed via the intro-
duction of an approximate Riemann solver, which is nothing but the approximate solution of the
one-dimensional Riemann problem defined in the npcf direction

(RP)





∂U
∂t

+
∂[Fnpcf

(U)]
∂xnpcf

= 0,

U(xnpcf
, 0) =

�
Uc if xnpcf

< 0,

Ud(c,f) if xnpcf
≥ 0.

Here, xnpcf
= x · npcf is the coordinate in the unit normal direction, Fnpcf

(U) = F(U)npcf is
the projection of the tensor flux onto the unit normal direction. The resulting one-dimensional
approximate Riemann solver depends on the states on both sides of the interface, on the self-similar
variable ξ = xnpcf

t and also on the parameter vp. With these arguments, the Riemann solver writes

Wpcf = Wpcf (Uc, Ud(c,f), npcf , ξ, vp). (8)

For all Ul (left state), Ur (right state), n (unit normal), ξ (self-similar variable) and v (vector
parameter), we assume that the Riemann solver satisfies the following classical properties

• Wpcf (Ul, Ur, n, ξ, v) = Ul for −ξ large enough;

• Wpcf (Ul, Ur, n, ξ, v) = Ur for ξ large enough;

• Wpcf (U, U, n, ξ, v) = U.

We also make the assumption that the approximate Riemann solver is symmetric with respect to
the interface, that is

Wpcf (Uc, Ud(c,f), npcf , ξ, vp) = Wpdf (Ud(c,f), Uc, npcf , −ξ, vp). (9)

Finally, we express the subface flux Fpcf in terms of the approximate Riemann solver Wpcf as
follows

Fpcf = F(Uc)npcf −
� 0

−∞

�
Wpcf (Uc, Ud(c,f), npcf , ξ, vp) − Uc

�
dξ. (10)
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Figure 2: Interface between cell ωc and cell ωd.

This subface flux approximation is obtained integrating the conservation law of (RP) over the
space-time domain [−Δxl, 0]×[0, Δt] where Δxl and Δt are respectively space and time increments.
This formula might be found in [23].

Remark 1. This choice to define the subface flux from the approximate Riemann solver is orig-
inal and crucial. We note in passing that the aforementioned works employing subface flux-based
discretization do not rely on such a definition. Here, the subface flux (10) might be viewed as a
left-sided flux and there is absolutely no reason why Fpcf = Fpdf , where Fpdf is the subface flux
attached to subface f viewed from cell d = d(c, f), refer to figure 2. Indeed, in general we should
have Fpcf � Fpdf this implies that the Finite Volume scheme (11) characterized by subface flux
(10) is not conservative in the classical sense. We shall present in section 2.7 a novel framework
to study the conservativity of this subface-based Finite Volume method.

2.4. Preservation of the definition domain
The notion of invariant domain is classical in the context of hyperbolic systems of conservation

laws, refer for instance to [3]. A domain is invariant if for any initial condition U0 belonging to the
domain, the solution of the hyperbolic system under consideration remains in the domain for all
time t > 0. The most practical situation corresponds to the case for which the invariant domain is
convex. For instance, in the case of Lagrangian gas dynamics U = (τ, v, e)t, where τ is the specific
volume, v is the velocity vector and e the total energy, and the definition domain (admissible
set) D = {U such that τ ≥ 0 and e − 1

2 v2 ≥ 0} is convex. In what follows, we assume that the
definition domain D of F(U), Σ(U) and Q(U) is convex and we shall study under which condition
our Finite Volume discretization preserves the definition domain.

The studied Finite Volume scheme (6) writes under the form

Un+1
c − Un

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf

�
Fpcf − F(Un

c )npcf

�
= 0, (11)

where we have made use of the geometric identity
�

p∈P(c)

�

f∈SF(pc)

lpcf npcf = 0, (12)

to make appear the fluctuations related to each subface.
8



Assuming that the approximate Riemann solver is D-preserving, that is, if Un
c ∈ D then

Wpcf (ξ) ∈ D for all ξ ∈ R, we shall determine the time step condition ensuring that the foregoing
Finite Volume scheme is itself D-preserving, that is, Un+1

c ∈ D. To this end, we introduce ξmin
pcf ≥ 0

such that
Wpcf (ξ) = Un

c , for ξ < −ξmin
pcf .

This allows us to develop the subface flux expression as follows

Fpcf =F(Un
c )npcf −

� 0

−ξmin
pcf

(Wpcf (ξ) − Un
c ) dξ = F(Un

c )npcf + ξmin
pcf Un

c −
� 0

−ξmin
pcf

Wpcf (ξ) dξ.

Substituting the subface flux into the foregoing Finite Volume scheme yields

Un+1
c = Un

c − Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf

�
ξmin

pcf Un
c −

� 0

−ξmin
pcf

Wpcf (ξ) dξ

�
.

Now, collecting the terms in factor of Un
c we arrive at

Un+1
c =


1 − Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf


Un

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf

� 0

−ξmin
pcf

Wpcf (ξ) dξ.

(13)
Assuming that Un

c ∈ D and Wpcf (ξ) ∈ D then Un+1
c ∈ D provided that the time step satisfies the

condition
Δt ≤ |ωc|�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf

. (14)

In this case, we observe that Un+1
c is nothing but a convex combination of Un

c and the intermediate
states of the subface-based approximate Riemann solvers. Introducing

Δtc = |ωc|�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf

,

and assuming that the Riemann solver preserves the domain of definition, we claim that the Finite
Volume scheme is D-preserving under the global time-step condition

Δt ≤ min
c

Δtc. (15)

2.5. Entropy inequality
Here, we derive the entropy flux approximation attached to our Finite Volume scheme. Assum-

ing that Un
c ∈ D, Wpcf (ξ) ∈ D and Δt satisfies the time step condition (14), then by virtue of (13),

Un+1
c appears to be a convex combination of Un

c and 1
ξmin

pcf

� 0
−ξmin

pcf
Wpcf (ξ) dξ, which thus belongs to

D. Under the foregoing assumptions and thanks to the convexity of the entropy, Σn+1
c = Σ(Un+1

c )
satisfies

Σn+1
c ≤


1 − Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf


Σn

c (16)

+ Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf Σ

�
1

ξmin
pcf

� 0

−ξmin
pcf

Wpcf (ξ) dξ

�
.
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By virtue of Jensen inequality

Σ
�

1
ξmin

pcf

� 0

−ξmin
pcf

Wpcf (ξ) dξ

�
≤ 1

ξmin
pcf

� 0

−ξmin
pcf

Σ(Wpcf (ξ)) dξ.

Substituting the foregoing result into (16), we arrive at

Σn+1
c − Σn

c ≤ Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf

� 0

−∞
(Σ(Wpcf (ξ)) − Σn

c ) dξ. (17)

Here, we have used the fact that if ξ ≤ ξmin
pcf then Wpcf (ξ) = Un

c . Finally, utilizing the geometric
identity (12) we get �

p∈P(c)

�

f∈SF(pc)

lpcf Q(Un
c ) · npcf = 0.

Introducing the foregoing expression into (17) leads to

Σn+1
c − Σn

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf

�
Q(Un

c ) · npcf −
� 0

−∞
(Σ(Wpcf (ξ)) − Σ(Un

c )) dξ

�
≤ 0. (18)

This is formally the discrete counterpart of the continuous entropy inequality (2). The comparison
between the foregoing inequality and (2) incites us to define the subface entropy flux

Qpcf = Q(Un
c ) · npcf −

� 0

−∞
(Σ(Wpcf (ξ)) − Σ(Un

c )) dξ. (19)

With this notation, we rewrite inequality (18) under the compact form

Σn+1
c − Σn

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf Qpcf ≤ 0. (20)

Remark 2. At this stage nothing can be said regarding the entropy stability of the Finite Volume
scheme under consideration. This crucial point shall be investigated in section 2.8.

2.6. Summary about the subface-based Finite Volume scheme
We have designed a subface-based Finite Volume scheme for which the subface flux Fpcf is

defined from the approximate Riemann solver Wpcf . Under an explicit time step condition this
Finite Volume scheme is D-preserving and satisfies a formal entropy inequality. We summarize
hereafter the main characteristics of this Finite Volume scheme.

• The generic Finite Volume scheme reads

Un+1
c − Un

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf Fpcf = 0,

where the subface flux expression in terms of the approximate Riemann solver Wpcf writes

Fpcf = F(Un
c )npcf −

� 0

−∞
(Wpcf (ξ) − Un

c ) dξ.

10



• The time step condition to ensure that the FV scheme is D-preserving reads

Δt ≤ Δtc = |ωc|�

p∈P(c)

�

f∈SF(pc)

lpcf ξmin
pcf

.

• The formal entropy inequality attached to the FV scheme under the foregoing time step
condition reads

Σn+1
c − Σn

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf Qpcf ≤ 0,

where the corner entropy flux writes

Qpcf = Q(Un
c ) · npcf −

� 0

−∞
(Σ(Wpcf (ξ)) − Σ(Un

c )) dξ.

Now, it remains to investigate not only the conservation property of the subface-based Finite
Volume scheme but also its entropy stability.

2.7. Conservation property
This section aims at determining under which conditions the studied subface-based Finite

Volume scheme is conservative. Assuming that the computational domain is the whole space R2,
the subface-based Finite Volume scheme,

|ωc|(Un+1
c − Un

c ) + Δt
�

p∈P(c)

�

f∈SF(pc)

lpcf Fpcf = 0,

is conservative if and only if
�

c

|ωc|Un+1
c =

�

c

|ωc|Un
c ⇐⇒

�

c

�

p∈P(c)

�

f∈SF(pc)

lpcf Fpcf = 0.

Now, exchanging the summation over the cells with the summation over the nodes, the right-sided
condition turns into �

p

�

c∈C(p)

�

f∈SF(pc)

lpcf Fpcf = 0,

where C(p) is the set of cells sharing the point p.
We claim that a sufficient condition to ensure the conservativity of the subface-based Finite

Volume scheme writes �

c∈C(p)

�

f∈SF(pc)

lpcf Fpcf = 0. (21)

This means that the summation over the cells c sharing point p of the fluxes attached to the subfaces
impinging at p is equal to zero, refer to figure 3a, where the subface fluxes have been displayed by
means of blue patches on both sides of each subface emanating from point p. Noticing that the
sum over the cells c sharing p of the fluxes attached to the subfaces impinging at p is rigorously
equal to the sum over the left-sided and the right-sided fluxes attached to the subfaces impinging
at p leads to reformulate sufficient condition (21) into

�

f∈SF(p)

lpf (Fl

pf + Fr

pf ) = 0. (22)

11



npcf

xp

lpcf

fF pcf

ωc

(a) Cell-based notation.

npf

xp
fF

l
pf

lpfF
r
pf

(b) Face-based notation.

