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Abstract

In this paper, a new Discontinuity Capturing Shallow Neural Network (DCSNN)
for approximating d-dimensional piecewise continuous functions and for solving elliptic
interface problems is developed. There are three novel features in the present network;
namely, (i) jump discontinuities are accurately captured, (ii) it is completely shallow,
comprising only one hidden layer, (iii) it is completely mesh-free for solving partial
differential equations. The crucial idea here is that a d-dimensional piecewise continu-
ous function can be extended to a continuous function defined in (d + 1)-dimensional
space, where the augmented coordinate variable labels the pieces of each sub-domain.
We then construct a shallow neural network to express this new function. Since only
one hidden layer is employed, the number of training parameters (weights and biases)
scales linearly with the dimension and the neurons used in the hidden layer. For solving
elliptic interface problems, the network is trained by minimizing the mean square error
loss that consists of the residual of the governing equation, boundary condition, and the
interface jump conditions. We perform a series of numerical tests to demonstrate the
accuracy of the present network. Our DCSNN model is efficient due to only a moderate
number of parameters needed to be trained (a few hundred parameters used through-
out all numerical examples), and the results indicate good accuracy. Compared with
the results obtained by the traditional grid-based immersed interface method (IIM),
which is designed particularly for elliptic interface problems, our network model shows
a better accuracy than IIM. We conclude by solving a six-dimensional problem to
demonstrate the capability of the present network for high-dimensional applications.
keywords: Shallow neural network, deep learning, discontinuity capturing, elliptic in-
terface problem, high-dimensional PDEs
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1 Introduction

For the past decade, deep learning has gained great success in image recognition, natural
language processing, computer vision, and other numerous practical applications in our
daily life. Until very recently, it has begun to draw much attention to solve partial dif-
ferential equations (PDEs) using deep neural networks (DNNs) in the scientific computing
community. Part of the theoretical reason can be attributed to the various kinds of expres-
sive power for function approximations using DNN, such as those described in [1, 2, 3, 4],
and the references therein. The usage of automatic differentiation in machine learning [5],
making derivatives evaluations through neural networks much easier, is probably another
reason in practice. However, from the authors’ points of view, the most motivating reason
could be when the PDEs become intractable to traditional numerical methods, such as fi-
nite difference, finite element, or spectral method. For instance, even with today’s growing
computing power and resources, solving high-dimensional PDEs is still notoriously difficult
to the above traditional numerical methods due to the “curse of dimensionality”. Some
successful methods for solving high-dimensional PDEs using the deep learning approach
can be found in [6, 7, 8, 9], just to name a few.

As deep neural networks to solve PDEs become popular, there are mainly two different
approaches; namely, the physics-informed neural networks (PINNs) by Raissi et al. [10]
(also termed as DGM in [7]), and the deep Ritz method by E and Yu [11]. Both methods use
the neural network approximations for solutions of PDEs and share the mesh-free advantage
which the popular traditional numerical methods are unlikely to have. The PINNs solve
PDEs by minimizing the mean squared error loss of the equation residual, and the initial
and boundary condition errors simultaneously. This kind of neural network approach
can be dated back to Dissanayake and Phan-Thien [12], where the authors used a small
number of training points and a two-hidden-layer network to solve the linear and nonlinear
Poisson equations in a two-dimensional square domain. Shortly after, a superposition of the
boundary condition and neural network approximation was developed by Lagaris et al. [13]
to solve ordinary and partial differential equations in regular domains. The extension to
solve boundary value problems in irregular domains by the synergy of a single hidden
layer network and a radial basis function network (for exact satisfaction of the boundary
condition) was also proposed in [14]. On the other hand, the deep Ritz method begins
with solving the variational problem equivalent to the original PDE, so the natural loss
function in this framework is simply the energy functional. Recently, a penalty-free Ritz
method was proposed in [15] to solve a class of second-order boundary value problems in
complex domains.

