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Abstract

In this paper, a simple fifth-order finite difference Hermite WENO (HWENO)
scheme combined with limiter is proposed for one- and two- dimensional hyper-
bolic conservation laws. The fluxes in the governing equation are approximated
by the nonlinear HWENO reconstruction which is the combination of a quin-
tic polynomial with two quadratic polynomials, where the linear weights can be
artificial positive numbers only if the sum equals one. And other fluxes in the
derivative equations are approximated by high-degree polynomials directly. For
the purpose of controlling spurious oscillations, an HWENO limiter is applied to
modify the derivatives. Instead of using the modified derivatives both in fluxes
reconstruction and time discretization as in the modified HWENO scheme (J. Sci.
Comput., 85:29, 2020), we only apply the modified derivatives in time discretiza-
tion while remaining the original derivatives in fluxes reconstruction. Comparing
with the modified HWENO scheme, the proposed HWENO scheme is simpler,
more accurate, efficient and higher resolution. In addition, the HWENO scheme
has a more compact spatial reconstructed stencil and greater efficiency than the
classical fifth-order finite difference WENO scheme of Jiang and Shu. Various
benchmark numerical examples are presented to show the fifth-order accuracy,
great efficiency, high resolution and robustness of the proposed HWENO scheme.
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1 Introduction

In this paper, we develop a genuine fifth-order finite difference Hermite weighted es-
sentially non-oscillatory (HWENO) scheme for one- and two- dimensional hyperbolic
conservation laws. Instead of only using the information of the solution in the weighted
essentially non-oscillatory (WENO) scheme, the HWENO scheme uses both the infor-
mation of the solution and its first-order derivatives/moments. The HWENO scheme
gains a more compact stencil in the spatial reconstruction than the WENO scheme on
the same order accuracy. It is well known that the WENO scheme is a particularly
powerful numerical tool for the simulation of hyperbolic conservation laws, which was
first constructed by Liu, Osher and Chan on the basis of essentially non-oscillatory
(ENO) schemes [6, 7] in 1994. Since then, Jiang and Shu developed a fifth-order finite
difference WENO (WENO-JS) scheme [9] in 1996. In [9], the authors gave a general
framework for the definition of smoothness indicators and nonlinear weights which is
widely used in the subsequent advanced WENO schemes, e.g., [1, 3, 4, 8, 10, 23, 27, 28],
and more detailed reviews for ENO and WENO schemes can refer to [17, 18].

The WENO scheme uses the information of the solution in the target cell and its
neighbor cells to obtain high-order accuracy, therefore, a higher order WENO scheme
will lead to the stencil wider. To resolve this problem, Qiu and Shu [15] developed a one-
dimensional fifth-order finite volume HWENO scheme based on both the information
of the solution and its first-order derivative, which only needs the immediate neighbor
values in the spatial reconstruction. Meanwhile, for stability, the different reconstructed
polynomials are constructed to discretize the fluxes in the original governing and the
derivative equations, respectively. However, this method is not enough to maintain
stability and robustness, such as it obtains poor results for the double Mach and the
step forward problems in the later two-dimensional work [16]. Later, Capdeville [2]
developed a finite volume Hermite central WENO scheme. Liu and Qiu [13] developed
a fifth-order finite difference HWENO scheme in one dimension, unfortunately, it only
has the fourth-order accuracy in two dimensions due to the mixed derivatives. Ma and
Wu [14] developed a compact HWENO scheme by solving the derivatives using the
compact difference method. Recently, Zhao et al. [25] developed a genuine fifth-order
modified finite difference HWENO (M-HWENO) scheme in one and two dimensions.
In [25], the authors modified the derivatives of the solution by a high-order Hermite
limiter to control the derivatives near discontinuities and improve the stability of the
scheme, while used one set of stencils in the reconstruction, which is different from
[13, 15, 16]. Li et al. [11] developed a multi-resolution HWENO scheme with unequal
stencils, but the scheme only has the fourth-order accuracy in two dimensions. For
more HWENO schemes, the interested reader can refer to [5, 14, 19, 20, 22, 24, 26] and
the references therein.