Figure 3: Fragment of the computational grid in the vicinity of point p.

Here, SF(p) denotes the set of subfaces impinging at point p. For f ∈ SF(p), lpf is the length of
subface f and npf is its unit normal pointing towards the right state. In the foregoing equation,
Fl

pf (resp. Fr

pf ) denotes respectively the left-sided (resp. right-sided) flux attached to the subface
f , refer to figure 3b. By virtue of (7), with an obvious notation adaptation, the left and right-sided
fluxes expressions in terms of the left state Ulf , right state Urf , unit normal npf and vector nodal
parameter vp read

Fl

pf = Fl

pf (Ulf , Urf , npf , vp), and Fr

pf = Fr

pf (Urf , Ulf , −npf , vp).

Substituting this into the conservation condition (22) leads to
�

f∈SF(p)

lpf

�
Fl

pf (Ulf , Urf , npf , vp) + Fr

pf (Urf , Ulf , −npf , vp)
�

= 0. (23)

It is worth pointing out that the subface flux on both sides of the subface f depends on the nodal
vector parameter vp and thus a priori

Fl

pf (Ulf , Urf , npf , vp) + Fr

pf (Urf , Ulf , −npf , vp) � 0.

This prevents the node-based conservation condition (23) from boiling down to the classical face-
based conservation condition [19]. The node-based conservation condition consists of a system of
scalar equations at node p involving not only the length of the edges impinging at this node but
also the states adjacent to these edges. This system shall allow us to determine the parameter
vector vp and we note that the dimension of vp is the rank of the aforementioned system. By
analogy with the seminal works undertaken for cell-centered Lagrangian hydrodynamics [8, 29],
system (23) shall be named the nodal solver for vp.

Thanks to (10) and with an obvious notation adaptation, we express the subface fluxes in (23)
in terms of the approximate Riemann solver

Fl

pf (Ulf , Urf , npf , vp) = F(Ulf )npf −
� 0

−∞
(Wl

pf (Ulf , Urf , ξ, vp) − Ulf ) dξ,

Fr

pf (Urf , Ulf , −npf , vp) = F(Urf )(−npf ) −
� 0

−∞
(Wr

pf (Urf , Ulf , ξ, vp) − Urf ) dξ.

12



Substituting these expressions of the corner fluxes into the nodal conservation condition (23) and by
virtue of the symmetry assumption of the approximate Riemann solver (9), i.e., Wl

pf (Ulf , Urf , ξ, vp) =
Wr

pf (Urf , Ulf , −ξ, vp) we arrive at

�

f∈SF(p)

lpf

� � 0

−∞
(Wl

pf (Ulf , Urf , ξ, vp) − Ulf ) dξ +
� ∞

0
(Wl

pf (Ulf , Urf , ξ, vp) − Urf ) dξ (24)

+ (F(Urf ) − F(Ulf )) npf

�
= 0.

The Finite Volume scheme under consideration is conservative provided that the foregoing node-
based condition is fulfilled for each node.

2.8. Entropy stability
We aim at exhibiting conditions which ensure that the total entropy over the whole space R2

is non increasing that is �

c

|ωc|
�
Σn+1

c − Σn
c

�
≤ 0. (25)

Knowing that the local in-cell inequality (20) holds true, i.e.,

Σn+1
c − Σn

c + Δt

|ωc|
�

p∈P(c)

�

f∈SF(pc)

lpcf Qpcf ≤ 0,

implies that the global entropy inequality (25) holds true provided that
�

c

�

p∈P(c)

�

f∈SF(p)

lpcf Qpcf ≥ 0,

where Qpcf denotes the subface entropy flux attached to the subface f of corner pc. Similarly to
the study of the Finite Volume scheme conservation in section 2.7, we exchange the summation
over the cells with the summation over the nodes in the foregoing inequality to arrive at

�

p

�

c∈C(p)

�

f∈SF(p)

lpcf Qpcf ≥ 0,

where C(p) is the set of cells sharing the point p. Therefore, a sufficient condition to ensure that
the Finite Volume scheme satisfies the global entropy inequality (25) writes

�

c∈C(p)

�

f∈SF(p)

lpcf Qpcf ≥ 0. (26)

Once more, observing that the sum over the cells c sharing p of the entropy fluxes attached to
the subfaces impinging at p is rigorously equal to the sum over the left-sided and the right-sided
entropy fluxes attached to the subfaces impinging at p leads to reformulate sufficient condition
(26) into �

f∈SF(p)

lpf

�
Q

l

pf + Q
r

pf

�
≥ 0, (27)

where SF(p) is the set of subfaces impinging at point p. Developing the expression of the left-sided
and the right-sided subface entropy fluxes into the sufficient condition (27) yields

�

f∈SF(p)

lpf

�
Q

l

pf (Ulf , Urf , npf , vp) + Q
r

pf (Urf , Ulf , −npf , vp)
�

≥ 0. (28)

13



Substituting the expression of the subface entropy flux (19) in terms of the approximate Riemann
solver into the nodal entropy condition (28) and by virtue of the symmetry assumption of the
approximate Riemann solver (9), i.e., Wl

pf (Ulf , Urf , ξ, vp) = Wr
pf (Urf , Ulf , −ξ, vp) we arrive at

�

f∈SF(p)

lpf

� � 0

−∞
(Σ(Wl

pf (ξ, vp)) − Σlf ) dξ +
� ∞

0
(Σ(Wl

pf (ξ, vp)) − Σrf ) dξ (29)

+ (Q(Urf ) − Q(Ulf )) · npf

�
≤ 0.

3. Construction of approximate one-dimensional Riemann solvers by means of the
Lagrange-to-Euler mapping

This section provides a general and systematic framework for constructing simple approximate
Riemann solvers for one-dimensional hyperbolic systems of conservation laws written under Eu-
lerian form. The underlying methodology stems from the transformation relating the Lagrangian
and the Eulerian representations of conservation laws which is further applied to the Lagrangian
Riemann solvers to deduce their Eulerian counterparts. This manner of proceeding ensures the
direct transfer of the properties (conservation, positivity and entropy control) satisfied by the La-
grangian solver to its Eulerian counterpart. This transformation has been initially introduced in
[15, 17] for designing conservative, positive and entropic simple approximate Riemann solvers, and,
recently reused for the gas dynamics equations in [4]. It is worth noticing that this approach has
been extended not only to the magnetohydrodynamics equations written under Powell’s form but
also to hyperbolic systems with source terms leading to well-balanced numerical discretizations,
refer to [16].

3.1. One-dimensional Lagrange-to-Euler mapping
This section studies the one-dimensional Riemann problem located at the subface interface

which is required to construct the numerical flux approximation by means of the generic expression
(10). Let us consider the subface characterized by the unit outward n, the corresponding Riemann
problem reads

(RPE)





∂U
∂t

+ ∂Fn(U)
∂xn

= 0, where Fn(U) = F(U)n,

U(xn, 0) =
�

Ul if xn < 0,

Ur if xn ≥ 0.

Here, xn = x · n denotes the space variable in the direction normal to the interface. This Riemann
problem is also equipped with the the entropy inequality

∂Σ
∂t

+ ∂Qn
∂xn

≤ 0, (30)

where Qn = Q · n denotes the entropy flux.
From now on, we focus on systems of conservation laws describing physical phenomena in the

domain of continuum mechanics, for instance gas dynamics, shallow water equations, Magneto-
HydroDynamics (MHD), hyperelasticity... The interested reader might refer for instance to [26]
wherein several systems of conservation laws originated from continuum mechanics are described
and studied. In this framework, we assume that the first component of the general system of
conservation laws (1) is the mass conservation equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (31)
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where ρ > 0 is the mass density and v the material velocity. Thus, the first component of the
Riemann problem (RPE) reads

∂ρ

∂t
+ ∇ · (ρvn) = 0, (32)

where vn = v · n is the projection of the material velocity onto the unit normal n.
We construct the Lagrangian counterpart of (RPE) introducing the Lagrange-to-Euler mapping

m �−→ xn(m, t) such that
dxn = 1

ρ
dm + vndt,

is an exact differential and m denotes the Lagrangian mass coordinate. By construction
∂xn
∂m

(m, t) = 1
ρ

, and ∂xn
∂t

(m, t) = vn,

and since dxn is an exact differential the following compatibility condition holds true
∂τ

∂t
− ∂vn

∂m
= 0, (33)

where τ = 1
ρ is the specific volume. This is nothing but the Lagrangian mass/volume equation. Let

us point out that we utilize the same notation for the Lagrangian and the Eulerian time. Moreover,
the same physical quantity might be indifferently expressed either in terms of the Lagrangian
coordinates (m, t) or in terms of the Eulerian ones (xn, t) knowing that xn = xn(m, t). This
amounts to write formally

U(m, t) = U(xn(m, t), t).
Taking the time derivative of the foregoing identitity holding m fixed, i.e., the Lagrangian time
derivative, and applying the chain rule leads to

∂U
∂t

(m, t)
���
m

= ∂U
∂t

(m, t)
���
xn

+ vn
∂U
∂xn

(xn, t)
���
t
.

Therefore, the following identity holds true

ρ
∂

∂t
(τU)(m, t)

���
m

= ∂U
∂t

(m, t)
���
xn

+ ∂(vnU)
∂xn

(xn, t)
���
t
.

Substituting the Eulerian time derivative thanks to (RPE) in the foregoing equation leads to
∂(τU)

∂t
+ ∂

∂m
(Fn − vnU) = 0. (34)

This system is the Lagrangian counterpart of (RPE). However, one notices that its first component
is trivial, we thus replace it by (33). Finally, to complete the definition of the Lagrange-to-Euler
mapping let us introduce the expressions of the Lagrangian variable and flux in terms of their
Eulerian counterparts

V = τ(U − ρe1) + τe1, where e1 = (1, 0, . . . , 0)t,

Gn = Fn − vnU − vne1.

