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Abstract

The purpose of this work is the development of space-time discretization schemes for phase-field

optimal control problems. Specifically in the optimal control minimization problem, a tracking-type

cost functional is minimized to steer the crack via the phase-field variable into a desired pattern. To

achieve such optimal solutions, Neumann type boundary conditions need to be determined. First,

a time discretization of the forward problem is derived using a discontinuous Galerkin formulation.

Here, a challenge is to include regularization terms and the crack irreversibility constraint. The

optimal control setting is formulated by means of the Lagrangian approach from which the primal

part, adjoint, tangent and adjoint Hessian are derived. Herein the overall Newton algorithm is

based on a reduced approach by eliminating the state constraint, namely the displacement and

phase-field unknowns, but keeping the control variable as the only unknown. From the low-order

discontinuous Galerkin discretization, adjoint time-stepping schemes are finally obtained. Both

our formulation and algorithmic developments are substantiated and illustrated with six numerical

experiments.
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1 Introduction

Fracture propagation using variational approaches and phase-field methods is currently an important

topic in applied mathematics and engineering. The approach for the mathematical and mechanical
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literature was established in [25, 13, 40] and in physics by [34, 29, 56] and overview articles and

monographs include [14, 15, 63, 61, 24, 22] with numerous further references cited therein.

It is well-known that the efficient and robust numerical solution of the nonlinear and linear sub-

problems in phase-field fracture is challenging. This is mainly due to the nonlinear structure of the

coupled problem and the interaction of model, discretization and material parameters. In spite of the

development of robust preconditioning and parallel, scalable, iterative algorithms, the forward solution

remains costly in general for both two-dimensional and three-dimensional settings.

While the major amount of work concentrates on forward modeling of phase-field fracture, more

recently some work started on parameter identification employing Bayesian inversion [36, 64, 53, 54],

topology optimization [21], stochastic phase-field modeling [27], and optimal control [51, 52, 50]. Solv-

ing phase-field fracture problems using methods from shape optimization was proposed in [1].

The main objective of this work is to design a mathematical framework including computational

performance studies for phase-field fracture optimal control problems. In optimal control some cost

functional shall be minimized where the forward problem (here the phase-field fracture weak formula-

tion) acts as constraint and the control (often involving boundary conditions or right hand side forces)

is designed in such a way that the minimization goal is achieved as well as possible. Specifically, we

consider a tracking type cost functional in which a desired phase-field crack pattern shall be realized

by controlling Neumann type boundary forces. From an engineering viewpoint, such cost functionals

and controls are reasonable since often either a desired crack path shall be achieved (for instance in

hydraulic fracturing), or in the case of preventing fracture/damage either no fractures should develop

or at least once they start developing they should be steered with appropriate forces into directions

that cause minimal damage. Since volume forces such as gravitational forces play minor roles in such

settings, we mainly control optimal fracture patterns by boundary forces and concentrate on Neu-

mann type conditions. In prior work [51, 52] the emphasis was on mathematical analysis and a brief

illustration in terms of a numerical simulation for a fixed fracture by a tracking type functional for a

desired displacement field. However, computational details have not yet been discussed therein, but

are necessary in order to apply and investigate the methodology for more practical applications such

as propagating fractures.

Due to the irreversibility constraint on the fracture growth, optimization problems subject to such

an evolution become mathematical programs with complementarity constraints (MPCC) [7, 46, 47] so

that standard constraint qualifications like [55, 66] cannot hold. Our computational approach requires

stronger regularity and hence we replace the complementarity constraint with a suitable penalty term.

Designing a computational framework for phase-field fracture optimal control is novel and chal-

lenging because appropriate function spaces and weak formulations need to be determined, and robust

forward and optimization solvers are required.

Specifically, we are interested in a rigorous mathematical framework, which is the reason why

we concentrate on one type of cost functional (here tracking type) and one type of controls (here

Neumann boundary controls) in this work. However, from an engineering perspective other controls

such as Dirichlet controls or right hand side controls would be possible, too. Moreover, other cost
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functionals controling for instance the bulk or crack energies could be employed. Technically, such

implementations can be realized in our software as shown for other numerical experiments in [23, 28].

For the forward solver, as intensively discussed in the literature, the linear and nonlinear solutions

are demanding because of the non-convexity of the governing energy functional of the forward phase-

field fracture model and the relationship of discretization and regularization parameters. For the

nonlinear solution various methods were proposed such as alternating minimization (staggered solution)

[12, 19], quasi-monolithic solutions [30, 32, 61], and fully monolithic schemes [26, 59, 60, 39, 58].

Nonetheless, monolithic solutions as adopted here remain difficult and we add an additional viscous

regularization term as originally proposed in [37] and used in our governing model from [52].

The optimal control problem is formulated in terms of the reduced approach by eliminating the

state variable with a control-to-state operator; see for instance [57, 31]. In this work, the state variable

consists of the vector-valued displacement field and the phase-field variable. The control variable is

a function defined on the boundary of the domain. By eliminating the state variable, we obtain a

so-called reduced cost functional defined in terms of the control variable only, which results in an

unconstrained optimization problem. The numerical solution is obtained via the first-order necessary

optimality condition.

Applying Newton-type methods requires the second derivative of the reduced cost functional, and

needs in practice the evaluation of the adjoint, tangent, and adjoint Hessian equations. The latter

requires the evaluation of second-order derivatives; see, e.g., [8] and [42, Chapter 4] for parabolic

optimization problems.

The paper [8] serves as point of departure for our approach in the current work. Specifically, we

employ Galerkin formulations in time and discuss in detail how the crack irreversibility constraint is

formulated using a penalization [48, 51] and an additional viscous regularization [52, 37]. Based on

these settings, concrete time-stepping schemes are derived. As usual, the primal and tangent problem

run forward in time whereas the adjoint and adjoint Hessian equations run backward in time. The

main emphasis is to establish robust numerical solvers in terms of the nonlinear forward solver and the

nonlinear optimization loop.

We then perform extensive tests by means of six numerical experiments with different complexities.

First, we notice that propagating fractures for such optimization problems were not addressed in the

prior work [51, 52]. In the current work, considering now propagating fractures, the overall goals are

computational investigations of the performance of the reduced Newton algorithm (NLP), the linear

conjugate gradient (CG) method, and convergence of the residuals, cost functionals, tracking parts,

Tikhonov parts and optimal controls. We recall upfront that such investigations are even challenging

for forward phase-field fracture problems due to the interaction of model, discretization and material

parameters (see [13, 38] and closely related work on image segmentation [11], and the prior seminal

work on Gamma convergence [3, 4, 17]), and possibly also penalization parameters for treating the

crack irreversibility constraint [61]. All of them have an impact on mathematical well-posedness [14]

(and references cited therein), and on numerical approximations and nonlinear and linear solution

algorithms [14, 15, 63, 61, 24, 22]. The parameters include: phase-field regularization ε and bulk
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regularization κ, crack irreversibility penalization γ and viscous regularization η, mesh size h and

loading step size ∆t, critical energy release rate Gc and Lamé parameters λ and µ.

The extension to optimization adds further levels of complexity: the forward problem, with all

its own challenges, must be solved numerous times, more parameters enter such as the Tikhonov

regularization α, and in order to guarantee a well-posed optimization setting, the adjustment of α is

delicate for weighting the physical tracking functional against the Tikhonov regularization term. Our

experiments below encompass propagating fractures, non-constant controls on one or more boundary

sections, multiple (propagating) fractures, an adaptation of Winkler’s [62] L-shaped panel test, and

using controls to prevent crack growth. These tests provide novel insight for both the capabilities of

the phase-field method for fracture from a numerical viewpoint as well as for applications. On the

other hand, limitations and opportunities for future work also become visible, such as the need to

further improve the linear solver’s cost complexity (e.g., by parallel multigrid methods [33] and model

order reduction [9]) as for fine meshes the forward solver becomes prohibitivly expensive. Some further

preliminary results (yet with a stationary, non-propagating fracture) are published in the book chapter

[35].

The outline of this paper is as follows: In Section 2, the phase-field fracture forward model is

introduced. Furthermore, a Galerkin time discretization is derived. Next, in Section 3, the optimization

problem is stated, including the reduced space approach. In the key Section 4, the Lagrangian and

three auxiliary equations are carefully derived in great detail, and with our final complete algorithm.

Then, in Section 5, extensive studies with six numerical experiments are discussed to substantiate our

algorithmic developments. Our work is summarized in Section 6.

2 Space-time phase-field fracture forward model

To formulate the space-time forward problem, we first introduce some basic notation and then proceed

with the construction of function spaces and a space-time weak formulation. Afterwards, a space-time

Galerkin discretization is derived with discontinuous (dG) functions in time and a classical continuous

Galerkin (cG) method in space.

2.1 Notation

We consider a bounded domain Ω ⊂ R2. The boundary is partitioned as ∂Ω = ΓN
.
∪ ΓD where both

the Dirichlet boundary ΓD and the Neumann boundary ΓN have nonzero Hausdorff measure. Next we

define two function spaces, V := H1
D(Ω;R2) ×H1(Ω) for the displacement field u and the phase-field

ϕ, and Q := L2(ΓN ) for the control q, where

H1(Ω;R2) := {v ∈ L2(Ω;R2) : Dαv ∈ L2(Ω;R2) ∀α ∈ N2
0, |α| ≤ 1},

H1
D(Ω;R2) := {v ∈ H1(Ω;R2) : v|ΓD

= 0}.

Moreover we consider a bounded time interval I = [0, T ] and introduce the spaces

X := {u = (u, ϕ) : u ∈ L2(I, V ), ∂tϕ ∈ L2(I,H1(Ω)∗)}, W := C(I,Q).
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Here, H1(Ω)∗ denotes the dual space to H1(Ω), which can be identified via the well-known Hilbert

space isomorphism with H1(Ω) such that H1(Ω)∗ ' H1(Ω).

On V respectively X we define the scalar products

(u,v) :=

∫
Ω
u · v dx ∀u,v ∈ V,

(u,v)I :=

∫
I

∫
Ω
u · v dx dt =

∫
I
(u(t),v(t)) dt ∀u,v ∈ X,

with induced norms ‖ · ‖ and ‖ · ‖I , and furthermore the restricted inner products

(u(t),v(t)){∂tϕ(t)>0} :=

(u(t),v(t)), ∂tϕ(t) > 0,

0, else,

(u,v){∂tϕ>0,I} :=

∫
I
(u(t),v(t)){∂tϕ(t)>0} dt ∀u,v ∈ X.

Later we also work with ( · , · ){ϕ(ti)>ϕ(tj)}, defined like ( · , · ){∂tϕ(t)>0}, and with a semi-linear form

a( · )( · ) in which the first argument is nonlinear and the second argument is linear.

