
Time complexity analysis of quantum difference methods for linear

high dimensional and multiscale partial differential equations

Shi Jin ∗1, Nana Liu †2,3,4, and Yue Yu ‡ §1

1School of Mathematical Sciences, Institute of Natural Sciences, MOE-LSC, Shanghai Jiao

Tong University, Shanghai, 200240, P. R. China.
2Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

3Ministry of Education, Key Laboratory in Scientific and Engineering Computing,

Shanghai Jiao Tong University, Shanghai 200240, China
4University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai 200240,

China

Abstract

We investigate time complexities of finite difference methods for solving the high-dimensional

linear heat equation, the high-dimensional linear hyperbolic equation and the multiscale hy-

perbolic heat system with quantum algorithms (hence referred to as the “quantum difference

methods”). For the heat and linear hyperbolic equations we study the impact of explicit and

implicit time discretizations on quantum advantages over the classical difference method. For

the multiscale problem, we find the time complexity of both the classical treatment and quan-

tum treatment for the explicit scheme scales as O(1/ε), where ε is the scaling parameter, while

the scaling for the multiscale Asymptotic-Preserving (AP) schemes does not depend on ε. This

indicates that it is still of great importance to develop AP schemes for multiscale problems in

quantum computing.
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1 Introduction

High-dimensional problems and multiscale problems have been two challenges in scientific

computing. For high-dimensional partial differential equations (PDEs), such as the N−body

Schrödinger equation in quantum mechanics, the Boltzmann equation in kinetic theory, and PDEs

with (high-dimensional) uncertainties [25,39], classical numerical methods suffer from the so-called

“curse of dimensionality” since the computational cost often increases exponentially with the di-

mension of the problem, which is undesirable for simulations on classical computers. To overcome

this bottleneck, Monte-Carlo methods, sparse grid methods, and/or mean-field approximations are

often used computational or mathematical tools. In addition, in these problems there are often

multiple spatial and temporal scales that pose further challenges for numerical computations. This

is because a naive numerical discretization of these equations requires the mesh sizes and time

steps smaller than the scaling parameters, which is prohibitively expensive in applications [16].

Among various multiscale methods, the Asymptotic-Preserving (AP) scheme, which preserves the
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asymptotic transition from the micro models to the macro ones at the discrete level, has the merit

of using one solver that works across scales naturally, thus has been widely used for multiscale

hyperbolic and kinetic problems [23,29].

In this paper, we consider the application of quantum linear systems algorithms (QLSA) to

these two types of problems, namely high dimensional and multiscale PDEs. Quantum computing

is a rapidly growing computational paradigm that has attracted significant attention due to the

discovery of quantum algorithms that have exponential acceleration over the best-known classical

methods [14, 20, 34–36, 40, 44]. In [20], Harrow, Hassidim and Lloyd propose a quantum algorithm

(HHL algorithm) for solving linear system of equations and proved that the algorithm can provide

exponential speedup over the classical conjugate gradient (CG) method in terms of the matrix

size. Later Cao et al. [7] present an efficient and generic quantum circuit design for implementing

the algorithm. The exponential speedup of the HHL algorithm is expected to break the curse of

dimensionality, which has attracted research to apply the method to solve linear systems resulting

from classical numerical discretizations of both ordinary and partial differential equations. For

example, Berry in [4] first discretize the first-order linear ordinary differential equation (ODE) by

using the linear multi-step method and then apply the HHL algorithm to solve the resulting linear

system of equations. The HHL algorithm requires O(1/δ) uses of a unitary operation to estimate its

eigenvalues to precision δ. To circumvent the limitations of phase estimation, Childs et al. propose

a new algorithm to exponentially improve the dependence on the precision parameter in [9] and

apply the quantum method to develop a finite difference algorithm for the Poisson equation and a

spectral algorithm for more general second-order elliptic equations in [10], respectively. However,

even if this improved QLSA is used to implement the quantum difference method in [4], the overall

complexity is still poly(1/δ) since the multi-step method itself is a significant source of error [5].

To circumvent this limitation, Berry, Childs and Ostrander et al. present a quantum algorithm

for linear differential equations with complexity polylog(1/δ), where a truncation of the Taylor

series of the propagator for the differential equation is encoded in a linear system instead of using

a linear multi-step method. Cao et al. [8] present a Hamiltonian simulation algorithm and a

scalable quantum circuit design to solve the Poisson equation in d dimensions, where a detailed

implementation of the HHL algorithm is also discussed, and the number of quantum operations

and the number of qubits used by the circuit are almost linear in d and polylog in δ−1 to produce a

quantum state encoding the solution. Montanaro and Pallister [38] use the quantum linear systems

algorithm to solve a linear system resulting from the finite element discretization for the Poisson

equation. The state output is then post-processed to compute a linear functional of the solution.

Their algorithms have exponential improvement with respect to d and achieve at most a polynomial

speed-up for fixed d due to lower bounds on the cost of post-processing the state. We remark that

a comprehensive review of the literature on quantum differential equations solvers can be found

in [10], for example, the quantum algorithms for the wave equation and the hyperbolic equations

in [13,17]. Other work related to our paper will be reviewed in subsequent sections.

As mentioned above the linear ODEs

dx

dt
= Ax+ b, A and b are time-independent
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can be simulated by the quantum algorithm in [5] with an exponential improvement in complexity

over the quantum difference method in [4]. Because of this, it seems that one can first discretize the

space variable to obtain a system of ordinary differential equations and then apply the algorithm

in [5] to solve the resulting linear system. However, the algorithm requires that A and b are

independent of time [5, Sect. 8], which may not be applicable to the problems in this paper. For

this reason, in this article we still explore the quantum difference method proposed by Berry in [4] to

solve several time-dependent problems, analyze in detail the time complexity of the algorithms and

make comparisons with the classical treatments. It should be pointed out that quantum algorithms

for differential equations with time-dependent coefficients A(t) and b(t) have been discussed in [11],

where a global approximation based on the spectral method is employed as an alternative to the

more straightforward finite difference method.

Quantum algorithms for linear ODEs and PDEs have been extensively studied, so the focus of

this paper is not to develop new and novel quantum algorithms, rather we first try to understand

whether different classical time discretizations, including explicit and implicit schemes, make any

difference for quantum algorithms. The main part of this paper is on a prototype multiscale

hyperbolic system with the aim to understand whether one needs to use state-of-the-art multiscale

methods for quantum algorithms.

In Section 3 (resp. Section 4), we consider the computation of the high-dimensional linear

heat equation (resp. linear hyperbolic equation). We find that, for the heat equation, explicit

(forward Euler) and implicit (Crank-Nicolson) methods in time have comparable time-complexity

for quantum algorithms. Section 5 discusses the quantum difference method for solving a prototype

multiscale problem-a hyperbolic system with stiff relaxation, including three AP schemes and one

explicit scheme. The time complexity of both the classical and quantum treatments in the explicit

scheme is proportional to 1/ε, while the run time of the AP schemes is found to be independent of

the scaling parameter ε, which demonstrates that there is still a need to develop AP schemes for

multiscale problems in quantum computing.

One important remark is that most of the quantum algorithms for ODEs and PDEs do not

actually provide the solutions of the equations in classical form. Rather they only prepare the

quantum states whose amplitudes encode those solutions. Thus these are sometimes termed sub-

routines rather than full quantum algorithms. An end-to-end comparison between classical and

quantum algorithms would only be possible if one is able to address costs in the preparation of

the initial quantum state as well as the final measurements protocol where the classical description

of the relevant solutions can be extracted [1]. While quantum advantages are significant for high

dimensional problems, for all problems discussed in low dimensions, we find that the quantum

speedup is at most polynomially scaled with Nx and could be reduced or even evaporated when

considering the post-processing measurement steps.

2 The quantum difference method

In this section, we describe the linear system approach introduced in [4] for solving linear

ordinary differential equations. In view of the classical difference discretization, we term this
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method as a quantum difference method. For ease of presentation, we take a simple ODE for

example. The ODE is 
du(t)
dt = −au(t), t ∈ (0, 1),

u(0) = u0,
(2.1)

where a > 0 is a constant and u(t) is a scalar function of t.

2.1 Quantum difference schemes

The quantum difference method is proposed in [4] for solving the ODEs. Instead of using a

linear multi-step method, a truncation of the Taylor series of the propagator for the differential

equation is considered in [5]. The same idea in [4] is also considered in [31] with the forward Euler

discretization applied. We are interested in examining the difference between explicit and implicit

quantum methods. To do so, we use the general θ-scheme.

Let tn = nτ for n = 0, 1, · · · , Nt, where τ is the time step and Nt = 1/τ is the number of

time intervals. The numerical solution at tn is denoted by un. The first equation in (2.1) can be

discretized by the θ-scheme as

un+1 − un

τ
= −a(θun+1 + (1− θ)un), n = 0, 1, · · · , Nt − 1,

where θ ∈ [0, 1]. On a classical computer, one just march in time to obtain u1, · · · , uNt . The above

equation can be rewritten as

−(1− (1− θ)aτ)un + (1 + θaτ)un+1 = 0, n = 0, 1, · · · , Nt − 1.

Let

s1 = 1− (1− θ)aτ, s2 = 1 + θaτ.

The above system is then written in matrix form as

Au = b, (2.2)

where u = [u1, · · · , uNt ]T , b = [s1u
0, 0, · · · , 0]T and

A =



s2

−s1 s2

−s1 s2
. . .

. . .

−s1 s2


Nt×Nt

.

The solution of the differential equation at all times will be encoded by using just one state

|u〉 corresponding to the solution of (2.2). To obtain the quantum speedup, one needs to choose a

suitable quantum algorithm to solve the above linear system.
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2.2 Quantum linear systems algorithms

2.2.1 Input model

We first state the quantum linear systems problem.

Definition 2.1 (Quantum linear systems problem (QLSP)). Consider the system of linear equa-

tions Ax = b, where A is an N × N Hermitian matrix, and vectors x = [x1, · · · , xN ]T and

b = [b1, · · · , bN ]T . Assume that the vectors x and b are encoded as

|x〉 =
1

Nx

N∑
i=1

xi|i〉 and |b〉 =
1

Nb

N∑
i=1

bi|i〉,

where Nx = (x21 + · · · + x2N )1/2 and Nb = (b21 + · · · + b2N )1/2 are normalization constants. The

aim of any algorithm to solve QLSP (such an algorithm is called QLSA) is the following. When

given access to A and b, one aims to prepare a quantum state |x′〉 that is η-close to |x〉, i.e.,

‖|x′〉 − |x〉‖ ≤ η.

Let’s state the concept of time complexity. On a classical computer, the time complexity of

an algorithm is usually a count of the number of basic operations of addition and multiplication.

For example, when comparing the time complexity of their proposed quantum linear solver in [20]

with that of the classical matrix inversion algorithms, the authors state that the conjugate gradient

(CG) method uses O(
√
κ log(1/δ)) matrix-vector multiplications each taking time O(Ns) for a total

running time of O(Ns
√
κ log(1/δ)) for a positive definite matrix, where s is the sparsity number,

meaning it has at most s nonzero entries per row, κ is the condition number of the matrix, and δ

is the expected error bound of the algorithm.

On a quantum computer, the time complexity of an algorithm can be measured by the gate

complexity which refers to the total number of 2-qubit gates used in the algorithm [9]. This is

because quantum algorithms are usually represented by quantum circuits, whose basic operation is

a 2-bit quantum logic gate. The more commonly used measure of the time complexity is the query

complexity [31, Sect. 1.10]. For quantum linear systems problems, the query complexity is usually

measured in terms of the number of calls an oracle, for instance to entries of a sparse matrix A as

in [9]. The sparse matrices can also be block encoded using standard methods [37]. In this case one

can consider the number of queries to the oracles involved in the block encoding of the coefficient

matrix A [12,31]. We assume ‖A‖max < 1 throughout the discussion, unless otherwise stated, since

the complexity can have a contribution proportional to ‖A‖max [24]. Otherwise we can simply

replace it by the re-scaled matrix A/α for some α > ‖A‖max, where ‖A‖max = maxij |Aij |.
In this article we are concerned with the sparse access to the matrix since the resulting coeffi-

cient matrices for PDEs are usually sparse, defined in the following way [5, 24].

Definition 2.2 (Input model for the matrix). Let A be a Hermitian matrix with the (i, j)th entry

denoted by Aij. Sparse access to A is referred to as a 4-tuple (s, ‖A‖max, OA, OF ). Here, s is the

sparsity of A; OA is a unitary black box which can access the matrix elements Aij such that

OA|j〉|k〉|z〉 = |j〉|k〉|z ⊕Ajk〉
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for any j, k ∈ {1, 2, · · · , N} =: [N ], where the third register holds a bit string representing of Ajk;

OF is a unitary black box which allows to perform the map

OF |j〉|l〉 = |j〉|F (j, l)〉

for any j ∈ [N ] and l ∈ [s], where the function F outputs the column index of the lth non-zero

elements in row j.

