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Abstract We present a stable spectral vanishing viscosity for discontinuous Galerkin schemes, with

applications to turbulent and supersonic flows. The idea behind the SVV is to spatially filter the

dissipative fluxes, such that it concentrates in higher wavenumbers, where the flow is typically under–

resolved, leaving low wavenumbers dissipation–free. Moreover, we derive a stable approximation of

the Guermond–Popov fluxes with the Bassi–Rebay 1 scheme, used to introduce density regularization

in shock capturing simulations. This filtering uses a Cholesky decomposition of the fluxes that ensures

the entropy stability of the scheme, which also includes a stable approximation of boundary conditions

for adiabatic walls. For turbulent flows, we test the method with the three–dimensional Taylor–Green

vortex and show that energy is correctly dissipated, and the scheme is stable when a kinetic energy

preserving split–form is used in combination with a low dissipation Riemann solver. Finally, we test

the shock capturing capabilities of our method with the Shu–Osher and the supersonic forward facing

step cases, obtaining good results without spurious oscillations even with coarse meshes.

Keywords discontinous Galerkin · entropy stability · kinetic energy preserving · Large Eddy

Simulation · shock capturing · spectral vanishing viscosity

1 Introduction

The central role that differential equations play in science and engineering explain the great interest

and the efforts made to develop ever more efficient and accurate methods. In the field of fluid me-

chanics, high–order discontinuous Galerkin methods [1, 2] seem to lay in a sweet spot, being suitable
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for complex geometries and easily allowing the introduction of h/p mesh adaptation to spectrally

increase the accuracy [3, 4, 5, 6]. Nevertheless, the numerical dissipation they can introduce is limited

and, even with the addition of inter–element numerical fluxes [7], it is not sufficient for challenging

cases such as supersonic flows, where the Navier–Stokes equations allow discontinuous solutions that

need higher rates of dissipation when approximated by high–order polynomials. In this situation it is

desirable that the solver is able to maintain an ever decreasing entropy, according to the second law

of thermodynamics.

The mathematical entropy is a well established framework to represent conservation laws. This

mathematical entropy is arbitrarily defined such that is ever decreasing [8, 9, 10]. Hence, in kinetic–

energy preserving schemes, the mathematical entropy is the kinetic energy, whereas in thermodynamic

entropy preserving schemes, it is minus the thermodynamic entropy (which is ever increasing). In the

case of the Discontinuous Galerkin Spectral Element Method (DGSEM) [11] with Gauss–Lobatto (GL)

points, the polynomial derivative operator satisfies the discrete Summation–By–Parts Simultaneous–

Approximation–Term (SBP–SAT) property [12, 13], which has led the development of split–form

schemes that preserve the discrete entropy [14]. However, in the context of supersonic flows and shock

capturing, where the flow variables can experience large oscillations, the use of an entropy preserving

method does not guarantee its stability. This is because the entropy stability condition rests on a

positive density, which is usually not the case as a result of the violent density oscillations at the

vicinity of shocks. One way to alleviate this problem is the use of shock capturing methods that

introduce some sort of density regularization, while keeping discrete entropy preservation. This point

is a focus of active research and the literature contains several strategies that can be divided in two

main branches. The first group makes use of the discretization to introduce the required additional

dissipation. By lowering the order of the approximation, the dissipation of the numerical fluxes is

introduced at lower wavenumbers, reducing the slope of the wave and smoothing the solution [15].

The other approach consists in adding dissipation directly in the driving equations, usually through

a second order elliptic term [16, 17]. Nevertheless, the discontinuity limits the attainable accuracy

and elements containing them can never reach spectral convergence [18]. In this work we focus on

the second method and we derive two different approaches; first, a thermodynamic entropy stable

scheme that uses a spectral vanishing viscosity (SVV) based on the fluxes proposed by Guermond

and Popov [19], and second, a kinetic energy preserving scheme with its fluxes based on the physical

Navier–Stokes viscosity. The use of the SVV makes it possible to modulate the dissipation in the

wavenumber domain, and allows us to continuously shift from a low (second order) to a high–order

dissipation.

Moreover, the SVV approach is also suitable for under–resolved turbulent flows, where the mesh

cannot capture all the scales involved and the high–order DGSEM might not dissipate the correct

amount of energy [20, 21, 22]. Several strategies have also been proposed for these types of flows,

being the Reynolds Averaged Navier–Stokes (RANS) equations [23] and Large Eddy Simulations

(LES) among the most extended. Implicit LES (iLES) methods benefit from the scheme’s numerical

dissipation [24], while explicit LES methods model the effect of the small scales that cannot be

accurately resolved into aditional dissipation. In this work, we follow [25, 26] and couple the SVV and

LES aproaches so that the intensity is computed with the LES–Smagorinsky model, and it is then

filtered by the SVV. However, we modify the SVV discretization such that the resulting scheme is

kinetic energy preserving.
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The structure of the rest of the paper is as follows: we briefly describe the compressible Navier–

Stokes equations in Sec. 2, where we also highlight the entropy variables and introduce the artificial

viscosity fluxes that will be used later. We then show the foundation of the DGSEM in Sec. 3 and, in

Sec. 4, we detail the novel filtering technique that we use in the SVV formulation. Sec. 5.1 contains a

detailed analysis of the stability of the entropy formulation with artificial viscosity, and in Sec. 5.2 we

perform von Neumann analyses of the SVV applied to a one–dimensional advection–diffusion equation

to preview its dissipation properties. Finally, Sec. 6 shows some numerical results with test cases in

one to three dimensions: the Shu–Osher shock tube, a supersonic forward facing step and the inviscid

Taylor–Green vortex.

1.1 Notation

The mathematical formulation of partial differential equations introduces the concepts of space vectors

in R3 like ~x = (x, y, z)T , and state vectors in R5, such as q = (ρ, ρu, ρv, ρw, ρe)T , to gather the field

variables. We adopt the notation in [27], where a block vector represents an entity contained in the

space R3 ×R5, e.g., fluxes, as three state vectors stacked on top of each other,

↔
f =

 f1

f2

f3

 =

 f

g

h

 . (1)

We can now extend the usual multiplication operators of calculus to vectors of different nature by

acting on each subspace separately,

↔
f ·↔g =

3∑
i=1

fTi gi, ~g ·
↔
f =

3∑
i=1

gifi, ~gf =

 g1f

g2f

g3f

 , (2)

and, by setting ~g = ~∇, we obtain the expressions for the divergence and gradient operators,

~∇ ·
↔
f =

3∑
i=1

∂fi
∂xi

, ~∇q =

qx

qy

qz

 . (3)

Likewise, we define state matrices, A, of size 5×5 to operate on the field variables, and block matrices

as a combination of state matrices,

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 . (4)

and thus, the product of matrices and vectors of the same type is well defined. We can also construct

block versions of space matrices as follows. For example, consider the product

~g = M~f. (5)
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that involves a space matrix M ∈ R3×3. Its associated block matrix M ∈ R15×15 is created so that it

is equivalent to apply (5) to each of the variables of the state components of the block vector,
↔
f ,

↔
g =M

↔
f , M =

M11I5 M12I5 M13I5
M21I5 M22I5 M23I5
M31I5 M32I5 M33I5

 , (6)

For more details, see [27]. We finally represent integrals in the domain Ω in bracket notation, 〈·〉,
being 〈·, ·〉 the inner product in the same region,

〈f〉 =

∫
Ω

f d~x, 〈f, g〉 =

∫
Ω

fg d~x. (7)

2 The compressible Navier–Stokes equations with artificial viscosity

In this section we describe the compressible Navier–Stokes equations. For the purpose of this work,

we will complement the set of equations with additional dissipative terms, of which we consider

two: locally increasing the molecular viscosity (Boussinesq’s approximation), and the entropy stable

dissipative flux derived by Guermond and Popov in [19]. These fluxes are detailed in Sec. 2.2. Finally,

in Sec. 2.3 we study the kinetic energy and entropy stability of the schemes derived.

The compressible Navier–Stokes equations with artificial viscosity are a set of non–linear advection–

diffusion equations,

qt + ~∇ ·
↔
f e = ~∇ ·

↔
f v + ~∇ ·

↔
f a. (8)

The state vector is q = (ρ, ρ~u, ρe)T where ρ is the density, ~u = (u, v, w)T is the velocity, and ρe is the

total energy,

ρe = ρei +
1

2
ρ|~u|2, ei =

p/ρ

γ − 1
, p = ρRT, (9)

being ei the internal energy, p the pressure, T the temperature, R the ideal gas constant, and γ the

specific heat ratio. The inviscid fluxes
↔
f e depend on the state vector,

fe =


ρu

ρu2 + p

ρuv

ρuw

ρhu

 , ge =


ρv

ρuv

ρv2 + p

ρvw

ρhv

 , he =


ρw

ρuw

ρvw

ρw2 + p

ρhw

 , (10)

where h = e+ p/ρ is the total enthalpy. The viscous fluxes
↔
f v are

fv =


0

τ11

τ21

τ31

~τ1 · ~u+ q1

 , gv =


0

τ12

τ22

τ32

~τ2 · ~u+ q2

 , hv =


0

τ13

τ23

τ33

~τ3 · ~u+ q3

 , (11)
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with τij = µ
(
∂ui/∂xj + ∂uj/∂xi − 2

3
~∇ · ~u δij

)
the stress tensor, ~τi = (τ1i, τ2i, τ3i) the stress in the

three spatial directions, and ~q the heat flux,

~q = κ~∇T. (12)

The coefficients µ and κ are the molecular viscosity and thermal conductivity, related through the

Prandtl number,

κ = θµR, θ =
γ

(γ − 1) Pr
(13)

Finally, two different approaches to include additional dissipation are considered:

1. Increasing the molecular viscosity, µa,
↔
f a =

↔
f v(µa),

2. The Guermond–Popov flux,
↔
f a =

↔
f GP(µa, αa), developed in [19] that introduces two additional

viscosity parameters, αa and µa, which will be explained in more detail in Sec. 2.2.3,

↔
f GP = αa

 ~∇ρ
~∇ρ⊗ ~u

~∇ (ρei) + 1
2 |~u|

2~∇ρ

+ µa

 0

ρ~∇s~u
ρ~u · ~∇s~u

 , ~∇s~u =
1

2

(
~∇~u+ ~∇~uT

)
. (14)