2.2 Weak formulation

We deal with the following weak formulation: Given u0 ∈ V and q ∈W , find u ∈ X such that

(g(ϕ)Ce(u), e(Φu))I − (q,Φu:⊥)ΓN ,I = 0,

Gcε(∇ϕ,∇Φϕ)I −
Gc
ε

(1− ϕ,Φϕ)I + (1− κ)(ϕCe(u) : e(u),Φϕ)I

+ γ(∂tϕ,Φϕ){∂tϕ>0,I} + η(∂tϕ,Φϕ)I = 0,

(1)

for every test function Φ = (Φu,Φϕ) ∈ X. Herein Φu:⊥ denotes the component of Φu that is orthogonal

to ΓN . The critcial energy release rate is denoted by Gc > 0. The so-called degradation function

g(ϕ) := (1−κ)ϕ2+κ helps to extend the displacements to the entire domain Ω. The bulk regularization

parameter is κ > 0, the phase-field regularization parameter is ε > 0, the penalization parameter is

γ > 0, and the viscosity parameter is 0 < η � γ. Furthermore, C denotes the elasticity tensor and

e(u) the symmetric gradient. Then, we have

Ce(u) = σ(u) = 2µe(u) + λ tr(e(u))I,

where µ, λ > 0 are the Lamé parameters and I is the identity matrix.

Remark 2.1. The above weak formulation differs slightly from many other phase-field fracture for-

mulations found in the literature since the crack irreversibility constraint ∂tϕ ≤ 0 is kept on the time-

continuous level in order to apply a Galerkin discretization in time.

Remark 2.2 (Initial condition u0). Note that we are concerned with quasi-static brittle fracture without

explicit time derivative in the displacement equation. Nonetheless, we introduce for formal reasons u0.

First, we can develop in an analogous fashion time discretization schemes for the overall forward model.

Second, it facilitates the extension to problems in which the displacement equation does have a time

derivative, such as dynamic fracture [16, 10]. Third, having u0 allows for a monolithic implementation

structure, and the system matrix for the initial condition is regular.
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Remark 2.3 (Convexification). We notice that strict positivity η > 0 improves the numerical solution

process of (1). In fact, one can show for the quasi-static case that for sufficiently large values of η

the control-to-state mapping is single valued due to strict convexity of the energy corresponding to the

equation. However, the convexification term η(∂tϕ,Φϕ)I also penalizes crack growth. To ensure the

dominance of the physically motivated term γ(∂tϕ,Φϕ){∂tϕ>0,I} we have to choose γ � η.

2.3 Space-time finite element discretization

2.3.1 Temporal discretization

Given T > 0, we define the time grid 0 = t0 < · · · < tM = T to partition the interval I into M

left-open subintervals Im = (tm−1, tm],

I = {0} ∪ I1 ∪ · · · ∪ IM .

By using the discontinuous Galerkin method, here dG(0), we seek a solution u in the space X0
k of

piecewise polynomials of degree 0,

X0
k := {v ∈ X : v(0) ∈ V and v|Im ∈ P0(Im, V ), m = 1, . . . ,M}. (2)

Here, the subindex k indicates the time-discretized function space in order to distinguish it from the

continuous space X. For the jump terms arising in X0
k we use the standard notation

v+
m := v(tm+), v−m := v(tm−) = v(tm), [v]m := v+

m − v−m.

Remark 2.4. Since we work with dG(0), i.e., piece-wise constant functions in time, we have

∂tv = v−m − v+
m−1 = 0 ∀v ∈ X0

k ∀m = 1, . . . ,M.

The discretized state equation combines the two equations of (1). For a concise formulation, the

energy-related terms are expressed as a semi-linear form a : Q× V × V → R,

a(q,u)(Φ) := g(ϕ) · (Ce(u), e(Φu))

+Gcε(∇ϕ,∇Φϕ)− Gc
ε

(1− ϕ,Φϕ)

+ (1− κ)(ϕ · Ce(u) : e(u),Φϕ)− (q,Φu:⊥)ΓN
.

Now the fully discretized state equation determines a function u ∈ X0
k for a given initial value u0 =

(u0, ϕ0) ∈ V and a given control q ∈W such that for every Φ ∈ X0
k

0 =

M∑
m=1

[
γ(∂tϕ,Φϕ){∂tϕ>0,Im} + η(∂tϕ,Φϕ)Im

]
(3a)

+

M−1∑
m=0

[
γ([ϕ]m,Φ

+
ϕ,m){ϕ−

m+1>ϕ
−
m} + η([ϕ]m,Φ

+
ϕ,m)

]
(3b)

+

M∑
m=1

a(q(tm),u(tm))(Φ(tm))∆tm (3c)

+ (u−0 − u0,Φ
−
u,0) + (ϕ−0 − ϕ0,Φ

−
ϕ,0). (3d)
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The time integral in (3c) has been approximated by the right-sided box rule, where ∆tm := tm− tm−1.

Discontinuities of the functions in X0
k are captured by the jump terms in (3b) in the typical dG(0)

manner. These jump terms can be rewritten as

M∑
m=1

[
γ(ϕ+

m−1 − ϕ
−
m−1,Φ

+
ϕ,m−1){ϕ−

m>ϕ
−
m−1}

+ η(ϕ+
m−1 − ϕ

−
m−1,Φ

+
ϕ,m−1)

]
. (4)

Moreover, since we are employing a dG(0) scheme, our test functions satisfy

Φ+
m−1 = Φ−m ∀m = 1, . . . ,M.

Thus the first sum (3a) vanishes entirely by Remark 2.4, and the two terms containing ϕ+
m−1 in (4)

become (ϕ−m,Φ
−
ϕ,m){ϕ−

m>ϕ
−
m−1}

and (ϕ−m,Φ
−
ϕ,m), respectively. Together with (3b) and (3d), the discrete

state equation (3) is finally written as

0 =

M∑
m=1

(
γ
[
(ϕ−m,Φ

−
ϕ,m){ϕ−

m>ϕ
−
m−1}

− (ϕ−m−1,Φ
−
ϕ,m){ϕ−

m>ϕ
−
m−1}

]
+ η
[
(ϕ−m,Φ

−
ϕ,m)− (ϕ−m−1,Φ

−
ϕ,m)

]
+ a(q(tm),u(tm))(Φ(tm))∆tm

)
+ (u−0 − u0,Φ

−
u,0) + (ϕ−0 − ϕ0,Φ

−
ϕ,0) ∀Φ ∈ X0

k .

(5)

To solve (5), we first obtain u−0 = u(0) from the initial condition

(u(0),Φ−0 ) = (u0,Φ
−
0 ) ∀Φ−0 ∈ V. (6)

Then we compute u(tm) for m = 1, . . . ,M from

0 = γ(ϕ(tm),Φϕ(tm)){ϕ(tm)>ϕ(tm−1)} + η(ϕ(tm),Φϕ(tm))

− γ(ϕ(tm−1),Φϕ(tm)){ϕ(tm)>ϕ(tm−1)} − η(ϕ(tm−1),Φϕ(tm))

+ a(q(tm),u(tm))(Φ(tm))∆tm ∀Φ ∈ X0
k .

(7)

2.3.2 Spatial discretization

For the spatial discretization, we employ again a Galerkin finite element scheme by introducing H1

conforming discrete spaces. We consider two-dimensional shape-regular meshes with quadrilateral

elements K forming the mesh Th = {K}; see [20]. The spatial discretization parameter is the diameter

hK of the element K. On the mesh Th we construct a finite element space Vh := Vuh × Vϕh as usual:

Vuh := {v ∈ H1
D(Ω;R2) : v|K ∈ Qs(K) for K ∈ Th},

Vϕh := {v ∈ H1(Ω): v|K ∈ Qs(K) for K ∈ Th}.

Herein Qs(K) consists of shape functions that are obtained as bilinear transformations of functions

defined on the master element K̂ = (0, 1)2, where Q̂s(K̂) is the space of tensor product polynomials

up to degree s in dimension d, defined as

Q̂s(K̂) := span

{
d∏
i=1

x̂αi
i : αi ∈ {0, 1 . . . , s}

}
.
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Specifically, for s = 1 and d = 2 we have

Q̂1(K̂) = span{1, x̂1, x̂2, x̂1x̂2}.

With these preparations, based on (2), we now design the fully discrete function space

X0
hk := {v ∈ X : vh(0) ∈ Vh and v|Im ∈ P0(Im, Vh), m = 1, . . . ,M}.

The discrete control spaceQh is constructed likeX0
hk usingQ1(K) (again s = 1) elements, but restricted

to the Neumann boundary ΓN . Then, the fully discrete system consists of the initial condition

(uh(0),Φ−h,0) = (uh,0,Φ
−
h,0) ∀Φ−h,0 ∈ Vh (8)

and for m = 1, . . . ,M of the local system

0 = γ(ϕh(tm),Φϕ,h(tm)){ϕh(tm)>ϕh(tm−1)} + η(ϕh(tm),Φϕ,h(tm))

− γ(ϕh(tm−1),Φϕ,h(tm)){ϕh(tm)>ϕh(tm−1)} − η(ϕh(tm−1),Φϕ,h(tm))

+ a(qh(tm),uh(tm))(Φh(tm))∆tm ∀Φh ∈ X0
hk.

(9)

3 Optimization with phase-field fracture

In this section, we state the phase-field optimal control problem and introduce the reduced solution

approach. Therein, the primal forward problem plus three additional equations must be solved. Their

combination yields the final solution algorithm.

3.1 Optimization problem

We consider a separable NLP (Non-Linear Program) with a cost functional of tracking type. In this

tracking type functional, the objective is to approximate a given phase-field fracture pattern ϕd by

determining a suitable control q. The corresponding minimization problem is given by:

min
q,u

J (q,u) :=
1

2

M∑
m=1

‖ϕ(tm)− ϕd(tm)‖2 +
α

2

M∑
m=1

‖q(tm)− qd(tm)‖2ΓN

s.t. (6) and (7) for m = 1, . . . ,M , with (u0, ϕ0) ∈ V and (q,u) ∈W ×X,

(10)

where ϕd ∈ L∞(Ω) is some desired phase-field and qd is a suitable nominal control that we use for

numerical stabilization. The second sum represents a common Tikhonov regularization with parameter

α. The existence of a global solution of (10) in L2(I,Q)×X has been shown in [51, Theorem 4.3] for

functions that are non-negative and weakly semi-continuous.

Remark 3.1. The fully discrete version of (10) is obtained by working with the equations (8) and (9).