Despite the success of the deep learning approach in solving PDEs with smooth solu-
tions, not much attention was paid to problems with non-smooth solutions, or problems
where the solution is only smooth in a piecewise manner. A typical example is an elliptic
interface problem, where the solution and its derivatives have jump discontinuities across
the interface. The intrinsic difficulty might be because the activation functions in a deep
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neural network are in general smooth, such as the sigmoid function, or at least continuous,
such as the rectified linear unit (ReLU). Along this line, a deep Ritz type approach to solve
the elliptic interface problem with high-contrast discontinuous coefficients was developed
in [16]. The network architecture is like the one proposed in [11] where two fully connected
hidden layers compose a block, so the network consists of two blocks with an output linear
layer. Each block is linked by a residual connection. However, there is a lack of intuitive
explanation on why such a network is built. Another deep least squares method [17] was
proposed to minimize the first-order system of least-squares functional, which is rewrit-
ten from the second-order elliptic problem. An accuracy comparison using different loss
functions and activation functions is performed. However, the results are only given for
one-dimensional problems. Notice that the solutions in both papers [16, 17] are continuous,
but the derivatives have jumps across the interface.

To the best of our knowledge, so far the most successful methodology for solving elliptic
problems with discontinuous solution and derivatives across an interface is to use the piece-
wise deep neural network proposed by He et al. [18]. They approximate the solution by two
neural networks corresponding to two disjoint sub-domains, so that in each sub-domain,
the solution remains smooth. These two networks are linked by imposing the solution and
its normal derivative jump conditions in the mean squared error loss. This way, the result-
ing error of the training solution can be significantly reduced. However, like most DNNs,
as the network becomes deeper, the training process requires more computational effort.
Not to mention that one has to train an individual neural network in each sub-domain.

In this paper, we propose a new discontinuity capturing shallow neural network (DC-
SNN) for solving elliptic interface problems. The novelty of the proposed network is three-
fold. Firstly, the network captures the solution and its normal derivative jumps sharply
across the interface. Secondly, the network is completely shallow, meaning that only one
hidden layer is needed, so it significantly reduces the training cost in contrast to DNN.
Lastly, it is totally mesh-free, thus it can be applied to solve problems with complex (or
irregular) domains which the traditional accurate immersed interface method (IIM) [19] is
hard to implement, especially in higher dimensions.

The rest of the paper is organized as follows. In Section 2, we show how a d-dimensional
piecewise continuous function can be approximated by the present shallow network. It
demonstrates the main underlying idea of the developed DCSNN by function approxi-
mation. Then an optimization algorithm to train the network is introduced, followed by
an example to confirm the accuracy. The present network for solving elliptic interface
problems is presented in Section 3, followed by a series of numerical accuracy tests and
comparisons in Section 4. Some concluding remarks and future work are given in Section 5.
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2 Discontinuity capturing shallow neural network

In this section, we start by constructing a neural network to approximate a d-dimensional,
piecewise continuous, scalar function φ(x) in the domain Ω = Ω−∪Ω+∪Γ (Ω ⊆ Rd) defined
by

φ(x) =

{
φ−(x) if x ∈ Ω−,
φ+(x) if x ∈ Ω+,

(1)

where x = (x1, x2, · · · , xd), φ− and φ+ are both smooth functions in their corresponding
sub-domains. The interface Γ is defined as the boundary between the sub-domains Ω− and
Ω+, where the function φ has a jump discontinuity at Γ. (Note that the function value
of φ on the interface Γ can be simply defined by φ− for convenience purpose.) In order
to approximate the above piecewise continuous function in d dimensions, we first make
a continuous extension of the function in (d + 1)-dimensional space, and then construct
a shallow (one hidden layer) neural network to approximate such a function. Since we
aim to approximate the piecewise continuous function accurately and capture the function
discontinuity sharply using only a one-hidden-layer neural network, we refer to the present
network approximation as the Discontinuity Capturing Shallow Neural Network (DCSNN).

2.1 Continuous function extension

The key idea here is that a d-dimensional discontinuous function can be alternatively
represented by a (d + 1)-dimensional smooth function. To this end, we first introduce an
augmented one-dimensional variable z to categorize the variable x into two types; namely,
x in Ω− or Ω+. More precisely, we set z = −1 if x ∈ Ω− and z = 1 if x ∈ Ω+ (this task can
be easily done with the help of a level set function for which the zero level set denotes Γ).
We then define the (d+ 1)-dimensional function using the augmentation variable (x, z) as

φaug(x, z) =

{
φ−(x) if z = −1,
φ+(x) if z = 1,

(2)

where x ∈ Ω and z ∈ R. That is, both φ− and φ+ are regarded as smooth extensions over
the entire domain Ω, and the augmented function φaug(x, z) is assumed to be continuous
on the domain Ω × R. In such a way, the function φ can be rewritten in terms of the
augmented function as

φ(x) =

{
φaug(x,−1) if x ∈ Ω−,
φaug(x, 1) if x ∈ Ω+.