In this paper, we develop a simple fifth-order finite difference HWENO scheme com-
bined with limiter (denoted as L-HWENO) for one- and two- dimensional hyperbolic
conservation laws following the idea of the M-HWENO scheme [25]. Instead of using
the modified derivatives both in fluxes reconstruction and time discretization as in
[25], we only apply the modified derivatives in time discretization while remaining the
original derivatives in fluxes reconstruction. The fluxes in the governing equation are
approximated by the nonlinear HWENO reconstruction which is the combination of a
quintic polynomial with two quadratic polynomials, where the linear weights can be ar-
tificial positive numbers only if the sum equals one. And other fluxes are approximated
by high-degree polynomials directly, which leads to the fact that the reconstruction of
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the fluxes for derivative equations is linear. To improve the robustness/stability of
the proposed HWENO scheme, the derivatives are modified by a fifth-order HWENO
limiter, which is the combination of a quartic polynomial with two linear polynomials
using the same technique in the reconstruction.

Comparing with the M-HWENO scheme [25], the proposed L-HWENO scheme has
three main advantages: one is that the modification for derivatives only acts on the
time discretization, which makes there no need to storage the original and modified
derivatives in the computation as in [25]. The second one is that all the fluxes in the
derivative equations can be approximated by high-degree reconstructed polynomials
directly, which significantly simplify the algorithm and improve the computational
efficiency. The last one is that both the HWENO limiter and the HWENO spatial
reconstruction are based on the combination of a high-degree polynomial with two
lower-degree polynomials convexly, which makes the linear weights be any artificial
positive constants (their sum equal to one). It is worth pointing out that the limiter
plays an important role to improve stability and keep high resolution, whereas lacking
this procedure would lead to instability in two dimensions even for a linear problem
(cf. Example 3.9). Meanwhile, different linear weights in the limiter would impact the
resolution near discontinuities, while the linear weights in the spatial reconstruction
have a slight effect (cf. Example 3.7).

For the spatial reconstruction, the proposed L-HWENO scheme uses a more com-
pact stencil than the same order finite difference WENO-JS scheme [9]. To be specific,
the L-HWENO scheme only needs a compact three-point stencil while the WENO-JS
scheme needs a five-point stencil in the reconstructions for achieving fifth-order accu-
racy. Although the L-HWENO scheme needs to solve the derivative equations which
adds extra computational costs into the algorithm, the L-HWENO scheme is more
efficient than the WENO-JS scheme in the sense that the former leads to a smaller
error than the latter for a fixed amount of the CPU time (cf. Section 3). Note that
the efficiency of the M-HWENO scheme [25] and the WENO-JS scheme [9] is neck and
neck.

The organization of the paper is as follows. In Section 2, the detailed implemen-
tation algorithm of the HWENO scheme combined with limiter is presented in one
and two dimensions. In Section 3, various benchmark numerical examples are tested
to show the numerical accuracy, great efficiency, high resolution and robustness of the
proposed scheme. Concluding remarks are given in Section 4.

2 Fifth-order finite difference L-HWENO scheme

In this section, we present a simple fifth-order finite difference HWENO scheme with
limiter (L-HWENO), which combines a high-degree polynomial with two lower-degree
polynomials convexly in the spatial reconstruction and limiter, where the associated
linear weights both can be chosen as artificial positive number with their sum equals
one. Note that the fluxes in the governing equation are approximated by nonlinear
HWENO reconstructions, while other fluxes in the derivative equations are approxi-
mated by high-degree polynomials directly.
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2.1 Fifth-order finite difference HWENO scheme

For the simplicity of algorithm description, we focus on the scalar equation. The exten-
sion to a system of equations is straightforward. We first consider a one-dimensional
scalar hyperbolic conservation laws{

ut + f(u)x = 0,

u(x, 0) = u0(x).
(2.1)