In what follows, in order to keep the notation comfortable, we omit the index h indicating the spatial

discretization.
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3.2 Reduced optimization problem

In order to handle (10) by the reduced approach, we assume that a solution operator S : W → X exists

for the PDE (1). The cost functional J (q,u) then reduces to j : W → R, j(q) := J (q, S(q)), and we

replace (10) by the unconstrained optimization problem

min
q

j(q). (11)

To solve j′(q) = 0 by Newton’s method, we compute representations of j′ and j′′ using the established

approach in [8]. It requires the solution of four equations (given below) for derivatives of the Lagrangian

L : W ×X0
k ×X0

k → R, which is defined within the dG(r) setting as

L(q,u, z) := J (q,u)−
M∑
m=1

(
γ(∂tϕ, zϕ){∂tϕ>0,Im} + η(∂tϕ, zϕ)Im

)

−
M−1∑
m=0

(
γ([ϕ]m, z

+
ϕ,m){ϕ−

m+1>ϕ
−
m} + η([ϕ]m, z

+
ϕ,m)

)
−
∫
I
a(q(t),u(t))(z(t)) dt

− η0(u(0)− u0, zu(0))− η(ϕ(0)− ϕ0, zϕ(0)),

(12)

and for the time continuous case as

L(q,u, z) := J (q,u)− γ(∂tϕ, zϕ){∂tϕ>0,I} − η(∂tϕ, zϕ)I

−
∫
I
a(q(t),u(t))(z(t)) dt

− η0(u(0)− u0, zu(0))− η(ϕ(0)− ϕ0, zϕ(0)).

(13)

Remark 3.2. We notice that starting with (12) and deriving the state, adjoint, tangent, adjoint Hessian

equations, exhibits the property that discretization and optimization interchange, i.e., the discretize-

then-optimize and the optimize-then-discretize approaches are equal; see [8, 42] for parabolic optimiza-

tion problems. However in what follows, we start from the time-continuous formulation (13) for the

ease of presentation (which nonetheless becomes difficult enough) and we add only afterwards the dG-

in-time representations, which yields in the end the same result if we had started with (12).

3.3 State, adjoint, tangent, adjoint Hessian

In this section we state the four equations to be solved for computing j′ and j′′.

1. State equation: given q ∈W , find u= S(q) ∈ X such that the PDE (1) holds:

L′z(q,u, z)(Φ) = 0 ∀Φ ∈ X.

2. Adjoint equation: given q ∈W and u = S(q), find z ∈ X such that

L′u(q,u, z)(Φ) = 0 ∀Φ ∈ X. (14)
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3. Tangent equation: given q ∈W , u = S(q), and a direction δq ∈W , find δu ∈ X such that

L′′qz(q,u, z)(δq,Φ) + L′′uz(q,u, z)(δu,Φ) = 0 ∀Φ ∈ X. (15)

4. Adjoint Hessian equation: given q ∈ W , u = S(q), z ∈ X from (14), a direction δq ∈ W , and

δu ∈ X from (15), find δz ∈ X such that

L′′qu(q,u, z)(δq,Φ) + L′′uu(q,u, z)(δu,Φ) + L′′zu(q,u, z)(δz,Φ) = 0 ∀Φ ∈ X. (16)

Solving these equations in a specific order (see for instance [8, 42]) leads to the following representations

of the derivatives that we need for Newton’s method:

j′(q)(δq) = L′q(q,u, z)(δq) ∀δq ∈W,

j′′(q)(δq1, δq2) = L′′qq(q,u, z)(δq1, δq2) + L′′uq(q,u, z)(δu, δq2)

+ L′′zq(q,u, z)(δz, δq2) ∀δq1, δq2 ∈W.

(17)

4 Auxiliary equations

Starting from the Lagrangian (13), we derive in detail the three auxiliary equations (14)–(16). Specific

emphasis is on the regularization terms for the crack irreversibility and the convexification.

4.1 Adjoint

In the adjoint for dG(0) we seek z = (zu, zϕ) ∈ X0
k such that

L′u(q,u, z)(Φ) = 0 ∀Φ ∈ X0
k .

The first interesting part is the calculation of the derivative of L. We formulate it directly in the weak

form
L′u(q,u, z)(Φ) = J ′u(q,u)(Φ)

− γ(∂tΦϕ, zϕ){∂tϕ>0,I} − η(∂tΦϕ, zϕ)I

−
∫
I
a′u(q(t),u(t))(Φ(t), z(t)) dt

− η0(Φu(0), zu(0))− η(Φϕ(0), zϕ(0)).

(18)

Remark 4.1. We notice that γ(∂tΦϕ, zϕ){∂tϕ>0,I} is a suitable numerical approximation to the deriva-

tive of γ(∂tϕ, zϕ){∂tϕ>0,I}, since formally a characteristic function must be differentiated; see also [49,

Section 5] for a similar numerical approximation in the context of a related forward problem. The same

procedure as numerical approximation of the derivative is utlized in the other three auxiliary problems,

namely the adjoint, tangent, and adjoint Hessian.

The partial derivative of a in (18) reads

a′u(q,u)(Φ, z) = ((1− κ)ϕ2 + κ) · (Ce(Φu), e(zu))

+ 2ϕ(1− κ)Φϕ(Ce(u), e(zu))

+Gcε(∇Φϕ,∇zϕ) +
Gc
ε

(Φϕ, zϕ)

+ (1− κ)(Φϕ · Ce(u) : e(u), zϕ)

+ 2ϕ(1− κ)(Ce(Φu) : e(u), zϕ).

(19)
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Now the main problem is that the time derivatives are applied to the test function Φ as usual in the

adjoint. Therefore we use integration by parts to shift the time derivatives over to z. Then the second

line in (18) becomes
γ(Φϕ, ∂tzϕ){∂tϕ>0,I} + η(Φϕ, ∂tzϕ)I

+ γ(Φϕ(0), zϕ(0)){∂tϕ(0)>0} + η(Φϕ(0), zϕ(0))

− γ(Φϕ(T ), zϕ(T )){∂tϕ(T )>0} − η(Φϕ(T ), zϕ(T )).

(20)

At this point we have to decide how to approximate the time derivative ∂tϕ(0). While ∂tϕ(tm) for

m = 1, . . . ,M is easily approximated by the backward difference

∂tϕ(tm) ≈ ϕ(tm)− ϕ(tm−1)

tm − tm−1
,

this procedure will not work for the first mesh point t0 = 0. The forward difference

∂tϕ(0) ≈ ϕ(t1)− ϕ(t0)

t1 − t0

is a good choice because it simplifies the condition ∂tϕ(t0) > 0 to ϕ(t1) > ϕ(t0) and leads to desired

cancelations in (21). Now we will repeat the procedure that we applied to the state equation. We

approximate the time derivatives and add the jump terms (with shifted index) as we did in (3),

obtaining expressions similar to (4):

L′u(q,u, z)(Φ) = J ′u(q,u)(Φ)

+
M∑
m=1

[
γ(Φ−ϕ,m, z

−
ϕ,m − z+

ϕ,m−1){ϕ−
m>ϕ

−
m−1}

+ η(Φ−ϕ,m, z
−
ϕ,m − z+

ϕ,m−1)
]

− γ(Φ−ϕ,M , z
−
ϕ,M ){ϕ(tM )>ϕ(tM−1)} − η(Φ−ϕ,M , z

−
ϕ,M )

+ γ(Φ−ϕ,0, z
−
ϕ,0){ϕ(t1)>ϕ(t0)} + η(Φ−ϕ,0, z

−
ϕ,0)

+
M∑
m=1

[
γ(Φ−ϕ,m−1, z

+
ϕ,m−1 − z

−
ϕ,m−1){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,m−1, z
+
ϕ,m−1 − z

−
ϕ,m−1)

]
−

M∑
m=1

a′u(q(tm),u(tm))(Φ(tm), z(tm))∆tm

− η0(Φ−u,0, z
−
u,0)− η(Φ−ϕ,0, z

−
ϕ,0).

(21)

Since zϕ ∈ X0
k , we have z−ϕ,m = z+

ϕ,m−1 and see that the first sum vanishes entirely. We also see

that the terms ±η(Φ−ϕ,0, z
−
ϕ,0) in the fifth and the last line of (21) cancel. Moreover, we assume that

ϕ(t1) ≤ ϕ(t0) in the initial step, and hence the term γ(Φ−ϕ,0, z
−
ϕ,0){ϕ(t1)>ϕ(t0)} in the fifth line vanishes

as well.

Remark 4.2 (Projection of the initial solution). The assumption ϕ(t1) ≤ ϕ(t0) is numerically justified

since at t0 some initial phase-field solution is prescribed. From t0 to t1 an L2 projection of the initial

conditions is employed that conserves the crack irreversibility constraint.
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By the above arguments we eliminate the second, third and fifth line of (21) and the second term

of the last line, whereas the initial values for zu are still present:

L′u(q,u, z)(Φ) = J ′u(q,u)(Φ)

− γ(Φ−ϕ,M , z
−
ϕ,M ){ϕ(tM )>ϕ(tM−1)} − η(Φ−ϕ,M , z

−
ϕ,M )

+

M∑
m=1

[
γ(Φ−ϕ,m−1, z

+
ϕ,m−1 − z

−
ϕ,m−1){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,m−1, z
+
ϕ,m−1 − z

−
ϕ,m−1)

]
−

M∑
m=1

a′u(q(tm),u(tm))(Φ(tm), z(tm))∆tm

− η0(Φ−u,0, z
−
u,0).

(22)

4.2 Adjoint time-stepping scheme

From here on we exploit the separable structure of J (q,u) =
∑

m J(q(tm),u(tm)). We start the

solution process by pulling out from (22) every term associated with the last time point tM :

a′u(q(tM )u(tM ))(Φ(tM ), z(tM ))∆tM

+ γ(Φ−ϕ,M , z
−
ϕ,M ){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,M , z
−
ϕ,M )

= J ′u(q(tM ),u(tM ))(Φ(tM )) ∀Φ ∈ X0
k .

(23)

Now we collect what is left, multiply by −1 and use the X0
k property (z+

ϕ,m−1 = z−ϕ,m):

0 =
M∑
m=1

[
γ(Φ−ϕ,m−1, z

−
ϕ,m−1 − z

−
ϕ,m){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,m−1, z
−
ϕ,m−1 − z

−
ϕ,m)

]
+
M−1∑
m=1

a′u(q(tm),u(tm))(Φ(tm), z(tm))∆tm

−
M−1∑
m=1

J ′u(q(tm),u(tm))(Φ(tm))

+ η0(Φ−u,0, z
−
u,0) ∀Φ ∈ X0

k .