The foregoing formulas define the Lagrange-to-Euler transformation which allows us to deduce the
Lagrangian Riemann problem

(RPL)





∂V
∂t

+ ∂Gn(V)
∂m

= 0,

V(xn, 0) =
�

Vl if m < 0,

Vr if m ≥ 0,
15



which is the Lagrangian counterpart of (RPE). Here, V = V(m, t) and Gn are respectively the
vector of conservative variables and the flux vector written under Lagrangian representation. The
foregoing Lagrangian Riemann problem is also equipped with the Lagrangian entropy inequality

∂σ

∂t
+ ∂qn

∂m
≤ 0, (35)

where the Lagrangian entropy and entropy flux pair are written in terms of their Eulerian coun-
terparts σ = τΣ and qn = Qn − vnΣ.

Let WE(Ul, Ur, ξE), where ξE = xn
t , denotes the Eulerian Riemann solver which consists of

an approximate solution to (RPE). Similarly, we define WL(Vl, Vr, ξL), where ξL = m
t , the

Lagrangian Riemann solver which also consists of an approximate solution to (RPL). We assume
that the Eulerian approximate Riemann solver fulfills the basic requirements

• WE(Ul, Ur, ξE) = Ul for −ξE large enough,

• WE(Ul, Ur, ξE) = Ur for ξE large enough,

• WE(U, U, ξE) = U.

We prescribe similar assumptions for the Lagrangian Riemann solver.

3.2. Consistency of approximate Riemann solvers with the integral forms of the conservation law
and the entropy inequality

Here, we recall the fundamental notion of consistency that has been initially introduced in
the seminal works [22, 23]. Integrating the conservation law (RP)E over [−Δxl, 0] × [0, Δt] and
replacing U(xn, t) by its approximation WE(Ul, Ur, ξE) leads to

� 0

−Δxl

�
WE(Ul, Ur,

xn
Δt

) − Ul

�
dxn +

� Δt

0

�
Fn(U(0−, t)) − Fn(Ul)

�
dt = 0.

This incites us to define the left-sided flux as follows

F−
n = Fn(Ul) − 1

Δt

� 0

−Δxl

�
WE(Ul, Ur,

xn
Δt

) − Ul

�
dxn.

Now, making the change of variable ξE = xn
Δt in the foregoing integral and noticing that for −ξE

large enough WE(Ul, Ur, ξE) = Ul, we rewrite the left-sided flux employing the compact formula

F−
n = Fn(Ul) −

� 0

−∞
(WE(Ul, Ur, ξE) − Ul) dξE . (36)

Similarly, the right-sided flux writes

F+
n = Fn(Ur) +

� +∞

0
(WE(Ul, Ur, ξE) − Ur) dξE . (37)

Subtracting (36) to (37) yields

F+
n − F−

n = (38)
� 0

−∞
(WE(Ul, Ur, ξE) − Ul) dξE +

� +∞

0
(WE(Ul, Ur, ξE) − Ur) dξE + Fn(Ur) − Fn(Ul).
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The approximate Riemann solver, WE , is consistent with the integral form of the Riemann prob-
lem, (RPE), if and only if the left and right-sided fluxes are equal that is

� 0

−∞
(WE(Ul, Ur, ξE) − Ul) dξE+

� +∞

0
(WE(Ul, Ur, ξE) − Ur) dξE (39)

+Fn(Ur) − Fn(Ul) = 0.

Then, the approximate Riemann solver induces a Finite Volume Godunov-type scheme which is
conservative by construction.

Similarly to what has been done for the flux, we also introduce the left-sided and the right-sided
entropy fluxes

Q
−
n =Qn(Ul) −

� 0

−∞
[Σ(WE(Ul, Ur, ξE)) − Σ(Ul)] dξE , (40a)

Q
+
n =Qn(Ur) +

� +∞

0
[Σ(WE(Ul, Ur, ξE)) − Σ(Ur)] dξE . (40b)

Then, the approximate Riemann solver, WE , is consistent with the integral form of the entropy
inequality (30) if and only if Q

+
n −Q

−
n ≤ 0. Namely, substituting (40a) and (40b) into the foregoing

difference yields the inequality
� 0

−∞
[Σ(WE(Ul, Ur, ξE)) − Σ(Ul)] dξE +

� +∞

0
[Σ(WE(Ul, Ur, ξE)) − Σ(Ur)] dξE (41)

+ Qn(Ur) − Qn(Ul) ≤ 0.

If this inequality holds true, the Riemann solver induces an entropic Finite Volume scheme. Obvi-
ously, similar definitions might be introduced for the Lagrangian Riemann solver WL(Vl, Vr, ξL)
and we omit it for the sake of conciseness.

3.3. Lagrangian simple Riemann solvers and construction of their Eulerian counterparts via the
Lagrange-to-Euler mapping

3.3.1. Definition of the simple Lagrangian Riemann solver
In this section, we focus on a particular class of approximate Riemann solvers initially intro-

duced in [16, 17] and named simple Riemann solvers. The Lagrangian Riemann solver WL(Vl, Vr, ξL),
where ξL = m

t , represents an approximate solution of the Lagrangian Riemann problem (RPL).
It is a simple Riemann solver if and only if it consists of m + 1 constant states Vk, k = 1 . . . m + 1
separated by m discontinuities of slopes λk, k = 1, . . . , m in the (m, t) plane. More precisely,

WL(Vl, Vr,
m

t
) =





V1 = Vl if m
t < λ1,

Vk if λk−1 ≤ m
t < λk, k = 2, . . . , m,

Vm+1 = Vr if λm ≤ m
t .

Here, the λk for k = 1, . . . , m are the Lagrangian wave speeds in ascending order in the (m, t)
plane and thus homogeneous to m

t .
As its name suggests, the simple solver represents the simplest form of approximate Riemann

solver. Among others, Roe [41], HLL [23] and HLLC [45] solvers are famous examples of simple
approximate Riemann solvers. On the other hand, Godunov exact Riemann solver [21] and Osher
solver [35] are not.
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3.3.2. Consistency of the simple Lagrangian solver with its underlying conservation law and entropy
inequality

Similarly to what has been presented in section 3.2 the general expressions of the left and
right-sided Lagrangian fluxes write

G−
n =Gn(Vl) −

� 0

−∞
(WL(Vl, Vr, ξL) − Vl) dξL, (42a)

G+
n =Gn(Vr) +

� +∞

0
(WL(Vl, Vr, ξL) − Vr) dξL. (42b)

Replacing WL by its expression in the foregoing formulas leads to the explicit expressions of the
left and right-sided fluxes in terms of the intermediate states and the wave speeds

G−
n =Gn(Vl) −

m�

k=1
λ

(−)
k (Vk+1 − Vk), (43a)

G+
n =Gn(Vr) −

m�

k=1
λ

(+)
k (Vk+1 − Vk), (43b)

where for any real, x, we denote by x(+) = 1
2 (|x|+x) and x(−) = 1

2 (|x|−x) respectively its positive
and negative part. We claim that the simple Lagrangian Riemann solver WL is consistent with
the integral form of the conservation law (RPL) if and only if G−

n = G+
n . Indeed subtracting (43a)

to (43b) this amounts to write

−
m�

k=1
λk(Vk+1 − Vk) + Gn(Vr) − Gn(Vl) = 0. (44)

Therefore, the numerical flux at the interface writes

Gn = 1
2 [Gn(Vl) + Gn(Vr)] − 1

2

m�

k=1
|λk|(Vk+1 − Vk).

As such, we have recovered the classical expression of the numerical flux decomposed into a centered
part plus a viscous part, refer for instance to [45].

It remains to investigate the consistency of the simple Lagrangian Riemann solver with the
integral form of the Lagrangian entropy inequality (35). First, we compute the expression of the
left and the right-sided Lagrangian entropy fluxes defined respectively by

q−
n =qn(Vl) −

� 0

−∞
[σ(WL(Vl, Vr, ξL)) − σ(Vl)] dξL,

q+
n =qn(Vr) +

� +∞

0
[σ(WL(Vl, Vr, ξL)) − σ(Vr)] dξL.

Replacing WL by its expression in terms of the intermediate states and the waves speeds yields

q−
n =qn(Vl) −

m�

k=1
λ

(−)
k (σk+1 − σk),

q+
n =qn(Vr) −

m�

k=1
λ

(+)
k (σk+1 − σk),
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where σk = σ(Vk). We recall that the Riemann solver WL is consistent with the entropy inequality
(35) if and only if q+

n −q−
n ≤ 0. Substituting the foregoing explicit expressions of the left and right-

sided entropy fluxes in the aforementioned inequality, we thus claim that the simple Lagrangian
Riemann solver WL is consistent with the entropy inequality if and only if

−
m�

k=1
λk(σk+1 − σk) + qn(Vr) − qn(Vl) ≤ 0. (45)

Remark 3. It is worth pointing out that very often the Lagrangian systems of conservation laws
governing physical phenomena in the domain of continuum mechanics, e.g., gas dynamics, MHD,
hyperelasticity, are characterized by a zero entropy flux, i.e., qn = 0. This remarkable property
which has been characterized in [7] considerably simplifies the study of Lagrangian simple approxi-
mate Riemann solvers from the point of view of entropy stability.

3.3.3. Construction of the simple Eulerian Riemann solver from its Lagrangian counterpart
Now, we construct the simple Eulerian Riemann solver WE from the simple Lagrangian Rie-

mann one WL employing the Lagrange-to-Euler transformation introduced in section 3.1. This
methodology has been initially introduced in [16, 17] to deduce the Eulerian Riemann solver from
its Lagrangian counterpart. Following [16] we suppose that the Riemann solver WL satisfies the
assumptions

• (H1) λk(τk+1 − τk) + vn,k+1 − vn,k = 0, for k = 1, . . . , m.

• (H2) τk ≥ 0, for k = 1, . . . , m.

Hypothesis (H1) is nothing but the weak form of the volume/mass conservation equation (33)
written across each discontinuity of speed λk for k = 1, . . . , m. By virtue of (H1) for any k =
1, . . . , m

vn,k + λkτk = vn,k+1 + λkτk+1.