(3)

Therefore, the piecewise continuous function φ now can be regarded as a continuous func-
tion defined on one-dimensional higher space and restricted to its sub-domains.

We illustrate this idea by considering a one-dimensional example where φ−(x) =
sin(2πx) if x ∈ [0, 1

2) and φ+(x) = cos(2πx) if x ∈ (1
2 , 1]. The function has a jump
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discontinuity at x = 1
2 , see Fig. 1(a). The two-dimensional augmented function can be

constructed as φaug(x, z) = 1−z
2 φ−(x) + 1+z

2 φ+(x), see Fig. 1(b) for the function profile. In
particular, its restriction at z = −1 corresponding to φ− is shown as the blue solid curve,
and the one at z = 1 corresponding to φ+ is shown as the red solid curve. It is important
to mention that this augmented approach can be straightforwardly applied to piecewise
continuous functions with arbitrary many pieces by simply labelling various z values. Be-
sides, the augmented function is not unique, i.e., there exists infinitely many such functions
that have their restrictions to be φ. The remaining issues are how to construct the neural
network to approximate the augmented function and how to train the network efficiently,
which we shall describe in the next subsection.

Figure 1: (a) The one-dimensional piecewise continuous function φ(x). (b) The two-
dimensional augmented function φaug(x, z) at different z values.

2.2 Shallow neural network structure

We propose a shallow neural network to approximate the d-dimensional piecewise contin-
uous function. As shown in the previous subsection, all we have to do is to construct the
augmented function φaug that is in fact continuous in d+ 1 dimensions. Based on the uni-
versal approximation theory [1], we hereby design a shallow, feedforward, fully connected
neural network architecture, in which only one single hidden layer is employed to approx-
imate φaug. The structure of this shallow neural network is shown in Fig. 2. Let N be
the number of neurons used in the hidden layer, the augmented function (or output layer)
under this network structure can be explicitly expressed by

φaug(x, z) = W [2]σ(W [1](x, z)T + b[1]) + b[2], (4)

where W [1] ∈ RN×(d+1) and W [2] ∈ R1×N are the weights, b[1] ∈ RN and b[2] ∈ R are the
biases, and σ is the activation function. One can easily see that the augmented function is
simply a finite linear combination of activation functions.
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Figure 2: The structure of DCSNN. N neurons are used in the hidden layer.

By collecting all the training parameters (including all the weights and biases) in a
vector p, the total number of parameters in the network (i.e., dimension of p) is counted
by Np = (d + 3)N + 1. Given M training data with feature inputs {(xi, zi)}Mi=1 and
target outputs {φ(xi)}Mi=1, where zi is determined by identifying the category of xi, these
parameters in φaug are learned via minimizing the following mean squared error loss

Loss(p) =
1

M

M∑
i=1

(
φ(xi)− φaug(xi, zi;p)

)2
. (5)

Now, we are in a position to solve the above optimization problem. Since the present
shallow network generally results in a moderate number of training parameters, the above
optimization problem can be efficiently solved by Levenberg-Marquardt (LM) method [20],
a full-batch optimization algorithm. That is, we find p via the iterative procedure

p(k+1) = p(k) +
(
JTJ + µI

)−1
[
JT
(

Φ− Φaug(p
(k))
)]
, (6)

where the ith component of the vectors Φ and Φaug correspond to φ(xi) and φaug(x
i, zi;p)

in the loss function (5), and J ∈ RM×Np (typically M > Np) is the Jacobian matrix given
by J = ∂Φaug/∂p. The computation of the Jacobian matrix can be done using automatic
differentiation [5, 21], or backpropagation algorithm. Notice that µ is the damping pa-
rameter. The general strategy for tuning the damping parameter is as follows. Initially,
µ is set to be large so that the first few updates are small steps along the gradient direc-
tion (note that the term JT (Φ− Φaug(p)) denotes the negative gradient direction of the
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loss function). We adjust the parameter µ lower as the loss decreases, in such a way, the
Levenberg-Marquardt method approaches the Gauss-Newton method, and the solution to
the optimization problem typically speeds up to the local minimum. The major cost in
each iteration step (6) comes from the computation of matrix-vector multiplication. This
can be done efficiently by using reduced singular value decomposition to the Jacobian ma-
trix J = UΣV T so that the updating direction (the second term on the right-hand side of
Eq. (6)) is computed by V diag( σJ