2.1 Entropy pairs and entropy variables

Now, in order to further analyze the entropy stability properties of our formulation in later sections,

we introduce the concept of mathematical entropy. Starting from a generic conservation law in three

dimensions,

qt + ~∇ ·
↔
f = 0, (15)

we define the entropy [8, 9, 10, 28], E, as a convex function on the variables q that also satisfies

(Eq)T
↔
f q = ~fEq ,

↔
f q = (fq,gq,hq)T , (16)

for the entropy–entropy flux pair (E , ~fE). The derivative of E is given the name of entropy variables,

w = Eq, (17)

which also introduces the mapping q→ w. After multiplying (15) from the left by wT and introducing

the conditions of (16), the initial conservation law also expresses the conservation of the mathematical

entropy, E,
Et + ~∇ · ~fE = 0. (18)

Going back to (8), the terms to the left of the equal sign correspond to the Euler equations which,

being hyperbolic, add no dissipation and can be reduced to the form (18) with the use of a certain

family of entropy functions [9]. The dissipative fluxes at the right hand side of (8) are also modified

by the introduction of these entropy variables. We will show in the following sections that both,
↔
f v

and
↔
f a, are symmetrized by this change of variables in the sense that,

↔
f v = Bv(q)~∇w,

↔
f a = Ba(q)~∇w, (19)
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with Bv and Ba symmetric matrices. We also define the dissipation introduced by any flux of the

form (19) as,

D =
(
~∇w
)T
B ~∇w, (20)

which will satisfy D > 0 if B is positive semi–definite. In this case, after multiplying (8) from the

left by wT and integrating over Ω, we get a new conservation law for the integrated value of the

entropy, 〈E〉,

〈Et〉+
∫
Ω

~∇ · ~fE dV =

∫
∂Ω

wT

(
↔
f v +

↔
f a

)
· ~ndS −

〈
~∇w,

↔
f v

〉
−
〈
~∇w,

↔
f a

〉
, (21)

that can be further simplified when introducing (19) and (20) into the volume flux terms,

〈Et〉+
∫
∂Ω

(
~fE −wT

↔
f v −wT

↔
f a

)
· ~ndS = −〈Dv〉 − 〈Da〉 6 0. (22)

The last inequality comes from the fact that the dissipation introduced by the viscous and artificial

fluxes considered in this work is always positive, as it is explained in Sec. 2.2. Therefore, the entropy

remains bounded during the flow evolution at a continuous level. Since the Navier–Stokes equations

verify (22), it is desirable to have it satisfied also at a discrete level because entropy stable schemes

can be shown to be non–linearly stable [29], and therefore, very robust.

In this work we specifically use two different mathematical entropies:

1. The kinetic energy, K = ρ|~u|2/2, with entropy variables,

wK =
∂K
∂q

=

(
−|~u|

2

2
, u, v, w, 0

)T
. (23)

2. The thermodynamic entropy, S = −ρs/(γ − 1), with s = ln p− γ ln ρ and,

wS =
∂S
∂q

=

(
γ − s
γ − 1

− ρ|~u|2

2p
,
ρu

p
,
ρv

p
,
ρw

p
,−ρ

p

)T
. (24)

2.2 Entropy stable dissipation

From (20) and (22) we see that the viscous fluxes are a natural way to introduce dissipation to the

entropy equation and thus, we only need to prove that these fluxes are actually adding a positive

dissipative term by showing that the matrices B are positive semi–definite.

This has been already shown for the Navier–Stokes viscous fluxes in [30]. In any case, in this

section we complete the previous analysis for the particular cases summarized in Table 1.
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Flux type Kinetic energy Thermodynamic entropy µα αα

Navier–Stokes X X constant / LES –

Guermond–Popov – X constant constant

Table 1 Combinations of artificial viscous fluxes and entropy variables used throughout this work.

2.2.1 The kinetic energy variables viscous flux

The Navier–Stokes viscous flux can be expressed in matrix–vector form with BKv = µCKv (see Ap-

pendix B for the actual definition of the matrix) so, in addition to the physical dissipation, more can

be added by augmenting the molecular viscosity, BKa = µaCKv . Its associated dissipation is

DKa = µa

(
~∇wK

)T
CKv ~∇wK = µa~∇~u :

[(
~∇~u
)T

+ ~∇~u− 2

3

(
~∇ · ~u

)
I3

]
= µa

(
2|S|2 − 2

3

(
~∇ · ~u

)2)
> 0.

(25)

2.2.2 The thermodynamic entropy variables viscous flux

Since the matrix corresponding to the Navier–Stokes viscous flux is also linearly dependent on ρ with

this set of variables, BSv = µp
ρ B̃
S
v , artificial viscosity can also be added by augmenting the molecular

viscosity, BSa = µap
ρ B̃

S
v . However in this case, the proof for non–linear matrices rests on a Cholesky

decomposition of the matrix B̃Sa = LS,Tv DSv LSv , hence,

DSa =
µap

ρ
~∇wS,T B̃Sv ~∇wS =

µap

ρ

(
LSv ~∇wS

)T
DSv
(
LSv ~∇wS

)
> 0, (26)

if all the terms in the diagonal matrix, the artificial viscosity µa, and the temperature T = p/ρR are

positive. The diagonal matrix was given in [30],

DSv = diag

(
0,

4

3
, 1, 1,

θp

ρ
, 0, 0, 1, 1,

θp

ρ
, 0, 0, 0, 0,

θp

ρ

)
, (27)

where θ takes the value given in (13). For further information, we include the precise form of the

matrices B̃Sv and LSv in Appendix C.

2.2.3 The Guermond–Popov flux

The last flux studied in this work was derived in [19], and introduces two parameters (14). The first

one, αa, introduces dissipation that originates in the continuity equation, proportional to the gradient

of the density. This dissipation is carried through the rest of the equations to get an entropy stable

dissipation. The second one, µa, further introduces dissipation that originates in the momentum

equation and whose work is carried to the energy equation, in a similar fashion to the physical

dissipation of the Navier–Stokes equations.
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To study the dissipation introduced by this flux, it is written in the form
↔
f GP = BGP

~∇wS , using

the thermodynamic entropy variables (24). Therefore, the matrix BGP is written as the sum of the

separate contributions of αa and µa

BGP = αaρBαGP + µapBµGP, (28)

where BαGP and BµGP are given in Appendix D. As in the Navier–Stokes fluxes, having an entropy

stable dissipation rests on the positive–definiteness of (28). In a similar fashion, we perform a Cholesky

decomposition of BGP = LTGPDGPLGP, with

DGP = diag

(
αaρ, µap,

1

2
µap,

1

2
µap, αaρ, αaρ, 0, µap,

1

2
µap, αaρ, αaρ, 0, 0, µap, αaρ

)
, (29)

thus confirming that

DGP
a = ~∇wS,T B̃GP

~∇w =
(
LGP

~∇wS
)T
DGP

(
LGP

~∇wS
)
> 0, (30)

as long as ρ, p > 0. More details of the formulation are given in Appendix D.

2.3 Continuous entropy analysis

We now compute the final expression of the entropy equation (22) for the two entropy variables that

we consider. After multiplying (8) by the entropy variables and integrating the result over Ω we get,

〈qt,w〉+
〈
~∇ ·
↔
f e,w

〉
=

〈
~∇ ·
(
↔
f v +

↔
f a

)
,w

〉
. (31)

The final form of the different terms depends on the choice of entropy variables. We know from (17)

that the first term gives the evolution of the entropy,〈
qt,w

K
〉

= 〈Kt〉 , or
〈
qt,w

S
〉

= 〈St〉 , (32)

and also from (16) we can derive that the second term is the integral of the entropy flux over the

boundary ∂Ω. However, the case of the kinetic energy needs a special treatment since it does not meet

all the requirements set in Sec. 2.1. Specifically, the entropy flux expression (16) is not true and this

second term of (31) represents the kinetic energy flux through the boundaries plus a volume term,Wp,

usually associated to the work of the pressure. A more detailed discussion about this term and its

role in kinetic energy preserving schemes can be found in [31, 32, 33, 23]. Using (16) to compute the

entropy fluxes, 〈
~∇ ·
↔
f e,w

K
〉

=

∫
∂Ω

1

2
ρ|~u|2~u · ~ndS +

〈
~u, ~∇p

〉
=

∫
∂Ω

~fKe · ~ndS +Wp,〈
~∇ ·
↔
f e,w

S
〉

=

∫
∂Ω

S~u · ~ndS =

∫
∂Ω

~fSe · ~ndS,

(33)



Entropy stable SVV for DG schemes: application to shock capturing/LES models 9

Finally, the last term gives the dissipative terms after introducing (20) for the physical and artificial

viscous fluxes, 〈
~∇ ·
(
↔
f v +

↔
f a

)
,w

〉
=

∫
∂Ω

wT

(
↔
f v +

↔
f a

)
· ~ndS − 〈Dv〉 − 〈Da〉. (34)

Thus, for both the kinetic energy and thermodynamic entropy we get

〈Et〉+
∫
∂Ω

~fE · ~ndS +ΘWp + 〈Dv〉+ 〈Da〉 = 0, ~fE = ~fEe −wT

(
↔
f v +

↔
f a

)
, (35)

with Θ = 1 for E = K, and Θ = 0 for E = S, which, provided that Dv and Da are positive, is equivalent

to (22) except for the pressure work with kinetic energy entropy variables. We will consider the effect

of Wp in Sec. 5.1, where we perform a semi–discrete entropy stability analysis.

3 Numerical approximation

3.1 Geometrical transformations

The domain Ω is tessellated into non–overlapping hexahedral elements e that are geometrically trans-

formed from a cube E = [−1, 1]3 called the reference element. To do that, we define a transfinite

mapping from the local (~ξ = (ξ, η, ζ)T ∈ E) to the physical (~x = (x, y, z)T ∈ e) coordinates, ~x = ~X
(
~ξ
)

.