Definition 2.3 (Input model for the initial state). Let b be a vector. Access to b is referred to as

a unitary Uinitial such that Uinitial|0〉 = |b〉. See [19, 47] for example.

With these definitions, the query complexity denotes the number of times oracles OA, OF and

Uinitial are used throughout the protocol. As reviewed later, we shall apply the optimal QLSA

proposed in [12] to solve the linear system (2.2), in which the query complexity is in terms of calls

to a block encoding of the coefficient matrix, rather than the more fundamental oracles for positions

of nonzero entries of sparse matrices, defined below [24,31].

Definition 2.4 (Block access to the matrix). Let A be a m-qubit Hermitian matrix, δA > 0 and

nA is a positive integer. An (m+ nA)-qubit unitary matrix UA is a (αA, nA, δA)-block encoding of

A if

‖A− αA〈0nA |UA|0nA〉‖ ≤ δA.

Block access to A is then the 4-tuple (αA, nA, δA, UA) where UA is the unitary black-box block-

encoding of A.

It is possible to create block access to A from sparse access to A [24,31,37]. If standard methods

[37] are used to construct the block access from the sparse access, there will be a multiplicative

factor s in the query complexity of block encoding [12].

The coefficient matrix A in a linear system is prepared on a classical computer and stored in

an external database with the bit string representing of Ajk. Then one can construct the matrix in

a quantum computer by using the input model to query the non-zero entries through the external

database.

2.2.2 Review of quantum linear systems algorithms

Ref. [4] uses the well-known HHL algorithm for solving (2.2). This algorithm is the earliest

quantum algorithm for solving systems of linear equations, proposed by Harrow, Hassidim and

Lloyd in 2009 in [20]. The gate complexity of this algorithm is O(log(N)s2κ2/δ). When the

condition number κ of the matrix is not very large, the algorithm has an exponential speedup over

the classical algorithm. In fact, if the matrix is positive definite, then the time complexity of the

CG method is O(Ns
√
κ log(1/δ), which exhibits exponential growth in the order of the matrix

compared to the HHL algorithm.

However, the direct use of the HHL algorithm does not necessarily yield quantum acceleration

advantages when solving the linear system of equations obtained by numerically discretizing a

partial differential equation. On the one hand, the condition number of the coefficient matrix of
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the induced linear system increases with mesh refinement; on the other hand, the time complexity

of the HHL algorithm depends on 1/δ, and δ should be smaller than or in the same order as the

error induced by the numerical discretizations. These two observations may offset the quantum

advantage in terms of matrix order. For example, for the five-point difference scheme of the two-

dimensional Poisson equation [8,31], the condition number of its coefficient matrix is κ = O(h−2),

and the accuracy in maximum norm is O(h2), where h = 1/Nx is the mesh size in the direction of

x or y. Let δ = h2. One has

CCG = O(log(Nx)N2
x), QHHL = O(log(Nx)N6

x),

since N = O(N2
x) and s = O(1). Here and later, the symbols C and Q are used to denote the

time complexity for the classical and quantum algorithms, respectively. As observed, the time

complexity of the classical method is smaller than that of the quantum method. In fact, for the

PDE problem in lower dimensions, the more obvious contribution to the increase in complexity of

the HHL algorithm is the term associated with δ, because it increases exponentially compared with

the CG method. Of course, as long as the order of the matrix increases faster than the condition

number and 1/δ, the quantum speedup can be obtained. This can be seen in higher dimensional

problems, such as the high-dimensional heat equation discussed in this paper.

To improve the accuracy dependence, Childs et al. [9] replaces the Hamiltonian simulation

with Fourier method or Chebyshev method to obtain polylog(1/δ) dependence, which is similar to

that of the classical method, both of which have exponential acceleration in accuracy over the HHL

algorithm. Childs also uses their quantum method to solve some linear partial differential equations

in [10]. It is worth pointing out that Childs et al. also exploited the variable-time amplitude

amplification (VTAA) proposed by Ambainis in [2] to improve the conditional number dependence

in [9], reducing the κ-dependence from quadratic to nearly linear with the query complexity given

by O(κpolylog(κ/δ)). However, the VTAA procedure is highly complicated, making it challenging

to implement in practice due to the multiple rounds of recursive amplitude amplifications [12],

and it is still asymptotically sub-optimal by a factor of log(κ). To address this issue, alternative

approaches based on adiabatic quantum computing (AQC) have been developed in recent years.

One can refer to [12] for a comprehensive review of the literature along this line, where the optimal

scaling with the condition number is achieved with query complexity O(κ log(1/δ)) by using a

discrete quantum adiabatic theorem proved in [15], which completely avoids the heavy mechanisms

of VTAA or the truncated Dyson-series subroutine from previous methods related to the AQC [46].

Unlike previous algorithms like HHL and CG, these algorithms assume access to block-encodings

of the matrix A instead, thus do not carry dependency the sparsity of A.

It is known that a quantum algorithm must make at least Ω(κ log(1/δ)) queries in general

to solve the sparse quantum linear system problems, where the notation f = Ω(g) means g =

O(f) [3, 12]. Therefore, the method in [12] is already optimal in the scaling with precision δ and

condition number κ. Another method to obtain the optimal complexity is the quantum singular

value transformation (QSVT) [18], which can solve quantum linear system problems for general

matrices without the need of dilating the matrix into a Hermitian matrix. The query complexity

for solving Ax = b is O(κ2/ξ log(κ/(ξδ)), where ξ = ‖A−1b‖. In the best case scenario that b has an
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Ω(1) overlap with the left-singular vector of A with respect to the smallest singular value, ξ = Ω(κ)

and hence the optimal run time O(κ log(1/δ)) is obtained [31].

Instead of using the HHL algorithm as in [4], we intend to apply the optimal QLSA proposed

in [12] to solve the linear system (2.2). Note that the query complexity in [12] is in terms of calls to

a block encoding of the coefficient matrix, rather than the more fundamental oracles for positions

of nonzero entries of sparse matrices. In this article we are concerned with the sparse access to the

matrix since the resulting coefficient matrices for PDEs are usually sparse. In this case, there will

be a multiplicative factor of s in the sparsity s if standard methods [37] are used to construct the

block access from the sparse access. Therefore, the query complexity with respect to the sparse

access to matrices can be written as

Q = O(sκ log(1/δ)). (2.3)

On the other hand, the gate complexity may be quantified by O(Qpoly(logQ, logN)), which is

larger than the query complexity only by logarithmic factors [9, 12,32].

Note that both the HHL algorithm and the optimal algorithm in [12] are for Hermitian matrices.

If A is not Hermitian, we then consider

H =

[
O A

AT O

]
,

where A is confined to be real matrix throughout the paper.

2.3 Complexity analysis

2.3.1 Query complexity of solving the resulting QLSP

Applying the elementary transform of block matrices, one easily gets

det(λI −H) = det(λ2I −AAT ).

Hence the eigenvalues of H are λ = ±σ1,±σ2, · · · ,±σNt , where σi is the singular values of A

for i = 1, · · · , Nt. We are able to derive the time complexity of the quantum difference method

described as follows.

Theorem 2.1. Let a > 0 be a constant and the time step τ satisfies τ < 1/(a(1 − θ)). Then the

condition number and the sparsity of H satisfy

κ = O(Nt) and s = O(1).

The time complexities of solving the ODE problem (2.1) by using the classical and quantum differ-

ence methods are C = O(Nt) and Q = O(Nt log(1/δ)), respectively.

Proof. (1) Applying the Gershgorin circle theorem [21] to AAT , one easily finds the eigenvalues of

H satisfy

|λ|min ≥ aτ, |λ|max ≤ 2 + |2θ − 1|aτ.

Since the calculation is relatively simple, we omit the details.
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(2) The time complexity of the classical methods simply involves counting the number of basic

operations of addition and multiplication. At each iteration step, the number of operations is O(1),

thus the total time complexity is C = O(Nt).

(3) The matrix H has sparsity number s = 2 and condition number

κ ≤ 2 + |2θ − 1|aτ
aτ

.
1

τ
= Nt.

Then Q is obtained by plugging these quantities in (2.3).

The error of the Euler method (θ = 0) is O(τ) in L∞ norm, and that of the C-N method

(θ = 1/2) is O(τ2). Let the step size of the C-N method be τ = 1/Nt. Then to obtain the same

error bound δ = O(τ2), the step size of the Euler method has to be taken as τ2 = O(1/N2
t ). Thus,

for the classical methods we have

CEuler = O(N2
t ), CCN = O(Nt).

And the corresponding result for the quantum difference method is

QEuler = O(N2
t logNt), QCN = O(Nt logNt).

For this simple first-order ODE problem, the quantum difference method does not gain quan-

tum advantages. The complexities are only comparable to the ones of the classical methods if the

logarithmic terms are neglected. As mentioned in the introduction, however, the linear ODEs

dx

dt
= Ax+ b, A and b are time-independent

can be simulated by the quantum algorithm in [5] with an exponential improvement in time com-

plexity over the quantum difference method in [4]. In this case, the query complexity is only O(1),

hence the quantum speedup is recovered. It should be noted that the exact solution of (2.1) is

simply u(t) = e−at, which also requires only O(1) run time on a classical computer.

2.3.2 Post-processing: computation of physical quantities of interest

The solution of the quantum linear systems problem actually corresponds to the ‘history-

state’ solution of the differential equations, which is the quantum state that is a superposition of

the solution at all temporal and spatial points. However, measurements on the quantum ‘history

state’ are required to read out the classical solutions. When measurement costs are included, the

quantum speedup can be in cases greatly reduced or even disappear entirely [1].

When solving ODEs and PDEs, the actual desired outcomes of the problem are physical

quantities of interest that are associated with the solutions of the ODEs and PDEs. The selection

of these physical observables depends on the problem under consideration. For example, Ref. [33]

computes the amount of heat
∫
S u in a given region S when solving the heat equation, and Ref. [38]

approximates the inner product 〈u, r〉 between the solution u and a fixed function r. We also refer

the reader to [24] for how to compute ensemble averages of physical observables for nonlinear PDEs

using quantum algorithms.
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Let O be an observable with µ := 〈O〉 = 〈ψ|O|ψ〉 being the expectation value, where |ψ〉 is a

quantum state. Suppose that we conduct n experiments with the outcomes recorded as µ1, · · · , µn.

By the law of large numbers, we have

Pr

(∣∣∣µ1 + · · ·+ µn
n

− µ
∣∣∣ < ε

)
≥ 1− Var(O)

nε2
,

where Var(O) is the variance. For a given lower bound p, the number of samples required to

estimate 〈O〉 to additive precision ε satisfies

1− Var(O)

nε2
≥ p =⇒ n ≥ 1

1− p
Var(O)

ε2
.

This implies a multiplicative factor Var(O)/ε2 in the total time complexity [31]. We note that

in a block-encoding scheme we can also use amplitude estimation to enhance the error scaling to

O(1/ε) (e.g. [24,42]). In this paper we don’t focus on this scaling and use the simpler protocol with

O(1/ε2) scaling since our goal is only to compare quantum algorithms with different discretisation

schemes.

We remark that the variance Var(O) may scale as O(N2
t ) = O(τ−2) for the QLSA. To see this,

let us denote the quantum state of the solution to the QLSA by

|ũ〉 = [ũ1; · · · ; ũNt ], ũn =
1

Nu
un,

where un is the solution vector at time t = tn and the normalization constant is

Nu = ‖u‖ = (‖u1‖2 + · · ·+ ‖uNt‖2)1/2.

For simplicity, we assume that ‖u1‖ = · · · = ‖uNt‖ = ‖u0‖ and hence Nu =
√
Nt‖u0‖. Let

Oi = |i〉〈i|, On = |n〉〈n| and

Oni = On ⊗Oi = |n, i〉〈n, i|,

where |n〉 is of size Nt. We consider a simple observable

ρ(t = tn, xi) := (un)†Oiu
n = u†(On ⊗Oi)u = NtN

2
u0 · 〈ũ|O

n
i |ũ〉.

The expectation 〈Oni 〉 := 〈ũ|Oni |ũ〉 satisfies the condition that Var(Oni ) is bounded. In this case,

however, we must evaluate 〈Oni 〉 to precision O(ε/(NtN
2
u0)), which increases the number of samples

by another factor (NtN
2
u0)2. Note that we cannot resolve the issue by considering NtN

2
u0O

n
i directly

since Var(NtN
2
u0O

n
i ) = (NtN

2
u0)2Var(Oni ) gives the same factor.