This in turn allows to define the Eulerian wave speeds

Λk = vn,k + λkτk = vn,k+1 + λkτk+1, for k = 1 . . . m. (46)

Now, observing that Λk+1 − Λk = vn,k+1 + λk+1τk+1 − vn,k+1 − λkτk+1 = τk+1(λk+1 − λk) and
by virtue of (H2), we deduce that the ordering of the Eulerian wave speeds is similar to that
of the Lagrangian ones. Bearing this in mind, the Eulerian simple approximate Riemann solver
WE(Ul, Ur, ξE), where ξE = xn

t , is deduced from its Lagrangian counterpart WL(Vl, Vr, ξL),
where ξL = m

t , employing the Euler-to-Lagrange transformation which maps the Lagrangian vector
of variables V onto its Eulerian counterpart U(V) = ρ(V−τe1)+ρe1. Applying this transformation
to the intermediate states of WL yields

WE(Ul, Ur, ξE) =





U1 = Ul = U(Vl) if ξE < Λ1,

Uk = U(Vk) if Λk−1 ≤ ξE < Λk for k = 2, . . . , m,

Um+1 = Ur = U(Vr) if Λm ≤ ξE .

Here, the Eulerian wave speeds are deduced from the Lagrangian ones by means of (46). Thanks
to (H1), one can easily demonstrate that the weak form of the Eulerian mass conservation (32)
holds true, that is

− Λk(ρk+1 − ρk) + ρk+1vn,k+1 − ρkvn,k = 0, for k = 1 · · · m. (47)

This is nothing but the Eulerian version of (H1).
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3.3.4. Fundamental property relating the Eulerian and the Lagrangian fluxes
We finish this section by presenting the fundamental property of the simple Riemann solvers

which allows to show that the difference between the left and the right-sided Eulerian fluxes is
rigorously equal to the difference between the left and the right-sided Lagrangian ones provided
that the underlying Eulerian and Lagrangian Riemann solvers are deduced one from the other by
means of the Lagrange-to-Euler transformation. Substituting the expression of the simple Eulerian
Riemann solver into (38) then the difference of the fluxes becomes

F+
n − F−

n = −
m�

k=1
Λk(Uk+1 − Uk) + Fn(Ur) − Fn(Ul). (48)

Now, substituting the expression of the Eulerian wave speeds (46) as functions of the Lagrangian
ones and invoking the definition of the Eulerian intermediate states and fluxes allows to form their
Lagrangian counterparts by means of the Lagrange-to-Euler transformation

F+
n − F−

n = −
m�

k=1
λk(τk+1Uk+1 − τkUk) + Gn,r − Gn,l + (vn,r − vn,l)e1

= −
m�

k=1
λk(Vk+1 − Vk) + Gn,r − Gn,l +

m�

k=1

�
λk(τk+1 − τk) + vn,k+1 − vn,k��������������������������������������������������������������������������������

=0 thanks to (H1)

�
e1

= −
m�

k=1
λk(Vk+1 − Vk) + Gn,r − Gn,l.

Finally, we arrive at the fundamental formula

−
m�

k=1
Λk(Uk+1 − Uk) + Fn(Ur) − Fn(Ul) = −

m�

k=1
λk(Vk+1 − Vk) + Gn(Vr) − Gn(Vl). (49)

This amounts to write that
F+

n − F−
n = G+

n − G−
n . (50)

This result is a consequence of the construction of the Eulerian simple solver from the Lagrangian
one utilizing the Lagrange-to-Euler mapping and (H1) assumption. We point out that formula
(49) has been already introduced in [16, 17] to demonstrate the equivalence of the Lagrangian
and Eulerian Riemann solvers regarding the consistency properties provided that assumption (H1)
holds true.

Remark 4. It is worth noting that the difference between the left and the right-sided Eulerian
fluxes is always equal to the difference between the left and the right-sided Lagrangian fluxes, i.e.
(49) always holds true, even if the approximate Riemann solver is not consistent with the integral
form of the conservation law.

Following the same methodology, we compute the difference between the Eulerian left and right-
sided entropy fluxes by subtracting (40a) to (40b) for the simple Eulerian Riemann solver WE

Q
+
n − Q

−
n = −

m�

k=1
Λl(Σk+1 − Σk) + Qn(Ur) − Qn(Ul).

Recalling that Eulerian wave speed satisfies Λk = λkτk +vn,k = λkτk+1 +vn,k+1, and, the Eulerian
entropy and entropy flux are expressed in terms of their Lagrangian counterparts by Σ = ρσ and
Qn = qn + ρσvn yields
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−
m�

k=1
Λk(Σk+1 − Σk) + Qn(Ur) − Qn(Ul) = −

m�

k=1
λk(σk+1 − σk) + qn(Vr) − qn(Vl). (51)

This amounts to write Q
+
n − Q

−
n = q+

n − q−
n .

4. Revisiting the node-based conservation and entropy conditions in the case of simple
Riemann solvers

The conservation and entropy properties of the generic Finite Volume scheme (6) developed
in section 2.6 rely respectively on the node-based conservation condition (24) and the node-based
entropy condition (29). We have shown that these node-based conditions are sufficient to ensure
that the aforementioned Finite Volume scheme is conservative and satisfies an entropy inequality
under the time step condition (14). Let us recall that for a generic node p these node-based
conditions are written in terms of the left and right-sided subface fluxes, Fl

pf and Fr

pf for the
conservation condition and also in terms of the left and right-sided subface entropy fluxes Q

l

pf and
Q

r

pf for the entropy condition, refer respectively to sections 2.7 and 2.8. The aforementioned left
and right sided subface fluxes and subface entropy fluxes are attached to subface f impinging at
p, refer to figure 3b, and defined through the approximate Riemann solver, Wl

pf , refer to (10) and
(19).

4.1. Expression of the node-based conditions for a simple Riemann solver
Here, we shall further develop these node-based conservation and entropy conditions in the

particular cases for which Wl
pf is a simple approximate Riemann solver. Consequently, Wl

pf

consists of m + 1 constant states Uk for k = 1 . . . m + 1 separated by m waves of speeds Λk for
k = 1 . . . m

Wl
pf (Ulf , Urf , npf , ξ, vp) =





U1 = Ulf if ξ < Λ1,

Uk if Λk−1 < ξ ≤ Λk, k = 2, . . . , m,

Um+1 = Urf if Λm ≤ ξ.

Here, the approximate Riemann solver is attached to the subface f whose unit normal npf points
towards the cell characterized by the right state Urf . The self-similar variable reads ξ = x·npf

t .
In what follows, for the sake of simplicity, we shorten the notation of the Riemann solver into
Wl

pf (Ulf , Urf , ξ).
Before proceeding any further, let us introduce the following identity which shall be useful and

holds true for any real valued function f

� 0

−∞

�
f(Wl

pf (Ulf , Urf , ξ)) − f(Ulf )
�

dξ+
� ∞

0

�
f(Wl

pf (Ulf , Urf , ξ)) − f(Urf )
�

dξ = (52)

−
m�

k=1
Λk [f(Uk+1) − f(Uk)] .

Its straightforward application to the node-based conservation condition (24) turns it into

�

f∈SF(p)

lpf



−

�
m�

k=1
Λk (Uk+1 − Uk)

�

l,r

+ [F(Urf ) − F(Ulf )] npf



 = 0, (53)
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Similarly, by virtue of identity (52) the node-based entropy condition (29) becomes

�

f∈SF(p)

lpf



−

�
m�

k=1
Λk (Σ(Uk+1) − Σ(Uk))

�

l,r

+ [Q(Urf ) − Q(Ulf )] · npf



 ≤ 0. (54)

4.2. Lagrangian equivalence of the node-based conditions
So far we have written the expressions of the node-based conservation and entropy conditions

obtained for a simple Eulerian Riemann solver. These expressions might be further simplified
employing the fundamental property attached to simple Eulerian and Lagrangian Riemann solvers
put in relation through the Lagrange-to-Euler mapping and the (H1) hypothesis, refer to section 3.3.
To this end, let us introduce Wl

pf,L(Vlf , Vrf , ξL), the Lagrangian counterpart of the Eulerian
simple solver Wl

pf (Ulf , Urf , ξ). The Lagrangian simple Riemann solver writes

Wl
pf,L(Vlf , Vrf , ξL) =





V1 = Vlf if ξL < λ1,

Vk if Λk−1 ≤ ξL < λk, k = 2, . . . , m,

Vm+1 = Vrf if λm ≤ ξL.

Here, the Lagrangian self-similar variable is defined by ξL = m
t where m is the mass Lagrangian

coordinate defined from the Eulerian coordinate xnpf
. The Lagrangian intermediate states Vk

are connected to the Eulerian intermediate states through the Lagrange-to-Euler mapping and the
Lagrangian wave speeds λk are related to their Eulerian counterpart thanks to (H1) hypothesis.
Now, with an obvious notation adaptation, the fundamental relations (49) for the flux and the
entropy flux (51) turn into

−
m�

k=1
Λk(Uk+1 − Uk) + Fn,r − Fn,l = −

m�

k=1
λk(Vk+1 − Vk) + Gn,r − Gn,l,

−
m�

k=1
Λk(Σk+1 − Σk) + Qn,r − Qn,l = −

m�

k=1
λk(σk+1 − σk) + qn,r − qn,l.

Finally, utilizing these identities, the node-based Eulerian conservation and entropy conditions for
the Finite Volume scheme boil down to a Lagrangian expression. More precisely, the Eulerian
node-based conservation condition (53) is equivalent to the Lagrangian one

�

f∈SF(p)

lpf



−

�
m�

k=1
λk (Vk+1 − Vk)

�

l,r

+ Gnpf ,r − Gnpf ,l



 = 0. (55)

Similarly the Eulerian node-based entropy condition (54) is equivalent to the Lagrangian one

�

f∈SF(p)

lpf



−

�
m�

k=1
λk (σ(Vk+1) − σ(Vk))

�

l,r

+ [q(Vr) − q(Vl)] · npf



 ≤ 0. (56)

The interest of the above formulations is their simplicity as they are expressed only in terms of
Lagrangian fluxes and unknowns. Particularly, for fluid dynamics systems having a zero entropy
flux Lagrangian formulation, refer to remark 3, the entropy condition boils down to the node-based
condition

�

f∈SF(p)

lpf

�
m�

k=1
λk (σ(Vk+1) − σ(Vk))

�

l,r

≥ 0. (57)
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These Lagrangian formulations of the node-based conservation and entropy conditions shall be
investigated further in the next section presenting the application of this original framework to the
gas dynamics system.