(24)

To formulate the equations that are actually solved in every time step we want to rewrite the entire

equation as a single sum. Therefore we shift down the index of the first sum (the jump terms), take

out the terms for m = 0, and obtain

0 =

M−1∑
m=1

([
γ(Φ−ϕ,m, z

−
ϕ,m − z−ϕ,m+1){ϕ−

m+1>ϕ
−
m} + η(Φ−ϕ,m, z

−
ϕ,m − z−ϕ,m+1)

]
+ a′u(q(tm),u(tm))(Φ(tm), z(tm))∆tm

− J ′u(q(tm),u(tm))(Φ(tm))
)

+ γ(Φ−ϕ,0, z
−
ϕ,0 − z

−
ϕ,1){ϕ−

1 >ϕ
−
0 }

+ η(Φ−ϕ,0, z
−
ϕ,0 − z

−
ϕ,1)

+ η0(Φ−u,0, z
−
u,0).
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Now we solve for m = M − 1,M − 2, . . . , 1 the equation

a′u(q(tm),u(tm))(Φ(tm), z(tm))∆tm

+ γ(Φ−ϕ,m, z
−
ϕ,m − z−ϕ,m+1){ϕ−

m+1>ϕ
−
m} + η(Φ−ϕ,m, z

−
ϕ,m − z−ϕ,m+1)

= J ′u(q(tm),u(tm))(Φ(tm)) ∀Φ ∈ X0
k .

(25)

Finally three terms are left for m = 0,

γ(Φ−ϕ,0, z
−
ϕ,0 − z

−
ϕ,1){ϕ−

1 >ϕ
−
0 }

+ η(Φ−ϕ,0, z
−
ϕ,0 − z

−
ϕ,1) + η0(Φ−u,0, z

−
u,0) = 0. (26)

For η0 � η small enough the last term of (26) can be dropped and the following equation can be solved

instead:

(Φ−ϕ,0, z
−
ϕ,1) = (Φ−ϕ,0, z

−
ϕ,0). (27)

Remark 4.3 (Algorithmic realization). To avoid singular matrices that would lead to a loss of con-

vergence in the linear solvers, we have to add an intial condition for z−u,0: (Φ−u,0, z
−
u,1) = (Φ−u,0, z

−
u,0). In

total we replace (27) by (Φ−0 , z
−
1 ) = (Φ−0 , z

−
0 ). We also refer the reader to the third reason outlined in

Remark 2.2.

4.3 Tangent equation

The second auxiliary equation is the tangent equation. In this equation we seek δu = (δu, δϕ) ∈ X0
k

such that

L′′qz(q,u, z)(δq,Φ) + L′′uz(q,u, z)(δu,Φ) = 0 ∀Φ ∈ X0
k .

Here we will apply the same procedure as for the state equation. Recall that L(q,u, z) contains

the integrand a(q(t),u(t))(z(t)) with z(t) entering linearly. Hence the partial derivative required for

L′′uz(q,u, z)(δu,Φ) is simply a′u(q,u)(δu,Φ), and the partial derivative required for L′′qz(q,u, z)(δq,Φ)

can be derived from (2.3.1) as

a′q(q,u)(δq,Φ) = −(δq,Φu:y)ΓN
. (28)

Furthermore, J (q,u) does not depend on z, hence J ′′qz and J ′′uz vanish. Using the right-sided box rule

again, we thus obtain the discretized tangent equation

0 =
M∑
m=1

[
γ(δϕ−m − δϕ+

m−1,Φ
−
ϕ,m){ϕ−

m>ϕ
−
m−1}

+ η(δϕ−m − δϕ+
m−1,Φ

−
ϕ,m)

]
+

M∑
m=1

a′u(q(tm),u(tm))(δu(tm),Φ(tm))∆tm

+

M−1∑
m=0

[
γ(δϕ+

m − δϕ−m,Φ+
ϕ,m){ϕ−

m+1>ϕ
−
m} + η(δϕ+

m − δϕ−m,Φ+
ϕ,m)

]
+ η0(δu−0 ,Φ

−
u,0) + η(δϕ−0 ,Φ

−
ϕ,0)

+

M∑
m=1

a′q(q(tm),u(tm))(δq(tm),Φ(tm))∆tm ∀Φ ∈ X0
k .

(29)
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It is clear that the first sum is zero due to the dG(0) property. By shifting the index of the third sum

in (29) and applying the dG(0) property to Φ+
ϕ,m−1 we can combine the last three sums and rewrite

(29) as

0 =
M∑
m=1

(
a′u(q(tm),u(tm))(δu(tm),Φ(tm))∆tm

+ γ(δϕ+
m−1 − δϕ

−
m−1,Φ

−
ϕ,m){ϕ−

m>ϕ
−
m−1}

+ η(δϕ+
m−1 − δϕ

−
m−1,Φ

−
ϕ,m)

+ a′q(q(tm),u(tm))(δq(tm),Φ(tm))∆tm

)
+ η0(δu−0 ,Φ

−
u,0) + η(δϕ−0 ,Φ

−
ϕ,0) ∀Φ ∈ X0

k .

(30)

4.4 Tangent time-stepping schemes

As in the state equation we first solve the initial conditions,

(δu−0 ,Φ
−
u,0) = 0,

(δϕ−0 ,Φ
−
ϕ,0) = 0,

in short

(δu(t0),Φ−0 ) = 0 ∀Φ−0 ∈ V. (31)

Applying the X0
k property to δϕ+

m−1 we can finally solve for m = 1, . . . ,M the following equation

γ(δϕ−m,Φ
−
ϕ,m){ϕ−

m>ϕ
−
m−1}

+ η(δϕ−m,Φ
−
ϕ,m)

+ a′u(q(tm),u(tm))(δu(tm),Φ(tm))∆tm

= η(δϕ−m−1,Φ
−
ϕ,m) + γ(δϕ−m−1,Φ

−
ϕ,m){ϕ−

m>ϕ
−
m−1}

− a′q(q(tm),u(tm))(δq(tm),Φ(tm))∆tm ∀Φ ∈ X0
k .

(32)

4.5 Adjoint Hessian equation

The third and last auxiliary equation is the adjoint Hessian equation. In this equation we seek δz =

(δzu, δzϕ) ∈ X0
k such that for all Φ ∈ X0

k the following equation holds true:

L′′qu(q,u, z)(δq,Φ) + L′′uu(q,u, z)(δu,Φ) + L′′zu(q,u, z)(δz,Φ) = 0. (33)

First we see that L′′qu(q,u, z)(δq,Φ) = 0 since q and u are decoupled. The derivative of a in

L′′zu(q,u, z)(δz,Φ) is given by a′u(q,u)(Φ, δz) due to the linearity of z in a. However, a genuine

second-order derivative of a arises in L′′uu(q,u, z)(δu,Φ):

a′′uu(q,u)(δu,Φ, z) = 2ϕ · (1− κ)Φϕ · (Ce(δu), e(zu))

+ 2δϕ · (1− κ)(Ce(u), e(zu)) · Φϕ

+ 2ϕ · (1− κ)(Ce(u), e(zu))δϕ

+ 2ϕ · (1− κ)(Ce(Φu) : e(δu), zϕ)

+ 2δϕ · (1− κ)(Ce(Φu) : e(u), zϕ)

+ 2(Ce(δu) : e(u), zϕ) · Φϕ.

(34)
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Now we can rewrite (33) in a dG(0) setting:

0 =
M∑
m=1

J ′′uu(q(tm),u(tm))(δu(tm),Φ(tm))

−
M∑
m=1

a′′uu(q(tm),u(tm))(δu(tm),Φ(tm), z(tm))∆tm

+

M∑
m=1

[
γ(Φ−ϕ,m, δz

−
ϕ,m − δz+

ϕ,m−1){ϕ−
m>ϕ

−
m−1}

+ η(Φ−ϕ,m, z
−
ϕ,m − z+

ϕ,m−1)
]

− γ(Φ−ϕ,M , δz
−
ϕ,M ){ϕ−

M>ϕ−
M−1}

− η(Φ−ϕ,M , δz
−
ϕ,M )

+ γ(Φ−ϕ,0, δz
−
ϕ,0){ϕ−

1 >ϕ
−
0 }

+ η(Φ−ϕ,0, δz
−
ϕ,0)

−
M∑
m=1

a′u(q(tm),u(tm))(Φ(tm), δz(tm))∆tm

+
M−1∑
m=0

γ(Φ−ϕ,m, δz
+
ϕ,m − δz−ϕ,m){ϕ−

m+1>ϕ
−
m} + η(Φ−ϕ,m, δz

+
ϕ,m − δz−ϕ,m)

− η0(Φ−u,0, δz
−
u,0)− η(Φ−ϕ,0, δz

−
ϕ,0) ∀Φ ∈ X0

k .

(35)

Note that the same scaling of initial data was applied that we already used for the adjoint equation.

By the X0
k property the third sum vanishes entirely. Due to Remark 4.2 and the cancelation of

±η(Φ−ϕ,0, δz
−
ϕ,0) the fifth line vanishes as well. By shifting the index of the jump terms we can rewrite

the equation as:

0 =
M∑
m=1

(
J ′′uu(q(tm),u(tm))(δu(tm),Φ(tm))

− a′′uu(q(tm),u(tm))(δu(tm),Φ(tm), z(tm))∆tm

− a′u(q(tm),u(tm))(Φ(tm), δz(tm))∆tm

+ γ(Φ−ϕ,m−1, δz
+
ϕ,m−1 − δz

−
ϕ,m−1){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,m−1, δz
+
ϕ,m−1 − δz

−
ϕ,m−1)

)
− γ(Φ−ϕ,M , δz

−
ϕ,M ){ϕ−

M>ϕ−
M−1}

− η(Φ−ϕ,M , δz
−
ϕ,M )

− η0(Φ−u,0, δz
−
u,0) ∀Φ ∈ X0

k .

(36)

4.6 Adjoint Hessian time-stepping schemes

As in the adjoint time-stepping scheme we first collect all terms that contain the last time point tM
and solve

0 = J ′′uu(q(tM )u(tM ))(δu(tM ),Φ(tM ))

− a′u(q(tM )u(tM ))(Φ(tM ), δz(tM ))∆tM

− a′′uu(q(tM )u(tM ))(δu(tM ),Φ(tM ), z(tM ))∆tM

− γ(Φ−ϕ,M , δz
−
ϕ,M ){ϕ−

M>ϕ−
M−1}

− η(Φ−ϕ,M , δz
−
ϕ,M ) ∀Φ ∈ X0

k .

(37)
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Then (36) becomes

0 =
M−1∑
m=1

(
J ′′uu(q(tm),u(tm))(δu(tm),Φ(tm))

− a′′uu(q(tm),u(tm))(δu(tm),Φ(tm), z(tm))∆tm

− a′u(q(tm),u(tm))(Φ(tm), δz(tm))∆tm

)
+

M∑
m=1

(
γ(Φ−ϕ,m−1, δz

+
ϕ,m−1 − δz

−
ϕ,m−1){ϕ−

m>ϕ
−
m−1}

+ η(Φ−ϕ,m−1, δz
+
ϕ,m−1 − δz

−
ϕ,m−1)

)
− η0(Φ−u,0, δz

−
u,0) ∀Φ ∈ X0

k .