A simple way to overcome this problem has been addressed in the original paper [4] by adding

Nt copies of the final state uNt . That is, we add the following additional equations

un+1 − un = 0, n = Nt, · · · , 2Nt, (2.4)

which is referred to as the dilation procedure [31]. In fact, let the padded state vector be

û = [û1; · · · ; ûNt ; ûNt , · · · , ûNt ] = |0〉 ⊗ x + |1〉 ⊗ y, (2.5)

where |0〉 = [1, 0]T , |1〉 = [0, 1]T , and the unnormalized vectors are

x = [û1; · · · ; ûNt ], y = [ûNt , · · · , ûNt ].
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Noting that

‖ûn‖2 =
1

2Nt
=

1

2NtN2
u0

‖un‖2, n = 1, · · · , Nt,

we further define

Ô = diag(Oi, · · · , Oi) = INt ⊗Oi,

where INt is the identity matrix with order Nt, and obtain

ρ(t = tNt , xi) = (uNt)†Oiu
Nt = 2NtN

2
u0 · (û

Nt)†Oiû
Nt

= 2N2
u0y
†Ôy = 2N2

u0〈û|O|û〉,

where

O = diag(O, · · · ,O, Oi, · · · , Oi), O is the zero matrix.

Obviously, Var(O) is bounded. It’s worth pointing out that the solution vector in (2.5) only requires

one ancilla qubit, and one can directly evaluate y†Ôy by measuring the ancilla qubit and obtain 1.

We remark that the quantum solution, proportional to u, is a history state. In order to

recover the solution at a time Nt, one needs to project onto the solution at Nt. However, since the

solution of Eq. (2.1) decays exponentially in time, the success probability of such a projection is

exponentially small. This problem exists for all QLSAs that outputs a history state.

However, this probability can be raised if we apply amplitude amplification to this scheme.

In this case we can raise the probability to Ω(1) with O(g) repetitions of the QLSA, where g =

maxt∈[0,T ] ‖u(t)‖/‖u(T )‖ characterizes the decay of the final state relative to the initial state.

This implies a new factor g in the final time complexity. We remark that the parameter g has

been included in the complexities of the quantum algorithms in [5, 11]. For convenience, in the

subsequent discussion, we ignore this parameter in the time complexity.

3 The linear heat equation

Consider the following initial-boundary value problem of linear heat equation
ut(x, t) = ∆u(x, t) in Ω := (0, 1)d, 0 < t < 1,

u(x, 0) = u0(x),

u(·, t) = 0 on ∂Ω,

(3.1)

where u0(x) is sufficiently smooth.

During the revision of our paper, we found that the heat equation was also considered in [31]

with a forward Euler discretization in time applied. In addition, the authors in [33] studied in detail

the complexities of ten classical and quantum algorithms for solving the heat equation in the sense

of approximately computing the amount of heat in a given region, in which the quantum linear

equations method was discussed in Theorem 17 there. However, from the numerical analysis point

of view it is of interest to know if some discretization ways are preferred to others for the quantum

difference methods. Our study reveals that different discretizations (forward Euler and Crank-

Nicolson) don’t make a difference in the quantum scenario. This is a phenomenon not reported

before to our knowledge.
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3.1 The finite difference schemes

For simplicity we only provide the detail for the one-dimensional case. Consider Nt + 1 steps

in time 0 = t0 < t1 < · · · < tNt = 1 and Nx+1 spatial mesh points 0 < x0 < x1 < · · · < xNx = 1 by

setting tn = nτ and xj = jh, where τ = 1/Nt and h = 1/Nx. The central difference discretization

gives
d

dt
uj(t) =

uj−1(t)− 2uj(t) + uj+1(t)

h2
, j = 1, · · · , Nx − 1.

Let u(t) = [u1(t), · · · , uNx−1(t)]
T . One has

d

dt
u(t) =

1

h2
Lhu(t) +

1

h2
b(t), (3.2)

where,

Lh =



−2 1

1 −2
. . .

. . .
. . .

. . .

. . . −2 1

1 −2


(Nx−1)×(Nx−1)

, b(t) =



u0(t)

0
...

0

uNx(t)


.

The time is discretized by using the θ-scheme as

un+1 − un

τ
= θ

1

h2
Lhu

n+1 + (1− θ) 1

h2
Lhu

n + θ
1

h2
bn+1 + (1− θ) 1

h2
bn,

which can be marched forward in time for θ = 0 or by solving a linear system for θ ∈ (0, 1] on a

classical computer.

Let β = τ/h2. The above equation can be written as

−Bun + Aun+1 = fn+1, (3.3)

where

A = I − θβLh, B = I + (1− θ)βLh, fn = θβbn+1 + (1− θ)βbn.

By introducing the notation U = [u1; · · · ;uNt ], where “;” indicates the straightening of {ui}i≥1
into a column vector, and one obtains the following linear system

LU = F , (3.4)

where

L =


A

−B A
. . .

. . .

−B A

 , F =


f1 + Bu0

f2

...

fNt

 .
Note that the hermitian matrix for the quantum linear system problem is

H =

[
O L

LT O

]
.
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The matrix Lh of the d-dimensional problem will be replaced by

Lh,d = Lh ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d matrices

+I ⊗Lh ⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗Lh,

and everything else remains the same. In addition, we only consider solving the high-dimensional

heat equation with homogeneous Dirichlet boundary condition. Other boundary conditions can be

similarly treated with possible different condition number κ of the coefficient matrix.

3.2 Comparison of the time complexity

For the explicit scheme, i.e. θ = 0, the stability condition is dτ/h2 ≤ 1 and the error in L∞

norm is O(τ + dh2). We thus choose τ ≤ h2/(4d) for θ = 0. The C-N scheme is unconditionally

stable, and its error is O(τ2 + dh2). In view of the constraint in the following theorem, we set

τ = h/(8d) for θ = 1/2.

In the following we take the same mesh size h = 1/Nx, and set δ = dh2 = d/N2
x . Then,

• Forward (θ = 0): τ = O(h2/d) or Nt = O(dN2
x), and β = O(1/d);

• C-N (θ = 1/2): τ = O(h/d) or Nt = O(dNx), and β = O(Nx/d).

Theorem 3.1. Let θ = 0 or 1/2 and τ ≤ 1/(8d). For the explicit scheme, i.e., θ = 0, we further

assume that the parabolic CFL condition β = τ/h2 ≤ 1/(4d) holds. With the above settings, one

has

(1) The condition number and the sparsity of H satisfy

κ = O(N2
x) and s = O(d).

(2) The time complexity of the classical difference methods for solving the d-dimensional heat equa-

tion is

C =

O(d2Nd+2
x ), θ = 0,

O(d2Nd+1.5
x ), θ = 1/2.

(3) The time complexity for the quantum difference methods is Q = O(dN2
x log(N2

x/d)).

Proof. (1) Let λ be the eigenvalue of H, i.e.,

det(λI −H) = det(λ2I −LLT ) =: det(µI −LLT ),

where µ = λ2 is the eigenvalue of LLT , or µ1/2 is the singular value of L. Obviously A and B are

symmetric matrices, and the direct calculation gives

LLT =


A2 −AB

−BA B2 + A2 . . .

. . .
. . . −AB

−BA B2 + A2

 .
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We again establish the upper and lower bounds of the eigenvalues of LLT by using the Ger-

shgorin circle theorem. Consider the 1-D case. Let P−1LhP = Λ, where Λ is the diagonal matrix

consisting of the eigenvalues of Lh. For convenience, we denote the relation as Lh ∼ Λ and obtain

A ∼ I − θβΛ =: ΛA, B ∼ I + (1− θ)βΛ =: ΛB, AB ∼ ΛAΛB.

Let P̃ = diag(P , · · · ,P ). Then

P̃−1(LLT )P̃ =


Λ2
A −ΛAΛB

−ΛAΛB Λ2
A + Λ2

B

. . .

. . .
. . . −ΛAΛB

−ΛAΛB Λ2
A + Λ2

B

 .
Noting that the similarity transformation does not change the eigenvalues, thus one can apply

the Gershgorin circle theorem to estimate the eigenvalues for this matrix, which implies that the

minimum and maximum eigenvalues satisfy

µmin ≥ min
i
{λ2A,i − |λA,iλB,i|, λ2A,i + λ2B,i − 2|λA,iλB,i|},

µmax ≤ max
i
{λ2A,i + λ2B,i + 2|λA,iλB,i|}.

The eigenvalues of Lh are

λh,i = −4 sin2 iπ

2Nx
= −4 sin2 iπh

2
, i = 1, · · · , Nx − 1, (3.5)

satisfying 8h2 ≤ |λh,i| ≤ 4. Since λh,i < 0,

λA,i = 1− θβλh,i > 0.

If λB,i ≥ 0, then

|λA,i| − |λB,i| = 1− θβλh,i − 1− (1− θ)βλh,i = −βλh,i ≥ 8τ > 0 (3.6)

and

|λA,i|+ |λB,i| = 1− θβλh,i + 1 + (1− θ)βλh,i

= 2 + (1− 2θ)βλh,i =

 2 + βλh,i ≤ 3, θ = 0,

2, θ = 1/2.

If λB,i < 0, then

|λA,i| − |λB,i| = 1− θβλh,i + 1 + (1− θ)βλh,i

= 2 + (1− 2θ)βλh,i =

 2 + βλh,i ≥ 1, θ = 0,

2, θ = 1/2,
(3.7)

where the condition β ≤ 1/4 is used for θ = 0, and

|λA,i|+ |λB,i| = 1− θβλh,i − 1− (1− θ)βλh,i

= −βλh,i ≤

 1, θ = 0,

4β, θ = 1/2.
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We first bound the maximum eigenvalue. According to the previous calculations, one has

λ2A,i + λ2B,i + 2|λA,iλB,i| = (|λA,i|+ |λB,i|)2 ≤

 9, θ = 0,

max{4, (4β)2}, θ = 1/2,

which implies

µmax ≤

 9, θ = 0,

max{4, (4β)2}, θ = 1/2.

For the minimum eigenvalue, we obtain from (3.6) and (3.7) that

(λ2A,i + λ2B,i − 2|λA,iλB,i|)− (λ2A,i − |λA,iλB,i|) = |λB,i| · (|λB,i| − |λA,i|) < 0,

and hence

µmin ≥ min
i
{λ2A,i + λ2B,i − 2|λA,iλB,i|} ≥ 64τ2

since τ ≤ 1/8.

For d dimensions we can carry out the similar argument, except that λA,i and λB,i are replaced

by the corresponding results of the new matrix. By the properties of tensor products, the eigenvalues

of Lh,d can be represented by the sum of the eigenvalues of Lh as

λh,d = λh,i1 + λh,i2 + · · ·+ λh,id , λh,ij is the eigenvalue of Lh.

Hence the eigenvalues with the smallest and largest absolute values are

λdh,1 = −4d sin2 π

2Nx
, λdh,Nx−1 = −4d sin2 (Nx − 1)π

2Nx
.

In this case, one only requires that the time step satisfy τ ≤ 1/(8d) for both cases, and β ≤ 1/(4d)

for the explicit scheme, which therefore implies the desired estimates.

(2) The classical method is to iteratively solve Aun+1 = Bun + fn+1, where A is of order

NA = (Nx−1)d. When θ = 0, 1/2, the matrix B has sparsity number sB ∼ d. The number of basic

operations involved on the right-hand side is O(NAsB) = O(dNd
x ). For θ = 0, the total run time is

CEuler = Nt · O(dNd
x ) = O(dNtN

d
x ) = O(d2Nd+2

x ), θ = 0.

For θ = 1/2, noting that A is positive definite with sparsity number sA ∼ d and condition number

κA =
λA,max

λA,min
∼ 1 + 4dθβ

1 + 8dθβh2
∼ 1 + 4dθβ

1 + 8dθτ
= O(h−1),

hence the time complexity of the CG method is

O(NAsA
√
κA) = O(dNd+0.5

x ).

Thus the total run time is

CCN = NtO(dNd
x + dNd+0.5

x )) = O(dNtN
d+0.5
x )) = O(d2Nd+1.5

x ), θ = 1/2.
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(3) According to the established result in (1), the condition number of H is

κ ≤


3

8dτ ∼ N
2
x , θ = 0,

4dβ
8dτ ∼ N

2
x , θ = 1/2.

One can check that the sparsity number s ∼ d. The time complexity is

Q = O(dN2
x log(N2

x/d)).

This completes the proof.

It is observed that the time complexity of the classical algorithm depends on Nd
x , where d

is the spatial dimension, while the quantum algorithm only depends on Nx. This shows that the

quantum difference method has exponential acceleration with respect to the spatial dimension d.

On the other hand, unlike the classical difference methods, the quantum treatment of the heat

equation gives the same time complexity for the forward Euler and Crank-Nicolson discretizations,

which is not reported in the literature.