σ2
J+µ

)UT (Φ− Φaug), where σJ denotes the singular values

of J .

2.3 An example of function approximation

For illustration purpose, here we show the capability of the present network by considering
a one-dimensional piecewise continuous function

φ(x) =

{
sin(2πx) if x ∈ [0, 1

2),
cos(2πx) if x ∈ (1

2 , 1].
(7)

The network is trained by using only 5 neurons in the hidden layer, thus there are totally
21 parameters in weights and biases needed to be learned. We use 100 randomly sampled
training points in the interval [0, 1] (including two boundary points) with the sigmoid
activation function and stop the iteration when Loss(p) < 10−12.

The results are shown in Fig. 3. In panel (a) we compare the exact solution φ with the
DCSNN solution, denoted by φS . Both of them are evaluated at 1000 test points, which are
equally distributed in [0, 1]. As can be seen, the two functions agree well with each other.
It also clearly shows that a jump discontinuity at x = 0.5 is captured sharply. We show in
panel (b) the pointwise absolute error |φS − φ|. It is interesting to see that the maximum
error occurs close to the domain boundary rather than at the point of discontinuity. The
prediction of the present network is quite accurate where the maximum norm of the error is
of magnitude O(10−7). It is important to mention that, despite only one-dimensional case
presented here, discontinuous functions in higher dimensions can also be approximated
accurately and efficiently using the present network structure (see the last example in
Section 4).

3 Elliptic interface problems

Now we apply the DCSNN to solve d-dimensional elliptic interface problems with piecewise
constant coefficients. In such a problem, a domain Ω ⊂ Rd is divided by an embedded
interface Γ ⊂ Rd−1 into two regions, namely, inside (Ω−) and outside (Ω+) of the interface,
so that Ω = Ω−∪Ω+∪Γ. The elliptic interface equation with general inhomogeneous jump
conditions reads

∇ · (β∇φ) = f in Ω \ Γ, [φ] = v, [β∂nφ] = w, on Γ, (8)
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Figure 3: (a) The piecewise continuous function φ (denoted by the solid line) and the
DCSNN function φS (denoted by 50 dotted points among 1000 test points). (b) The
plot of absolute errors |φS − φ| at 1000 test points. The maximum absolute error is
‖φS − φ‖∞ = 5.661× 10−7.

where β is a piecewise positive constant function defined by β = β− in Ω− and β = β+ in
Ω+. (Note that the present method has no difficulty for handling the variable coefficient
case, i.e., β is spatial dependent, as one can see from the implementation later.) Here
the bracket [·] denotes the jump discontinuity of the quantity approaching from Ω+ minus
the one from Ω−, n stands for the outward normal vector defined on the interface Γ and
∂nφ is the shorthand notation for ∇φ ·n. Certainly, the above differential equation should
be accompanied with suitable boundary conditions (say Dirichlet or Neumann) along the
domain boundary ∂Ω. Throughout this paper we will focus on the case of the Dirichlet
boundary condition φ|∂Ω = g, while other types of boundary conditions will not change
the main ingredients presented here.