This mapping also relates the differential operators from the physical to the computational space. We

also compute the covariant and contravariant basis, and the transformation Jacobian,

~ai =
∂ ~X

∂ξi
, J~ai = ~aj × ~ak, J = ~a1 · (~a2 × ~a3) , (i, j, k) cyclical, (36)

that build the matrix M =
(
J~aξ, J~aη, J~aζ

)
. This matrix is divergence–free, ~∇ξ · M = 0, which is

known as the metric identities [34]. With the matrix M, we transform the gradient and divergence

operators [11],

J ~∇u = M~∇ξu, J ~∇ · ~f = ~∇ξ ·
(
MT ~f

)
= ~∇ξ ·

~̃
f. (37)

Next, we construct a block matrix M from M using (6). By doing so, we extend the gradient and

divergence operators to state and block vectors,

J ~∇u =M~∇ξu, J ~∇ ·
↔
f = ~∇ξ ·

(
MT

↔
f

)
= ~∇ξ ·

↔
f̃ , (38)

and we also introduce the matrices MT andMT as transformation matrices to project covariant space

and block vectors into the contravariant frame. We will apply this result throughout this work to

express the fluxes in the reference space.
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To write the advection–diffusion system (8) in the reference space, it is first casted to a first order

system with the definition of the auxiliary variables
↔
g = ~∇w (where the gradient is computed from the

entropy variables w (24)). Then these two equations are transformed to the reference space using (38),

Jqt + ~∇ξ ·
↔
f̃ e (q) = ~∇ξ ·

(↔
f̃ v

(
q,
↔
g
)

+
↔
f̃ a

(
q,
↔
g
))

,

J
↔
g =M~∇ξw.

(39)

Finally, we construct two weak forms from (39). We multiply the two equations by two test

functions φ and
↔
ϕ, we integrate the result over the reference element E, and we use the Gauss law on

the divergence and gradients,

〈Jqt,φ〉E +

∫
∂E

φT
↔
f̃ e · n̂dŜ −

〈↔
f̃ e, ~∇ξφ

〉
E

=

∫
∂E

φT
(↔

f̃ v +
↔
f̃ a

)
· n̂dŜ −

〈↔
f̃ v +

↔
f̃ a, ~∇ξφ

〉
E

,〈
J
↔
g ,
↔
ϕ
〉
E

=

∫
∂E

wT
↔
ϕ̃ · n̂dŜ −

〈
w, ~∇ξ ·

↔
ϕ̃

〉
E

.

(40)

In (40), n̂ and dŜ are the unit normal vector and the surface differential of the six planar faces of E

(e.g. for the faces η = ±1, n̂ = (0,±1, 0)T and dŜ = dξ dζ).

3.2 Polynomial approximation

In this work we use a high–order Discontinuous Galerkin Spectral Element Method (DGSEM) [11, 35].

In particular, this work uses the Gauss-Lobatto version of the DGSEM, which makes it possible to con-

struct entropy-stable schemes using the summation-by-parts simultaneous-approximation-term (SBP-

SAT) property and two-point entropy–conservative fluxes. Moreover, it handles arbitrary three dimen-

sional curvilinear hexahedral meshes while maintaining high order, spectral accuracy and entropy–

stability.

q
∣∣
E
≈ Q

(
~ξ, t
)

=
N∑

i,j,k=0

Qijk(t)li(ξ)lj(η)lk(ζ). (41)

In (41), and following the notation of [36], li (ξ) are the Lagrange polynomials associated to the

Gauss–Lobatto points, {ξi, ηi, ζi}Ni,j,k=0. The coefficients Qijk (t) are called the nodal degrees of free-

dom, whose values coincide with the interpolant evaluation at the GL points, Qijk = Q (ξi, ηj , ζk, t).

Similarly, the fluxes are also represented by their polynomial approximation [11],

↔
f
∣∣
E
≈
↔
F
(
~ξ, t
)

=
N∑

i,j,k=0

↔
Fijk(t)li(ξ)lj(η)lk(ζ),

↔
Fijk =

↔
f
(
Qijk

)
. (42)

The rest of the quantities involved are approximated following (41) and (42), with the exception

of the contravariant basis J~ai that build the matrix M. In the continuous setting, the metric terms

satisfy the metric identities, ~∇ξ · M = 0. In its discrete counterpart, the discrete metric identities
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represent the ability of the scheme to be free–stream preserving [34], and it is also a requirement for

discrete stability [27]. Thus, we follow [34] and use a conservative form of the metrics that ensure the

preservation of the metric identities discretely.

We introduce the polynomial approximation in (40),

〈JQt,φ〉E +

∫
∂E

φT
↔
F̃e · n̂dŜ −

〈↔
F̃e, ~∇ξφ

〉
E

=

∫
∂E

φT
(↔

F̃v +
↔
F̃a

)
· n̂dŜ −

〈(↔
F̃v +

↔
F̃a

)
, ~∇ξφ

〉
E

,

(43a)

〈
J
↔
G,
↔
ϕ
〉
E

=

∫
∂E

WT
↔
ϕ̃ · n̂dŜ −

〈
W, ~∇ξ ·

↔
ϕ̃

〉
E

, (43b)

where the test functions are also restricted to N order polynomials in the reference space.

Next, we approximate the exact integrals by quadrature rules. In the reference element E = [−1, 1]3,

the integrals are computed as the product of the nodal degrees of freedom by the quadrature weights

wi =
∫ 1

−1
li (ξ) dξ [11],

〈f〉E ≈ 〈f〉E,N =
N∑

i,j,k=0

wiwjwkFijk =
N∑

i,j,k=0

wijkFijk. (44)

The result is exact if f ∈ P2N−1. Then, the surface integrals at the boundary ∂E are also approximated

with quadratures. We take into account that the normal vectors at the surfaces ξ = ±1, η = ±1 and

ζ = ±1 that make the reference element faces are n̂1 = ±(1, 0, 0), n̂2 = ±(0, 1, 0) and n̂3 = ±(0, 0, 1)

to simplify the expressions,∫
∂E

~̃
f · n̂dŜ ≈

∫
∂E,N

~̃
f · n̂dŜ =

N∑
i,j=0

wiwj

(
F̃ ξNij − F̃

ξ
0ij + F̃ ηiNj − F̃

η
i0j + F̃ ζijN − F̃

ζ
ij0

)
. (45)

With Gauss–Lobatto points no additional projection is required and one only chooses the appropriate

nodal degree of freedom that corresponds to a given surface node (e.g. Q(1, ηj , ζk) = QNjk). The latter,

alongside the exactness of the quadrature, makes the scheme satisfy the discrete Gauss law [37],〈
~̃
F, ~∇ξG

〉
E,N

=

∫
∂E,N

G
~̃
F · n̂dŜ −

〈
~∇ξ ·

~̃
F,G

〉
E,N

. (46)

This is a direct consequence of the aforementioned SBP derivative operator [38, 39, 30, 40] that, when

expressed in matrix form, D, has the properties,

PD = Q, P = PT , Q+QT = B, B = eNe
T
N − e0e

T
0 , (47)

where P is a diagonal matrix with the quadrature weights and ei are column vectors filled with zeros

except for position i. Equation (47) is simply the matrix form of (46) for SBP operators.

As a final remark, it is possible to write surface integrals both in computational or physical

coordinates. The matrix M relates the normal unit vector and surface differentials, ~ndS =M · n̂dŜ.

Hence, we can write, ∫
∂E,N

~̃
F · n̂dŜ =

∫
∂e,N

~F · ~ndS. (48)
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The representation in physical coordinates is convenient because at the interface between two ele-

ments, e+ and e−, the normal vectors satisfy ~n+dS+ = −~n−dS−.

We approximate the integrals in (43) with quadratures, and use (48) to get

〈JQt,φ〉E,N +

∫
∂e,N

φT
↔
F
?

e · ~ndS −
〈↔

F̃e, ~∇ξφ
〉

E,N

=

∫
∂e,N

φT
(
↔
F
?

v +
↔
F
?

a

)
· ~ndS −

〈↔
F̃v +

↔
F̃a, ~∇ξφ

〉
E,N

,

(49a)

〈
J
↔
G,
↔
ϕ
〉
E,N

=

∫
∂e,N

W?,T↔ϕ · ~ndS −
〈

W, ~∇ξ ·
↔
ϕ̃

〉
E,N

. (49b)

In (49), we have replaced the interface fluxes by the uniquely defined numerical fluxes that depend on

the two adjacent states [11]. These are detailed in Sec. 3.3.

Finally, we use a split–form scheme for the inviscid fluxes. The split–form method allows us to

obtain schemes that are entropy stable discretely through the use of a two–point volume flux func-

tion [30]. Thus, we apply the discrete Gauss law on the inviscid fluxes of (49a),

〈JQt,φ〉E,N +

∫
∂e,N

φT
(
↔
F
?

e −
↔
Fe

)
· ~ndS +

〈
~∇ξ ·

↔
F̃e,φ

〉
E,N

=

∫
∂e,N

φT
(
↔
F
?

v +
↔
F
?

a

)
· ~ndS −

〈↔
F̃v +

↔
F̃a, ~∇ξφ

〉
E,N

,

(50)

and compute the divergence with a two–point volume flux function
↔
F

# (
Qijk,Qnml

)
,

(
~∇ξ ·

↔
F̃e

)
ijk

≈ D
(
↔
F

#

e

)
ijk

= 2
N∑
n=0

(
Din

↔
F̃

#,1(
Qijk,Qnjk

)
+Djn

↔
F̃

#,2(
Qijk,Qink

)
+Dkn

↔
F̃

#,3(
Qijk,Qijn

))
.