5. Application to the system of gas dynamics

In this section, we aim at describing the main building blocks of an original Finite Volume
scheme for discretizing the gas dynamics system onto unstructured general grids.

5.1. Governing equations
The gas dynamics system of conservation laws expresses the conservation of mass, momentum

and total energy and is written under Eulerian representation as follows

∂U
∂t

+ ∇ · F(U) = 0.

Here, U = U(x, t), where x ∈ Rd, is the vector of conservative variables. This vector writes
U = (ρ, ρv, ρe)t ∈ Rd+2 where ρ is the mass density, v the velocity vector and e the specific total
energy. The physical flux is described by the (d + 2) × d tensor

F(U) =




ρvt

ρv ⊗ v + pId

ρevt + pvt


 ,

where p denotes the thermodynamic pressure. The specific internal energy is given by ε = e− 1
2 v2.

Let η be the specific physical entropy, and τ = 1
ρ the specific volume, we make the fundamental

assumption that (τ, η) �→ ε(τ, η) is strictly convex which is equivalent to assume that (τ, ε) �→
η(τ, ε) is strictly concave, refer to [19]. We work with the particular entropy, entropy flux pair
(Σ, Q) = (−ρη, −ρvη) and thus the gas dynamics system of conservation laws is equipped with
the entropy inequality

∂ρη

∂t
+ ∇ · (ρηv) ≥ 0. (58)

The thermodynamic closure of this system of conservation laws is ensured by means of the complete
equation of state

p(τ, η) = − ∂ε

∂τ
, θ(τ, η) = ∂ε

∂η
. (59)

We make the classical assumption that the absolute temperature is strictly positive: θ > 0. By
virtue of (59), writing the differential of ε(τ, η) leads to the fundamental Gibbs relation

θ dη = p dτ + dε. (60)

The convexity of the specific internal energy with respect to the specific volume allows us to define
the isentropic sound speed

a2

τ2 = − ∂p

∂τ
= ∂2ε

∂τ2 . (61)
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5.2. Description of the one-dimensional Eulerian and Lagrangian systems of conservation laws
Let n be the unit normal to a generic interface along which we shall define Eulerian and

Lagrangian one-dimensional problems in the normal direction and their associated Riemann solvers
and finally construct the numerical approximation of the subfluxes of our Finite Volume scheme.
In what follows, we shall restrict our developments to the bidimensional space, i.e., d = 2. In this
framework, t is the unit vector such that (t, n) is a direct orthonormal basis attached to the generic
interface. The normal and tangential components of the velocity write respectively vn = v · n and
vt = v·t, and, obviously, v = vnn+vtt. The vector of conservative variables and the flux projected
onto the normal direction n write

U =




ρ
ρvn
ρvt
ρe


 , Fn = Fn =




ρvn
ρv2

n + p
ρvnvt

ρvne + pvn


 .

Therefore, the one-dimensional Eulerian system associated to the gas dynamics system in the n
direction, where xn = x · n, reads

∂U
∂t

+ ∂Fn(U)
∂xn

= 0.

This system is hyperbolic and admits the four following eigenvalues vn − a, vn with multiplicity 2
and vn + a, and is equipped with the entropy inequality

∂ρη

∂t
+ ∂

∂xn
(ρηvn) ≥ 0. (62)

Employing the Lagrange-to-Euler mapping introduced in section 3.1 we can derive the corre-
sponding one-dimensional Lagrangian system

∂V
∂t

+ ∂Gn(V)
∂m

= 0, (63)

where m is the Lagrangian mass coordinate related to the Eulerian coordinate xn. The Lagrangian
vector of conservative variables and the Lagrangian flux write

V =




τ
vn
vt
e


 , Gn =




−vn
p
0

pvn


 .

The Lagrangian system is also hyperbolic and admits the four eigenvalues − a
τ , 0 with multiplicity 2

and a
τ . The selection of physically admissible weak solutions is ensured supplementing this system

of conservation laws by the entropy inequality

∂η

∂t
≥ 0. (64)

5.3. The Lagrangian simple Riemann solver and its main properties
5.3.1. Construction of the Lagrangian Riemann solver

We consider the Lagrangian simple approximate Riemann solver corresponding to the foregoing
one-dimensional Lagrangian gas dynamics system. This approximate Riemann solver structure
mimics the continuous structure of the one-dimensional Lagrangian system of conservation laws.
It is naturally composed of four states Vl, V�

l , V�
r and Vr separated respectively by discontinuities
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of speeds −λl, 0 and λr in the (m, t) plane. Here, λl and λr are positive real parameters which
shall be constrained to ensure the positivity and entropy stability properties of the Riemann solver
following the methodology introduced initially in [16, 17] and revised recently in [4]. Bearing this
in mind the Lagrangian Riemann solver writes

WL

�
Vl, Vr,

m

t

�
=





Vl if m
t ≤ −λl,

V�
l if − λl < m

t ≤ 0,

V�
r if 0 < m

t ≤ λr,

Vr if λr < m
t .

The states components write Vs = (τs, vn,s, vt,s, es)t and the intermediate states components
V�

s = (τ�
s , v�

n,s, v�
t,s, e�

s)t for s = l, r. Assuming (H1) hypothesis is satisfied yields

λl(τ�
l − τl) − (v�

n,l − vn,l) = 0,

0(τ�
r − τ�

l ) − (v�
n,r − v�

n,l) = 0,

−λr(τr − τ�
r ) − (vn,r − v�

n,r) = 0.

This implies v�
n,r = v�

n,l and we denote v�
n the common value of the velocity, i.e., v�

n = v�
n,r = v�

n,l.
This shows that (H1) ensures the continuity of kinematic velocity through the contact waves which
is a rather satisfying physical behavior. Finally, the foregoing system boils down to

λl(τ�
l − τl) − (v�

n − vn,l) = 0, (65a)
λr(τ�

r − τr) + v�
n − vn,r = 0. (65b)

Now, following [4] we complete the Lagrangian Riemann solver characterization introducing the
intermediate fluxes for s = l, r

Gn,s = (−vn,s, ps, 0, (pvn)s)t.

These intermediate fluxes are nothing but the left and right-sided fluxes defined respectively by
(43a) and (43b). Therefore Gn,l ≡ G−

n and Gn,r ≡ G+
n satisfy the system

λl(V�
l − Vl) + Gn,l − Gn,l = 0, (66a)

−λr(Vr − V�
r) + Gn,r − Gn,r = 0, (66b)

where Gn,s = Gn(Vs) for s = l, r. Combining the first components of (66a), (66b) with (65a),
(65b) leads to vn,l = v�

n = vn,r. On the other hand, we make the structural assumption that the
intermediate total energy flux writes under the form

(pvn)s = psv�
n, for s = l, r. (67)

Gathering these results, we arrive at the following expressions of the intermediate states and fluxes

V�
s =




τ�
s

v�
n

v�
t,s

e�
s


 , and Gn,s =




−v�
n

ps

0
psv�

n


 , for s = l, r.

(H1) hypothesis and the structural assumption (67) for the total energy flux allow us to reduce
the number of scalar unknowns to 9, which must satisfy 8 scalar equations corresponding to the
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vectorial equations (66a) and (66b), that is

(Sl)





λl(τ�
l − τl) − (v�

n − vn,l) = 0,

λl(v�
n − vn,l) + pl − pl = 0,

λl(v�
t,l − vt,l) = 0,

λl(e�
l − el) + plv

�
n − plvn,l = 0,

(Sr)





λr(τ�
r − τr) + v�

n − vn,r = 0,

λr(v�
n − vn,r) − (pr − pr) = 0,

λr(v�
t,r − vt,r) = 0,

λr(e�
r − er) − (prv�

n − prvn,r) = 0.

We observe that the tangential velocity is conserved through the left and right discontinuities, i.e.,
v�

t,s = vt,s for s = l, r since λs > 0. It is worth noticing that, the intermediate normal velocity v�
n

might be viewed as a parameter in terms of which the 8 remaining unknowns might be expressed.

5.3.2. Positivity preserving and entropy control of the Lagrangian Riemann solver
We briefly describe how to ensure that the foregoing simple Lagrangian Riemann solver ensures

not only the positivity of the intermediate specific volume, i.e., τ �
s ≥ 0, and internal energy, i.e.,

ε�
s ≥ 0, but also the intermediate entropy control, i.e., η�

s −ηs ≥ 0, for s = l, r. For a more detailed
presentation of this topic the interested reader might refer to [4]. First, eliminating the normal
velocity increment v�

n − vn,s between the mass/volume equation and the momentum equation of
(Ss) yields for s = l, r

ps − ps = −λ2
s(τ�

s − τs). (68)
Further, dot-multiplying the momentum equation of (Ss) by 1

2 (v�
n + vn,s), and subtracting it to

the total energy equation provides us the internal energy equation for s = l, r

ε�
s − εs + ps + ps

2 (τ�
s − τs) = 0, (69)

since ε�
s = e�

s − 1
2 (v�

n,s)2 − 1
2 (v�

t,s)2 for s = l, r and v�
t,s = vt,s. Finally, substituting (68) into (69)

leads to the expression of the post-discontinuity internal energy for s = l, r

ε�
s = εs − ps(τ�

s − τs) + λs

2 (τ�
s − τs)2. (70)

This equation is fundamental since it allows a straightforward derivation of a positivity condition
for those specific internal energies. It also facilitates the study of the entropy production related
to the simple approximate Riemann solver. Equation (70) shows that the specific internal energy
ε�

s is a convex quadratic function with respect to τ �
s − τs, and thus it is always greater than its

minimum value
ε�

s ≥ εs − p2
s

2λ2
s

.

Therefore, the specific internal energy ε�
s is positive provided that the wave speed λs satisfies the

condition
λs ≥ ps√

2εs
.

This condition has been already proposed in [46]. Moreover, noticing that for a convex equation of
state, i.e., τ �→ p(τ, η) strictly convex, there holds a2

τ2 ≥ p2

2ε [31], the foregoing positivity condition
turns into

λs ≥ as

τs
, for s = l, r. (71)

The positivity conditions of the specific volumes are readily obtained written under the form

λl ≥ −v�
n − vn,l

τl
, and λr ≥ v�

n − vn,r

τr
.