We first rewrite Eq. (8) in the form of the Poisson equation:

∆φ = f̃ =

{
f−/β− if x ∈ Ω−

f+/β+ if x ∈ Ω+ , [φ] = v, [β∂nφ] = w, on Γ, (9)

and introduce a (d+ 1)-dimensional augmented function φaug(x, z) that satisfies

∆xφaug(x, z) =

{
f−/β− if x ∈ Ω−, z = −1
f+/β+ if x ∈ Ω+, z = 1

, [φaug] = v, [β∂nφaug] = w, on Γ,

(10)

where the jump condition is evaluated by taking the difference between values at z = 1 and
z = −1, i.e., [φaug] = φaug(x, 1)− φaug(x,−1) for x ∈ Γ, and the same manner applies for
[β∂nφaug] (note that ∂nφaug = ∇xφaug ·n). Once φaug is found, the function φ is recovered
using Eq. (3).
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We then need to solve the augmented elliptic interface problem (10) to obtain φaug using
the present DCSNN. Given training points in Ω, on the domain boundary ∂Ω and along the
embedded interface Γ, denoted by {(xi, zi)}Mi=1, {xj∂Ω}

Mb
j=1 and {xkΓ}

MΓ
k=1, respectively, we

hereby solve the equation (10) by minimizing the mean squared error loss in the framework
of the physics-informed learning technique [10]

Loss(p) =
1

M

M∑
i=1

(
∆xφaug(x

i, zi)− f̃(xi)
)2

+
αb
Mb

Mb∑
j=1

(
φaug(x

j
∂Ω, 1)− g(xj∂Ω)

)2

+
αΓ

MΓ

MΓ∑
k=1

(
[φaug(x

k
Γ)]− v(xkΓ)

)2
+
αΓ

MΓ

MΓ∑
k=1

(
[β∂nφaug(x

k
Γ)]− w(xkΓ)

)2
,

(11)

where αb and αΓ are positive constants that can be adjusted to strengthen or weaken
constraints at the domain boundary and on the interface, respectively. Notice that, in
the above equation, we have collected all training parameters (weights and biases) in the
vector p. Since the least squares loss is adopted, again, it could be quite efficient to train
the network using the Levenberg-Marquardt method as introduced in 2.2. We mention
that the spatial derivatives of the target function φaug in the loss function, Eq. (11), can
be computed by automatic differentiation easily. Although the present network is similar
in spirit to PINNs [10], here we only use one hidden layer with sufficiently small number
of neurons so it reduces the computational complexity and learning workload significantly
without sacrificing the accuracy. Moreover, in solving Eq. (8), as shown in the next section,
the present DCSNN not only achieves better accuracy than the traditional finite difference
method, such as the immersed interface method [19, 24, 27], but also outperforms other
piecewise DNN [18] in terms of accuracy and network complexity.

4 Numerical results

In this section, we use the developed network to perform numerical tests for the elliptic
interface problems in two, three, and even six dimensions. Throughout all the examples
(except Example 2, in which we compare our results with existing literature), we set β− =
1 and β+ = 10−3 (so β−/β+ = 103, the problem with high contrast coefficients) and
the penalty parameters αb = αΓ = 1. The exact solution with a d-dimensional variable
x = (x1, x2, · · · , xd) is given by

φ(x) =


d∏
i=1

exp(xi) if x ∈ Ω−,

d∏
i=1

sin(xi) if x ∈ Ω+,

(12)

so the corresponding right-hand side function f̃ and the jump information v and w in
Eq. (9) can be easily obtained through the above solution.
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In the following examples, we choose sigmoid as the activation function and we finish
the training process when the stopping condition Loss(p) < ε is met (ε is set to be at least
smaller than 10−9). We measure the accuracy of the solution using the test error instead
of the training error. Precisely, we randomly choose test points {xi}Ntest

i=1 ⊂ Ω to compute
the L∞ and L2 error as

‖φS − φ‖∞ = max
1≤i≤Ntest

|φS(xi)− φ(xi)|, ‖φS − φ‖2 =

√√√√ 1

Ntest

Ntest∑
i=1

(φS(xi)− φ(xi))2,

where φS is the solution obtained by the present DCSNN. Throughout this paper, we set
the number of test points Ntest = 100M , with M training points. We also repeat the
numerical experiments 10 times so the test error reported here is an averaged one. The
source codes accompanying this manuscript are available on GitHub [22].

Example 1 We first consider a two-dimensional problem with a regular square domain

Ω = [−1, 1]× [−1, 1] and an ellipse-shaped interface Γ :
( x1

0.2

)2
+
( x2

0.5

)2
= 1. We use 128

training points (M = 64 interior points in the computational domain, Mb = 32 points on
the boundary, and MΓ = 32 points on the interface).