(51)

where Dij = l′j(ξi). The interested reader can find the details on [33]. Throughout this work, two

different two–point volume flux functions will be used. For kinetic energy preserving schemes, we use

the two–point flux by Pirozzoli [41], whereas for thermodynamic entropy stable schemes we use the

two–point flux by Chandrashekar [42]. With the two–point divergence, the DG scheme (50) is

〈JQt,φ〉E,N +

∫
∂e,N

φT
(
↔
F
?

e −
↔
Fe

)
· ~ndS +

〈
D

(
↔
F̃

#

e

)
,φ

〉
E,N

=

∫
∂e,N

φT
(
↔
F
?

v +
↔
F
?

a

)
· ~ndS −

〈↔
F̃v +

↔
F̃a, ~∇ξφ

〉
E,N

,

(52a)

〈
J
↔
G,
↔
ϕ
〉
E,N

=

∫
∂e,N

W?,T↔ϕ · ~ndS −
〈

W, ~∇ξ ·
↔
ϕ̃

〉
E,N

. (52b)

Recall at this point that the flux
↔
Fa represents the additional viscosity added by either the

molecular viscosity
↔
Fa =

↔
Fv(µa) or the Guermond–Popov fluxes

↔
Fa =

↔
FGP(αa, µa).
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3.3 Intercell numerical fluxes

One of the characteristics that make DG schemes attractive is that they can introduce dissipation at

the inter–element faces. The characteristics of this dissipation are dictated by the choice of numerical

fluxes
↔
F
?

e,
↔
F
?

v and
↔
F
?

a. We write the one–dimensional numerical fluxes, which are later transformed

to three–dimensions using the rotational invariance property [7],

F?e · ~n = TTF1,?
e (QnL,QnR) , Qn = TQ, T =


1 0 0 0 0

0 nx ny nz 0

0 t1,x t1,y t1,z 0

0 t2,x t2,y t2,z 0

0 0 0 0 1

 , (53)

where ~n, ~t1 and ~t2 are the three vectors that define the local reference frame at a point of the

interface. For the inviscid fluxes, one can construct entropy conserving schemes (i.e. without numerical

dissipation) using the two–point flux as a numerical flux,

↔
F
?

e(QL,QR) · ~n = TT
↔
F

1,#

e (QnL,QnR), (54)

or construct an entropy stable (dissipative) approximation by adding extra terms to it. For the latter,

there are several choices available, which depend on whether one constructs a kinetic energy preserving

or a thermodynamic entropy stable scheme [42]. For kinetic energy consistency (e.g. Pirozzoli’s), the

Lax–Friedrichs numerical flux is stable [33]

F?e (QnL,QnR) · ~n = TT
(

F1,#
e (QnL,QnR)− 1

2
|λmax| JQnK

)
, JQK = QR −QL, (55)

and for the thermodynamic entropy (e.g. Chandrashekar’s), a popular choice is to construct a matrix

dissipation flux based on Roe’s Riemann solver [42],

F?e (QnL,QnR) · ~n = TT
(

F1,#
e (QnL,QnR)− 1

2
M JWnK

)
, (56)

where the positive definite matrix M depends on the two states and is constructed from the eigenvectors

and the absolute value of the eigenvalues of the Euler equations.

For the entropy variables, viscous fluxes, and artificial viscosity, we follow [27] and use the Bassi–

Rebay 1 (BR1) scheme [43],

W? = {{W}},
↔
F
?

v = {{
↔
Fv}},

↔
F
?

a = {{
↔
Fa}}. (57)

3.4 Physical boundaries numerical fluxes

The boundary conditions are weakly enforced through numerical fluxes applied to the interior state and

to a ghost state constructed from the boundary data. In this work, we use free– and no–slip adiabatic

walls, inflow, and outflow boundary conditions. The implementation of the adiabatic wall boundary

conditions is entropy stable, while inflow and outflow boundaries can increase and/or decrease the

entropy.



14 Andrés Mateo-Gab́ın et al.

3.4.1 Adiabatic wall

For the inviscid fluxes, both free– and no–slip walls cancel the normal velocity. This enforcement is

done through the numerical flux, after the construction of a mirrored ghost state with negative normal

velocity,

Qn,ghost = (ρ,−ρU, ρV, ρW, ρE)T ,
↔
F
?

e · ~n =
↔
F
?

e (Qn,Qn,ghost) · ~n (58)

For the viscous fluxes, the free–slip adiabatic wall cancels the stress tensor and the heat flux at

the wall, thus we enforce Neumann boundary conditions in the state variables,

W?
n = Wn,

↔
F
?

v · ~n = 0. (59)

No–slip adiabatic walls, on the contrary, are of Dirichlet type for the three velocities and Neumann

for the energy,

W?
n = (W1n, 0, 0, 0,W5n)T ,

↔
F
?

v · ~n = (0, Fv,2, Fv,3, Fv,4, 0)T . (60)

For the Guermond–Popov fluxes, we cancel the flux at the physical boundary for the first and fifth

equations, and use either Dirichlet boundary conditions at no–slip walls, (F ? = F,W ? = 0) or Neu-

mann boundary conditions at free–slip walls (F ? = 0,W ? = W ) for the momentum equations,

W?
n =

(
W1n,W

?
2n,W

?
3n,W

?
4n,W5n

)T
,
↔
F
?

GP · ~n =
(
0, F ?GP,2, F

?
GP,3, F

?
GP,4, 0

)T
. (61)

3.4.2 Supersonic inflow

Inflow boundary conditions at supersonic velocities only carry information from the exterior into the

domain and thus, they can be imposed in the inviscid term by setting a ghost state with the boundary

values and using inter–element fluxes to couple it with the interior solution,

Qn,ghost = (ρ0, ρ0U0, ρ0V0, ρ0W0, ρ0E0)T . (62)

For the viscous fluxes we use Neumann boundary conditions and cancel the viscous stress as done for

free–slip walls.

3.4.3 Outflow

Since information travels upstream only in subsonic flows, the value of the pressure at the boundary

for the inviscid flux is imposed through ghost states only for this case, whereas it takes the value of

the interior if the local Mach number is greater than one,

Qn,ghost = (ρ, ρU, ρV, ρW, ρE)T , if M > 1,

Qn,ghost = (ρ0, ρ0U0, ρ0V0, ρ0W0, ρ0E0)T , if M 6 1,
(63)
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where we compute the exterior values from the Riemann invariants,

ρ0 = ρ

(
1 +

p0/p− 1

γ

)
,

~U0 = ~Ut + ~U0,n,

~U0,n = r+ − 2a0
γ − 1

, r+ = ~Un +
2a

γ − 1
,

(64)

being ~Un and ~Ut the normal and tangent velocity vectors. As for the viscous fluxes, we again use

Neumann boundary conditions with no viscous stress, and the entropy variables at the outlet use the

values of the interior points. For more details, see [44, 45].

4 Spectral vanishing viscosity: filtered artificial dissipation

In this section we introduce the construction of an entropy stable spectral vanishing viscosity that

helps us to modulate the dissipation by spatially filtering the artificial viscosity fluxes. The SVV

approach was first considered by Tadmor [46], where he added a filtered viscous term to the Burgers’

equation,

∂U

∂t
+

1

2

∂U2

∂x
= ε

∂

∂x

[
F ? ∂U

∂x

]
, ε ∼ 1

Nβ logN
, β < 1. (65)

In this work we use Legendre polynomials, Lk(x), as a modal basis, where k not only indicates the mode

number but also serves as a measure of the wavenumber. In this case, the filtering operator, ?, can be

expressed as an element-wise product where, for each mode, Lk, there is a filter kernel coefficient, Fk,

that modulates its intensity. Under this assumptions, Tadmor proved that the solution converges to

the weak solution that is also physically plausible. However, there is not only one possible shape for

this filter kernel and different options have been proposed. For instance, in [46] it is defined as,

F̂k =

{
0, k 6M

1, k > M,
εM = 0.25, (66)

or, in [47, 48], a C∞ function is used to improve the resolution,

F̂k =

 0, k 6M

exp

[
− (k −N)2

(k −M)2

]
, k > M,

M ≈ 5
√
N. (67)

Finally, taking advantage of the fact that the viscosity varies for the different frequencies considered

by the solution approximation, we can also use it to add more dissipation in turbulent, unresolved

regions, where the one from the underlying numerical scheme is not enough. This approach was

followed in [20, 21] and it can also be combined with other LES methods, as in [25, 26].

We first establish the foundation in one dimension, and then extend the methodology to the three–

dimensional curvilinear setting. We also define the reference line L = [−1, 1], face F = [−1, 1]2 and

element E = [−1, 1]3.



16 Andrés Mateo-Gab́ın et al.

4.1 Polynomial filtering: one dimension

In the nodal DG method, the solution approximated by degree N polynomials is represented using

the Lagrange polynomials,

Q(ξ) =
N∑
j=0

Qj lj(ξ), (68)

but other representations are also possible. Precisely, we are interested in a modal reconstruction since

it provides a natural approach to polynomial filtering, as we can directly manipulate the intensity of

each polynomial mode. We introduce the Legendre polynomials, Lj(ξ), to represent the solution,

Q(ξ) =
N∑
j=0

Qj lj(ξ) =
N∑
j=0

Q̂jLj (ξ) , (69)

where Q̂j are the modal coefficients of the solution (as opposed to the nodal coefficients, Qj).

The Legendre polynomials are an orthogonal basis (both continuosly and discretely) since they

satisfy,

〈Ln, Lm〉L,N = ‖Ln‖2N δnm. (70)

Note that all the norms ‖Ln‖N are exactly computed with quadratures (i.e. they involve a quadrature

of degree less than 2N − 1) except for the one associated to the highest mode, ‖LN‖N . The exactness

of the norm is not essential however, as long as it is positive.

We define a forward (F) operation that computes the modal coefficients from the nodal quantities.