In the finite difference framework, the computing domain is divided by uniform meshes
Ii = [xi− 1

2
, xi+ 1

2
], ∆x = xi+ 1

2
− xi− 1

2
and xi = 1

2
(xi− 1

2
+ xi+ 1

2
) is the center of Ii. To

design an HWENO scheme, we first add the derivative equation of (2.1), having{
ut + f(u)x = 0, u(x, 0) = u0(x),

vt + h(u, v)x = 0, v(x, 0) = v0(x),
(2.2)

where v = ux, h(u, v) = f(u)x = f ′(u)ux = f ′(u)v. Then, its semi-discrete finite
difference HWENO scheme is{

d
dt
ui(t) = − 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
,

d
dt
vi(t) = − 1

∆x

(
ĥi+ 1

2
− ĥi− 1

2

)
,

(2.3)

where f̂i+ 1
2

and ĥi+ 1
2

are the numerical fluxes in the governing equation and the deriva-

tive equation, respectively. For the smooth functions u and v, the scheme (2.3) has
k-th order accuracy if

f(u)x|xi =
1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
+O(∆x)k,

h(u, v)x|xi =
1

∆x

(
ĥi+ 1

2
− ĥi− 1

2

)
+O(∆x)r, r ≥ k − 1.

(2.4)

In terms of [9], the implicit functions φ(x) and ψ(x) are defined as

f(u(x)) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

φ(ξ)dξ, h(u(x), v(x)) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

ψ(ξ)dξ.

Obviously, we have

f(u)x|xi =
1

∆x

(
φ(xi+ 1

2
)− φ(xi− 1

2
)
)
, h(u, v)x|xi =

1

∆x

(
ψ(xi+ 1

2
)− ψ(xi− 1

2
)
)
.

This means that the scheme (2.3) has k-th order accuracy if the numerical fluxes f̂i+ 1
2

and ĥi+ 1
2

satisfy

f̂i+ 1
2

= φ(xi+ 1
2
) +O(∆x)k,

ĥi+ 1
2

= ψ(xi+ 1
2
) +O(∆x)r, r ≥ k − 1.

(2.5)

We now describe the detailed reconstruction procedure for the numerical fluxes f̂i+ 1
2

and ĥi+ 1
2

based on {ui, vi}. For stability, we should split the fluxes f(u) and h(u, v) into
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two parts by considering the upwinding mechanism. Given the points value {ui, vi},
we use the global Lax-Friedrichs splitting:

f±i = f±(ui) =
1

2
(f(ui)± αui), i = 1, ..., Nx,

h±i = h±(ui, vi) =
1

2
(h(ui, vi)± αvi), i = 1, ..., Nx,

where α is defined as max
u
|f ′(u)|. The HWENO procedure is applied to {f±(u), h±(u, v)}

individually with upwind biased stencils to obtain the numerical fluxes f̂±
i+ 1

2

and ĥ±
i+ 1

2

,

and then take f̂i+ 1
2

= f̂+
i+ 1

2

+ f̂−
i+ 1

2

and ĥi+ 1
2

= ĥ+
i+ 1

2

+ ĥ−
i+ 1

2

. In this work, the flux f±
i+ 1

2

is reconstructed as the convex combination (nonlinear weights) of a quintic polynomial
and two quadratic polynomials, while the flux h±

i+ 1
2

is reconstructed by the same quintic

polynomial directly.
Without loss generality, we here only give the detail reconstruction procedure for

f+
i+ 1

2

and h+
i+ 1

2

, while the procedure for the reconstruction of f−
i+ 1

2

and h−
i+ 1

2

is the mirror

symmetric with respect to xi+ 1
2
.