It is interesting to see that the deployment of training data can indeed affect the
accuracy of DCSNN solutions. We consider three different distributions of training points;
namely, Chebyshev points of the first kind [23], uniformly distributed points, and randomly
distributed points. The training points on Ω and ∂Ω are chosen based on those three
distributions, while the points on the interface Γ are always chosen randomly. The results
are shown in Table 1, where two sets of neuronsN = 10, 20 are used for comparison. We find
the errors obtained by Chebyshev and uniform nodes are of the same order of magnitude,
whereas the ones obtained by random distribution are less accurate. The corresponding
pointwise absolute errors are shown in Fig. 4. As one can see, the major error of Chebyshev
nodes comes from the vicinity of the interface, while the other two distributions have their
maximum error occurring close to the corners of the domain. This finding is surprising in
the sense that, even though the activation function is fairly different from polynomials, the
approximation still achieves better accuracy in Chebyshev nodes.

(N, Np)
Chebyshev nodes uniform nodes random nodes

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2
(10, 51) 1.032E−05 1.168E−06 5.965E−05 8.098E−06 3.395E−04 4.852E−05
(20, 101) 4.386E−06 7.285E−07 8.798E−06 1.247E−06 4.004E−05 1.574E−06

Table 1: The errors with different training point distributions in Example 1.

We show in Fig. 5 the solution profile of DCSNN; it sharply captures the discontinuity.
Meanwhile, it is interesting to see that the absolute error between the exact and the DCSNN
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Figure 4: The absolute error |φS − φ| using N = 20 with different training point distribu-
tions in Example 1.

solutions also shows a discontinuity across the interface because of the intrinsic construction
of the present network.

Figure 5: Left: The DCSNN solution profile. Right: Absolute error between the DCSNN
solution and the exact solution. N = 20 with Chebyshev training points in Example 1.

It is worth mentioning that the number of training points in each sub-domain, Ω− and
Ω+, depends roughly on the area ratio between them if the solutions in both sub-domains
are equally smooth. In this example, |Ω−|/|Ω+| ∼ 0.085 leads to less than 10 points in Ω−.
Even with such a small amount of data, we still get accurate predictions in the interior
region. This might be due to having enough training points on the interface, which brings
in an adequate amount of information. Also, note that the number of points needed in
each sub-domain is problem-dependent and often requires some prior information about
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the solution smoothness in each sub-domain.
We then compare the solution from the Chebyshev nodes (total 128 training points) in

Table 1 with the numerical solution obtained by the immersed interface method (IIM) [24]
which is second-order accurate for the elliptic interface problem Eq. (8) on Cartesian grids.
In IIM, the total number of degree of freedom (number of unknowns) Ndeg equals the
sum of the number of Cartesian grid points m2 and the augmented projection feet on the
interface, mΓ; see [24]. Table 2 shows the comparison results where the IIM uses the grid
resolutions m = mΓ = 128 and m = mΓ = 256, so correspondingly Ndeg = 16512 and
Ndeg = 65792, while the number of parameters used in DCSNN are just Np = 51 and
Np = 101, respectively. One can see how significantly different those numbers of unknowns
are. With just a few number of neurons, N = 10 and 20, the solutions of the present
network achieve better accuracy than the IIM. Similarly, an increase in the number of
neurons leads to better accuracy, as expected.

Ndeg ‖φIIM − φ‖∞ (N, Np) ‖φS − φ‖∞ ‖φS − φ‖2
16512 7.719E−05 (10, 51) 1.032E−05 1.168E−06
65792 8.347E−06 (20, 101) 4.386E−06 7.285E−07

Table 2: φ: Exact solution. φIIM : Solution obtained by IIM. Ndeg = 16512 and 65792
correspond to m = mΓ = 128 and m = mΓ = 256. φS : Solution obtained by DCSNN
model.

One may wonder what will happen if different optimizers are chosen. To see this, we
use the same network model, same Chebyshev training points, and solve the same problem,
but with Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [25] and Adaptive
Moment Estimation (Adam) [26] optimizers that are commonly used in machine learning
practice. We use a learning rate of 0.1 for L-BFGS, while for Adam we use an initial
learning rate 0.01 and a learning rate scheduler that reduces its value to 0.0001 during
training. We fix the number of iterations to 50000. The results are shown in Table 3.
Compared with the results from the LM optimizer in Table 1, the accuracy is about two
orders of magnitude lower. We also show the evolution of the loss in Fig. 6. The LM loss
drops to 10−9 in about 1000 steps, while the L-BFGS and Adam losses can not fall below
10−7 even up to 50000 training steps.