26



It appears that these conditions are parametrized by the normal velocity v�
n. We are then able

to gather the positivity conditions of specific internal energy and specific volume into the global
conditions

λl ≥ max
�

al

τl
, −v�

n − vn,l

τl

�
, and λr ≥ max

�
ar

τr
,

v�
n − vn,r

τr

�
. (72)

Finally, we address the entropy control of the Lagrangian approximate Riemann solver. Decom-
posing the specific internal energy variation ε�

s − εs across the discontinuities into an isentropic
process followed by an isochoric one, we are able to express the entropy production in terms of
the specific volume variation τ �

s − τs. The study of this entropy production term [4] shows that
specific entropy increases across the discontinuity, i.e., η�

s − ηs ≥ 0 provided that the wave speed
satisfies the condition

λ2
s ≥ a2(τ s, ηs)

τ2
s

for all τ s ∈ (τs, τ�
s ), for s = l, r. (73)

We note that this condition has been also derived in the framework of relaxation scheme utilizing
a relatively cumbersome approach, refer to [3].

5.3.3. The corresponding simple Eulerian Riemann solver
Relying on hypothesis (H1) we can deduce the Eulerian wave speeds Λl, Λ0 and Λr from their

Lagrangian counterparts setting

Λl = vn,l − λlτl = v�
n − λlτ

�
l , Λ0 = v�

n, Λr = v�
n + λrτ�

r = vn,r + λrτr. (74)

It is clear that the Eulerian wave speeds are ordered, i.e. Λl ≤ Λ0 ≤ Λr, provided that the
Lagrangian approximate Riemann solver is positivity preserving, i.e., τ �

s ≥ 0. This holds true
granted that the Lagrangian wave speeds satisfy (72). Bearing this in mind, we are able to deduce
the Eulerian approximate Riemann solver from its Lagrangian counterpart as follows

WE

�
Ul, Ur,

xn
t

�
=





Ul if xn
t ≤ Λl,

U�
l = U(V�

l ) if Λl < xn
t ≤ Λ0,

U�
r = U(V�

r) if Λ0 < xn
t ≤ Λr,

Ur if Λr < xn
t .

Here, V �→ U(V) is the Lagrange-to-Euler mapping introduced in section 3 which allows us to
define straightforwardly the intermediate states of the simple Eulerian solver from its Lagrangian
counterpart. Consequently, the Eulerian intermediate states read U�

s = (ρ�
s, ρ�

sv�
n, ρ�

sv�
t,s, ρ�

se�
s)t

knowing that ρ�
s = (τ�

s )−1 for s = l, r. We observe that the Eulerian approximate Riemann solver
is also parametrized by the normal star-velocity. More importantly, by construction, the Eulerian
approximate Riemann solver has the same properties than its Lagrangian counterpart, i.e., it
preserves the positivity of mass density, specific energy and ensures entropy increase under specific
conditions on the Lagrangian wave speeds, refer to (73).

5.3.4. Consistency of the Lagrangian Riemann solver with its underlying conservation law
Let us investigate the consistency of the simple Lagrangian Riemann solver with the one-

dimensional conservation law (63), refer to section 3.3.2. To this end, we sum relations (66a) and
(66b) characterizing the intermediate fluxes Gn,l, Gn,r and we get

Gn,r − Gn,l = λl(V�
l − Vl) − λr(Vr − V�

r) + Gn,r − Gn,l. (75)
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On the other hand, utilizing the expression of the components of Gn,r and Gn,l we arrive at

Gn,r − Gn,l = (pr − pl)




0
1
0
v�

n


 . (76)

Now, we address the consistency of the simple Lagrangian Riemann solver with its underlying
conservation law by studying the solutions of Gn,r − Gn,l = 0. To this end, we compute the
difference pr − pl summing the second equations of (Sl) and (Sr)

pr − pl = (λl + λr)
�

v�
n −

�
λlvn,l + λrvn,r

λl + λr
− (pr − pl)

λr + λl

��
. (77)

This equation incites us to introduce the normal velocity

vn = λlvn,l + λrvn,r

λl + λr
− (pr − pl)

λr + λl
, (78)

which is nothing but the normal velocity of the classical Godunov acoustic solver, refer for instance
to [45]. Bearing this in mind, we claim that

• If v�
n = vn, then the simple Lagrangian Riemann solver is consistent with its underlying con-

servation law. Thus, the simple Lagrangian Riemann solver induces a classical conservative
Godunov-type Finite Volume scheme.

• If v�
n � vn, then the simple Lagrangian Riemann solver is not consistent with its underlying

conservation law and thus not does not induce a conservative Godunov-type Finite Volume
scheme.

In what follows, we investigate further the second case for which in general v�
n � vn and we shall

demonstrate how to retrieve a global conservation property for the Finite Volume scheme by means
of the node-based conservation conditions introduced in section 4.

5.4. The nodal solver
5.4.1. Expression of the node-based conservation condition

We have seen in section 4, that the global conservation of the Finite Volume scheme is ensured
provided that the Lagrangian node-based condition (55) is satisfied. This condition reads

�

f∈SF(p)

lpf



−

�
m�

k=1
λk (Vk+1 − Vk)

�

l,r

+ Gnpf ,r − Gnpf ,l



 = 0.

We are going to develop it in the case of gas dynamics using the properties of the simple Lagrangian
Riemann solver constructed previously. First, we express the generic term between curly brackets
at the left-hand side of the foregoing conservation condition with an obvious notation adaptation
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r) + Gn,r − Gn,l, (79)

The right-hand side of the foregoing equation coincides precisely with the right-hand side of (75)
which has been derived for studying the consistency of the simple Lagrangian solver with its
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underlying conservation laws. Thus, by virtue of (75) and (76), equation (79) turns successively
into
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We observe that the last line has been written using once more an obvious notation adaptation.
Namely, prf and plf denote the left and the right-sided interfacial pressures attached to subface f .
Finally, we arrive at the conclusion that our Finite Volume scheme is conservative provided that
the following node-based condition is satisfied
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Realizing that the second and third components of the foregoing vector correspond to npf , then
condition (80) implies �

f∈SF(p)

lpf (prf − plf )npf = 0. (81)

We observe that v�
npf

is still an unknown parameter attached to each subface impinging at node p.
Thus, the number of unknown parameters at node p is much greater than the number of equations
given by the conservation condition (80). Therefore, to close this system of equations, we assume
that the parameter v�

npf
is the projection of the unknown nodal vector vp onto the unit normal

npf , that is
v�

npf
= vp · npf . (82)

This fundamental assumption drastically reduces the number of unknowns to the vectorial unknown
vp, which can be interpreted as an approximation of the nodal velocity. With this assumption the
conservation condition (81) is equivalent to the conservation condition (80). Thanks to (77) and
(78) we are able to express the interface pressures difference into the node-based conservation which
becomes �

f∈SF(p)

lpf (λlf + λrf )(vp · npf − vnpf
)npf = 0,

where vn,pf is obtained from (78) with obvious notation adaptation

vnpf
=

λlf vnpf ,l + λrf vnpf ,r

λlf + λrf
− prf − plf

λlf + λrf
.

Finally, the node-based conservation condition (81) boils down to the system
�

f∈SF(p)

lpf (λlf + λrf )(npf ⊗ npf )vp =
�

f∈SF(p)

lpf (λlf + λlf )vnpcf
npf . (83)

This system always admits a unique solution which provides an approximation of the nodal veloc-
ity vp. It is thus called a nodal solver. We point out that the foregoing system has been already
obtained when constructing a cell-centered Finite Volume discretization of multidimensional La-
grangian hydrodynamics [29]. It has been also retrieved in [43] for designing a Finite Volume
scheme for Eulerian gas dynamics.
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5.4.2. Expression of the node-based entropy condition
Gathering the foregoing results, we are now in position to express what has become the nodal-

based entropy condition (57). With the present simple Lagrangian Riemann solver the left-hand
side of (57) writes
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Here, we have use σ = −η, where η is the physical concave entropy. Consequently the node-based
entropy condition for our Finite Volume scheme turns into
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which is satisfied provided that the simple Lagrangian Riemann solver is entropy stable, refer
to condition (73). This inequality might be satisfied relatively simply by utilizing a classically
tuning of the wave speeds of the Riemann solver similarly to what has been undertaken in the
one-dimensional framework, refer to [4].

5.5. Summary of the Eulerian multi-dimensional Finite Volume scheme
We recall that the multi-dimensional Finite Volume scheme writes
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where Fpcf is the left-sided flux with respect to the subface f and the unit outward normal npcf .
The left-sided flux (36) for a simple Eulerian Riemann solver is obtained by
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Here, the subscripts c and d correspond to the cells located respectively on the left and the right
sides of the subface f with respect to the unit normal npcf , refer to figure 2. On the other hand,
the right-sided flux writes
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Taking the arithmetic average of the left and the right-sided fluxes allows us to define the averaged
flux on the subface f
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This is the numerical flux corresponding to the classical face-based Finite Volume method. Since,
in this case, the numerical flux depends uniquely on the two states adjacent to the subface, we call
it two-point flux.
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(a) Two-point flux approximation. (b) Multi-point flux approximation.

Figure 4: Stencil representation of the Finite Volume scheme in terms of the subface flux approximation over the
fragment of a polygonal grid.

Now, recalling that the difference between the right and left-sided Eulerian flux coincides with
the difference between the right and the left-sided Lagrangian fluxes leads to
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where ppcf,r and ppcf,l are the left and right-sided interface pressures attached to the subface f .
Finally, combining the foregoing equation with (87) we arrive at
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This explicit expression of the numerical flux shows that in the particular case where vp · npcf =
vnpcf

we retrieve the classical conservative face-based Finite Volume scheme. In the general case,
vp ·npcf � vnpcf

and the numerical flux depends not only on the two states adjacent to the subface
but also on the states surrounding node p through the expression of the nodal velocity, refer to
(83), hence the name multi-point flux. We have displayed in figure 4 the stencils of the Finite
Volume scheme over the fragment of a polygonal grid for the two-point flux and the multi-point
flux approximations. We observe that the stencil corresponding to multi-point flux approximation
consists of the neighboring cells that share a node with the target cell.