Remark 3.1. We cannot derive the spectral norm dependence on the coefficient matrix in the

condition number from Theorem 7 of [4]. For simplicity we consider the two-dimensional case. The

resulting ODEs are given in (3.2), where A = 1
h2
Lh corresponds to the one in [4]. For this specific

matrix, the condition for the time step in [4, Theorem 7] is τ = 1/‖A‖ ∼ h2, which simply refers

to the step size of the explicit scheme.

4 First order hyperbolic equation

For hyperbolic problems, a digital quantum algorithm combining the finite volume method and

the reservoir technique for symmetric first-order linear hyperbolic systems can be found in [17]. In

this section, we consider the quantum difference methods for solving the first order hyperbolic

equation

ut + ux1 + ux2 + · · ·+ uxd = 0, x = (x1, x2, · · · , xd) ∈ (0, 1)d

in d dimensions with homogeneous inflow boundary conditions, where u = u(t, x1, x2, · · · , xd).
Let j = (j1, j2, · · · , jd). The upwind scheme can be written as

un+1
j − unj

τ
+

d∑
k=1

unj − unj−ek
h

= 0

or

un+1
j + (dβ − 1)unj − β

d∑
k=1

unj−ek = 0, β = τ/h,

where ek = (0, · · · , 0, 1, 0, · · · , 0) with k-th entry being 1, jk = 1, 2, · · · , Nx and n = 0, 1, · · · , Nt−1.

One easily finds that the above system can be written in matrix form as

un+1 −Bun = 0,
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with

B = λ(I ⊗ I ⊗ · · · ⊗ Th + I ⊗ · · · ⊗ Th ⊗ I + · · ·+ Th ⊗ I ⊗ · · · ⊗ I)

+ (1− dλ) I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
d matrices

,

where

Th =



0

1 0
. . .

. . .

. . .
. . .

1 0


Nx×Nx

,

and u represents the vector form of the d-order tensor U = (uj) = (uj1,j2,··· ,jd). The coefficient

matrix for the quantum difference method is then given by

L =


I

−B I
. . .

. . .

−B I

 . (4.1)

To give the bounds of the eigenvalues of the corresponding matrix H, or equivalently the

singular values of L, we introduce the Gershgorin-type theorem for singular values.

Lemma 4.1. [41] Let A = (aij) be a square matrix of order n. Write

ri =
∑
j 6=i
|aij |, ci =

∑
j 6=i
|aji|, si = max(ri, ci)

for i = 1, 2, · · · , n. Then each singular value of A lies in one of the real intervals

[(|aii| − si)+, |aii|+ si],

where a+ = max(0, a).

The error of the upwind scheme is O(τ + dh) if the exact solution is regular. In the following

theorem we set δ = O(dh) = O(d/Nx).

Theorem 4.1. Let β = τ/h ≤ 1/d. Then the condition number and the sparsity of H satisfy

κ = O(Nt) and s = O(d).

For fixed spatial step h, let τ = h/d. Then the time complexities of the classical difference methods

and the quantum difference method for solving the d-dimensional first order hyperbolic equation are

C = O(d2Nd+1
x ) and Q = O(d2Nx log(Nx/d)),

respectively.
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Proof. (1) For ease of presentation, we only consider the case of d = 3. In this case, B has the

following form

B =



T̃h

λTh T̃h

. . .
. . .

λTh T̃h

λI T̃h

λI λTh T̃h

. . .
. . .

. . .

λI λTh T̃h


, T̃h = (1− 3λ)I + λTh,

where the repeated blocks are omitted. Applying Lemma 4.1 to get

‖B‖ = σmax(B) ≤ 1, σmax(L) ≤ 2.

By definition, σmin(L) = 1/σmax(L−1). After simple algebra, one has

L−1 =


I

B I

B2
. . .

. . .

...
. . .

. . .
. . .

BNt−1 · · · B2 B I

 =


I

I

. . .

. . .

I

+


B

. . .

. . .

B

+ · · · ,

which gives

σmax(L−1) = ‖L−1‖ ≤ ‖I‖+ ‖B‖+ · · ·+ ‖BNt−1‖

≤ ‖I‖+ ‖B‖+ ‖B‖2 + · · ·+ ‖B‖Nt−1 ≤ Nt = 1/τ.

Thus, σmin(L) ≥ τ , as required.

(2) The classical method is to iteratively solve un+1 = Bun, where B is of order nB = Nd
x .

One can check that matrix B has sparsity number sB ∼ d. Thus, the number of basic operations

involved on the right-hand side is O(nBsB) = O(dNd
x ), and the total run time is

C = Nt · O(dNd
x ) = O(dNtN

d
x ) = O(d2Nd+1

x ).

(3) The condition number is

κ ≤ 2/τ ∼ Nt = dNx.

One can check that the sparsity number s ∼ d, then the query complexity is

Q = O(d2Nx log(Nx/d)).

This completes the proof.

5 Multiscale problem

Consider the multiscale hyperbolic heat system (telegraph equations) ut + vx = 0,

vt + 1
εux = −1

εv, 0 < ε� 1,
(5.1)
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where ε is the relaxation time or the scaling parameter. For simplicity, we assume the exact solution

is regular. Note that numerically approximating the above system is challenging due to the stiffness

of the problem for both the convection and collision terms [26,27]. The key idea to tackle problem

(5.1) is to reformulate it as a (nonstiff) linear hyperbolic system with stiff relaxation term called

the diffusive relaxation system [26]: ut + vx = 0,

vt + ux = −1
ε

(
v + (1− ε)ux

)
, 0 < ε� 1.

(5.2)

This system (5.2) has the form of Jin-Xin relaxation model used to construct Riemann solver free

shock capturing schemes for conservation laws by Jin and Xin (cf. [28]).

5.1 AP schemes

The AP schemes have been developed for a wide range of time-dependent kinetic and hyperbolic

equations. The fundamental idea is to design numerical methods that preserve the asymptotic limits

from the microscopic to the macroscopic models in the discrete setting [23, 29]. We first consider

two typical AP schemes presented in [22,23] for solving (5.1) or (5.2).

5.1.1 IMEX scheme

The first AP scheme is the following implicit-explicit (IMEX) scheme (cf. (2.15) in [23]):
un+1
j −unj
τ +

vnj+1−vnj−1

2h − h
2

unj−1−2unj +unj+1

h2
= 0,

vn+1
j −vnj
τ +

unj+1−unj−1

2h − h
2

vnj−1−2vnj +vnj+1

h2
= −1

ε

(
vn+1
j + (1− ε)u

n+1
j+1−u

n+1
j−1

2h

)
,

(5.3)

where j = 1, · · · , Nx − 1 and n = 0, · · · , Nt − 1. Notice that the scheme treats the relaxation term

implicitly. On a classical computer, one can obtain un+1 from the first equation of (5.3) explicitly

and then substitute it into the right-hand side of the second equation. The remaining equation for

vn+1 can also be implemented explicitly.

In order to write it as a large linear system as in (2.2), define

u(t) = [u1(t), · · · , uNx−1(t)]
T , v(t) = [v1(t), · · · , vNx−1(t)]

T .

The corresponding spatial discretization of (5.3) is
d
dtu(t) + 1

2hMhv(t)− 1
2hLhu(t)− 1

2h(b(t)− c̃(t)) = 0,

d
dtv(t) + 1

2hMhu(t)− 1
2hLhv(t) + 1

2h(b̃(t)− c(t)) = −1
ε

(
v(t) + 1−ε

2h Mhu(t) + 1−ε
2h b̃(t)

)
,

where,

Mh =



0 1

−1 0
. . .

. . .
. . .

. . .

. . . 0 1

−1 0


, Lh =



−2 1

1 −2
. . .

. . .
. . .

. . .

. . . −2 1

1 −2


(Nx−1)×(Nx−1)

, (5.4)
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b(t) =



u0(t)

0
...

0

uNx(t)


, b̃(t) =



−u0(t)
0
...

0

uNx(t)


, c(t) =



v0(t)

0
...

0

vNx(t)


, c̃(t) =



−v0(t)
0
...

0

vNx(t)


.

Further time approximation yields
un+1−un

τ + 1
2hMhv

n − 1
2hLhu

n − 1
2h(bn − c̃n) = 0,

vn+1−vn

τ + 1
2hMhu

n − 1
2hLhv

n + 1
2h(b̃n − cn) = −1

ε

(
vn+1 + 1−ε

2h Mhu
n+1 + 1−ε

2h b̃n+1
)
.

Let β = τ/h. The above system can be written as−Bun + un+1 + Avn = fn+1,

−Bvn + γvn+1 + Aun + νAun+1 = gn+1,
(5.5)

where, γ = 1 + τ/ε, ν = (1− ε)/ε, and

A =
β

2
Mh, B = I +

β

2
Lh,

fn+1 =
β

2
(bn − c̃n), gn+1 =

β

2
(cn − b̃n − νb̃n+1).

Introducing the following notations

U = [u1; · · · ;uNt ], V = [v1; · · · ;vNt ], S = [U ;V ],

one then gets a linear system

LIMEXS = FIMEX, (5.6)

where, LIMEX = (Lij)2×2, FIMEX = [F1;F2], and

L11 =


I

−B I
. . .

. . .

−B I

 , L12 =


O

A O
. . .

. . .

A O

 , F1 =


f1 + Bu0 −Av0

f2

...

fNt



L21 =


νA

A νA
. . .

. . .

A νA

 , L22 =


γI

−B γI
. . .

. . .

−B γI

 , F2 =


g1 −Au0 + Bv0

g2

...

gNt

 .
On a classical computer, one can obtain good results by solving the IMEX scheme directly for

a relatively large – compared with ε – time steps and mesh sizes. However, the classical simulation

becomes difficult when one solves (5.6) with the QLSA, because the condition number of the matrix

H is very large. In fact, for fixed step sizes τ and h, the eigenvalues of H corresponding to (5.6)

satisfy

|λ|max ∼
1

ε
, |λ|min ≤ 1.
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A simple argument is described as follows. By the characteristics of the matrix, it is sufficient to

consider only the computation from tn to tn+1. The coefficient matrix in this case is

L =

[
I O

νA γI,

]
,

and

D := LLT =

[
I −νβ/2Mh

νβ/2Mh γ2I − ν2β2/4M2
h

]
.

The matrix Mh is a standard antisymmetric matrix whose eigenvalue λh is zero or pure imaginary,

and thus λ2h ≤ 0. By ‖Mh‖∞ = 2, |λh| ≤ 2. Let Λ be the matrix consisting of these eigenvalues.

One has

D ∼

[
I −νβ/2Λ

νβ/2Λ γ2I − ν2β2/4Λ2

]
,

which implies that the maximum eigenvalue of D satisfies

µmax ≤ ‖D‖∞ ≤
ν2β2

4
· |λh|2max + γ2 +

νβ

2
|λh|max ≤ C(τ, h)

1

ε2
.

By the Rayleigh quotient theorem for symmetric matrices [21],

µmax ≥ max
i

Dii ≥ C(τ, h)
1

ε2
, µmin ≤ min

i
Dii ≤ 1.

The claim follows from the above two equations.

A simple way to tackle this problem is to apply a preconditioner, that is, we can find a simple

invertible matrix P such that (PLIMEX)S = PFIMEX can be solved efficiently.

We remark that in the presence of the preconditioner P , we now assume access to the unitary

preparing the initial quantum state proportional to PFIMEX, instead of FIMEX. This assumption

is motivated straightforwardly due to the simplicity of P . For instance, following state preparation

protocols like [19] or [47], the cost only depends on the sparsity and dimension of the states, which

are identical for FIMEX and PFIMEX. Similarly, we assume access to a sparse-access query model

for (PLIMEX) instead of LIMEX, where we easily see from P that the sparsities of these matrices

are identical.

Theorem 5.1. Let P be defined in block form by

P =

[
I O

O %I

]
, % =

ε

1 + ε
,

where % is the preconditioned parameter. Let L̃IMEX = PLIMEX and F̃IMEX = PFIMEX. Consider

solving the following preconditioned linear system

L̃IMEXS = F̃IMEX. (5.7)

Let λ be the eigenvalue of the Hermitian H corresponding to L̃IMEX, i.e., H =

[
0 L̃IMEX

L̃TIMEX 0

]
.

Then for fixed τ and h, the upper and lower bounds of |λ| are independent of ε.
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Proof. For convenience, we omit the subscript IMEX in the following. The parameters associated

with ε in the matrix L̃ are

% =
ε

1 + ε
, %ν =

1− ε
1 + ε

, %γ =
τ + ε

1 + ε
.

They are all bounded as ε → 0 (they only depend on the step sizes). One easily finds that L̃

converges to a fixed invertible matrix as ε→ 0. Since the singular values of L̃ are continuous with

respect to ε, the upper and lower bounds of the singular values of matrix L̃ are independent of ε

for fixed τ and h. Moreover, the absolute values of λ are exactly the singular values of L̃, thus the

upper and lower bounds of |λ| are also independent of ε.