Following the idea of [24, 27] with artificial linear weights, we choose a big stencil
T0 = {xi−1, xi, xi+1} and two small stencils T1 = {xi−1, xi} and T2 = {xi, xi+1}. Using
the Hermite interpolation on T0 of values {ui−1, ui, ui+1, vi−1, vi, vi+1}, there is a quintic
polynomial p0(x) such that

p0(x) :

{
1

∆x

∫
Ii+`

p0(x)dx = f+
i+`, ` = −1, 0, 1,

1
∆x

∫
Ii+`

p′0(x)dx = h+
i+`, ` = −1, 0, 1,

(2.6)

Similarly, there are two quadratic polynomials p1(x) and p2(x) on T1 of values {ui−1, ui, vi}
and T2 of values {ui, ui+1, vi}, respectively, such that

p1(x) :

{
1

∆x

∫
Ii+`

p1(x)dx = f+
i+`, ` = −1, 0,

1
∆x

∫
Ii
p′1(x)dx = h+

i ,

p2(x) :

{
1

∆x

∫
Ii+`

p2(x)dx = f+
i+`, ` = 0, 1,

1
∆x

∫
Ii
p′2(x)dx = h+

i .

(2.7)

Evaluate the values of p0(x), p1(x), p2(x) and the derivative of p0(x) at the point xi+ 1
2
,

then, we have

p0(xi+ 1
2
) =

11

60
fi−1 +

19

30
fi +

11

60
fi+1 +

∆x

20

(
hi−1 + 10hi − hi+1

)
,

p1(xi+ 1
2
) =

1

6
fi−1 +

5

6
f+
i +

2

3
∆xhi,

p2(xi+ 1
2
) =

5

6
f+
i +

1

6
fi+1 +

1

3
∆xhi,

and

p′0(xi+ 1
2
) =

1

4∆x

(
fi−1 − 8fi + 7fi+1

)
+

1

12

(
hi−1 − 2hi − 5hi+1

)
.

The linear weights {γ0, γ1, γ2} can be chosen as any positive constants with γ0 + γ1 +
γ2 = 1. Since each of the polynomials in the reconstruction contains f+

i and h+
i , the
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HWENO reconstruction could maintain high resolution when the discontinuities occur
at the cell interfaces. To measure how smooth the functions p`(x), ` = 0, 1, 2 are in
the target cell Ii, we compute the smoothness indicators β` as [9]:

β` =
k∑

α=1

∫
Ii

∆x2α−1(
dαp`(x)

dxα
)2dx, ` = 0, 1, 2, (2.8)

where k is the degree of the polynomials p`(x). The explicit expressions are
β0 =

(
a1 + 1

4
a3 + 1

16
a5

)2

+ 13
3

(
a2 + 63

130
a4

)2

+ 781
20

(
a3 + 8825

10934
a5

)2

+1421461
2275

a2
4 + 21520059541

1377684
a2

5,

β1 = (h+
i ∆x)2 + 13

3

(
∆xh+

i − f+
i + f+

i−1

)2
,

β2 = (h+
i ∆x)2 + 13

3

(
∆xh+

i + f+
i − f+

i−1

)2
,

(2.9)

with 

a1 = ∆x
(

19
192
h+
i−1 + 79

48
h+
i + 19

192
h+
i+1

)
+ 27

64

(
f+
i−1 − f+

i+1

)
,

a2 = ∆x
(

3
8
h+
i−1 − 3

8
h+
i+1

)
+ 5

4

(
f+
i−1 − 2f+

i + f+
i+1

)
,

a3 = −∆x
(

11
24
h+
i−1 + 17

6
h+
i + 11

24
h+
i+1

)
+ 15

8

(
f+
i+1 − f+

i−1

)
,

a4 = ∆x
(

1
4
h+
i+1 − 1

4
h+
i−1

)
− 1

2

(
f+
i−1 − 2f+

i + f+
i+1

)
,

a5 = ∆x
(

1
4
h+
i−1 + h+

i + 1
4
h+
i+1

)
+ 3

4

(
f+
i−1 − f+

i+1

)
.