(N, Np)
L-BFGS Adam

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2
(10, 51) 1.897E−03 5.461E−04 3.270E−03 9.077E−04
(20, 101) 6.086E−04 1.420E−04 1.508E−03 2.619E−04

Table 3: Comparison between optimizers in Example 1 with Chebyshev training points.
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Figure 6: The evolution of the loss with different optimizers in Example 1. N = 20.

Example 2 As the second example, we compare the results of DCSNN with the piecewise
deep neural network proposed in [18], in which two (or multiple) individual neural nets are
trained to approximate the function in each sub-domain. Here, the square domain Ω =
[−1, 1]2 is separated by the interface that is given by the polar curve r(θ) = 1/2+sin(5θ)/7.
We choose the exact solution as in [18]

φ(x1, x2) =

{
exp(x2

1 + x2
2) if (x1, x2) ∈ Ω−,

0.1(x2
1 + x2

2)2 − 0.01 log(2
√
x2

1 + x2
2) if (x1, x2) ∈ Ω+,

and set β− = 10 and β+ = 1. The present network is trained using N = 50 and 100
neurons with randomly sampled training points (M,Mb,MΓ) = (400, 80, 80). We measure
the accuracy of the solutions using the relative L2 error and compare the results with
piecewise deep neural nets employing four and six hidden layers, as in [18], for which the
same order of training data is used. As one can see from Table 4, the DCSNN model with
only one hidden layer and fewer parameters shows better accuracy.

(N, Np) ‖φS − φ‖2/‖φ‖2 Np ‖φDNN − φ‖2/‖φ‖2
(50, 251) 8.362E−04 25474 4.960E−03
(100, 501) 2.634E−04 42114 3.727E−04

Table 4: Relative L2 error for the solutions of DCSNN, φS , and for the solutions of piecewise
deep neural network [18], φDNN .

Example 3 This example aims to highlight the robustness of DCSNN for handling the
elliptic interface problem (8) on irregular domains. Since the proposed method is mesh-
free (i.e., not constrained by the locations of training points), the implementation is indeed
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straightforward. Unlike the previous examples, here the domain is set to be irregular
and enclosed by the polar curve r(θ) = 1 − 0.3 cos(5θ). The embedded interface Γ is also
described by the polar curve, r(θ) = 0.4−0.2 cos(5θ). We use 20 neurons in the hidden layer
(thusNp = 101) and randomly sample training points with (M,Mb,MΓ) = (64, 32, 32). The
results are shown in Fig. 7. Without paying extra numerical efforts, the DCSNN model
can accurately predict the solution. On the contrary, it can be difficult for traditional
finite difference methods, such as IIM, to solve in such a domain. Here, we emphasize that
the irregular domains in arbitrary dimensions can be handled properly with no substantial
difficulty.

Figure 7: Left: The DCSNN solution profile. Right: Absolute error between the DCSNN
solution and the exact solution. In this case ‖φS − φ‖∞ = 5.309× 10−6 and ‖φS − φ‖2 =
5.856× 10−7.

Example 4 Next, we proceed to the three-dimensional elliptic interface problem. The
interface is elliptical, centered at the origin with semi-principal axes of length 0.7, 0.5 and
0.3, embedded in a regular cube Ω = [−1, 1]3. Similar to Example 1, we compare the
accuracy among three different training point distributions. The number of training points
is (M,Mb,MΓ) = (216, 216, 108) which is about 4 times as many as used in the 2D case,
while the number of neurons are set by N = 20, 30 in the hidden layer. The results are
shown in Table 5. As expected, the Chebyshev nodes again give the most accurate results
compared to the other two.