(38)

In the final reformulation we shift the index of the second sum (jump-terms) and take out the terms

corresponding to m = 0

0 =

M−1∑
m=1

(
J ′′uu(q(tm),u(tm))(δu(tm),Φ(tm))

− a′′uu(q(tm),u(tm))(δu(tm),Φ(tm), z(tm))∆tm

− a′u(q(tm),u(tm))(Φ(tm), δz(tm))∆tm

+ γ(Φ−ϕ,m, δz
+
ϕ,m − δz−ϕ,m){ϕ−

m+1>ϕ
−
m}

+ η(Φ−ϕ,m, δz
+
ϕ,m − δz−ϕ,m)

)
+ γ(Φ−ϕ,0, δz

+
ϕ,0 − δz

−
ϕ,0){ϕ−

1 >ϕ
−
0 }

+ η(Φ−ϕ,0, δz
+
ϕ,0 − δz

−
ϕ,0)

− η0(Φ−u,0, δz
−
u,0) ∀Φ ∈ X0

k .

(39)

As already pointed out in the time-stepping scheme for the adjoint equation, all dual equations have to

be solved backwards in time. Therefore, we solve the following equation for m = M − 1,M − 2, . . . , 1

0 = J ′′uu(q(tm),u(tm))(δu(tm),Φ(tm))

− a′′uu(q(tm),u(tm))(δu(tm),Φ(tm), z(tm))∆tm

− a′u(q(tm),u(tm))(Φ(tm), δz(tm))∆tm

+ γ(Φ−ϕ,m, δz
+
ϕ,m − δz−ϕ,m){ϕ−

m+1>ϕ
−
m}

+ η(Φ−ϕ,m, δz
+
ϕ,m − δz−ϕ,m) ∀Φ ∈ X0

k .

As a result, the only remaning terms in (39) are

γ(Φ−ϕ,0, δz
+
ϕ,0 − δz

−
ϕ,0){ϕ−

1 >ϕ
−
0 }

+ η(Φ−ϕ,0, δz
+
ϕ,0 − δz

−
ϕ,0)− η0(Φ−u,0, δz

−
u,0). (40)

Finally we can apply the assumption η0 � η once more and drop the last term in (40). Consequently

the following equations have to be solved for all Φ ∈ X0
k :

(Φ−ϕ,0, δz
−
ϕ,0) = (Φ−ϕ,0, δz

−
ϕ,1),

(Φ−u,0, δz
−
u,0) = (Φ−u,0, δz

−
u,1).

Note that Remark 4.3 was applied to (40) as well.
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4.7 Final complete algorithm

Gathering the optimization problem statement and the space-time discretizations from the previous

sections and resulting time-stepping schemes for the four equations yields the complete method given

in Algorithm 1.

5 Numerical studies

In this section we present six numerical experiments. In these experiments we use the tracking type

functional of (10) to find an optimal control force that approximately produces a desired phase-field.

All numerical computations are performed with the open source software libraries deal.II [5, 6] and

DOpElib [23, 28].

Since a large body of the published literature deals with forward phase-field fracture in which

cracks propagate through large parts of the domain or even until domain boundaries, we emphasize

that on purpose, short fractures are considered in our optimal control settings only. Specifically, ϕd
is prescribed sufficiently small such that we clearly can distinguish between our optimal control final

fractures and classical non-controlled fractures.

5.1 Experiment 1: horizontal fracture in right half domain

The first experiment is motivated by a standard problem: the single edge notched tension test [45, 44].

Here we consider the square domain Ω = (0, 1)2 with a horizontal notch, see Fig. 1. The notch is in

the middle of the right side of the domain, defined as (0.5, 1)×{0.5}. The boundary ∂Ω is partitioned

as ∂Ω = ΓN ∪ ΓD ∪ Γfree, where ΓN := [0, 1] × {1}, ΓD := [0, 1] × {0}, and Γfree := {0, 1} × (0, 1).

On ΓN we apply the force q in orthogonal direction to the domain, on ΓD we enforce homogeneous

Dirichlet boundary conditions for the displacement u = 0, and on Γfree we set homogeneous Neumann

boundary conditions. We choose the time interval [0, 1] with 41 equidistant time points tm, i.e., T = 1

and M = 40. The discrete control space Qh is one-dimensional in the sense that the force is constant

in time and is only applied in y direction. The spatial mesh consists of 64× 64 square elements, hence

the element diameter is h =
√

2/64 ≈ 0.0221. The initial values are given by u0 = (u0, ϕ0) where ϕ0

describes the horizontal notch:

ϕ0(x, y) :=

0, x ∈ (0.50, 1.00) and y = 0.5,

1, else.

The desired phase-field ϕd is defined as a continuation of the initial notch to the left hand side of the

domain, see ϕ0
d in Fig. 1. In order to investigate the effect of ϕd on the optimal solution, we will use two

different homotopy approaches. In approach (a) we will successively increase the length of the desired

phase-field, and in approach (b) we will successively reduce the Tikhonov parameter α. In both cases

the motivation is to increase the weight of the physically motivated term 1
2‖ϕ−ϕd‖

2 in relation to the

Tikhonov term. We will perform as many homotopy steps as possible, solving one NLP per step. The

common nominal parameters used in both approaches are given in Table 1.
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Algorithm 1: Overall space-time phase-field fracture control algorithm
Data: Domain Ω, mesh Th, number of time intervals M , parameters ε, κ, Gc, µ, λ, γ, η, α,

initial value u0, initial control guess q0.

Result: Optimal control q and admissible solution u.

1: Set k = 0 and qk = q0 and solve the state equation for u: L′z(qk,u, z)(Φ) = 0 ∀Φ.

Specifically, obtain u(t0) from (6) and then u(t1), . . . ,u(tM ) from (7);

2: Solve the adjoint equation for z: L′u(qk,u, z)(Φ) = 0 ∀Φ. Obtain z(tM ) from (23), then

z(tM−1), . . . ,z(t1) from (25), and finally z(t0) from (26);

3: Construct the coefficient vector f ∈ Rn for the reduced gradient ∇j(qk) by solving

Gf = [j′(qk)(qi)]
n
i=1. Here qi denotes the i-th basis function of the discrete control space Qh

and Gij = (qi, qj) defines the mass matrix. The derivatives j′(qk)(qi) for the right hand side

are computed from the representation (17);

while ‖f‖2 > TOL do
4: Obtain δq from the Newton equation, j′′(qk)(δq, qi) = −j′(qk)(qi) ∀qi, by minimizing

m(qk,d) = j(qk) + 〈f ,d〉+ 1
2〈Hd,d〉 for a vector d ∈ Rn using the CG-method (matrix

free). Here H ∈ Rn×n denotes the coefficient matrix of ∇2j(qk)δq;

for every CG step do
5: Solve the tangent equation for δu:

L′′qz(qk,u, z)(δq,Φ) +L′′uz(qk,u, z)(δu,Φ) = 0 ∀Φ. Obtain δu(t0) from (31) and then

δu(t1), . . . , δu(tM ) from (32);

6: Solve the adjoint Hessian equation for δz:

L′′qu(qk,u, z)(δq,Φ) + L′′uu(qk,u, z)(δu,Φ) + L′′zu(qk,u, z)(δz,Φ) = 0 ∀Φ. Obtain

δz(tM ) from (37), then δz(tM−1), . . . , δz(t1) from (38), and finally δz(t0) from (39);

7: Construct the coefficient vector h ∈ Rn for ∇2j(qk)δq by solving

Gh = j′′(qk)(δq, qi)
n
i=1, where j

′′(qk)(δq, qi) is represented via (17);

end

8: Choose a step length ν by an Armijo backtracking method;

9: Set qk+1 = qk + νδq;

10: Repeat steps 1, 2, 3 for the new control qk+1 to obtain f for ∇j(qk+1).;

11: Increment k = k + 1;

end
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↑
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Figure 1: Experiment 1: domain Ω = (0, 1)2 with partitioned boundary ∂Ω, initial notch and desired

crack ϕd for homotopy steps 0 and 21 in approach (a).

Table 1: Experiment 1: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 4h 0.0884

κ Regul. (crack) 1.00e−10

η Regul. (viscosity) 1.00e3

γ Penalty 1.00e5

α Tikhonov 4.75e−10

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.0e6

q0 Initial control 1.0

qd Nominal control 1.0e3
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Figure 2: Experiment 1a: cost functional of each NLP iteration in homotopy (blue: tracking part

above 3.2e−3 + red: Tikhonov part).
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Figure 3: Experiment 1a: absolute residual of each NLP iteration in homotopy.

5.1.1 Approach (a): length increment

Here we will solve the NLP (10) several times with different desired phase-fields ϕkd. Formally we define

a sequence of desired phase-fields ϕkd with ϕk+1
d < ϕkd where ϕkd is defined as

ϕkd(x, y) :=

0, x ∈ (0.3× 0.99k, 0.5) and y ∈ (0.5− h, 0.5 + h),

1, else.

By this definition of ϕkd we extend the desired crack to the left so that it becomes gradually longer. The

number of homotopy steps performed in this experiment is 21: in step 22, the iterative solution of the

nonlinear state equation fails because the Newton residuals do not decrease towards zero. Probably

this means that large numerical errors prevent finding a descent direction or that the initial estimate

lies outside the area of convergence, but various other reasons might be possible as well. Our results are

presented in Table 2. The first column (Step) counts the homotopy steps. The second column (Iter)

gives the number of Newton iterations for solving the associated reduced problem (11), except that

Iter 0 in Step 0 refers to the initial guess from which the homotopy starts. The remaining values are

the absolute Newton residual, the cost functional J and its tracking part 1
2

∑
m‖ϕ(tm)−ϕd(tm)‖2, the

maximal force |qmax| applied on ΓN , and the Tikhonov regularization term, α2
∑

m‖q(tm)− qd(tm)‖2ΓN
.

All values are rounded to three, five, or six significant digits. For every NLP the Newton iteration

terminates when the residual falls below the tolerance 5e−11.
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Table 2: Experiment 1a: number of Newton iterations, absolute residual, cost terms and maximal force

during homotopy. Iter 0 in step 0 refers to initial state from which homotopy starts.