In the simulation, the initial-boundary values of (5.1) are chosen in such a way that the exact

solution is

u = eat sin(ax), v = eat cos(ax), a = −1/(1 + ε).

The spatial and temporal domains are taken as [−1, 1] and [0, 1], respectively. We still consider

the original HHL algorithm in view of various detailed implementations in the literature, see [7, 8]

for example. Given a Hermitian matrix H, let U = eiHt0 be the unitary matrix in the quantum

phase estimation. Denote the eigenvalue of H by λ. Then the corresponding phase φ ∈ [0, 1) is

defined by e2πiφ = eiλt0 , where i =
√
−1 and t0 is the evolution time. Noting that ln(eiθ)/i = θ for

θ ∈ [−π, π], we require that |λ|t0 ≤ π. Then the eigenvalue λ can be represented by the phase φ as

λ =


2πφ
t0
, λ > 0,

2π(φ−1)
t0

, λ < 0.

The evolution time t0 will be set as t0 = 2π
2ntCt, where nt is the number of qubits in the clock

register, and Ct = 10p with p = [log10(2
nt−1/|λ|max)] being an integer. The reason for this choice

is that the integer part of λCt can be represented exactly by nt-bits, while Ct shifts the fractional

part of λ to the integer part.

The number of qubits in the clock register is nt = 10. For ε = 10−i, i = 1, 4, 8, Fig. 1 displays

the numerical and exact solutions of u and v, from which one observes that the preconditioned

scheme is ε-independent, which verifies the conclusion in Theorem 5.1.

Unless otherwise specified, the notations in this subsection will be frequently used in the

following text.

5.1.2 Diffusive relaxation scheme

The second AP scheme is the diffusive relaxation scheme proposed by Jin, Pareschi and Toscani

in [26] for solving multiscale discrete-velocity kinetic equations.

The diffusive relaxation scheme has two steps:

1. Relaxation step
u∗j−unj
τ = 0, j = 0, · · · , Nx,

v∗j−vnj
τ = −1

ε

(
v∗j + (1− ε)u

∗
j+1−u∗j−1

2h

)
, j = 1, · · · , Nx − 1.

(5.8)

In the computation, we take v∗0 = vn0 and v∗Nx
= vnNx

.
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(c) ε = 10−8

Fig. 1: Exact and HHL solutions of u and v for the preconditioned IMEX scheme with τ = 0.05,

h = 0.5 and % = ε/(1 + ε)

2. Convection step 
un+1
j −u∗j
τ +

v∗j+1−v∗j−1

2h − h
2

u∗j−1−2u∗j+u∗j+1

h2
= 0,

vn+1
j −v∗j
τ +

u∗j+1−u∗j−1

2h − h
2

v∗j−1−2v∗j+v∗j+1

h2
= 0.

(5.9)

The equations (5.8) and (5.9) can be written in vector form asu∗ = un,

γv∗ = vn − νAun − ν β2 b̃
n

and un+1 = Bu∗ −Av∗ + β
2 (bn − c̃n),

vn+1 = Bv∗ −Au∗ + β
2 (cn − b̃n),

respectively. Introducing the following notations

A1 =
1

γ
A, A2 =

1

γ
B, B1 = B +

ν

γ
A2, B2 = A +

ν

γ
BA, (5.10)

f̃n+1 =
β

2
(bn − c̃n) +

νβ

2γ
Ab̃n, g̃n+1 =

β

2
(cn − b̃n)− νβ

2γ
Bb̃n,

and eliminating u∗ and v∗, one obtains the linear system

LrelaxationS = Frelaxation, (5.11)

where, Lrelaxation = (Lij)2×2, Frelaxation = [F1;F2], and

L11 =


I

−B1 I
. . .

. . .

−B1 I

 , L12 =


O

A1 O
. . .

. . .

A1 O

 , F1 =


f̃1 + B1u

0 −A1v
0

f̃2

...

f̃Nt



L21 =


O

B2 O
. . .

. . .

B2 O

 , L22 =


I

−A2 I
. . .

. . .

−A2 I

 , F2 =


g̃1 −B2u

0 + A2v
0

g̃2

...

g̃Nt

 .

24



Theorem 5.2. Let λ be the eigenvalue of the matrix H corresponding to the linear system (5.11).

Then for fixed step sizes τ and h, the upper and lower bounds of |λ| are independent of ε.

Proof. The proof is similar to that of Theorem 5.1. So we omit it.

For the preconditioned IMEX scheme (5.7) with τ ∼ h2, a direct calculation gives σmax(L̃) ∼ 1,

where L̃ is the coefficient matrix. Under the same condition, one can find that σmax(Lrelaxation) ∼
h−1 for the diffusive relaxation scheme (5.11) though the condition number is independent of ε.

For this reason, we reformulate it as[
L11 τ−1L12

τL12 L22

][
τ−1U

V

]
=

[
τ−1F1

F2

]
, (5.12)

where τ is the time step.

We note that if we wanted to recover the state [U ,V ]T instead without the τ−1 rescaling factor

in [τ−1U ,V ]T , we can instead rewrite Eq. (5.12) as

L′

[
U

V

]
≡

[
τ−1L11 τ−1L12

L12 L22

][
U

V

]
=

[
τ−1F1

F2

]
, (5.13)

where the sparsity of the new matrix L′ and the matrix denoted L̃ in Eq. (5.12) are clearly identical,

and their condition numbers are comparable, namely κ(L̃), κ(L′) . τ−1 for small ε. This means

that the query and gate complexities of recovering the quantum state proportional to [U ,V ]T is

also of the same order as obtaining [τ−1U ,V ]T .

To see why κ(L′) . τ−1 we use the following argument. Let E = diag(τ−1I, I), where I

is the identical matrix. Then L′ = L̃E. According to the bounds established later in Theorem

5.4, we have for small ε that σmax(L̃) . 1 and σmin(L̃) & τ . For the maximum singular value,

one has σmax(L′) = ‖L′‖ ≤ ‖L̃‖‖E‖ ≤ τ−1σmax(L̃) . τ−1. For the minimum singular value, one

has σmin(L′) = 1/σmax(L′−1) by definition. Noting that σmax(L′−1) = ‖L′−1‖ ≤ ‖E−1‖‖L̃−1‖ ≤
τσmax(L̃−1) = τ/σmin(L̃) . 1, we obtain σmin(L′) & 1. Hence, κ(L′) . τ−1 when ε is small, as for

L̃.

We further remark that the formulation in Eq. (5.12) can raise the success probability of

obtaining U by a factor of 1/τ2 (since 1/τ > 1) if we obtain the output (τ−1U ,V ) instead of

(U ,V ). Similarly, we can instead boost the success probability of obtaining V by a factor of 1/τ2

by replacing (5.13) with

L′

[
I

τI

][
U

τ−1V

]
=

[
τ−1L11 L12

L12 τL22

][
U

τ−1V

]
=

[
τ−1F1

F2

]
, (5.14)

where the new matrix still satisfies the condition number . τ−1 for small ε.

Since the condition numbers and the max-norms of our matrices L̃, L′ and in Eq. (5.13) are

comparable in size, the query complexity in obtaining either [U ,V ], [τ−1U ,V ] or [U , τ−1V ] are

the same. We make the additional remark that the max-norms of these matrices can scale like

O(1/τ), but the contribution to the total query complexity will still be independent of ε since τ is

independent of ε. Thus our total query complexity in obtaining these states will also be independent

of ε, showing an additional advantage of using AP schemes.
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5.1.3 A penalized diffusive relaxation scheme

The AP schemes given previously tend to explicit discretizations of the heat equation when

ε → 0, thus suffer from the standard parabolic CFL restriction: τ ≤ Ch2. To overcome this

problem, one can employ the penalization technique proposed in [6]. As an example, we only

consider the diffusive relaxation scheme.

By adding µuxx to the left and right sides of the first equation of (5.2), where µ = µ(ε) → 1

as ε→ 0, one obtains  ut + (v + µux)x = µuxx,

vt + ux = −1
ε

(
v + (1− ε)ux

)
, 0 < ε� 1.

The way to remove the parabolic CFL restriction is to treat uxx implicitly since when ε→ 0 it will

give an implicit discretization of the heat equation. According to the construction of the diffusive

relaxation scheme, the scheme can be written as

1. Relaxation step
u∗j−unj
τ = µ

u∗j−1−2u∗j+u∗j+1

h2
, j = 1, · · · , Nx − 1,

v∗j−vnj
τ = −1

ε

(
v∗j + (1− ε)u

∗
j+1−u∗j−1

2h

)
, j = 1, · · · , Nx − 1.

(5.15)

In the computation, we take v∗0 = vn0 and v∗Nx
= vnNx

.

2. Convection step
un+1
j −u∗j
τ +

v∗j+1−v∗j−1

2h − h
2

u∗j−1−2u∗j+u∗j+1

h2
+ µ

u∗j−1−2u∗j+u∗j+1

h2
= 0,

vn+1
j −v∗j
τ +

u∗j+1−u∗j−1

2h − h
2

v∗j−1−2v∗j+v∗j+1

h2
= 0.

(5.16)

In the following we set µ = 1. Let B̃ = I − β̃Lh, where β̃ = β/h = τ/h2. Then (5.15) and

(5.16) can be written in vector form as B̃u∗ = un + β̃bn,

γv∗ = vn − νAu∗ − ν β2 b̃
n

and un+1 = (B + B̃ − I)u∗ −Av∗ + β
2 (bn − c̃n)− β̃bn,

vn+1 = Bv∗ −Au∗ + β
2 (cn − b̃n),

respectively. Introducing the following notations

A1 =
1

γ
A =

β

2γ
Mh, A2 =

1

γ
B =

1

γ
(I +

β

2
Lh), (5.17)

B1 = (B̃ − I + B +
ν

γ
A2)B̃−1, B2 = (A +

ν

γ
BA)B̃−1, (5.18)

f̃n+1 = β̃B1b
n +

β

2
(bn − c̃n) +

νβ

2γ
Ab̃n − β̃bn,

g̃n+1 = −β̃B2b
n − β

2
(b̃n − cn)− νβ

2γ
Bb̃n,
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and eliminating u∗ and v∗, it is easy to get the linear system

LpenalizedS = Fpenalized, (5.19)

where Lpenalized = (Lij)2×2, Fpenalized = [F1;F2], and

L11 =


I

−B1 I
. . .

. . .

−B1 I

 , L12 =


O

A1 O
. . .

. . .

A1 O

 , F1 =


f̃1 + B1u

0 −A1v
0

f̃2

...

f̃Nt



L21 =


O

B2 O
. . .

. . .

B2 O

 , L22 =


I

−A2 I
. . .

. . .

−A2 I

 , F2 =


g̃1 −B2u

0 + A2v
0

g̃2

...

g̃Nt

 .

5.2 Time complexity analysis of the AP schemes

Denote C and Q to be the time complexity of classical and quantum processing, respectively.

Fix the mesh size h = 1/Nx, and set δ to be the desired error bound of the quantum linear solver.

Since the truncation error is O(τ + h), we take h = O(δ) in the following.

5.2.1 IMEX scheme

The previous qualitative analysis of the relationship between the matrix H and the scaling

parameter ε led to the design of the preconditioned IMEX scheme for solving the problem (5.1).

Now, we estimate the upper and lower bounds of the eigenvalues of H, thus give a quantification

of the time complexity.

To this end, we first list several lemmas.

Lemma 5.1. [43, Eq. (2.3)] Let E ∈ Rn×n and ‖E‖ ≤ α < 1. Then I + E is invertible and its

singular values satisfy 1− α ≤ σ(I + E) ≤ 1 + α.

Lemma 5.2. [45, Weyl’s inequality] Let A be a square matrix of order n with singular values

σ1 ≥ σ2 ≥ · · ·σn. Denote Ã = A + E to be a perturbation of A with singular values σ̃1 ≥ σ̃2 ≥
· · · σ̃n. Then there holds |σ̃i − σi| ≤ ‖E‖ for i = 1, 2, · · · , n.

Theorem 5.3. Let β = τ/h and τ, h ≤ 1. The eigenvalue of the matrix H corresponding to (5.7)

is denoted by λ.

(1) For all ε ≥ 0, |λ|max ≤ 2 + β. If taking τ = ιh2 and β = ιh ≤ 1/2 , where ι is a constant, then

|λ|min ≥
h2

8
− (3β + 2− τ)

ε

1 + ε
.

Hence for ε→ 0 the condition number and the sparsity of H satisfy

κ = O(Nt) and s = O(1).
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(2) Let ε→ 0 and take τ = O(h2). Then the time complexity of the IMEX scheme is

CIMEX = O(N3
x) = O(δ−3), QIMEX = O(N2

x logNx) = O(δ−2 log(1/δ)).