To do that, we multiply (69) by one of the Legendre polynomials Li (ξ) and compute its quadrature

over L,

〈Q,Li〉L,N =
N∑
j=0

Qj
〈
lj , Li

〉
L,N

=
N∑
j=0

Q̂j
〈
Lj , Li

〉
L,N

= ‖Li‖2N Q̂i, (71)

therefore,

Q̂i =
N∑
j=0

〈
lj , Li

〉
‖Li‖2

Qj =
N∑
j=0

FijQj , Fij =

〈
lj , Li

〉
‖Li‖2

. (72)

Similarly, the backward (B) operation recovers the nodal coefficients from the modal form. In this

case, we multiply (69) by one of the Lagrange polynomials, li (ξ) and compute its quadrature over L,

〈Q, li〉L,N =
N∑
j=0

Qj
〈
lj , li

〉
L,N

= wiQi =
N∑
j=0

Q̂j
〈
Lj , li

〉
L,N

, (73)

and therefore,

Qi =
N∑
j=0

〈
Lj , li

〉
L,N

wi
Q̂j =

N∑
j=0

BijQ̂j , Bij =

〈
Lj , li

〉
L,N

wi
. (74)

This two transformations and its associated matrices, F and B, satisfy two properties required for

the stability of the scheme.
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Property 1 They are inverse matrices, FB = BF = I, as the direct multiplication shows,

(FB)ij =
N∑
k=0

FikBkj =
N∑
k=0

〈Li, lk〉L,N
‖Li‖2N

〈
lk, Lj

〉
L,N

wk

=
N∑
k=0

1

wk ‖Li‖2N

N∑
l=0

w2
l Li(ξl)Lj(ξl)l

2
k(ξl)

=
1

‖Li‖2N

N∑
k=0

wkLi(ξk)Lj(ξk) =

〈
Li, Lj

〉
L,N

‖Li‖2N
= δij

(75)

Property 2 Multiplied by the discrete nodal and modal weights, they are transposed matrices,

wiBij = ‖Lj‖2NFji. (76)

Properties 1 and 2 allow us to relate the discrete norms in both nodal and modal spaces (Parseval’s

identity),

Property 3 Discrete Parseval’s identity: discrete inner products can be equivalently computed from nodal

or modal coefficients

〈U, V 〉L,N =
N∑
i=0

wiUiVi =
N∑
j=0

‖Lj‖2N Ûj V̂j . (77)

The proof for this property uses Properties 1 (at the second equality) and 2 (at the fourth equality),

〈U, V 〉L,N =
N∑
i=0

wiUiVi =
N∑
i=0

wiUi

N∑
j,k=0

BijFjkVk =
N∑

i,j=0

Ui (wiBij)
N∑
k=0

FjkVk

=
N∑

i,j=0

Ui‖Lj‖2NFjiV̂j =
N∑
j=0

‖Lj‖2N V̂j
N∑
i=0

FjiUi =
N∑
j=0

‖Lj‖2N Ûj V̂j .

(78)

The ability to compute equivalent discrete L2 norms either from the nodal or modal spaces is key to show

the discrete stability of filtered dissipative fluxes.

In this work, we locally filter the polynomial functions by applying a given filter kernel according

to,

F (ξ) =
N∑
j=0

F̂jLj (ξ) . (79)

In the case of the solution vector, Q, the application of the filter kernel returns another polynomial

whose modal coefficients are the point-wise product of the modal coefficients of F and Q,

Q̄ = F?Q =
N∑
j=0

F̂jQ̂jLj (ξ) . (80)
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Thus we get the filtered solution Q̄ in the modal space, which is then returned to a nodal repre-

sentation, Q̄i, afterwards. For computational efficiency, we can define a single matrix–vector product

operation that encapsulates the forward, filtering, and backwards steps,

Q̄i =
N∑
j=0

HijQj , H = Bdiag
(
F̂
)
F. (81)

The next theorem, also used similarly in [49], will prove to be fundamental for entropy stability,

Theorem 1 The inner product of Q and Q̄ is positive (assuming positive filtering coefficients F̂i),〈
Q, Q̄

〉
L,N

= 〈Q,F?Q〉L,N > 0. (82)

Proof Using Property 3, the inner product of Q and Q̄ can be expressed in modal space where,

according to (80),

Q̄ =
N∑
i=0

ˆ̄QiLi,
ˆ̄Qi = F̂iQ̂i. (83)

Introducing this definition into the inner product in (82),

〈
Q, Q̄

〉
L,N

=
N∑
j=0

‖Lj‖2Q̂j ˆ̄Qj =
N∑
j=0

‖Lj‖2F̂jQ̂2
j , (84)

which is positive as long as the filter kernel coefficients are positive. ut

4.2 Polynomial filtering: three dimensions

In three dimensions, the polynomial framework is constructed from a tensor product form of the one–

dimensional one. Therefore, it automatically inherits the properties described for the one–dimensional

space in Sec. 4.1.

We get the modal representation of a solution,

Q =
N∑

i,j,k=0

Qijkli(ξ)lj(η)lk(ζ) =
N∑
i,j,k

Q̂ijkLi(ξ)Lj(η)Lk(ζ), (85)

from a weak–form with the tensor product Legendre polynomials Lijk = Li(ξ)Lj(η)Lk(ζ),

〈
Q, Lijk

〉
E,N

=
N∑

m,n,l=0

Qmnl

〈
lmnl, Lijk

〉
E,N

=
N∑

m,n,l=0

Q̂mnl

〈
Lmnl, Lijk

〉
E,N

. (86)

The tensor product inner products in the three–dimensional reference element E reduce to the

product of the inner products in the reference line L,〈
lmnl, Lijk

〉
E,N

= 〈lm, Li〉L,N
〈
ln, Lj

〉
L,N
〈ll, Lk〉L,N . (87)
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Then, we get the modal coefficients from three matrix–vector multiplications with the one–dimensional

forward matrix F in each of the local coordinates directions,

Q̂ijk =
N∑

m,n,l=0

〈lm, Li〉L,N
‖Li‖2N

〈
ln, Lj

〉
L,N

‖Lj‖2N

〈ll, Lk〉L,N
‖Lk‖2N

Qmnl =
N∑

m,n,l=0

FimFjnFklQmnl (88)

Theorem 2 Parseval’s discrete identity: the three–dimensional framework also satisfies a discrete version

of Parseval’s identity,

〈U,V〉E,N =
N∑

i,j,k=0

wijkU
T
ijkVijk =

N∑
i,j,k=0

‖Li‖2N‖Lj‖
2
N‖Lk‖

2
N ÛT

ijkV̂ijk. (89)

Proof We start by defining a partial modal transformation as the result of performing the transfor-

mation to the modal space only in one direction,

Q̂ξ
ijk =

N∑
m=0

FimQmjk, Q̂η
ijk =

N∑
m=0

FjmQimk, Q̂ζ
ijk =

N∑
m=0

FkmQijm, (90)

which can be applied recursively in two,

Q̂ξiξj

ijk = Q̂ξi

ijk̂

ξj

, (91)

and three directions,

Q̂ξηζ
ijk = Q̂ijk. (92)

Expressing the inner product of (89) in nodal space, and applying Property 3 in each direction at a

time,

〈U,V〉E,N =
N∑

i,j,k=0

wijkU
T
ijkVijk =

N∑
i,j,k=0

‖Li‖2NwjkÛ
ξ,T
ijk V̂ξ

ijk

=
N∑

i,j,k=0

‖Li‖2N‖Lj‖
2
NwkÛ

ξη,T
ijk V̂ξη

ijk

=
N∑

i,j,k=0

‖Li‖2N‖Lj‖
2
N‖Lk‖

2
N ÛT

ijkV̂ijk,

(93)

which is the equivalent of Property 3 in three dimensions. ut

In three dimensions, the polynomials are also locally filtered as,

Q̄ = F?Q =
N∑

i,j,k=0

F̂ijkQ̂ijkLi(ξ)Lj(η)Lk(ζ). (94)

For the most general filter kernel with coefficients F̂ijk,

Q̄ijk =
N∑

m,n,l=0

N∑
p,q,r=0

BipBjqBkrF̂pqrFpmFqnFrlQmnl, (95)
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(a) High–pass filter: F̂ij = F̂1D
i F̂1D

j (b) No high–pass filter: F̂ij = 1−
(

1− F̂1D
i

)(
1− F̂1D

j

)
Fig. 1 Design of multidimensional filters from the tensor product of a one–dimensional filter. Two options are

provided: a high–pass filter, where for example F̂Nj = F̂1D
j , and a non high–pass version, where F̂Nj = 1. Recall

that modes with high filter coefficient values are more dissipated. For this plot, N = 6 and F̂1D
i = (i/N)2

we get a fully three–dimensional tensor product (i.e. with (N+1)3 operations). However, computations

are drastically reduced if we restrict ourselves to a tensor product version of the filter, F̂ijk = F̂iF̂jF̂k,

which reduces the filtering to three one–dimensional matrix–vector multiplications (i.e. 3(N + 1)

operations),

Q̄ijk =
N∑

m,n,l=0

HimHjnHklQmnl =
N∑
m=0

Him
N∑
n=0

Hjn
N∑
l=0

HklQmnl, H = BF̂F. (96)

The methodology presented here is valid for any positive filtering functions F̂ijk. However, we

only present numerical results for the tensor product filter F̂ijk = F̂iF̂jF̂k. The matrix H is that

defined for the one–dimensional filtering. From one–dimensional filters, F̂ 1D
i , we can construct the

three dimension version in a high–pass version, Fig. 1(a),

F̂ijk = F̂1D
i F̂

1D
j F̂

1D
k , (97)

or in a non high–pass version, Fig. 1(b),

F̂ijk = 1−
(

1− F̂1D
i

)(
1− F̂1D

j

)(
1− F̂1D

k

)
. (98)

Finally, we extend Theorem 1 to three dimensions,

Property 4 The inner product of the filtered state vector Q̄ and the state vector Q is positive. We compute

the inner product in the modal coefficients,

〈
Q, Q̄

〉
E,N

=
N∑

i,j,k=0

‖Li‖2N‖Lj‖
2
N‖Lk‖

2
N Q̂ijk

ˆ̄Qijk =
N∑

i,j,k=0

‖Li‖2N‖Lj‖
2
N‖Lk‖

2
N F̂ijkQ̂

2
ijk > 0, (99)

that we can represent as, 〈
Q, Q̄

〉
E,N

= 〈Q,F?Q〉E,N > 0. (100)
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5 Entropy stable filtered dissipation

We now apply the findings in Sec. 4 to construct entropy stable filtered dissipative fluxes for the

Navier–Stokes equations. Depending on the form of the fluxes,
↔
Fa = Ba(Q)

↔
G, we proceed differently:

1. Ba is a non–constant coefficient, α(q) > 0, times a constant positive definite matrix, C, Ba = α (q) C:
the filtered flux is,

↔
F
F
a =

√
α

J CF?
(√
Jα
↔
G
)
. (101)

For example, the physical dissipation computed with the kinetic energy variables as in Sec. 2.2.1.

2. Ba is a general positive definite matrix: any positive definite matrix has a Cholesky decomposition

(see [30]), Ba = LTDL. Thus, we define the filtered flux as,

↔
F
F
a =

1√
J
LT
√
DF ?

(√
JDL

↔
G
)
, (102)

where the square root of a diagonal matrix represents a diagonal matrix whose entries are the

square roots of the original matrix. Examples of this form are the physical dissipation in thermo-

dynamic entropy variables, Sec. 2.2.2, and the Guermond–Popov fluxes, Sec. 2.2.3.