Step Iter Residual Cost Tracking Tikhonov Force

0 0 4.62e−7 4.1532e−3 3.9192e−3 2.3406e−4 1.0

0 9 2.62e−11 3.4863e−3 3.3648e−3 1.2150e−4 2379.02

1 3 2.70e−11 3.5681e−3 3.4447e−3 1.2337e−4 2388.20

2 4 1.83e−11 3.6503e−3 3.5254e−3 1.2489e−4 2395.58

3 0 1.83e−11 3.6503e−3 3.5254e−3 1.2489e−4 2395.58

4 4 2.76e−11 3.7823e−3 3.6552e−3 1.2708e−4 2405.78

5 0 2.76e−11 3.7822e−3 3.6552e−3 1.2708e−4 2405.78

6 2 2.37e−11 3.8645e−3 3.7357e−3 1.2883e−4 2414.00

7 0 2.38e−11 3.8645e−3 3.7357e−3 1.2883e−4 2414.00

8 2 1.29e−11 3.9466e−3 3.8156e−3 1.3099e−4 2424.06

9 0 1.28e−11 3.9466e−3 3.8156e−3 1.3099e−4 2424.06

10 2 4.28e−11 4.0779e−3 3.9433e−3 1.3465e−4 2439.95

11 0 4.28e−11 4.0779e−3 3.9433e−3 1.3465e−4 2439.95

12 2 2.77e−11 4.1605e−3 4.0241e−3 1.3640e−4 2447.20

13 6 4.03e−11 4.2438e−3 4.1063e−3 1.3748e−4 2451.38

14 0 4.03e−11 4.2438e−3 4.1063e−3 1.3748e−3 2451.38

15 0 4.03e−11 4.2438e−3 4.1063e−3 1.3748e−3 2451.38

16 2 4.43e−11 4.3760e−3 4.2356e−3 1.4043e−4 2464.78

17 0 4.43e−11 4.3760e−3 4.2356e−3 1.4043e−4 2464.78

18 2 3.82e−11 4.4585e−3 4.3160e−3 1.4258e−4 2472.69

19 7 4.98e−11 4.5360e−3 4.3858e−3 1.5012e−4 2498.67

20 0 4.98e−11 4.5360e−3 4.3858e−3 1.5012e−4 2498.67

21 0 4.98e−11 4.5360e−3 4.3858e−3 1.5012e−4 2498.67

21



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

q8 − q9

Figure 4: Experiment 1b: difference of control forces on iterations 8 and 9 in homotopy step 0.

5.1.2 Approach (b): Tikhonov iteration

The second approach is a successive reduction of α, a so called Tikhonov iteration. In this case the

length of the desired phase-field remains constant at ϕ0
d for all homotopy steps while the weight of

the Tikhonov term in J is successively reduced. Here we define the sequence by αk = 0.99kα0 with

α0 = 4.75e−10. The number of homotopy steps performed is 8: in step 9, we have terminated the

computation because of very slow alternating convergence of the residual as is often observed for very

small values of the parameter α. The results are presented in Table 3. First we notice the high

sensitivity of our NLP solution with respect to the control force. In Fig. 4 we present the difference

of the controls on iterations 8 and 9 of the initial homotopy step. A comparison of the corresponding

residuals shows a reduction from 6.78e−11 to 2.62e−11 (approximately 60%), even though the maximal

difference between the applied controls is only 2.1 (or 0.1%). The values of the cost functional and

the residual on all iterations of both homotopies are presented in Figs. 2, 3, 5 and 6. Each dot in

Fig. 3 stands for one Newton step within the corresponding homotopy iteration. The behavior of

the residual values in both approaches is typical for homotopy methods: in each homotopy step they

are reduced below the tolerance, and they increase slightly afterwards. In the final homotopy step of

each approach the reduction is non-monotonous because the maximal number of line search iterations

is reached; this indicates the difficulty of the NLP. In Fig. 2 we observe that the value of the cost

functional increases with each homotopy step. This is a consequence of the increasing length of the

desired phase-field: ϕ21
d < · · · < ϕ0

d. A closer look at the results reveals that the tracking part actually

increases non-linearly with the length of the desired phase-field, which is not surprising as our overall

problem is nonlinear. Finally we observe that both approaches yield larger maximal control forces

when compared to the results without homotopy ansatz. In approach (a) the maximal final control is

2498.67, and in approach (b) it is 2438.79. This corresponds to the different cracks being produced:

without any homotopy approach the crack has a total length of 0.063, with the Tikhonov iteration

(approach b) we obtain 0.078, and with the crack length increment (approach a) we obtain 0.094; see

Fig. 7. We notice that we do not infer from these results any evaluation on which approach is better

for this test case, but we can only say that both yield different findings.
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Table 3: Experiment 1b: number of Newton iterations, absolute residual, cost terms and maximal

force during homotopy. Iter 0 in step 0 refers to initial state from which homotopy starts.

Step Iter Residual Cost Tracking Tikhonov Force

0 0 4.62e−7 4.1532e−3 3.9192e−3 2.3406e−4 1.0

0 9 2.62e−11 3.4863e−3 3.3648e−3 1.2150e−4 2379.02

1 3 4.47e−11 3.4835e−3 3.3614e−3 1.2206e−4 2387.69

2 4 1.55e−11 3.4812e−3 3.3590e−3 1.2212e−4 2393.56

3 6 2.20e−11 3.4787e−3 3.3565e−3 1.2223e−4 2399.79

4 6 2.81e−11 3.4764e−3 3.3541e−3 1.2226e−4 2405.43

5 2 2.81e−11 3.4737e−3 3.3512e−3 1.2257e−4 2412.03

6 3 3.88e−11 3.4706e−3 3.3469e−3 1.2362e−4 2423.04

7 2 2.42e−11 3.4676e−3 3.3433e−3 1.2437e−4 2432.00

8 6 4.79e−11 3.4648e−3 3.3310e−3 1.2487e−4 2438.79
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Figure 5: Experiment 1b: cost functional of each NLP iteration in homotopy (blue: tracking part

above 3.2e−3 + red: Tikhonov part).
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Figure 6: Experiment 1b: absolute residual of each NLP iteration in homotopy.
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0 0.5 1

Figure 7: Experiment 1: optimal phase-field ϕ at time 40. Step 0 (left), step 19 of approach (a) (center,

best result), step 8 of approach (b) (right).

5.2 Experiment 2: two-sided control for diagonal crack

Our second experiment is an extension of the first one with the aim to create a crack that grows

diagonally, in negative x direction and positive y direction. We consider the same domain as before,

Ω = (0, 1)2, but since cracks grow orthogonal to the maximum tensile stress [65, Chapter 4], the

original control boundary ΓN = [0, 1] × {1} becomes ΓN1 and we extend the control to a second

boundary ΓN2 = {0} × [0, 1], i.e., in the PDE constraint, we have

(q,Φu:⊥)ΓN ,I = (q,Φu:y)ΓN1
,I + (q,Φu:x)ΓN2

,I .

The overall setting is shown in Fig. 8. Because of the second control boundary, the Tikhonov term in

the cost functional now becomes an integral over the union ΓN := ΓN1∪ΓN2 . The domain is partitioned

into 128 × 128 square elements with diameter h =
√

2/128. The number of time steps is M = 100.

The desired phase-field is given as

ϕd(x, y) :=

0, x ∈ (0.1, 0.5) and |y − (0.85− 0.7x)| ≤ 3h,

1, else.

In short, the desired crack goes diagonally from (0.5, 0.5) to (0.1, 0.78) with a vertical diameter of 6h.

The results are presented in Table 4 and Figs. 9 to 11. From Table 4 we can see that it takes 13

iterations to solve the NLP with an absolute tolerance of 2.0e−10. Note that from now on the first two

columns (Iter, CG) give the iteration index of Newton’s method on the reduced NLP and the number

of CG iterations required for computing the Newton increment, respectively. The Newton iteration

terminates when either the relative or the absolute residual falls below the requested tolerance. The

cost functional is reduced from 4.47e−2 to 1.28e−2, by approximately 70%. The final phase-field is

shown in Fig. 9. As one can clearly see, the desired diagonal crack propagation has been produced

successfully. On the one hand, the crack has to propagate to the left, therefore the control on the

upper boundary ΓN1 has to increase from left to right. On the other hand, the crack should propagate

upwards, therefore the control on the left boundary ΓN2 has to decrease from bottom to top. In
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Figure 8: Experiment 2: domain Ω = (0, 1)2 with partitioned boundary, initial notch and desired crack

ϕd.

0 0.5 1

Figure 9: Experiment 2: optimal phase-field ϕ at times 50, 75, and 100.

contrast to Experiment 1, no symmetry in the displacement or adjoints fields can be expected since

here the notch is horizontal whereas the desired phase-field is diagonal. Note that Fig. 11 shows a kink

in each control. This is a numerical artefact: at the cell in the top left corner, the control acts on two

adjacent boundaries simultaneously, and the discretized quantities interact within this single cell. In

Fig. 9 we finally notice a tiny crack propagation starting from the bottom left edge (0, 0). This is due

to the singularity caused by the Dirichlet condition on the bottom boundary ΓD in combination with

the control acting as Neumann condition on ΓN2 . Similar observations are made in Section 5.5.

5.3 Experiment 3: connecting horizontal cracks for a sliced domain

Our third experiment is motivated by a simple question: Is it possible to connect some (but not all)

notches in a given domain? Here we consider the rectangule Ω = (0, 2.2)× (0, 0.4) with four horizontal

notchesN1 := (0.3, 0.5)×{0.2}, N2 := (0.7, 0.9)×{0.2}, N3 := (1.3, 1.5)×{0.2}, N4 := (1.7, 1.9)×{0.2},
see Fig. 12. This yields the combined notch N :=

⋃4
i=1Ni with initial phase-field

ϕ0(x, y) :=

0, (x, y) ∈ N ,

1, else.
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Table 4: Experiment 2: number of CG iterations, residuals, cost terms and maximal force during NLP

iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 1.99e−5 4.4742e−2 1.3723e−2 3.1019e−2 10

1 2 3.70e−3 7.36e−8 1.3075e−2 1.3075e−2 8.9902e−9 2202.36

2 9 1.27e−3 2.52e−8 1.2879e−2 1.2824e−2 5.4707e−5 2443.45

3 6 5.77e−4 1.15e−8 1.2818e−2 1.2719e−2 9.8469e−5 2525.62

4 5 3.11e−4 6.20e−9 1.2790e−2 1.2667e−2 1.2261e−4 2565.05

5 4 1.84e−4 3.67e−9 1.2775e−2 1.2638e−2 1.3678e−4 2584.23

6 4 1.13e−4 2.26e−9 1.2766e−2 1.2620e−2 1.4553e−4 2596.34

7 3 7.57e−5 1.51e−9 1.2760e−2 1.2609e−2 1.5102e−4 2605.50

8 2 4.86e−5 9.67e−10 1.2756e−2 1.2602e−2 1.5474e−4 2609.38

9 3 3.53e−5 7.03e−10 1.2754e−2 1.2597e−2 1.5710e−4 2613.69

10 2 2.42e−5 4.82e−10 1.2752e−2 1.2593e−2 1.5886e−4 2614.90

11 2 1.55e−5 3.09e−10 1.2751e−2 1.2591e−2 1.6008e−4 2616.43

12 2 1.01e−5 2.01e−10 1.2750e−2 1.2589e−2 1.6086e−4 2617.60

13 2 6.81e−6 1.36e−10 1.2750e−2 1.2588e−2 1.6138e−4 2618.43

Table 5: Experiment 2: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 4h 0.0442

κ Regul. (crack) 1.0e−10

η Regul. (viscosity) 1.0e3

γ Penalty 1.0e5

α Tikhonov 6.5e−9

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.0e6

q0 Initial control 10.0

qd Nominal control 2.2e3
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Figure 10: Experiment 2: optimal displacement field u (top: x left, y right) and adjoint field zu

(bottom: x left, y right) at time 250.
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Figure 11: Experiment 2: optimal control forces (solid: q1 on upper boundary ΓN1 , q2 on left boundary

ΓN2) and common nominal control force qd (dotted).
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Figure 12: Experiment 3: domain Ω = (0, 2.2)× (0, 0.4) with partitioned boundary ∂Ω, initial notches

N1, . . . ,N4, and desired cracks ϕd.