With an obvious notation adaptation, the Eulerian wave speeds (74) related to the subface
characterized by the unit normal npcf read
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.
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Here, −λpcf,l ≤ 0 and λpcf,r ≥ 0 are respectively the left and right-sided wave speeds of the
underlying Lagrangian Riemann solver. The parameters λpcf,l and λpcf,r have been monitored
such that the intermediate densities ρ�

pcf,l and ρ�
pcf,r are positive, refer to (72), and thus the

Eulerian wave speeds are ordered as follows

Λpcf,l ≤ Λpcf,0 ≤ Λpcf,r.

Gathering the foregoing results, the time step condition (14) to ensure that the Finite Volume
scheme is D-preserving becomes
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. This time step condition ensures that
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c and all the intermediate states of the approximate Rie-
mann solvers attached to each subface of cell ωc. This convex combination property implies the
preservation of positivity for the mass density and the specific internal energy provided that the
approximate Riemann solver is positivity preserving. This is indeed the case when the Lagrangian
wave speeds λpcf,l and λpcf,r satisfies (72). Finally, observing that Λ(−)
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leads
to the practical time step condition
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6. Numerical results

From now on, we name ’two-point’ scheme the classical conservative face-based Finite Volume
scheme, while the proposed method based on node-based conservation is referred to as the ’multi-
point’ scheme. In this section we run an extensive numerical test case campaign to demonstrate
the performance of both the first-order explicit two-point and multi-point schemes. These test
cases are ran on various types of grids that can be made of triangular, quadrangular and polygonal
cells. The CFL number is set to 0.5 for all cases. For all the test cases the triangular meshes
are obtained employing the open source mesh generator Gmsh [18], the structured quadrangular
meshes are directly computed by the Finite Volume code and the polygonal grids result from of
an in-house mesher based on Voronoi tessellation [28].

6.1. Odd-even decoupling
The Odd-Even decoupling problem is a difficult simulation for certain numerical schemes. Quirk

in [38] proposed this so-called odd-even decoupling test, where one simulates the propagation of a
planar shock but on a perturbed Cartesian mesh for which only the center line is slightly shifted.
The computational domain is defined by Ω = [0, 800] × [0, 20] with a Cartesian uniform structured
mesh with Δx = Δy = 1, with I = 800 cells in x-direction, J = 20 in y-direction. A cell is then
labelled with i, j indices as usual for Cartesian mesh. The center-line, at y = 10, coincides with
the j0 labeled line of mesh with j0 = 10. The perturbation of amplitude 10−6 is alternating as
follows for line j0:

xi,j0 ←− xi,

yi,j0 ←− yj0 + (−1)i 10−6.
32



(a) Density contours at tfinal = 50 of two-point (top) and
multi-point (bottom) schemes.
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(b) Comparison of the solution deviations ε0.

Figure 5: Classical odd-even decoupling problem.

The shock wave is traveling from left to right with a Mach number of Ma = 6, the initial domain
is filled with a diatomic gas with (ρ0, u0, v0, p0, γ) = (1, 0, 0, 1, 1.4). The left side inflow values are
determined using the Rankine-Hugoniot relations:

us = Ma √
γ, ρ∞ = (γ + 1)Ma2

(γ − 1)Ma2 + 2
, u∞ = us

2(Ma2 − 1)
(γ + 1)Ma2 , p∞ = 2γMa2 − (γ − 1)

(γ + 1) ,

The left Boundary Condition (BC) corresponds to inflow boundary, top and bottom are wall-type
BCs while the right one is left open. The final time is tfinal = 50. Obviously the exact solution
is a vertical Ma = 6 shock wave traveling at speed us. The instability reveals itself through
symmetry perturbation of the shock wave as it travels along the duct. A sensitive measure of this
perturbation, see [40], consists in computing the deviation ε0 of the numerical solution:

ε0 = max
i,j

(|ρi,j − ρi|), with ρi = 1
J

J�

j=1
ρi,j . (90)

The density color maps at the stopping time are displayed in figure 5a respectively for the two-
point (top) and the multi-point (bottom) schemes. The density contours have been plotted using
20 iso-lines in the range [1.4, 7.3]. The development of the odd-even instability is clear for the two-
point scheme whereas it seems to be absent for the multi-point scheme. In figure 5b one displays
the plot of ε0 as a function of the distance traveled by the shock wave, Xs(t) = ust, for the two-
point scheme (red curve) and the multi-point one (blue curve). The presence of the instability
can be quantified with the plot of ε0, refer to figure 5b. We observe an exponential increase up to
ε0 > 1 = Δx for the two-point scheme, while the multi-point scheme value remains consistently at
the order 10−4 � Δx.

A more demanding version of the odd-even decoupling problem has been proposed by Rodionov
in [40] by changing the seed of the instability. Here, we simulate the propagation of the same shock
wave. However a small perturbation of the form

x̂i0,j = xi0,j + 10−4(2ζj − 1)
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(a) Density contours at tfinal = 50 of two-point (top) and
multi-point (bottom) schemes.
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(b) Comparison of the solution deviations ε0.

Figure 6: Modified odd-even decoupling problem.

is introduced in the transverse grid line i0 = 10, where ζj ∈ [0, 1] are random numbers. The y size
of the domain is increased so that J = 50 and one maintains Δx = Δy = 1. The upper and lower
BCs are periodic ones. The results are displayed in figure 6 utilizing the presentation employed
in figure 5. The instability is much more pronounced with higher frequency for the two-point
scheme. Contrarily the multi-point scheme does not present such an amplification of the initial
perturbations, see figure 6a. This is also observed on the ε0 curves, refer to figure 6b.

6.2. Hypersonic flow over half cylinder
The hypersonic flow over a half cylinder test case is a well-documented test case to challenge

numerical methods. In particular for this flow some schemes may develop the infamous carbuncle
phenomena when classical face-based Finite Volume upwind schemes are employed. Instead of
having a smooth bow shock profile upstream of the half cylinder, the carbuncle failing features
a pair of oblique shock ahead of the stagnation region, compromising the overall flow predictions
around the cylinder, refer for instance to [37, 14, 36] just to cite few references. Here, following
[40], we simulate an inviscid flow at Mach Ma = 20 around a half cylinder blunt body subject to
a incoming hypersonic flow characterized by (ρ0, u0, v0, p0, γ) = (1, Ma √

γ, 0, 1, 1.4). The steady-
state resulting flow is simulated by means of an explicit time marching procedure, that is, the
simulation ends when the residual is 6 orders of magnitude smaller than its initial value. The
computational domain covers a large enough domain which contains half of a cylinder centered at
the origin with a radius R = 1, and a left incoming hypersonic flow. At the cylinder surface a wall-
type boundary condition is considered, while bottom/upper boundary conditions are free outflow
and inflow condition at the left boundary. Three types grid are tested to assess the robustness
of our unstructured Finite Volume multi-point scheme: a triangular grid is composed of 5671
unstructured triangles, a quadrangular one made of 5000 structured quadrangles, and, a polygonal
grid with 5632 unstructured polygons.
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(a) Triangular grid, two-point scheme. (b) Triangular grid, multi-point scheme.

Figure 7: Hypersonic flow over half cylinder. Density maps over triangular grids for both two-point and
multi-point schemes with 20 isolines over the interval [1, 6.2].

Firstly, this test case is ran with the two-point scheme over the triangular grid, and, as can be
observed in figure 7a the carbuncle instability clearly develops. On the contrary, such instability
does not develop with the multi-point scheme over the triangular, quadrangular and polygonal
grids, refer respectively to figures 7b, 8a and 8b. A quantitative comparison of these numerical
results can be achieved plotting the pressure coefficient, Cp = p−p0

1
2 ρ0u2

0
, at the wall with respect to the

angular position. The numerical Cp is then compared to the approximate analytical value coming
from the Newtonian theory, see [1]. The pressure coefficient, Cp, computed by the multi-point
scheme matches the Newtonian theory for angles below 40◦, while the two-point scheme results are
polluted by the carbuncle effect, refer to figure 9a. A rather good convergence is observed for the
multi-point scheme in figure 9b for successively refined structured grids made of 25 × 50, 50 × 100
and 100 × 200 quadrangular cells.

We pursue our numerical study comparing both two-point and multi-point schemes over the
same polygonal grid for the half cylinder test case. It is worth mentioning that the polygonal
grid results from a Voronoi tessellation. For this particular grid, a generic polygonal cell has
exactly the same number of face-based or vertex-based neighbors. This implies, that the two-point
Finite Volume scheme and the multi-point Finite Volume scheme share the very same stencil. The
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(a) Quadrangular grid, multi-point scheme. (b) Polygonal grid, multi-point scheme.

Figure 8: Hypersonic flow over half cylinder. Density maps over quadrangular and polygonal grids for both multi-
point scheme with 20 isolines over the interval [1, 6.2].
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(a) Cp comparisons.
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Figure 9: Hypersonic flow over half cylinder. Various plots of the pressure coefficient Cp at the wall with respect to
the angular position employing the foregoing grids.
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(a) Left half : Two-point scheme, Right half : Multi-
point scheme. (b) Left: Two-point, Right: Multi-point.

Figure 10: Hypersonic flow over half cylinder. Comparison between density map for the two-point and multi-point
schemes over the same polygonal grid and the 3D extruded views for the density field obtained with both schemes.

density map obtained with both schemes (top/bottom panels: two/multi-point schemes) over the
polygonal grid under consideration is displayed in figure 10. 20 isolines ranging from ρ = 1 to
ρ = 6.2 are plotted. Although the two-point scheme does not exhibit large spurious spike as the
one observed in figure 7a, the isolines exhibit emerging instabilities behind the shock, see also the
3D view in figures 10b. This test case demonstrates that the multi-point solver does not generate
any carbuncle-like instability on any type of grid. As such one has to be careful when praising the
low-dissipation property of a solver such as the two-point one.