The specific form of these fluxes is later justified by stability analysis. We conclude this section by

filtering the artificial viscosity flux in the volume and surface quadratures of the DG scheme (52),

〈JQt,φ〉E,N +

∫
∂e,N

φT
(
↔
F
?

e −
↔
Fe

)
· ~ndS +

〈
D
(
↔
F

#

e

)
,φ

〉
E,N

=

∫
∂e,N

φT
(
↔
F
?

v +
↔
F
F,?
a

)
· ~ndS −

〈
↔
F̃v +

↔
F̃

F

a , ~∇ξφ

〉
E,N

.

(103)

5.1 Stability analysis

We study the stability of the DGSEM with filtered artificial viscosity. Since inviscid and viscous terms

have already been studied in other works [33, 27], we restrict ourselves to outline the main ideas to

focus on the novel form of the filtered dissipation.

First, we apply the discrete Gauss law to the gradient equation (52b), and we replace its test

function by the viscous and filtered artificial viscosity fluxes
↔
ϕ =

↔
Fv +

↔
F
F
a ,〈

J
↔
G,
↔
Fv +

↔
F
F
a

〉
E,N

=

∫
∂e,N

(
W? −W

)T (↔
Fv +

↔
F
F
a

)
· ~ndS +

〈
~∇ξW,

↔
F̃v +

↔
F̃

F

a

〉
E,N

. (104)

Second, we replace the test function φ = W in (103)

〈JQt,W〉E,N +

∫
∂e,N

WT

(
↔
F
?

e −
↔
Fe

)
· ~ndS +

〈
D
(
↔
F

#

e

)
,W

〉
E,N

=

∫
∂e,N

WT

(
↔
F
?

v +
↔
F
F,?
a

)
· ~ndS −

〈
↔
F̃v +

↔
F̃

F

a , ~∇ξW

〉
E,N

,

(105)
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and we replace the viscous and artificial viscosity volume term from (104) into (105) to get a single

equation,

〈JQt,W〉E,N +

∫
∂e,N

WT

(
↔
F
?

e −
↔
Fe

)
· ~ndS +

〈
D
(
↔
F

#

e

)
,W

〉
E,N

=

∫
∂e,N

(
WT

(
↔
F
?

v +
↔
F
F,?
a

)
+
(
W? −W

)T (↔
Fv +

↔
F
F
a

))
· ~ndS −

〈
J
↔
G,
↔
Fv +

↔
F
F
a

〉
E,N

.

(106)

We first study the volume terms. From [27, 32],

〈JQt,W〉E,N = 〈J Et〉E,N ,〈
D(
↔
F

#

e ),W

〉
E,N

=

∫
∂e,N

~FEe · ~ndS +ΘWp,〈
J
↔
G,
↔
Fv

〉
E,N

=
〈
J
↔
G,Bv

↔
G
〉
E,N

= 〈Dv〉E,N > 0.

(107)

Therefore, we transform (106) into

〈J Et〉E,N +

∫
∂e,N

WT

(
↔
F
?

e −
↔
Fe

)
· ~ndS +

∫
∂e,N

~FEe · ~ndS +ΘWp + 〈Dv〉E,N +

〈
J
↔
G,
↔
F
F
a

〉
E,N

=

∫
∂e,N

(
WT

(
↔
F
?

v +
↔
F
F,?
a

)
+
(
W? −W

)T (↔
Fv +

↔
F
F
a

))
· ~ndS.

(108)

We now study the stability of the volume term associated to the filtered artificial viscosity. We

study the two options provided in Sec. 5.

1. The non–constant coefficient times a constant positive definite matrix (101)

〈Da〉E,N =

〈
J
↔
G,

√
α

J CF?
(√
Jα
↔
G
)〉

E,N

=
〈√
Jα
↔
G, CF?

(√
Jα
↔
G
)〉

E,N
> 0. (109)

2. The general positive definite matrix (102)

〈Da〉E,N =

〈
J
↔
G,

1√
J
LT
√
DF?

(√
JDL

↔
G
)〉

E,N

=
〈√
JDL

↔
G,F?

(√
JDL

↔
G
)〉

E,N
> 0. (110)

Where we used Property 4 to conclude that the two possibilities introduce volume dissipative

terms. A similar conclusion was reached by Lundquist and Nordström in [50], where they defined the

filter kernel as J−1/2FJ 1/2 to ensure the so called time–stability. Therefore, we can write,

〈J Et〉E,N +

∫
∂e,N

WT

(
↔
F
?

e −
↔
Fe

)
· ~ndS +

∫
∂e,N

~FEe · ~ndS +ΘWp + 〈Dv〉E,N + 〈Da〉E,N

=

∫
∂e,N

(
WT

(
↔
F
?

v +
↔
F
F,?
a

)
+
(
W? −W

)T (↔
Fv +

↔
F
F
a

))
· ~ndS.

(111)
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With the volume terms addressed, we study the boundary terms. To do this, we sum (111) over

all the mesh elements,

〈Et〉N + IBT + PBT +
∑
e

〈Dv〉E,N +
∑
e

〈Da〉E,N +Θ
∑
e

Wp = 0, (112)

where 〈Et〉N =
∑
e 〈J Et〉E,N is the total entropy derivative, IBT are the interior boundary terms,

IBT = IBTe + IBTv + IBTa =−
∑

interior
faces

∫
f,N

(r
~FEe

z
+ JWKT

↔
F
?

e −
s
WT

↔
Fe

{)
· ~nL dS

+
∑

interior
faces

∫
f,N

(
JWKT

↔
F
?

v + W?,T
s↔

Fv

{
−

s
WT

↔
Fv

{)
· ~nL dS

+
∑

interior
faces

∫
f,N

(
JWKT

↔
F
F,?
a + W?,T

s↔
F
F
a

{
−

s
WT

↔
F
F
a

{)
· ~nL dS,

(113)

and PBT are the physical boundary terms,

PBT = PBTe + PBTv + PBTa =
∑

boundary
faces

∫
f,N

(
~FEe + WT

↔
F
?

e −WT
↔
Fe

)
· ~ndS

−
∑

boundary
faces

∫
f,N

(
WT

↔
F
?

v + W?,T
↔
Fv −WT

↔
Fv

)
· ~ndS

−
∑

boundary
faces

∫
f,N

(
WT

↔
F
F,?
a + W?,T

↔
F
F
a −WT

↔
F
F
a

)
· ~ndS.

(114)

The interior boundary terms for the inviscid and viscous terms have been studied in [33, 27]. If one

uses the two–point entropy conserving flux as the numerical flux, IBTe = 0, whereas for the dissipative

flux, IBTe > 0. For viscous fluxes, the BR1 scheme gives IBTv = 0. We have also used the BR1 scheme

for the artificial dissipative fluxes, and therefore we also get IBTa = 0,

JWKT
↔
F
F,?
a + W?,T

s↔
F
F
a

{
−

s
WT

↔
F
F
a

{
= JWKT {{

↔
F
F
a }}+ {{W}}T

s↔
F
F
a

{
−

s
WT

↔
F
F
a

{
= 0. (115)

Similarly, the physical boundary terms for the inviscid and viscous terms were studied in [51]

for the wall boundary condition. This analysis concluded that PBTe = 0 if one simply imposes the

boundary data, and PBTe > 0 if one uses the dissipative numerical flux with a ghost state. In the case

of the viscous fluxes, PBTv = 0, and for the artificial viscosity fluxes, the physical boundary terms

are also zero. For the no–slip wall,

WT
↔
F
F,?
a +

(
W? −W

)T ↔
F
F
a = WT (0, Fa,2, Fa,3, Fa,4, 0) + (0,−W2,−W3,−W4, 0)T

↔
F
F
a = 0, (116)

and for the free–slip wall,

WT
↔
F
F,?
a +

(
W? −W

)T ↔
F
F
a = (W −W)

↔
F
F
a = 0. (117)
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We conclude the stability analysis as we confirm that the thermodynamic entropy is monotonic

and decreases due to the numerical dissipation of the inviscid numerical flux at the inter–element and

physical faces, and the artificial and physical dissipation at the interior of the elements,

〈Et〉N +Θ
∑
e

Wp = −IBTe − PBTe −
∑
e

〈Dv〉E,N −
∑
e

〈Da〉E,N 6 0. (118)

Regarding the kinetic energy, the work introduced by the pressure gradient cannot be bounded.

However, although the kinetic energy is not a mathematical entropy in the strict sense, schemes

based on kinetic energy preservation [31] represent a popular choice for subsonic flows, given that

the resulting schemes are still robust and have a lower computational cost than those based on the

thermodynamic entropy (which are the preferred option to solve supersonic flows, where oscillations

in the energy equation become important).

In any case, we are able to adjust the artificial dissipation DE,N
a with the selection of the artificial

viscosities, and the filter kernel F .

5.2 Linear von Neumann analysis

Before continuing with the numerical experiments, as in other works [22, 52, 24, 53, 54], we perform a

von Neumann analysis to characterise the SVV in the one–dimensional advection–diffusion equation

with constant coefficients. This will allow us to better understand the dissipative behaviour of the

SVV filtering technique at different scales, knowledge that we can use to understand the results we

find in the posterior Navier–Stokes experiments in Sec. 6. Starting from the continuous formulation,

ut + aux = µuxx, (119)

where a > 0 is the advection velocity and µ > 0, the viscosity, we introduce a wave-like solu-

tion u(x, t) = ei(kx−ωt) = u0(x)e−iωt, to determine the dispersion relation, ω(k), which shows the

behavior of a monochromatic wave when traversing the domain of interest. In this case,

− iω + iak = −µk2, ω = ak − iµk2, (120)

implying that u(x, t) = e−µk
2teik(x−at) and thus, the wave velocity is a and the dissipation is µk2.

The discretization of (119) induces errors into the solution that lead to a modified dispersion relation.

If <(ω) 6= ak, the numerical scheme is introducing a dispersion error that makes the waves to move at

velocities different from the exact one and, if this velocity depends on k, the different components of

non–monochromatic waves will drift, deforming it as it traverses the domain. The imaginary part of ω

is directly related to the dissipation of the scheme and thus, a negative value means that the scheme

is stable.