Proof. 1) We first bound |λ|max. The coefficient matrix of (5.7) is L̃IMEX = (lij). For convenience,

we omit the subscript. Denote the order by n. Let µ be the eigenvalue of L̃L̃T and define

Ri =
n∑
j=1

|lij |, Cj =
n∑
i=1

|lij |.

We have µ ≤ maxij RiCj since ‖L̃‖2 ≤ ‖L̃‖1‖L̃‖∞. A direct calculation shows that the possible

values of Ri are

a1 = 1, a2 = 2, a3 = 2 + β, a4 = %νβ/2 + %γ,

a5 = %νβ + %γ, a6 = (%ν + %)β + %+ %γ.

By the definition of the notations,

% =
ε

1 + ε
< 1, %ν + % =

1

1 + ε
< 1, %γ =

τ + ε

1 + ε
< 1,

which implies

ri ≤ a3 = 2 + β, i ≥ 1.

Similar calculation shows that the possible values of Cj are

b1 = %γ, b2 = 1 + %νβ/2, b3 = 1 + %νβ, b4 = β + %γ + %,

b5 = 2 + (%ν + %)β, b6 = %+ %γ + (1− %)β/2, b7 = 2 + (%+ %ν − 1)β/2.

Obviously,

Cj ≤ 2 + β, j ≥ 1.

Combining the estimates of Ri and Cj , we have µ ≤ (2 + β)2, and hence |λ|max ≤ 2 + β.

2) We first briefly explain the idea of bounding |λ|min: Let Lε be the coefficient matrix and

Lε = L0 + E, where L0 is the coefficient matrix with ε = 0. By the Weyl’s inequality in Lemma

5.2, it suffices to determine the lower bound of |λ(L0)|min and the upper bound of ‖E‖.
For this reason, we first let ε = 0 and for convenience assume that L̃ij has only three row or

column blocks. Let L̃ = I + E, where

E =


O O O O O O

−B O O A O O

O −B O O A O

A O O −dI O O

O A O O −dI O

O O A O O −dI

, d = 1− τ.

We now estimate α := ‖E‖ = λmax(EET )1/2. A direct manipulation gives

EET =


O O

BBT +AAT −BAT − dA O

BBT +AAT O −BAT − dA O

O −ABT − dAT AAT + d2I

O −ABT − dAT AAT + d2I

O AAT + d2I

 .
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It is apparent that the eigenvalues of AAT + d2I are the ones of EET , given as

d2 + λ(AAT ) = d2 − λ(A2).

Notice that the eigenvalues of Mh = tril(−1, 0, 1) are zero or pure imaginary, thus −λ(M2
h) ≥ 0.

One can check that 8h2 < |λ(M2
h)| < 4. Since A = β

2Mh and d = 1− τ ,

(1− τ)2 + 2β2h2 < d2 + λ(AAT ) < (1− τ)2 + β2.

It remains to consider the middle part of EET , i.e.,

ẼẼT =

 BBT +AAT −BAT − dA
BBT +AAT −BAT − dA

−ABT − dAT AAT + d2I

−ABT − dAT AAT + d2I

 ,
where,

Ẽ =

 −B A

−B A

A −dI
A −dI

 .
Let

Ê =

 −I −I
I

I


 −B A

−B A

A −dI
A −dI

 =

 B −A
B −A

A −dI
A −dI

 .
Then Ê is symmetric and ‖Ẽ‖ = ‖Ê‖ since the orthogonal transformations do not change the

singular values. The matrix Ê can be decomposed as Ê = I + β
2Ch with

Ch =


Lh −Mh

Lh −Mh

Mh −d̂I
Mh −d̂I

 , d̂ =
2(2− τ)

β

consisting of two basic matrices Lh and Mh given in (5.4). The matrix Ch can be diagonalized

and has real eigenvalues. In fact, Ch is negative definite. By definition, for any x 6= 0 we write it

as x = [x1;x2;x3;x4]. The Cauchy-Schwarz inequality yields

xTChx = xT1 Lhx1 + xT2 Lhx2 + 2xT3 Mhx1 + 2xT4 Mhx2 − d̂xT3 x3 − d̂xT4 x4

≤ xT1 (I + Lh)x1 + xT2 (I + Lh)x2 − xT3 M
2
hx3 − xT4 M

2
hx4 − d̂xT3 x3 − d̂xT4 x4

≤
(

1 + λmax(Lh) + λmax(−M2
h)− d̂

)
xTx.

Obviously,

1 + λmax(Lh)xTx + λmax(−M2
h)− d̂ < 5− d̂− 8h2 = − 4

ιh
+ 2h− 8h2 + 5,

which shows that when β = ιh ≤ 1/2 and h ≤ 1, the eigenvalues of Ch are less than zero. Hence,

λ(Ê) = λ(I +
β

2
Ch) < −1 +

5

2
ιh+ ιh2 − 4ιh3.

29



By the Rayleigh quotient theorem [21] and noting that (Lh)ii = −2 (i ≥ 1),

λmin(Ch) ≤ min
i

(Ch)ii = min{−2,−d̂} = −d̂,

and hence λ(Ê) ≥ −1 + ιh2. Combining the above equations, we then obtain |λ(Ê)| ≤ 1− ιh2.
A simple calculation shows that for h < 1 it holds 1− ιh2 ≤

√
(1− τ)2 + β2, where β = ιh ≤

1/2. Summing up the previous analysis, we get α ≤
√

(1− τ)2 + β2, which in turn gives

1− α > 1− (1− τ)2 − β2

1 +
√

(1− τ)2 + β2
=

(1− 2ι)h2 − ι2h4

1 +
√

(1− τ)2 + β2

=
(1− ι)2h2 + ι2h2(1− h2)

1 +
√

(1− τ)2 + β2
≥ h2

8
.

The desired estimate is obtained by using Lemma 5.1.

3) For ε > 0, let L̃0 be the matrix corresponding to ε = 0 and denote by σ̃i the singular values.

Let E = L̃− L̃0 = (Eij)2×2, where E11 = E12 = O, and

E21 =


(%ν − 1)A

%A (%ν − 1)A
. . .

. . .

%A (%ν − 1)A

 ,

E22 =


(%γ − τ)I

−%B (%γ − τ)I
. . .

. . .

−%B (%γ − τ)I

 .

By Lemma 5.2, |σi − σ̃i| ≤ ‖E‖, where σi are the singular values of L̃. Let n = Nx − 1. A direct

calculation gives

Ri(A) = Ci(A) =


1
2β, i = 1, n

β, i = 2, · · · , n− 1
, Ri(B) = Ci(B) =

 1− 1
2β, i = 1, n

1, i = 2, · · · , n− 1
.

It follows from Lemma 4.1 that

‖E‖ ≤ (%+ |1− %ν|)Rmax(A) + (%Rmax(B) + |%γ − τ |)

=
( δ

1 + δ
+

2δ

1 + δ

)
β +

( δ

1 + δ
+

δ

1 + δ
(1− τ)

)
= (3β + 2− τ)

ε

1 + ε
,

which naturally leads to the estimate for |λ|min.

4) Now we analyze the time complexity. The classical treatment is to iteratively solve (5.5),

i.e., −Bun + un+1 + Avn = fn+1,

−Bvn + γvn+1 + Aun + νAun+1 = gn+1.
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Given un, vn and fn+1, let nu = Nx−1. Then the number of fundamental operations in obtaining

un+1 is O(nusA + nusB) = O(Nx). With un+1, we can compute vn+1 explicitly from the second

equation, and the number of basic operations is O(2nusA + nsB) = O(Nx). That is, the time

complexity of each iteration step is O(Nx), and thus the time complexity after Nt iterations is

CIMEX = O(NtNx) = O(N3
x),

where τ = O(h2) is used in the last step.

For the quantum treatment, by the estimates of eigenvalues, the condition number κ =

O(h−2) = O(N2
x). Plugging in (2.3) yields

QIMEX = O(N2
x log(1/δ)) = O(N2

x logNx),

as required.

The estimate of the minimum eigenvalue is optimal, and the best choice of α in the proof is

α =
√

(1− τ)2 + β2. Let the mesh size be chosen uniformly in [0.05, 0.1] with five points. The time

step is taken as τ = h2, and the scaling parameter is ε = 10−8. In Fig. 2, we display the estimated

and true values of the minimum eigenvalue, where σL = 1−α is the estimated value, which is close

to the true value σmin and always smaller than the true value. It is obvious that both values are

second order with respect to h.
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Fig. 2: The estimated value σL and the true value σmin of the minimum singular value for the

IMEX scheme

5.2.2 Diffusive relaxation scheme

We now consider the diffusive relaxation scheme (5.11).

Theorem 5.4. Let β = τ/h ≤ 1 and τ, h ≤ 1. The eigenvalue of H for the reformulated diffusive

relaxation scheme (5.12) is denoted by λ.

(1) If τ/h2 ≤ 4, then for ε ≥ 0 there holds

|λ|max ≤ 5 + α, |λ|min ≥
τ

4
− α,

where

α =
ε

τ + ε

(1 + τ

τ

β2

2
+
β

τ
+ (1 + τ)(β − β2

2
) + τ

)
.
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Hence for ε→ 0 the condition number and the sparsity of H satisfy

κ = O(Nt) and s = O(1).

(2) If taking τ = O(h2), then the time complexity of the diffusive relaxation scheme is

Crelaxation = O(N3
x) = O(δ−3), Qrelaxation = O(N2

x logNx) = O(δ−2 log(1/δ)).

Proof. (1) For simplicity, we omit the subscript “relaxation” and denote Lε and L to be the

reformulated coefficient matrix in (5.12) with ε ≥ 0 and ε = 0, respectively. Let Lε = L + E. By

the Weyl’s inequality in Lemma 5.2, it suffices to bound σ(L) and ‖E‖, where

L =

[
L11 O

L21 I

]
=



I O

−B1 I O

. . .
. . .

. . .

−B1 I O

O I

B2 O I

. . .
. . .

. . .

B2 O I


,

with B1 = B + τ−1A2 and B2 = τA + BA since ν/γ → τ−1 as ε→ 0.

Step 1: When β ≤ 1, a direct calculation gives

Ri(B2) = Ci(B2) =


(τ + (1− β))β2 + β2

2 , i = 1, n,

(τ + (1− β))β + β2

4 , i = 2, n− 1,

(τ + (1− β))β + β2

2 , i = 3, · · · , n− 2,

hence

‖B2‖ ≤ (τ + (1− β))β +
β2

2
≤ 3. (5.20)

When τ/h2 ≤ 4, one has 0 ≤ 1− β2

4τ = 1− τ
4h2
≤ 1. A similar calculation gives

Ri(B1) = Ci(B1) =


1− 1

2β, i = 1, n,

1− β2

4τ , i = 2, n− 1,

1, i = 3, · · · , n− 2,

(5.21)

and hence

‖B1‖ ≤ 1, ‖L‖ ≤ 5.

Step 2: It is obvious that[
L11 O

L21 I

][
I O

−L21 I

]
=

[
L11

I

]
or simply written as LP = L̂.

For any two matrices A and B, there holds σmin(AB) ≤ σmin(A)‖B‖ (see Eq. (2.8) in [43]), which

together with the previous equation gives

σmin(L) ≥ σmin(L̂)/‖P ‖ ≥ σmin(L11)/‖P ‖. (5.22)
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One easily finds that

‖P ‖ ≤ 1 + ‖B2‖ < 4,

yielding

σmin(L) ≥ σmin(L11)/4. (5.23)

Therefore it suffices to bound σmin(L11).

Step 3: Let D = L11L
T
11. Noting that B1 is symmetric, one has

D =


I −B1

−B1 I + B2
1

. . .

. . .
. . . −B1

−B1 I + B2
1

 .
Let B1 be similar to the diagonal matrix Λ consisting of the eigenvalues. Then,

D ∼


I −Λ

−Λ I + Λ2 . . .

. . .
. . . −Λ

−Λ I + Λ2

 =: D̂.

We point out that the Gershgorin circle theorem only gives a trivial lower bound 0. The matrix D̂

has the same structure of D. Hence it can be written as D̂ = CCT , where

C =



I

−Λ I
. . .

. . .

. . .
. . .

−Λ I


, C−1 =



I

Λ I

Λ2 . . .
. . .

...
. . .

. . .
. . .

ΛNt−1 · · · Λ2 Λ I


.

By the definition of the 2-norm,

1

λmin(D)
=

1

λmin(D̂)
= ‖D̂−1‖ = ‖(CCT )−1‖ ≤ ‖C−1‖2 = σ2max(C−1).

Let d be the maximum eigenvalue of B1. Since B1 is symmetric, d = ‖B1‖ ≤ 1. We obtain from

Lemma 4.1 and the structure of C−1 that

σmax(C−1) ≤ 1 + d+ d2 + · · ·+ dNt−1 ≤ Nt = 1/τ,

which combining (5.23) gives

σmin(L) ≥ τ/4.