We then compare the accuracy of the DCSNN solution with the 3D immersed interface
solver proposed in [27]. Note that, in 3D IIM, the total degree of freedom, Ndeg, is now
the sum of the number of Cartesian grid points m3 and the augmented projection feet on
the interface, mΓ. As shown in Table 6, the results obtained by the present model are
more accurate than the ones by IIM, whereas the number of parameters of the network is
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(N, Np)
Chebyshev nodes uniform nodes random nodes

‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2 ‖φS − φ‖∞ ‖φS − φ‖2
(20, 121) 3.276E−05 3.832E−06 4.214E−05 2.278E−06 1.610E−04 1.341E−05
(30, 181) 5.605E−06 5.809E−07 1.733E−05 1.244E−06 7.646E−05 1.693E−06

Table 5: The errors with different training point distributions in Example 4.

significantly less than the one used in IIM.

Ndeg ‖φIIM − φ‖∞ (N, Np) ‖φS − φ‖∞ ‖φS − φ‖2
2201776 9.380E−04 (20, 121) 3.276E−05 3.832E−06
17194216 2.890E−04 (30, 181) 5.605E−06 5.809E−07

Table 6: φ: Exact solution. φIIM : Solution obtained by IIM. Ndeg = 2201776 and 17194216
correspond to (m,mΓ) = (128, 104624) and (m,mΓ) = (256, 417000). φS : Solution ob-
tained from DCSNN model.

It is important to point out that, in DCSNN, the number of neurons in the input layer
is the problem dimension plus one. So with a fixed number of neurons in the hidden layer
N , the total number of parameters Np increases linearly with the dimension d (recall that
Np = (d + 3)N + 1). In contrast, when the dimensionality of the problem increases, the
computational complexity of traditional numerical methods increases significantly.

Example 5 As a final example, we show the ability of DCSNN to solve the high-
dimensional elliptic interface problem (8) by taking the dimension d = 6. For the problem
setup, we consider a 6-sphere of radius 0.6 as the domain Ω enclosing another smaller
6-sphere of radius 0.5 as the interior region Ω−. We randomly sample the training points
with (M,Mb,MΓ) = (100, 141, 141) while the number of neurons are set by N = 10, 30
and 50 (corresponding to total number of parameters Np = 91, 271 and 451). The evo-
lutions of training loss and L∞ error against training steps are shown in Fig. 8. We find
that increasing the number of neurons N leads to a smaller mean squared error loss (see
panel (a)). However, for all cases, the error plateaus in the early training state (within 100
iterations) and the descent of the loss metric becomes sluggish for the following training
steps; see panel (b). Although not shown here, our experiments show that adding more
training points does not improve the accuracy of the predicted solution. We attribute this
slow convergence to high dimensionality. A similar observation was found in deep Ritz
method for solving high dimensional problems [11]. Despite that, our present solution still
gives the error ‖φS − φ‖∞ = 1.689 × 10−4 for N = 10 which indicates that the error can
remain small, even in higher dimensions.
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Figure 8: The evolutions of (a) the loss and (b) the L∞ error with N = 10, 30 and 50.

5 Conclusion and future work

In this paper, a novel shallow neural network is developed to approximate functions with
jump discontinuities. The crucial idea is that a d-dimensional piecewise continuous function
can be augmented as a continuous function defined in (d + 1)-dimensional space. This
function, based on the universal approximation theory, can be approximated by a shallow,
feedforward, fully connected neural network. We thereby propose a simple neural network
architecture consisting of an input layer of (d+1)-dimensional coordinate variables, a hidden
layer with a moderate number of neurons, and an output layer of the function itself. We
show that the present network is efficient and accurate for piecewise continuous function
approximation, and can serve as a solution model for elliptic interface problems. Combined
with the PINN-type loss functions, the present network approximates the solution with high
accuracy, and the results are comparable to the immersed interface method. Because of
the mesh-free nature of the network, there is no difficulty in implementing the model for
problems on irregular domains or in high dimensions.

The present work differs significantly from the work using DNNs in the literature as
we only consider a completely shallow neural network (one hidden layer). To approximate
functions or solutions that are highly oscillatory, one can increase the number of neurons in
the hidden layer to achieve the desired accuracy. As we show in the numerical experiments
in this paper, all the problems can be solved with high accuracy by the present network
with a moderate number (less than a hundred) of neurons. Notice that a shallow network
is much easier to train than a deep one.

In the present work, we only consider the stationary elliptic interface problems. As a
forthcoming extension, we shall consider time-dependent problems, particularly the moving
interface problems, which will be left as future work.
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