In this von Neumann analysis of the DGSEM with SVV dissipation we use a simple upwinding

Riemann solver for the advective term, and we keep the BR1 scheme for the viscous part,

aU? = a{{U}} − |a|
2

JUK , µG? = {{µG}}, U? = {{U}}, (121)
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(a) Dispersion (b) Diffusion

Fig. 2 Dispersion–diffusion curves of the DGSEM discretization of (119) with N = 7 and no viscosity. Dashed lines

represent the expected result from the continuous equation.

where, as we have previously done, for instance, in (39), we define the gradient of the solution as G =

Ux. The dispersion–dissipation errors with no viscosity and N = 7 have been represented in Fig. 2 to

serve as a starting point.

The SVV is introduced in (119) by redefining the viscous term as,

µG = µaHG, H = BF̂F, F̂i = diag

[(
i

N

)PSVV

]
, (122)

where the matrix H applies the filter kernel defined by Moura et al. [22], F̂ , to the gradients, G, as we

showed in Sec. 4.1. In this formulation, the artificial viscosity is controlled with two parameters: µa
and PSVV, and we can now compute the curve ω(k) as shown in Fig. 3 for a constant value of µa = 0.01.

We want to note that this choice of filter kernel allows us to recover the original viscous operator by

selecting PSVV = 0 and thus, H = I, but the only way to completely eliminate the viscosity is by

setting µa = 0.

The results are presented in Fig. 3 and are in agreement with those in [24]. As we expected, the

effect of PSVV is more evident for low frequency waves, where the SVV is responsible for almost all the

dissipation in this region. For the rest of wavenumbers, the addition of viscosity evidently increases

dissipation and, even if it can be controlled with the filter kernel to some point, it is comparatively

smaller than the one already added by the Riemann solver. These results are also in line with our

purpose, since we can still dissipate unwanted oscillations in regions with discontinuities while keeping

smoother regions almost unaffected.
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(a) Diffusion (b) Diffusion, detailed view

Fig. 3 Dispersion–diffusion curves with µa = 0.01, N = 7 and different values of PSVV.

6 Numerical experiments

In this section we present numerical experiments where the benefits of the filtered artificial viscosity

are compared against the non–filtered DGSEM and other reference solutions from the literature. We

apply the filter kernel, taken from [22], in all the cases,

F̂1D
i =

(
i

N

)PSVV

. (123)

6.1 Taylor–Green vortex

We repeat the experiment of [24] with the entropy stable version of the SVV. The Taylor–Green

vortex case is initialized with a periodic flow field representing a set of vortices that evolve in time,

transferring their energy to lower scales, where it is finally dissipated. Thus, it is a good test for

analyzing the dissipative features of our numerical scheme, including the SVV. In our simulations,

the computational domain is a periodic [0, 2π]3 cube divided into 83 elements with approximation

degree N = 8, and the initial condition is

ρ = 1,

u = sin(x) cos(y) cos(z),

v = − cos(x) sin(y) cos(z),

w = 0,

p = 100 +
1

16
[cos(2x) cos(2z) + 2 cos(2y) + 2 cos(2x) + cos(2y) cos(2z)]

(124)

We aim to prove that the addition of the filtered artificial viscosity in the DGSEM does not

destabilize the energy preserving properties of the scheme, so we discretize the inviscid term with
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(a) Kinetic energy dissipation (b) Kinetic energy spectrum

Fig. 4 Kinetic energy dissipation and spectrum of the inviscid Taylor–Green case at t = 20 with a 83 elements

cartesian grid and N = 8. The LES viscosity is excessively dissipative and the SVV can control it, having an optimum

value PSVV ≈ 0.1. Reference data obtained from [56] with a resolution of 7683.

the kinetic energy preserving split–form from Pirozzoli [41] and use a low dissipation Roe, Riemann

solver [7] to add dissipation in the region of higher wavenumbers.

We apply a high–pass filtered Navier–Stokes viscosity to additionally increase dissipation in lower/medium

scales, controlling it through PSVV. Regarding the viscosity, we compute its value at runtime from a

LES (Smagorinsky) formulation,

µa = C2
S∆

2|S|, ∆3 =
Cell volume

(N + 1)3
, Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (125)

with CS = 0.2. In this way, we eliminate one parameter and, at the same time, we also exploit the

benefits of this LES approach to resolve turbulence. Similarly as we did in von Neumann analysis of the

one–dimensional advection–diffusion, we want to find the effect of the artificial viscosity in different

scales. To do so, we acknowledge that the theoretical kinetic energy spectrum of the TGV obeys the

law E(k) ∝ k−5/3 [55], thus decaying for higher wavenumbers. Due to the previously mentioned lack

of numerical dissipation of the DGSEM and the use of Pirozzoli’s split–form, an accumulation of

kinetic energy is expected for high wavenumbers, where the Riemann solver and the SVV replace the

dissipation that takes place in well resolved cases.

A representation of the evolution of the kinetic energy, E, and its spectrum for different values

of PSVV at t = 20 (see Fig. 4) shows that the LES model (PSVV = 0) introduces excessive dissipation.

This represents the perfect use case for the methodology presented, as we aim to control this excess

by adjusting the filter kernel coefficient. In agreement with the results from von Neumann analysis,

the SVV does not change significantly the behaviour of the higher frequency modes, concentrating

its effect in the low to medium wavenumbers. As we expected, the introduction of viscosity in these

regions helps to dissipate energy in all the scales and not only in the smallest ones, avoiding its

accumulation in high–frequency modes and flattening the energy spectrum. For an optimum that we

find to be PSVV ≈ 0.1, it closely resembles that of the k−5/3 theoretical law in most parts of the range
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(a) Full view (b) Detailed view

Fig. 5 Density solution of the one–dimensional Shu–Osher problem. The solid lines represent the DG solution with

the SVV dissipation developed in this work, and the dots represent the reference solution of [57] using an ENO-RF-S-3

scheme with 1600 degrees of freedom.

of wavenumbers resolved by the scheme. This can also be seen in Fig. 4(a), where we compare the

energy dissipation of our scheme with a reference solution from Rees et al. [56] at Re = 1600. During

the first five seconds, the flow is essentially laminar and our scheme adds less dissipation than the

reference. After that, higher-frequency modes gain importance and the dissipation rate increases to a

similar extent of that of the reference to prevent energy accumulation in the smaller scales.

6.2 Shock capturing: Shu–Osher problem

The one–dimensional Shu–Osher problem describes the evolution of a shock wave that swallows a

density fluctuation as it advances. Since the solution combines a strong shock with smooth oscillations,

this benchmark is useful to assess how the dissipation is able to both, control the shock and vanish

in non–shocky regions at the same time.

The computational domain is x ∈ [−4.5, 4.5], and the initial condition is

(ρ, u, p) =

{
(3.857143, 2.629369, 10.3333) if x 6 −4,

(1 + 0.2 sin 5x, 0, 1) if x > −4.
(126)

To ensure that the solution is physically meaningful, here we use an entropy stable formulation,

discretizing the inviscid term with Chandrashekar’s split–form [42] and the matrix dissipation Riemann

solver (56), and adding SVV filtered Guermond–Popov fluxes with thermodynamic entropy variables.

We have found that the SVV filtering is not enough to control the oscillations near the strong shock,

and we have implemented a simple sensor, s1, based on the density gradient to set PSVV = 0 in the
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Fig. 6 Mesh for the forward facing step case with 3653 elements.

discontinuity (s1 > 10) and PSVV = 2 elsewhere,

s1 =

√√√√ N∑
i=0

wi

(
∂ρ

∂x

)2

i

. (127)

The results are shown in Fig. 5, where we have tested this approach with two different meshes and

aproximation orders. The coarsest mesh contains 50, 5th order elements, while the finest one has

100 elements with approximation orders N = 5 and N = 8, leading to 300, 600 and 900 solution

nodes for each one of the three test cases, respectively. As expected, an increasing number of nodes

returns a better approximation to the reference solution (see [57]); however, all the cases show a

similar behaviour, reproducing all the features of the flow. The main shock is well resolved due to

the effect of the sensor. The density regularization of the Guermond–Popov fluxes removes further

fluctuations in the lower region of the shock, and the introduction of the SVV filtering is responsible

for the smoothing of the solution in the downstream of the strong shock. This is very successful at

eliminating most of the spurious oscillations while it leaves the lower order modes, corresponding to

the flow features, almost unaltered.

6.3 Shock capturing: Mach 3 forward facing step

Finally, we solve the flow over a forward facing step at Mach 3 with a very coarse mesh to put to test

the capabilites of the SVV shock capturing scheme. The mesh contains 3653 quadrilateral elements

with approximation order N = 7 and, to make the case more challenging, there is no intentional

alignment between the element interfaces and the flow structure. Since we are interested in properly

capturing the strong shocks that appear before the step, we keep using the entropy stable scheme and

use the two–point flux from Chandrashekar [42] with matrix dissipation (56) for the inter–element

fluxes, and the Guermond–Popov filtered viscous fluxes for the artificial viscosity term.
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Fig. 7 Density contour of the two–dimensional forward facing step at t = 10.

As we did in the previous section, we detect the discontinuities with the sensor s2, defined as an

extension of (127) to two dimensions,

s2 =

√√√√ N∑
i,j=0

wiwj

(
~∇ρ
)2
ij
, (128)

and set µ1 = µ2 = α1 = 0.0005 and α2 = 0 according to

– s1 < 1: PSVV = 4, µα = µ1 and αα = α1,

– s1 > 1: PSVV = 0, µα = µ2 and αα = α2.

We use a short run (until t = 1) with higher viscosity (µ1 = µ2 = α1 = 0.001 and α2 = 0) to start

the case with the entropy stable SVV, and represent the solution at t = 10 in Fig. 7. The thickness

of the main shock is well resolved within the size of one element and, at the same time, the smoother

features of the flow, such as the turbulent wakes that start at the mixing layer of the top or the corner

of the step, are also captured.

7 Conclusions

In this work we have proposed an entropy stable SVV filtered artificial viscosity for the DGSEM that is

able to tackle some of the usual drawbacks of the discontinuous Galerkin methods. The revision of the

classical SVV filtering technique has allowed us to prove its entropy stability after small modifications.