Step 4: We now estimate ‖E‖, where

E =



O O

(ν/γ − τ−1)A2 O τ−1/γA O

. . .
. . .

. . .
. . .

(ν/γ − τ−1)A2 O τ−1/γA O

O O

(τν/γ − 1)BA O −τ/γB O

. . .
. . .

. . .
. . .

(τν/γ − 1)BA O −τ/γB O


, (5.24)
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with
1

τ
− ν

γ
=

ε

τ + ε

1 + τ

τ
,

1

γ
=

ε

τ + ε
, 1− τν

γ
=

ε

τ + ε
(1 + τ),

τ

γ
=

ε

τ + ε
τ.

When β ≤ 1, one easily obtains

Rmax(A2) =
β2

2
, Rmax(A) = β, Rmax(BA) = β − β2

2
, Rmax(B) = 1.

Applying the Gershgorin circle theorem to get

‖E‖ ≤
(1

τ
− ν

γ

)
Rmax(A2) +

τ−1

γ
Rmax(A) +

(
1− τν

γ

)
Rmax(BA) +

τ

γ
Rmax(B)

≤ ε

τ + ε

(1 + τ

τ

β2

2
+
β

τ
+ (1 + τ)(β − β2

2
) + τ

)
.

The desired estimate follows by applying the Weyl’s inequality in Lemma 5.2.

(2) The time complexity of the diffusive relaxation scheme can be analyzed in the same manner

as in Theorem 5.3.

5.2.3 The penalized diffusive relaxation scheme

Theorem 5.5. Let β = τ/h ≤ 1/2. Denote by λ the eigenvalue of H for the penalized diffusive

relaxation scheme (5.19).

(1) For every ε ≥ 0

|λ|max ≤ 4 + 2α, |λ|min ≥
τ

3
− α,

where

α =
ε

τ + ε

2 + 4τ

τ
.

Hence for ε→ 0 the condition number and the sparsity of H satisfy

κ = O(Nt) and s = O(1).

(2) Let ε → 0. If taking τ = O(h) and assuming that h is sufficiently small, then the time

complexity of the penalized diffusive relaxation scheme is

Cpenalized = O(N2.5
x logNx) = O(δ−2.5 log(1/δ)), Qpenalized = O(Nx logNx) = O(δ−1 log(1/δ)).

If τ = O(h2), then

Cpenalized = O(N3
x logNx) = O(δ−3 log(1/δ)), Qpenalized = O(N2

x logNx) = O(δ−2 log(1/δ)).

Proof. (1) Since the problem is linear, we can simply apply the discrete Fourier transform to

characterize the singular values of the coefficient matrix Lpenalized in (5.19). For simplicity, we omit

the subscript.

Step 1: To this end, we introduce the following expressions:

unj = ûneijkh, vnj = v̂neijkh, u∗j = û∗eijkh, v∗j = v̂∗eijkh, (5.25)

where k represents the frequency variable and i =
√
−1. Plugging them in (5.15)-(5.16), one obtains
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Relaxation step: 
û∗−ûn
τ = (e−ikh−2+eikh)û∗

h2
,

v̂∗−v̂n
τ = −1

ε

(
v̂∗ + (1− ε) (e

ikh−e−ikh)û∗

2h

)
.

Convection step:
ûn+1−û∗

τ + (eikh−e−ikh)v̂∗

2h − h
2
(e−ikh−2+eikh)û∗

h2
+ (e−ikh−2+eikh)û∗

h2
= 0,

v̂n+1−v̂∗
τ + (eikh−e−ikh)û∗

2h − h
2
(e−ikh−2+eikh)v̂∗

h2
= 0.

Collecting the above system, one has ûn+1 + c1,εû
n + c2,εv̂

n = 0

v̂n+1 + d1,εv̂
n + d2,εû

n = 0
, n = 0, 1, · · · , Nt − 1,

where

c1,ε =
1

1 + 4β̃ sin2 kh
2

(
− 1− 4β̃ sin2 kh

2
+ (2β +

β2ν

γ
) sin2(kh)

)
,

c2,ε = i
β

γ
sin(kh), d1,ε =

2β

γ
sin2 kh

2
,

d2,ε = i
1

1 + 4β̃ sin2 kh
2

(
β − 2β2ν

γ
sin2(kh)

)
sin(kh),

and

γ = 1 + τ/ε, ν = (1− ε)/ε.

The resulting coefficient matrix corresponding to L can be written as

L̂ε =

[
L̂11,ε L̂12,ε

L̂21,ε L̂22,ε

]
=



1 0

c1,ε 1 c2,ε 0

. . .
. . .

. . .
. . .

c1,ε 1 c2,ε 0

0 1

d2,ε 0 d1,ε 1

. . .
. . .

. . .
. . .

d2,ε 0 d1,ε 1


. (5.26)

Then the problem is reduced to estimate the singular values of L̂ε.

Step 2: As in the proof of Theorem 5.4, we first consider the simple case of ε = 0. For

simplicity, we omit the subscript 0 (ε = 0) in the following. In this case,

c1 =
1

1 + 4β̃ sin2 kh
2

(
− 1− 4β̃ sin2 kh

2
+ (2β + β̃) sin2(kh)

)
,

c2 = d1 = 0,

d2 = i
1

1 + 4β̃ sin2 kh
2

(
β − 2β̃ sin2(kh)

)
sin(kh).

When β ≤ 1, one has

|d2| ≤
β + 2β̃ sin2(kh)

1 + 4β̃ sin2 kh
2

=
β + 8β̃ sin2 kh

2 cos2 kh2
1 + 4β̃ sin2 kh

2

≤
1 + 8β̃ sin2 kh

2

1 + 4β̃ sin2 kh
2

≤ 2.
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In view of the inequality (5.22),

σmin(L̂) ≥ σmin(L̂11)/3.

Thus it suffices to bound σmin(L̂11).

Step 3: By definition, σmin(L̂11) = 1/σmax(L̂−111 ), where

L̂−111 =



1

−c1 1

(−c1)2
. . .

. . .
...

. . .
. . .

. . .

(−c1)Nt−1 · · · (−c1)2 −c1 1


.

By Lemma 4.1,

σmax(L̂−111 ) ≤ 1 + |c1|+ · · ·+ |c1|Nt−1.

If β ≤ 1/2, then

(2β + β̃) sin2(kh)

1 + 4β̃ sin2 kh
2

=
2β sin2(kh) + 4β̃ sin2 kh

2 cos2 kh2
1 + 4β̃ sin2 kh

2

≤ 1,

which yields

|c1| =

∣∣∣∣∣1− (2β + β̃) sin2(kh)

1 + 4β̃ sin2 kh
2

∣∣∣∣∣ ≤ 1

and hence

σmax(L̂−111 ) ≤ Nt = 1/τ.

Thus,

σmin(L̂) ≥ τ/3.

Step 4: Let E = L̂ε − L̂, where

E =



0 0

c̃1 0 c̃2 0

. . .
. . .

. . .
. . .

c̃1 0 c̃2 0

0 0

d̃2 0 d̃1 0

. . .
. . .

. . .
. . .

d̃2 0 d̃1 0


,

with

c̃1 = c1,ε − c1 =
β2

1 + 4β̃ sin2 kh
2

(ν
γ
− 1

τ

)
sin2(kh),

c̃2 = c2,ε − c2 = i
β

γ
sin(kh),

d̃1 = d1,ε − d1 =
2β

γ
sin2 kh

2
,

d̃2 = d2,ε − c2 = i
2β2

1 + 4β̃ sin2 kh
2

(1

τ
− ν

γ

)
sin2(kh) sin(kh).
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Then,

‖E‖ ≤ |c̃1|+ |c̃2|+ |d̃1|+ |d̃2| ≤ 2
( ε

τ + ε

1 + τ

τ
+

ε

τ + ε

)
=

ε

τ + ε

2 + 4τ

τ
.

Step 5: According to the above calculations,

σmax(L̂ε) = ‖L̂ε‖ ≤ 1 + |c1,ε|+ |c2,ε|+ |d1,ε|+ |d2,ε|

≤ 1 + |c̃1|+ |c̃2|+ |d̃1|+ |d̃2|+ |c1|+ |c2|+ |d1|+ |d2|

≤ ε

τ + ε

2 + 4τ

τ
+ 4.

The desired estimates follow from the Weyl’s inequality.

(2) Now we consider the time complexity. In what follows, we set τ = O(h). The first step of

the penalized diffusive relaxation scheme is to solve B̃u∗ = un + β̃bn,

γv∗ = vn − νAu∗ − ν β2 b̃
n.

The matrix B̃ is positive definite with order nu = Nx − 1. Let β̃ = τ/h2 ∼ h−1. The condition

number of B̃ is then given by

κ =
1 + β̃π2

1 + 8β̃h2
= O(h−1) = O(Nx).

The time complexity of obtaining u∗ using the CG method is

O(nus̃
√
κ log(1/δ)) = O(N1.5

x logNx),

where s̃ = 3 is the sparsity number of B̃. And the time complexity of obtaining v∗ is O(Nx). Thus

the time complexity of the first step is O(N1.5
x logNx).

The second step is to solveun+1 = (B + B̃ − I)u∗ −Av∗ + β
2 (bn − c̃n)− β̃bn,

vn+1 = Bv∗ −Au∗ + β
2 (cn − b̃n).

It is easy to know that its time complexity is O(Nx). In summary, the time complexity of each

iteration is O(N1.5
x logNx), thus the total running time is

Cpenalized = O(NtN
1.5
x logNx) = O(N2.5

x logNx),

where τ = O(h) is used.

We now consider the quantum treatment. From the estimates of eigenvalues, the condition

number κ = O(τ−1) = O(Nt). Plugging them in (2.3), one obtains

Qpenalized = O(Nt log(1/δ)) = O(Nx logNx),

where τ = O(h) is used in the last step.

The result for τ = O(h2) can be proved in similar way.

As observed, all three quantum methods have an acceleration advantage when ε→ 0.
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5.3 Time complexity of the explicit scheme

The explicit scheme is
un+1
j −unj
τ +

vnj+1−vnj−1

2h − h
2
√
ε

unj−1−2unj +unj+1

h2
= 0,

vn+1
j −vnj
τ +

unj+1−unj−1

2hε − h
2
√
ε

vnj−1−2vnj +vnj+1

h2
= −1

εv
n
j ,

(5.27)

which is written in vector as
un+1−un

τ + 1
2hMhv

n − 1
2h
√
ε
Lhu

n − 1
2h(bn/

√
ε− c̃n) = 0,

vn+1−vn

τ + 1
2hεMhu

n − 1
2h
√
ε
Lhv

n + 1
2h(b̃n/ε− cn/

√
ε) = −1

εv
n.

Let β = τ/h. One has −Bun + un+1 + Avn = fn+1,

−(B − τ/εI)vn + vn+1 + ε−1Aun = gn+1,
(5.28)

where

A =
β

2
Mh, B = I +

β

2
√
ε
Lh,

fn+1 =
β

2
(bn/
√
ε− c̃n), gn+1 =

β

2
(cn/
√
ε− b̃n/ε).

Introduce the following notations

U = [u1; · · · ;uNt ], V = [v1; · · · ;vNt ], S = [U ;V ]. (5.29)

Then one obtains the linear system

LexplicitS = Fexplicit, (5.30)

where Lexplicit = (Lij)2×2, Fexplicit = [F1;F2], and

L11 =


I

−B I
. . .

. . .

−B I

 , L12 =


O

A O
. . .

. . .

A O

 ,

L21 =


O

ε−1A O
. . .

. . .

ε−1A O

 , L22 =


I

−(B − τ/εI) I
. . .

. . .

−(B − τ/εI) I

 ,

F1 =


f1 + Bu0 −Av0

f2

...

fNt

 , F2 =


g1 − ε−1Au0 + (B − τ/εI)v0

g2

...

gNt

 .
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Theorem 5.6. Let τ = cp
√
εh and h =

√
εδ, where 1/

√
111 ≤ cp ≤ 2/(2 + δ) is a constant and

δ ≤ 1 is the error bound. Denote H to be the Hermitian matrix corresponding to Lexplicit. Then

the condition number and the sparsity of H satisfy

κ = O(Nt) = O((εδ)−1) and s = O(1).

The explicit scheme can be solved with time complexity

Cexplicit = O(ε−1.5δ−2), Qexplicit = O(ε−1.5δ−1 log(1/δ))

for the classical treatment and the quantum treatment, respectively.

Proof. Since the problem is linear, we can simply apply the discrete Fourier transform to charac-

terize the singular values of the coefficient matrix Lexplicit as done in the proof of Theorem 5.5.