6.3. Sedov blast wave problem
The Sedov test case is a point explosion problem for which an exact solution can be derived, refer

to [42]. In the case of two-dimensional planar geometry, the problem consists of a cylindrical ex-
plosion generating a diverging shock wave. The computational domain Ω = [−1.2, 1.2]× [−1.2, 1.2]
is initially filled with a perfect gas at rest characterized by the initial conditions (ρ0, u0, v0, p0, γ) =
(1, 0, 0, 10−6, 7

5 ). The point explosion is initiated by an energy deposition in the vicinity of the ori-
gin, i.e., the pressure in the cells in contact with the origin is set to the value 0.397056. Reflective
boundary conditions are applied on all boundaries. With this particular setup taken from [25], the
cylindrical shock wave radius is rshock =

�
x2 + y2 = 1 at the final time tfinal = 1 with a peak

density ρmax = γ+1
γ−1 = 6. The exact density as a function of radius is plotted using a continuous

black line in figure 12.
Similarly to what has been done for the previous test cases, we compared the numerical solutions
obtained by the two-point and multi-point schemes on 400×400 uniform quadrangles in figure 11a
and in figure 11b respectively. Then, the scattered plot of density with respect to the radius of
each cell center is displayed in figures 12a and 12b for both schemes versus the analytical solution.
These results exhibit the occurrence of a spurious effect along the x and y axes for the two-point
scheme. Notice that the full 2π Sedov problem is actually run so that the boundary conditions can-
not be blamed. The scattered plots also confirm the loss of cylindrical symmetry for the two-point
scheme. Contrarily, the multi-point scheme does not present such parasitical effect, and, as such
preserves the cylindrical symmetry, while being slightly more dissipative. These observations have
already been done in [40] for instance. In order to confirm such a good behavior, the multi-point
scheme is used on the following successively refined quadrangular grids: 100 × 100, 200 × 200 and

37



(a) Two-point scheme. (b) Multi-point scheme.

Figure 11: Sedov blast wave problem. Density contour at tfinal = 1 on a 400 × 400 grid.
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Figure 12: Sedov blast wave problem. Scattered plots for density.

400×400. The resulting scattered plots are displayed in figure 12c, where we observe a convergence
of the solution without spurious effects. To assess the capability of the numerical methods in
maintaining symmetry for shock wave propagation on irregular grids, we run the Sedov problem
on the setup introduced in [9]. A Cartesian grid is divided into four quadrants with the following
grid spacing: Δx × Δy for (x, y) ∈ [0, 1] × [−1, 0] , Δx × 2Δy for (x, y) ∈ [0, 1] × [0, 1] , 2Δx × 2Δy
for (x, y) ∈ [−1, 0] × [0, 1] and Δx × Δy for (x, y) ∈ [−1, 0] × [−1, 0]. We once again present the
numerical density map for both schemes in figure 13 and the scattered plots for both schemes
in figure 14. We observe that the radial nature is preserved with the multi-point scheme even
though the shock wave is crossing regions of with different aspect ratios and resolutions. Similar
instabilities are observed for the two-point scheme.

6.4. Noh implosion problem
The problem designed by Noh [33] is a well known test case used to validate numerical schemes

in the regime of infinite strength shock wave. The initial computational domain is defined by a
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(a) Irregular grid. (b) Two-point scheme. (c) Multi-point scheme.

Figure 13: Sedov blast wave problem. Numerical results for the density over irregular grid for both two-point and
multi-point schemes.

0.6 1.2
Radius r

0

2.0

4.0

6.0

D
en
si
ty

ρ

Top right

Bottom right

Bottom left

Top left

(a) Two-point scheme.
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Figure 14: Sedov blast wave problem. Scattered plot of the density for both two-point and multi-point schemes over
irregular grid.
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quarter of a circle of radius of r = 1. A perfect gas with γ = 5/3 is initially assigned with a
uniform density ρ0 = 1 and a unit radial inward pointing velocity, hence the velocity components
are initialized with v0(x, y) = (−x/r, −y/r) where r =

�
x2 + y2 denotes the radius and �v0� = 1.

The initial pressure is p0 = 10−6 everywhere. A diverging cylindrical shock wave is generated at
the origin. The state behind the shock wave is constant, whereas the state in front is not anymore
due to the cylindrical converging flow. Thus, the exact solution at time t > 0 writes

(ρ, v, p)ex(t) =





�
ρ0

�
γ+1
γ−1

�2
, 0,

1
2ρ0

(γ + 1)2

γ − 1

�
, if r < rs,

�
ρ0 (1 − (t/r))2

, v0, 10−6
�

, if r ≥ rs.
(91)

Here, the radius of the shock wave is rs(t) = vst with vs = 1
2(γ − 1)�v0�. With this setup and

the final time tfinal = 0.6, we arrive at rs = 0.2 and a post-shock state characterized by the values
ρex = 16, vex = 0 and pex = 16

3 . Symmetry BCs are prescribed on the axis x = 0 and y = 0,
whereas at the outer radius, the exact space/time dependent velocity is imposed employing the
analytical solution (91). A radial/polar grid made of N × N quadrangles is constructed such that
Δr = 1/N and Δθ = π/(4N) are constants. Let us notice that the cells in contact with the
origin are triangles which are considered as degenerated quadrangles. We present the numerical
density (colors and isolines) for a N = 200 × 200 polar grid at the final time tfinal = 0.6 for
the two-point and the multi-point schemes in figures 15a and 15b respectively. The two-point
scheme produces strong post-shock instabilities. We have verified that those instabilities are not
generated by inappropriate boundary conditions. Contrarily the multi-point scheme presents a
smooth symmetrical solution. Consistently with the results of Sedov problem, we present the
scattered plot of the density with respect to the radius of the cell center for both schemes in
figure 16a. Again we observe that the multi-point scheme handles such cylindrical flow without
any loss of symmetry. Finally, a grid convergence analysis for the multi-point scheme is performed
using the sequence of grids characterized by 502, 1002 and 2002 polar cells. The results for the
density are plotted in figure 16b. We point out that the multi-point scheme indeed converges
towards the exact solution. Let us notice that the undershoot close to the origin corresponds to
the so called wall-heating effect, refer to [32, 39].

6.5. Forward-facing step
Next we run the forward facing step problem proposed by Woodward and Colella in [47].

This test case is a Mach 3 wind tunnel with a step. The computational domain is given by
Ω = [0, 3] × [0, 1] [0.6, 3] × [0, 0.2] with the following initial conditions

ρ = γ, v = (3, 0)t, p = 1, γ = 7/5.

The final time is tfinal = 4 and reflective boundary conditions are applied on the upper and lower
boundaries of the domain, whereas inflow and outflow boundary conditions are applied at the left
entry and the right exit respectively. The solution presents several shock waves further interacting
with the wall boundaries. Once again we use this test case to compare both the two-point and
multi-point schemes on meshes constituted of quadrangles.
In figures 17a and 17b, (resp. figures 18a and 18b) we present the results for the two-point schemes
(resp. multi-point schemes) employing a structured grid made of N = 334043 quadrilateral cells.
The density gradient (numerical Schlieren) and density contours (colors and iso-contours) are both
illustrated. The general shape and position of the multiple shocks appear correctly captured by the
two schemes. However, we also observe in details that the two-point scheme develops some spurious
phenomena along the flat step up to the reflection Y-shaped region, and, along the primary bow
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(a) Two-point scheme. (b) Multi-point scheme.

Figure 15: Noh implosion problem: Density maps for a 200 × 200 quadrilateral polar grid.
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Figure 16: Noh implosion problem: Scattered plots of the density.
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(a) Schlieren plot. (b) Density map.

Figure 17: Forward-facing step on a structured grid composed of N = 334043 quadrilateral cells: Numerical results
employing the two-point scheme.

(a) Schlieren plot. (b) Density map.

Figure 18: Forward-facing step on a structured grid composed N = 334043 quadrilateral cells: Numerical results
employing the multi-point scheme.

shock, especially close to the y = 0 axe. The numerical Schlieren plot enhances these behaviors.
On the contrary the multi-point scheme in figures 18a and 18b does not present this pathological
behavior.

If at first glance the two-point scheme may seem less dissipative and simpler in its design.
However it reveals to develop unacceptable spurious phenomena which drastically or viciously
pollute the obtained numerical solution. Contrarily the multi-point scheme behaves far better and
may seem an appropriate robust, entropic and positivity preserving first-order Eulerian scheme on
general grids.

7. Conclusion and perspectives

We have developed a novel subface flux-based multi-dimensional Finite Volume scheme for
solving hyperbolic systems of conservation laws over general unstructured meshes. The subface
flux approximation relies on simple approximate Riemann solvers. This original FV method is
characterized by an explicit time step condition which ensures the preservation of the definition
domain. Contrarily to the classical face-based Finite Volume schemes, the notions of conservativity
and entropy stability are defined by means of node-based conditions.

Following the seminal work of Gallice [17] we derive approximate Riemann solvers in the normal
direction to the subface by means of the fundamental Lagrange-to-Euler mapping. As such, the
Eulerian solvers are constructed directely from their Lagrangian counter-parts. Doing so, we exhibit
a fundamental link between Eulerian and Lagrangian numerical fluxes.

The node-based conservation condition implies that the stencil onto which the scheme operates
covers all cells in contact with the current one leading to a genuinely multidimensional scheme,
hence the name ’multi-point’ scheme.
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The application to the system of gas dynamics has been thoroughly depicted. First, Lagrangian
and Eulerian simple Riemann solvers linked together through the Euler-to-Lagrange mapping have
been exhibited. The associated Eulerian scheme is multi-point, conservative, entropic, and posi-
tive by construction under a well-defined time step condition. Moreover, the wave-speeds of the
Riemann solver are appropriately ordered by construction. This Eulerian numerical scheme has
been implemented in 2D in its first-order explicit version on unstructured grids. A list of test
cases are presented and the numerical results of the multi-point scheme have been compared to the
ones of the classical two-point scheme. We have observed that the multi-point scheme is robust
and seems insensitive to spurious numerical phenomena like the carbuncle instability. As such the
multi-point scheme would be an appropriate first-order robust candidate scheme to build upon
high-order accurate extensions.

In the future, we will investigate the extension to higher-orders of accuracy, namely second-
and third-orders. Also, we plan to design and implement similar concepts in a three-dimensional
geometry on unstructured grids. For steady aerodynamics applications, we also intend to develop
a time marching algorithm relying on an implicit version of the scheme. At last, we shall study the
application of this novel methodology more complex physics such as the shallow water equations
with source terms and the magneto-hydrodynamics.
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