Table 6: Experiment 3: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 4h 0.035

κ Regul. (crack) 1.0e−10

η Regul. (viscosity) 1.0e3

γ Penalty 1.0e5

α Tikhonov 2.1e−10

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.00e6

q0 Initial control 1.0

qd Nominal control 6.53e3

The boundary ∂Ω is partitioned as in Section 5.1. The time interval is again [0, 1] but with 2001

equidistant time points, i.e., T = 1 and M = 2000. The spatial mesh now consists of 352× 64 square

elements with diameter h =
√

2× 0.4/64 ≈ 0.00884. The desired phase-field ϕd connects N1 with N2

and N3 with N4, hence it is defined as follows:

ϕd(x, y) :=

0, x ∈ (0.5, 0.7) ∪ (1.5, 1.7) and y ∈ (0.2− 4h, 0.2 + 4h),

1, else.

All relevant parameters for this experiment are presented in Table 6. The results for the tolerance

2.0e−9 are shown in Table 7. From the final optimal phase-field in Fig. 13 (bottom) we see that the

desired phase-field has indeed been reached, since N1 is connected with N2 and N3 with N4. The

optimal control force shown in Fig. 16 is rather strong and has two roughly parabolic maxima right

at the two sections where notches are to be connected, which is to be expected from a mechanical

point of view. The four cracks propagating from both ends of each pair of connected notches, where

no cracks are desired, can be explained by the decreasing control at the end points. That decreasing

control generates a different principal axis of tension which in turn produces the non-horizontal crack

growth. In Fig. 15 (top) we present the optimal displacement fields at time step 2000. They are both

symmetric and reach their maxima right at the two sections where notches are to be connected. This

is consistent with the behavior of the control forces and again physically plausible. For comparison,

before the middle cracks join, we also display the respective fields at time step 1800 in Fig. 14.
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Table 7: Experiment 3: number of CG iterations, residuals, cost terms and maximal force during NLP

iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 2.00e−6 2.3850e−2 1.4302e−2 9.5483e−3 100.00

1 2 0.110 2.20e−7 1.2839e−2 1.2839e−2 3.4223e−8 6550.69

2 2 3.13e−2 6.27e−8 1.2428e−2 1.2309e−2 1.1897e−4 7899.32

3 2 1.22e−2 2.44e−8 1.2330e−2 1.2139e−2 1.9136e−4 8264.47

4 2 9.34e−3 1.87e−8 1.2292e−2 1.2066e−2 2.2519e−4 8403.51

5 2 1.44e−3 2.89e−9 1.2263e−2 1.2011e−2 2.5205e−4 8501.55

6 2 9.20e−4 1.84e−9 1.2261e−2 1.2006e−2 2.5478e−4 8514.26

0 0.5 1

Figure 13: Experiment 3: optimal phase-field ϕ at times 1400, 1800, and 2000.
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−8.6e−8 8.6e−8 −2.3e−7 1.0e−7

Figure 14: Experiment 3: optimal displacement field u (top: x left, y right) and adjoint field zu

(bottom: x left, y right) at time 1800.
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Figure 15: Experiment 3: optimal displacement field u (top: x left, y right) and adjoint field zu

(bottom: x left, y right) at time 2000.
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Figure 16: Experiment 3: optimal control force (solid) and nominal control force (dotted) on upper

boundary ΓN .
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5.4 Experiment 4: connecting two horizontal cracks for an entirely sliced domain

The fourth experiment is motivated by the question whether it is possible to connect two horizontal

notches to achieve an entirely sliced domain. Here we consider again the square domain Ω = (0, 1)2,

but now with two horizontal notches, see Fig. 17. The left notch is defined as (0.0, 0.375)× {0.5}, the
right notch is defined as (0.625, 1.0) × {0.5}. The boundary ∂Ω is partitioned as in Section 5.1. We

choose the time interval [0, 1] with 251 equidistant time points, i.e., T = 1 and M = 250. The spatial

mesh now consists of 128 × 128 square elements with diameter h =
√

2/128 ≈ 0.011. The desired

phase-field ϕd connects the left notch with the right notch and is defined as follows:

ϕd(x, y) :=

0, x ∈ (0.375, 0.625) and y ∈ (0.5− 2h, 0.5 + 2h),

1, else.

Our goal in this experiment is rather peculiar. Analytically, the PDE constraint becomes singular

once the domain is entirely sliced. In the phase-field model this happens when the left and right

boundaries of Ω are connected by a path along which the phase-field ϕ vanishes. Numerical difficulties

are to be expected even before such a path exists: the PDE becomes increasingly ill-conditioned when

the transition zones with 0 < ϕ < 1 come into contact. Nevertheless it is possible to create a domain-

splitting crack with a pure forward model, see for instance the related single edge notched tension test

[45, 44, 2, 18]. Yet this experiment remains numerically difficult and becomes even more challenging

within our optimization setting. Since we have to expect that the solution of the forward problem

might be close to singularities, it is not clear what will happen when we insert this solution into the

optimization algorithm. With regard to this challenge we have observed that in many experiments the

Tikhonov term acts against extreme forces and improves the solvability of the PDE for the resulting

controls. In the experiment under consideration we set α to 2.0e−10. By this the Tikhonov term is

not the driving factor of the optimization process, but still large enough to avoid extreme forces. The

choice of the other parameters is shown in Table 8, and our results are presented in Table 9 and Figs. 18

to 20.

In Table 9 we observe that the residual value is decreasing, except for the last iteration. After

iteration 6 the PDE forward problem becomes unsolvable. Therefore we regard iteration 5 as the

optimal solution: it has the lowest absolute residual value, 5.13e−9, and also the lowest relative

residual value, 1.57e−2. The results presented in Table 9 and Figs. 18 to 20 refer to iteration 5. The

optimal phase-field presented in Fig. 18 does not connect the two notches but reaches approximately

two thirds of the length of the desired phase-field. In Fig. 20 we see that the optimal control force is

nearly twice as large as the nominal control force qd. This means that the optimization is primarily

driven by the physical term ‖ϕ− ϕd‖2.

5.5 Experiment 5: L-shaped domain

In our fifth experiment we study a modification of the L-shaped panel test within an optimization

context. The L-shaped panel test was originally developed by Winkler [62] and extensively studied in

[2, 43, 59, 41]. In the original test the applied force pushes upwards against a small left-most section
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Figure 17: Experiment 4: domain Ω = (0, 1)2 with partitioned boundary ∂Ω, initial notches, and

desired crack ϕd.

Table 8: Experiment 4: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 2h 0.0221

κ Regul. (crack) 1.0e−10

η Regul. (viscosity) 1.0e3

γ Penalty 1.0e5

α Tikhonov 2.0e−10

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.00e6

q0 Initial control 1.0

qd Nominal control 1.85e3

Table 9: Experiment 4: number of CG iterations, residuals, cost terms and maximal force during NLP

iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 3.26e−7 5.5093e−3 5.2936e−3 2.1566e−4 380.0

1 2 0.424 1.38e−7 4.9612e−3 4.9584e−3 2.7903e−6 2043.40

2 3 0.238 7.75e−8 4.7486e−3 4.6748e−3 7.3883e−5 2845.85

3 3 0.145 4.72e−8 4.6179e−3 4.4620e−3 1.5592e−4 3300.68

4 3 4.54e−2 1.48e−8 4.5391e−3 4.3184e−3 2.2067e−4 3573.22

5 2 1.57e−2 5.13e−9 4.5160e−3 4.2733e−3 2.4274e−4 3629.90

6 2 0.26 8.36e−8 4.5088e−3 4.2591e−3 2.4976e−4 3632.82
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Figure 18: Experiment 4: optimal phase-field ϕ at times 150, 200, and 250.
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−7.1e−9 7.1e−9 −1.3e−8 1.8e−8

Figure 19: Experiment 4: optimal displacement field u (top: x left, y right) and adjoint field zu

(bottom: x left, y right) at time 250.
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Figure 20: Experiment 4: optimal control force (solid) and nominal control force (dotted) on upper

boundary ΓN .

of the upper part of the domain. In our experiment we apply a pulling force on the top boundary ΓN

instead. We do this in order to have a complete control boundary within the optimization context.

The L-shaped domain Ω = (0, 1)2 \ (0.5, 0.5)2 and its partitioning of the boundary ∂Ω are shown in

Fig. 21. We choose the time interval [0, 1] with 301 equidistant time points, i.e., T = 1 and M = 300.

Each of the 3 × 80 × 80 square spatial mesh elements has a diameter of h =
√

2/160 ≈ 0.00884. All

other parameters are shown in Table 10. From [2, 43, 59, 41] and [62] we already know that the crack

will grow slightly above the horizontal line [0.5, 1]× {0.5}. Therefore we place the desired phase-field

ϕd also slightly above that line,

ϕd(x, y) :=

0, x ∈ (0.5, 1.0) and y ∈ (0.53− 4h, 0.53 + 4h),

1, else.

We are aware that a fracture with this phase-field cannot be produced in our setting for two reasons.

First, a sharp crack along [0.5, 1.0]×{0.53} is physically impossible because the crack will always start

to grow from the singularity in (0.5, 0.5). Second, a decomposition of the stress tensor is needed in order

to distinguish crack growth under tension and compression; see extensive findings and discussions for

the L-shaped panel test in [2]. Since stress splitting laws introduce further nonlinearities in the forward

phase-field fracture model and do not contribute to significant further insight in the current work, we

have not used them, despite implemented in our software, e.g., [41]. We also tried to define ϕd on the

horizontal line [0.5, 1] × {0.5}. However, since the crack starts propagating diagonally upwards from

(0.5, 0.5), the values of the residual and the cost functional did not decrease, and as a consequence the

Newton iteration for the optimization problem did not converge. Our results for the tolerance 2.0e−10

are presented in Table 11 and Figs. 22 to 24.

In Table 11 we see that 24 iterations were required to reach the final residual value 1.89e−10. The

propagating crack, shown in Fig. 22, is very similar to the results from [41]. The corresponding optimal

control is presented in Fig. 24. It decreases almost linearly, approximately from 2400 to 1500, which is

plausible since this experiment has similarities to Section 5.1. Similar to Section 5.2 we notice a small

crack propagation starting from the lower left corner (0.5, 0). This is due to the singularity caused by

the Dirichlet condition on ΓD in combination with the Neumann condition on {0.5} × [0, 0.5].
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Figure 21: Experiment 5: L-shaped domain Ω = (0, 1)2 \ (0.5, 0.5)2 with partitioned boundary and

desired crack ϕd.