(1) Considering the amplification factor ε−1 in L21, we first reformulate the system (5.30) as[
L11

√
ε
−1

L12
√
εL21 L22

][√
ε
−1

U

V

]
=

[√
ε
−1

F1

F2

]
,

with the coefficient matrix denoted by L̃explicit in the following. This means we consider a linear

system with new variables ũ = u/
√
ε and ṽ = v. Note that

√
ε
−1

L12 =
√
εL21.

(2) Plugging the expressions of (5.25) in (5.27), one has
ûn+1−ûn

τ + (eikh−e−ikh)v̂n

2h − h
2
√
ε
(e−ikh−2+eikh)ûn

h2
= 0,

v̂n+1−v̂n
τ + (eikh−e−ikh)ûn

2hε − h
2
√
ε
(e−ikh−2+eikh)v̂n

h2
= −1

ε v̂
n,

which can be written as ûn+1 − c1ûn − c2v̂n = 0

v̂n+1 − d1v̂n − d2ûn = 0
, n = 0, 1, · · · , Nt − 1

or [
ûn+1

v̂n+1

]
=

[
c1 c2

d2 d1

][
ûn

v̂n

]
=: A

[
ûn

v̂n

]
, (5.31)

where

c1 = 1− 2β√
ε

sin2 kh

2
, c2 = −iβ sin(kh), d1 = 1− 2β√

ε
sin2 kh

2
− τ

ε
, d2 = −i

β

ε
sin(kh).

For the reformulated system, we should introduce new variables ũ = û/
√
ε and ṽ = v̂ and rewrite

(5.31) as [
ũn+1

ṽn+1

]
=

[
c1 c2/

√
ε

√
εd2 d1

][
ũn

ṽn

]
=

[
c1 c̃2

d̃2 d1

][
ũn

ṽn

]
=: Ã

[
ûn

v̂n

]
, (5.32)

where c̃2 = d̃2 = −iβ sin(kh)/
√
ε. Let a = | sin(kh/2)| ∈ [0, 1]. One has

Ã =

[
1− 2β/

√
εa2 ±i2β/

√
εa
√

1− a2

±i2β/
√
εa
√

1− a2 1− 2β/
√
εa2 − τ/ε

]
.
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(3) The truncation error of the explicit scheme may be given by O(τ + h/
√
ε), so one can set

h =
√
εδ, where δ is the error bound. Observing the term τ/ε, we take τ = cp

√
εh or β = τ/h =

cp
√
ε, where cp is a constant to be determined, hence

Ã =

[
1− 2cpa

2 ±i2cpa
√

1− a2

±i2cpa
√

1− a2 1− 2cpa
2 − cpδ

]
.

One can verify that ‖Ã‖ ≤ 1 when cp and δ satisfy the given condition.

The argument is as follows. Let det(µI − ÃÃ†) =: µ2− bµ− c = 0 and denote µ1 and µ2 to be

the two roots. A direct calculation gives

ÃÃ† =

[
4a2c2p − 4a2cp + 1 −iδ2a

√
1− a2c2p

−iδ2a
√

1− a2c2p (4a2 + 4a2δ + δ2)c2p − 2(2a2 + δ)cp + 1

]
,

and

b = (8a2 + 4a2δ + δ2)c2p − (8a2 + 2δ)cp + 2,

−c = 4(−a4δ2 + 4a4δ + 4a4 + 2a2δ2)c4p − 4(4a4δ + 8a4 − a2δ2 + 2a2δ)c3p

+ (16a4 + 12a2δ + 8a2 + δ2)c2p − (8a2 + 2δ)cp + 1.

Recall the simple fact:

|µi| ≤ 1 (i = 1, 2) ⇐⇒ |b| ≤ 1− c, |c| ≤ 1.

We claim that the right-hand side holds if b and −c are two monotonically decreasing functions on

[0, 1] with respect to the variable a:

• If −c is decreasing, then

−c ≤ −c(0) = (1− δcp)2 ≤ 1,

and

−c ≥ −c(1) = (4c4p + 4c3p + c2p)δ
2 + (16c4p − 24c3p + 12c2p − 2cp)δ

+ 16c4p − 32c3p + 24c2p − 8cp + 1 := d2δ
2 + d1δ + d0 =: f(δ).

Noting that

fmin(δ) = f
(
− d1

2d2

)
=

4d0d2 − d21
4d2

=
8c3p(2cp − 1)4

d2
≥ 0,

we obtain −c ≥ −c(1) ≥ 0. That is, |c| = −c ≤ 1.

• If b is decreasing, then

b ≥ b(1) = c2pδ
2 + (4− 2cp)δ + 2(1− 2cp)

2 ≥ 0,

b ≤ b(0) = 1 + (1− δcp)2.
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• With the above estimates, one further gets

|b|+ c = b+ c ≤ b(0) + c(1)

≤ 1 + (1− δcp)2 − 16c2p(c
2
p − 2cp + 8)− (4cp − 1)2

= 1− (112− δ2)c2p + 1− 2δcp − 16c2p(1− cp)2 − (4cp − 1)2.

Obviously, |b|+ c ≤ 1 if −(112− δ2)c2p + 1 ≤ 0 or cp ≥ 1/
√

112− δ2 ≥ 1/
√

111.

It remains to verify that b′(a) ≤ 0 and−c′(a) ≤ 0. From b′(a) ≤ 0, one easily gets cp ≤ 2/(2+δ).

A direct calculation gives

−c′(a) = 16(−a3δ2 + 4a3δ + 4a3 + aδ2)c4p + 8(−8a3δ − 16a3 − aδ2 − 2aδ)c3p

+ 8(8a3 + 3aδ + 2a)c2p − 16acp.

From −c′(a) ≤ 0 one has

2(−c2pδ2 − 4cp(1− cp)δ + 2c2p − 8cp + 4)cpa
2

≤ 16 + (−2c3p + c2p)δ
2 + (2c2p − 3cp)δ − 2cp. (5.33)

Let

f(δ) = 2(−c2pδ2 − 4cp(1− cp)δ + 2c2p − 8cp + 4)cpa
2,

g(δ) = 16 + (−2c3p + c2p)δ
2 + (2c2p − 3cp)δ − 2cp.

One easily finds that f ′(δ) ≤ 0 and g′(δ) ≤ 0 when δ ≤ 1 and cp ≤ 1. Hence f(δ) ≤ f(0) ≤
2cp(cp − 2) ≤ 0 and g(δ) ≥ g(1) = 16− 5cp + 2c3p + c2p ≥ 0. Therefore, (5.33) is trivial when δ ≤ 1

and cp ≤ 1.

(4) We now bound the singular values of the reformulated matrix L̃explicit. The coefficient

matrix L̃ corresponding to (5.32) has the same form of (5.26). It is obvious that σmax(L̃) . 1. For

the smallest singular value, by definition, σmin(L̃) = 1/‖L̃−1‖, so it suffices to give an upper bound

of ‖L̃−1‖. Noting that

‖L̃−1‖ = max
‖b̃‖≤1

‖L̃−1b̃‖, b̃ = [f̃ ; g̃],

where f̃ = [f̃1, · · · , f̃Nt ]T and g̃ = [g̃1, · · · , g̃Nt ]T , one can determine the upper bound of ‖L̃−1b̃‖
by bounding the solution to the following linear system[

ũn+1

ṽn+1

]
=

[
c1 c2/

√
ε

√
εd2 d1

][
ũn

ṽn

]
+

[
f̃n

g̃n

]
= Ã

[
ũn

ṽn

]
+

[
f̃n

g̃n

]
.

Suppose the maximum is attained at b̃. Let w̃n = [ũn, ṽn]T and b̃n = [f̃n, g̃n]T . One has w̃n+1 =

Aw̃n + b̃n, hence

‖w̃n‖ ≤ ‖Ã‖n‖w̃0‖+ ‖Ã‖n−1‖b̃0‖+ ‖Ã‖n−2‖b̃1‖+ · · ·+ ‖b̃n−1‖.

This gives ‖w̃n‖ . ‖w̃0‖ + 1 under the condition of the spatial and temporal steps since ‖Ã‖ ≤ 1

and ‖b̃‖ ≤ 1. We then obtain

‖L̃−1‖ = ‖L̃−1b̃‖ = ‖w̃‖ . Nt(‖w̃0‖+ 1),
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where w̃ = [w̃1; · · · ; w̃Nt ], and thus σmin(L̃) & 1/Nt.

(5) From ‖w̃n‖ . ‖w̃0‖+ 1 we get

|ûn| ≤
√
ε‖w̃n‖ .

√
ε(‖w̃0‖+ 1) ≤ |û0|+

√
ε(|v̂0|+ 1),

which implies the stability for u. When performing the similar analysis below Eq. (5.12), we may

also deduce the stability for v, hence ‖An‖ ≤ C for some constant C independent of τ and h, where

A is given by (5.31). Therefore, the analysis in the last step is also valid for the original linear

system (5.30), which implies σmin(H) & 1/Nt. It is obvious that σmax(H) . 1/
√
ε. We therefore

obtain κ(H) . O(Nt/
√
ε) = O(ε−1.5δ−1).

(6) For the classical method, it is easy to get that the time complexity at each iteration is

O(Nx), and hence the total run time is

Cexplicit = O(NtNx) = O((ε−1.5δ−2).

For the quantum treatment, plugging the estimate of the condition number in (2.3), one has

Qexplicit = O(κ log(1/δ)) = O(ε−1.5δ−1 log(1/δ)).

This completes the proof.

As one can see, for both classical and quantum algorithms, the explicit methods have time

complexity that depends on ε.

6 Conclusions

We studied the time complexities of finite difference methods for solving several time-dependent

ODE and PDE problems, and in particular, a multiscale hyperbolic systems, in the setting of

quantum computing, The detailed results are summarized in Tab. 1 and Tab. 2 for comparison.

There have been large strides in the development of QLSAs that show computational advan-

tages over classical algorithms in certain regimes and under certain assumptions. To this end, it

is natural to numerically solve the PDEs by combining the classical discretizations with QLSAs,

especially for high-dimensional problems. This has been widely studied in recent years.

In this paper, we address issues in quantum algorithms for ODEs and high dimensional PDEs

relevant for the concrete deployment of these algorithms. Firstly, we are interested in whether

explicit–which is conditionally stable–and implcit–which are unconditionally stable–make any dif-

ferences when one uses quantum algorithms to solve these equations. For the heat equation we find

that the different discretizations (forward Euler and Crank-Nicolson) don’t make any difference

when counting the cost of the quantum algorithms. We also present a unified analysis of the time

complexity for the upwind discretization of the first order hyperbolic equation, which is a popular

numerical scheme for such systems and the analysis may be generalized to other difference schemes,

for example, the Lax-Friedrichs scheme and their high order approximations [30].

In addition to high-dimensional problems, the main focus of the paper is on quantum ad-

vantage of efficient multiscale methods for multiscale physical problems, which is important for
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Tab. 1: Time complexities of classical and quantum difference methods for the simple ODE and

the high-dimensional PDEs

Equation Classical difference methods Quantum difference methods

ODE
Forward Euler C-N Forward Euler C-N

O(N2
t ) O(Nt) O(N2

t logNt) O(Nt logNt)

Heat equation
Explicit C-N Explicit C-N

O(d2Nd+2
x ) O(d2Nd+0.5

x ) O(dN2
x log(N2

x/d)) O(dN2
x log(N2

x/d))

Hyperbolic equation O(d2Nd+1
x ) O(d2Nx log(Nx/d))

Tab. 2: Time complexities of classical and quantum difference methods for the multiscale

problem

Equation Classical difference methods Quantum difference methods

Multiscale telegraph

equation

IMEX (τ ∼ h2) O(δ−3) O(δ−2 log δ−1)

Relaxation (τ ∼ h2) O(δ−3) O(δ−2 log δ−1)

Penalized (τ ∼ h2) O(δ−3 log δ−1) O(δ−2 log δ−1)

Penalized (τ ∼ h) O(δ−2.5 log δ−1) O(δ−1 log δ−1)

Explicit (τ ∼
√
εh) O(ε−1.5δ−2) O(ε−1.5δ−1 log δ−1)

ε is the relaxation time or the scaling parameter, and δ is the error bound.

applications not yet studied in the quantum computing community. We discuss in detail of the

quantum difference methods for solving a prototype multiscale problem and our results show that

the Asymptotic-Preserving schemes, a popular multiscale framework for multiscale problems [29]

– are equally important in quantum computing since they allow the computational costs for quan-

tum algorithms to be independent of the small physical scaling parameters. This also suggests that

one should take full advantage of state-of-the-art multiscale classical algorithms when designing

quantum algorithms for multiscale PDEs.

The approach and analysis in this paper can be extended to other more complex problems,

such as the multiscale time-dependent transport equations in [27].
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