As it is usual in SVV methods, the intensity of the dissipation is controlled through a modulated

viscosity coefficient, whereas its wavenumber profile is specified by the filter kernel. Moreover, we also

include an entropy stable discretization of the Guermond–Popov fluxes [19] using the Bassi–Rebay 1

scheme. These fluxes have been filtered with the SVV technique and applied to solve usual shock
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capturig benchmark problems. Having accounted for this properties, we have tested its capabilities

regarding two different mathematical entropy functions: the kinetic energy (used in subsonic flows)

and the thermodynamical entropy (used in supersonic flows).

For the kinetic energy, we have used a turbulent case and we have shown that a specific choice of the

parameters reproduces the expected energy decay for the scales resolved by the DGSEM. Additionally,

we have also found that this approach can be easily coupled with other schemes to provide better

results. Specifically, as in [24], we implement an SVV-LES method that automates the computation

of the viscosity and improves the results for a wide range of values of the SVV exponent, reducing the

impact of the choice of PSVV on the solution. However, in contrast to the method presented in [24],

the approach described herein is entropy stable.

For the thermodynamic entropy, we have simulated the well known Shu–Osher one–dimensional

case and a supersonic two–dimensional forward facing step, where the SVV approach based on the

Guermond–Popov fluxes [19] has proven to capture strong shocks fully contained within a single

element and, at the same time, resolve detailed features of the flow in smoother regions.
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A Effect of the filter kernel parameter

The entropy–stable SVV approach developed in this work adds a new parameter, PSVV, controlling the shape of the

filter kernel, F . However, there is no specific strategy to set its value, and a set of cases must be run to find it. Our

simulations indicate that values of O(1) are appropriate for supersonic flows, while turbulent cases need a more flat

dissipation profile, with PSVV ≈ O(10−2) even without the help of the LES approach.

We show in this Appendix (Figure 8) some one–dimensional test cases performed with different values of PSVV.

Although we have chosen the Shu–osher problem in this section, the effect of the shape parameter is similar in other

cases and dimensions.

It is easily seen from Figure 8 that there is only a range of values for which the solution remains close to the

reference, quickly degrading when PSVV is out it. This loss of accuracy is observed from the first time iterations,

being more evident if discontinuities are present. This makes the trial and error process of finding a “good” value

for PSVV somewhat qualitative, but also not especially expensive.

B Navier–Stokes viscous flux with kinetic energy variables

Kinetic energy stability constitutes a particular case of stability but, since the last entropy variable (23) is zero, the

energy equation is never involved in the stability analysis. Because of that, we have not included the dissipative terms
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(a) PSVV = 0 (b) PSVV = 1

(c) PSVV = 4 (d) PSVV = 10

Fig. 8 Density solution of the one–dimensional Shu–Osher problem with different filter kernel shapes. The solid lines

represent the DG solution with the SVV dissipation developed in this work, and the dots represent the reference

solution of [57] using an ENO-RF-S-3 scheme with 1600 degrees of freedom.

of the energy equation into matrix BKv , but we add them separately to the viscous fluxes,

↔
f v = µCKv ~∇wK + (τ · ~u+ ~q) e5, (129)
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with CKv,ij = CK,Tv,ji and,

CKv,11 =


0 0 0 0 0

0 4
3

0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

 , CKv,22 =


0 0 0 0 0

0 1 0 0 0

0 0 4
3

0 0

0 0 0 1 0

0 0 0 0 0

 , CKv,33 =


0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 4
3

0

0 0 0 0 0

 ,

CKv,12 =


0 0 0 0 0

0 0 − 2
3

0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

 , CKv,13 =


0 0 0 0 0

0 0 0 − 2
3

0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

 , CKv,23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 − 2
3

0

0 0 1 0 0

0 0 0 0 0

 ,
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such that CKv is positive definite.

C Navier–Stokes viscous flux with thermodynamic entropy variables

The viscous flux with thermodynamic entropy variables is expressed in terms of a non–linear block matrix,

↔
f v =

µp

ρ
B̃Sv ~∇wS , (131)

where the matrix B̃Sv is defined as,

B̃
S
v,11 =


0 0 0 0 0

0 4
3

0 0 4
3
u

0 0 1 0 v

0 0 0 1 w

0 4
3
u v w 1

3
u2 + v2tot + θp

ρ

 , B̃
S
v,22 =


0 0 0 0 0

0 1 0 0 u

0 0 4
3

0 4
3
v

0 0 0 1 w

0 u 4
3
v w 1

3
v2 + v2tot + θp

ρ

 ,

B̃
S
v,33 =


0 0 0 0 0

0 1 0 0 u

0 0 1 0 v

0 0 0 4
3

4
3
w

0 u v 4
3
w 1

3
w2 + v2tot + θp

ρ

 , B̃
S
v,12 =


0 0 0 0 0

0 0 − 2
3

0 − 2
3
v

0 1 0 0 u

0 0 0 0 0

0 v − 2
3
u 0 1

3
uv

 ,

B̃
S
v,13 =


0 0 0 0 0

0 0 0 − 2
3
− 2

3
w

0 0 0 0 0

0 1 0 0 u

0 w 0 − 2
3
u 1

3
uw

 , B̃
S
v,23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 − 2
3
− 2

3
w

0 0 1 0 v

0 0 w − 2
3
v 1

3
vw

 ,

(132)



34 Andrés Mateo-Gab́ın et al.

and can be decomposed as B̃Sv = LS,Tv DSv LSv with,

DSv = diag

(
0,

4

3
, 1, 1,

θp

ρ
, 0, 0, 1, 1,

θp

ρ
, 0, 0, 0, 0,

θp

ρ

)
,

LSv,11 =


0 0 0 0 0

0 1 0 0 u

0 0 1 0 v

0 0 0 1 w

0 0 0 0 1

 , LSv,22 =


0 0 0 0 0

0 0 0 0 0

0 0 1 0 v

0 0 0 1 w

0 0 0 0 1

 , LSv,33 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

 ,

LSv,12 =


0 0 0 0 0

0 0 − 1
2

0 v
2

0 1 0 0 u

0 0 0 0 0

0 0 0 0 0

 , LSv,13 =


0 0 0 0 0

0 0 0 − 1
2
w
2

0 0 0 0 0

0 1 0 0 u

0 0 0 0 0

 , LSv,23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 −1 −w
0 0 1 0 v

0 0 0 0 0


LS21 = 0, LS31 = 0, LS32 = 0.
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D Guermond–Popov viscous flux with thermodynamic entropy variables

The artificial viscosity of Guermond and Popov [19] that we showed in (14) can be rewritten in matrix form when

expressed in terms of the entropy variables,

↔
f
S
GP = BGP

~∇wS , BGP = αaρBαGP + µapBµGP, (134)

where both block matrices, BαGP and BµGP are,

BαGP,ii =
1

ρ2
qqT + Λ2e5e

T
5 =


1 u v w e

u u2 uv uw ue

v uv v2 vw ve

w uw vw w2 ve

e ue ve we e2 + Λ2

 , BαGP,ij = 0 (i 6= j), Λ =
p/ρ
√
γ − 1

, (135a)

BµGP,11 =


0 0 0 0 0

0 1 0 0 u

0 0 1
2

0 v
2

0 0 0 1
2

w
2

0 u v
2
w
2

1
2

(
u2 + v2tot

)

 , BµGP,22 =


0 0 0 0 0

0 1
2

0 0 u
2

0 0 1 0 v

0 0 0 1
2

w
2

0 u
2
v w

2
1
2

(
v2 + v2tot

)

 ,

BµGP,33 =


0 0 0 0 0

0 1
2

0 0 u
2

0 0 1
2

0 v
2

0 0 0 1 w

0 u
2
v
2
w 1

2

(
w2 + v2tot

)

 , BµGP,12 =


0 0 0 0 0

0 0 0 0 0

0 1
2

0 0 u
2

0 0 0 0 0

0 v
2

0 0 uv
2

 ,

BµGP,13 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1
2

0 0 u
2

0 w
2

0 0 uw
2

 , BµGP,23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1
2

0 v
2

0 0 w
2

0 vw
2

 .

(135b)

We want to highlight here that, in this case, the density gradient is easily computed as,

~∇ρ = ρ~∇wS1 + ρu~∇wS2 + ρv~∇wS3 + ρw~∇wS4 + ρe~∇wS5 = qT ~∇wS , (136)
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an expression that we have found useful when implementing some of the algorithms derived in this document as,

for instance, the computation of the shock sensor in (127). A Cholesky decomposition can also be performed to

rewrite BGP = LTGPDGPLGP where,

DGP = diag

(
αaρ, µap,

1

2
µap,

1

2
µap, αaρ, αaρ, 0, µap,

1

2
µap, αaρ, αaρ, 0, 0, µap, αaρ

)
,

LGP
11 =


1 u v w e

0 1 0 0 u

0 0 1 0 v

0 0 0 1 w

0 0 0 0 Λ

 , LGP
22 =


1 u v w e

0 0 0 0 0

0 0 1 0 v

0 0 0 1 w

0 0 0 0 Λ

 , LGP
33 =


1 u v w e

0 0 0 0 0

0 0 0 0 0

0 0 0 1 w

0 0 0 0 Λ

 ,

LGP
12 =


0 0 0 0 0

0 0 0 0 0

0 1 0 0 u

0 0 0 0 0

0 0 0 0 0

 , LGP
13 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 u

0 0 0 0 0

 , LGP
23 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 v

0 0 0 0 0

 ,

LGP
21 = LGP

31 = LGP
32 = 0.

(137)
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17. A. Klöckner, T. Warburton, J. S. Hesthaven, Viscous shock capturing in a time-explicit discontinuous Galerkin

method, Mathematical Modelling of Natural Phenomena 6 (2011) 57–83.



36 Andrés Mateo-Gab́ın et al.

18. D. Gottlieb, J. Hesthaven, Spectral methods for hyperbolic problems, Journal of Computational and Applied

Mathematics 128 (2001) 83–131.

19. J. L. Guermond, B. Popov, Viscous regularization of the Euler equations and entropy principles, SIAM Journal

on Applied Mathematics 74 (2014) 284–305.

20. G.-S. Karamanos, G. E. Karniadakis, A spectral vanishing viscosity method for large-eddy simulations, Journal

of Computational Physics 163 (2000) 22–50.

21. R. M. Kirby, S. J. Sherwin, Stabilisation of spectral/hp element methods through spectral vanishing viscosity:

Application to fluid mechanics modelling, Computer Methods in Applied Mechanics and Engineering 195 (2006)

3128–3144.
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