Table 10: Experiment 5: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 4h 0.0354

κ Regul. (crack) 1.000e−10

η Regul. (viscosity) 1.000e3

γ Penalty 1.000e5

α Tikhonov 2.625e−9

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.0e6

q0 Initial control 1.0

qd Nominal control 1.6e3

0 0.5 1

Figure 22: Experiment 5: optimal phase-field ϕ at times 200, 250, and 300.
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Table 11: Experiment 5: number of CG iterations, residuals, cost terms and maximal force during

NLP iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 4.34e−6 2.0637e−2 8.9261e−3 1.1711e−2 1.0

1 2 0.117 5.09e−7 1.6652e−2 8.8773e−3 7.7750e−3 1600.27

2 2 4.71e−2 2.04e−7 1.6473e−2 8.9092e−3 7.5637e−3 1982.44

3 3 2.45e−2 1.06e−7 1.6404e−2 8.9210e−3 7.4829e−3 2143.55

4 2 1.18e−3 5.11e−9 1.6367e−2 8.9284e−3 7.4387e−3 2226.13

5 3 7.86e−4 3.41e−9 1.6344e−2 8.9340e−3 7.4103e−3 2279.40

6 4 5.85e−4 2.54e−9 1.6329e−2 8.9382e−3 7.3905e−3 2304.63

7 3 4.33e−4 1.88e−9 1.6317e−2 8.9419e−3 7.3750e−3 2334.29

8 3 3.37e−4 1.46e−9 1.6308e−2 8.9450e−3 7.3630e−3 2350.53

9 2 2.68e−4 1.16e−9 1.6301e−2 8.9478e−3 7.3534e−3 2360.71

10 3 2.20e−4 9.56e−10 1.6296e−2 8.9501e−3 7.3455e−3 2374.60

11 2 1.84e−4 7.96e−10 1.6291e−2 8.9521e−3 7.3388e−3 2380.56

12 2 1.58e−4 6.83e−10 1.6287e−2 8.9539e−3 7.3331e−3 2387.88

13 2 1.36e−4 5.92e−10 1.6284e−2 8.9555e−3 7.3281e−3 2394.83

14 3 1.20e−4 5.21e−10 1.6281e−2 8.9569e−3 7.3239e−3 2401.26

15 2 1.03e−4 4.46e−10 1.6278e−2 8.9583e−3 7.3200e−3 2403.82

16 2 9.21e−5 4.00e−10 1.6276e−2 8.9594e−3 7.3166e−3 2407.58

17 2 8.23e−5 3.57e−10 1.6274e−2 8.9605e−3 7.3135e−3 2411.42

18 2 7.45e−5 3.23e−10 1.6272e−2 8.9615e−3 7.3107e−3 2415.00

19 2 6.83e−5 2.96e−10 1.6271e−2 8.9624e−3 7.3082e−3 2418.35

20 2 6.17e−5 2.68e−10 1.6269e−2 8.9633e−3 7.3058e−3 2421.39

21 2 5.84e−5 2.53e−10 1.6268e−2 8.9640e−3 7.3037e−3 2424.17

22 2 5.31e−5 2.30e−10 1.6266e−2 8.9648e−3 7.3016e−3 2426.76

23 2 4.82e−5 2.09e−10 1.6265e−2 8.9658e−3 7.2997e−3 2429.09

24 2 4.35e−5 1.89e−10 1.6264e−2 8.9661e−3 7.2980e−3 2431.26
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Figure 23: Experiment 5: optimal displacement field u (top: x left, y right) and adjoint field zu

(bottom: x left, y right) at time 300.
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Figure 24: Experiment 5: optimal control force (solid) and nominal control force (dotted) on upper

boundary ΓN .
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Figure 25: Experiment 6: domain Ω = (0, 1)2 with partitioned boundary, intial notch, undesired crack

¬ϕd and constant pulling force qc.

0 0.5 1

Figure 26: Experiment 6: initial phase-field ϕ (left, iteration 0) and optimal phase-field (right, iteration

15) at final time 100.

5.6 Experiment 6: inhibiting horizontal crack growth

In our final experiment we expose the domain Ω = (0, 1)2 to a time-independent external force qc
which creates a growing crack (for the tiny initial control q = 1). Then we seek an optimal control q

that counteracts the external force qc to inhibit the crack growth. We choose the same partitioning of

∂Ω and the same notch as in Section 5.1. The initial phase-field is

ϕ0(x, y) :=

0, x ∈ (0.5, 1) and y = 0.5

1, else.

We define the external force as a linear function: qc(x) = 850 + 1800x. The time interval is [0, 1] with

101 equidistant time points, i.e., T = 1 and M = 100. The spatial mesh consists of 64 × 64 square

elements with diameter h =
√

2/64. The desired phase-field ϕd has the value one on the whole domain.

Our findings for the tolerance 2.0e−11 are presented in Table 12 and Figs. 26 to 28.

In Fig. 26 we observe that no crack propagation occurs with the computed optimal control. As a

result, the desired phase-field is successfully reproduced and the initial value of the cost functional is

reduced by 96%. In comparison to all other experiments, where we achieved a maximum reduction of
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Table 12: Experiment 6: number of CG iterations, residuals, cost terms and maximal force during

NLP iteration.

Iter CG Relative Absolute Cost Tracking Tikhonov Force
residual residual

0 – 1.0 3.23e−6 1.7274e−3 1.4082e−3 3.1920e−4 1.0

1 3 0.558 1.80e−6 1.5649e−3 2.1034e−5 1.5438e−3 4262.61

2 3 0.166 5.38e−7 1.9198e−4 1.8984e−4 2.1348e−6 824.97

3 3 0.137 4.44e−7 1.2174e−4 7.6886e−6 1.1405e−4 1731.04

4 3 5.26e−2 1.70e−7 9.3561e−5 9.0843e−5 2.7177e−6 956.04

5 3 4.40e−2 1.42e−7 6.5026e−5 3.4897e−5 3.0129e−5 1280.33

6 3 1.25e−3 4.05e−9 7.2949e−5 6.3052e−5 9.8963e−6 1079.64

7 12 1.02e−3 3.31e−9 6.7607e−5 5.2538e−5 1.5069e−5 1142.82

8 12 3.10e−4 1.00e−9 7.0443e−5 5.8585e−5 1.1858e−5 1104.25

9 10 2.52e−4 8.16e−10 6.9141e−5 5.5993e−5 1.3148e−5 1120.23

10 9 7.94e−5 2.57e−10 6.9890e−5 5.7514e−5 1.2377e−5 1110.86

11 7 6.42e−5 2.07e−10 6.9560e−5 5.6853e−5 1.2707e−5 1114.79

12 7 2.03e−5 6.57e−11 6.9753e−5 5.7241e−5 1.2512e−5 1112.52

13 5 1.63e−5 5.28e−11 6.9669e−5 5.7073e−5 1.2596e−5 1113.45

14 4 5.26e−6 1.70e−11 6.9718e−5 5.7172e−5 1.2546e−5 1112.98

15 3 4.21e−6 1.36e−11 6.9697e−5 5.7128e−5 1.2568e−5 1113.14

Table 13: Experiment 6: regularization and penalty parameters (left), model and material parameters

(right).

Par. Definition Value

ε Regul. (crack) ≈ 2h 0.0442

κ Regul. (crack) 1.0e−10

η Regul. (viscosity) 1.0e3

γ Penalty 1.0e5

α Tikhonov 1.0e−9

Par. Definition Value

Gc Fracture toughness 1.0

νs Poisson’s ratio 0.2

E Young’s modulus 1.0e6

q0 Initial control 1.0

qd Nominal control −8.0e2
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Figure 27: Experiment 6: optimal control force (blue), nominal control (red, dotted), constant control

(magenta) and resulting total control q + qc (green) on upper boundary ΓN .

70%, this is a remarkable result. Although the sum of the optimal control q and the constant external

force qc is positive everywhere, see Fig. 27, it is not large enough to create a propagating crack. This is

to be expected since the Tikhonov term would penalize an unnecessarily strong control force. In Fig. 28

the control forces of iterations 1 to 4 from Table 12 are shown. We observe that the first control q1

decreases almost linearly to a minimal value of −4262.61, which produces a relatively large Tikhonov

term. The second control q2 is instead a linearly increasing function that minimzes this term. The

third and fourth controls lie between q1 and q2, and q4 behaves similar to the optimal control. When

studying the value of the tracking part in Table 12, we observe that it becomes almost zero on the

third iteration where the Tikhonov term is more than 10 times larger. Consequently the Tikhonov

term must be reduced next. Subsequently, the two terms oscillate until they are roughly balanced.

Some of the former experiments have been sensitive to the choice of α, but none of them has been as

sensitive as this experiment.

6 Conclusions

In this paper we derived a space-time Galerkin formulation for a regularized phase-field fracture optimal

control setting. By introducing jump terms in time and with the help of a discontinuous Galerkin

discretization in time, specific time-stepping schemes were obtained. A careful investigation of correct

weighting of two regularization terms and the initial conditions was necessary for the forward phase-

field fracture problem. The solution process of the optimization problem was based on the reduced

approach in which the state variables are obtained from a solution operator acting on the controls.

The numerical solution algorithm is based on Newton’s method in which three auxiliary problems are

required. The first part of the paper was concerned with the detailed derivation of these terms, which

are to the best of our knowledge novel in the published literature.

In Section 5, we performed several detailed computational performance studies for space-time

phase-field fracture optimal control problems. The optimization problem was designed with the help

of a reduced approach in which the state variables are obtained from a solution operator acting on

the controls. Therein, a monolithic space-time respresentation of the phase-field fracture problem
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Figure 28: Experiment 6: control forces for iterations 1–4 (solid) and nominal control (dotted) on

upper boundary ΓN .

was adopted. Moreover, the crack irreversibility constraint was regularized using a penality approach.

To study the performance, we investigated six numerical experiments with single (Experiments 1, 2,

5, 6) and multiple fractures (Experiments 3, 4), single controls (Experiments 1, 3, 4, 5, 6) and two

controls (Experiments 2), propagating fractures (Experiments 1, 2, 3, 4, 5) and inhibiting crack growth

(Experiment 6). Therein, the performance of the NLP solver (Algorithm 1) and the inner CG method

as well as the phase-field fracture PDE constraint were computationally analyzed in great detail. One

main bottleneck is the computational cost of the inner linear solver of the forward problem, which is

well-known and analogous in other PDE-constrained optimization problems. In ongoing work, we plan

to incorporate parallel adaptive preconditioned iterative solvers [32, 33], which, however, is a major

extension and was out of scope in this work.
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