Following [27], we define a new parameter τ to measure the absolute difference between
β0, β1 and β2 as

τ =
1

4

(
|β0 − β1|+ |β0 − β2|

)2

. (2.10)

Then, the nonlinear weights are computed as

ω` =
ω̄`∑2
`=0 ω̄`

, with ω̄` = γ`(1 +
τ

β` + ε
), ` = 0, 1, 2.

Here, ε is a small positive number to avoid the denominator by zero. In our computa-
tion, we take ε = 10−6 as in the WENO-JS scheme [9] and M-HWENO scheme [25].
Finally, the values of f̂+

i+ 1
2

and ĥ+
i+ 1

2

are reconstructed byf̂
+
i+ 1

2

= ω0

(
1
γ0
p0(xi+ 1

2
)− γ1

γ0
p1(xi+ 1

2
)− γ2

γ0
p2(xi+ 1

2
)
)

+ ω1p1(xi+ 1
2
) + ω2p2(xi+ 1

2
),

ĥ+
i+ 1

2

= p′0(xi+ 1
2
).

Obviously, we have |f̂i+ 1
2
− φ(xi+ 1

2
)| = O(∆x)6 and |ĥ+

i+ 1
2

− ψ(xi+ 1
2
)| = O(∆x)5. From

(2.4) and (2.5), the semi-discrete scheme (2.3) at least has the fifth-order accuracy for
the smooth functions u and v.

2.2 HWENO limiter for the solution derivative

Since the solution for hyperbolic conservation laws often contains discontinuities, the
derivative of the solution would be quite large near discontinuities, then, it is a natural
idea that we should deal with the derivative values carefully. Several works have been
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done to control it in the finite difference HWENO framework. For example, Liu and
Qiu [13] (the first finite difference HWENO scheme) used the different polynomials in
the reconstruction to escape discontinuities. Zhao et al. [25] (M-HWENO scheme)
modified the derivatives before the reconstruction. Li et al. used the center point
value to reconstruct the fluxes automatically near discontinuities in the multi-resolution
HWENO scheme [11]. However, the schemes [11, 13] only achieve the fourth-order
accuracy in two dimensions.

To both avoid spurious oscillations and maintain the fifth-order accuracy, we add
an HWENO limiter to control the derivatives following the idea of [25]. Instead of
using the modified derivatives both in fluxes reconstruction and time discretization as
in [25], we only apply the modified derivatives in time discretization while remaining
the original derivatives in fluxes reconstruction. It is interesting that h+

i+ 1
2

can be

approximated by a quintic polynomial directly in the proposed HWENO scheme, while
h+
i+ 1

2

must be reconstructed by a nonlinear HWENO method in M-HWENO scheme

[25]. The HWENO limiter for the derivative is based on the convex combination of
a quartic polynomial with two linear polynomials, and the linear weights also can be
chosen as artificial positive number as long as their sum equals one. Now, we describe
the detail of the HWENO limiter to control vi and obtain the modified derivative ṽi
finally. Using the Hermite interpolation on stencils T0, T1 and T2, respectively, there
are a unique quartic polynomial q0(x) and two linear polynomials q1(x) and q2(x), such
that

q0(x) :

{
q0(xi+`) = ui+`, ` = −1, 0, 1,

q′0(xi+`) = vi+`, ` = −1, 1,

q1(x) : q1(xi+`) = ui+`, ` = −1, 0,

q2(x) : q2(xi+`) = ui+`, ` = 0, 1.

And then, we have

q′0(xi) =
3

4∆x

(
ui+1 − ui−1

)
− 1

4

(
vi−1 + vi+1

)
,

q′1(xi) =
1

∆x

(
ui − ui−1

)
,

q′2(xi) =
1

∆x

(
ui+1 − ui

)
,

where the linear weights d0, d1, d2 can be chosen as any positive constants with d0 +
d1 + d2 = 1.

Similarly as described in Section 2.1, we compute the smoothness indicators β` to
measure how smooth the functions q`(x), ` = 0, 1, 2 are in the target cell Ii as:

β` =
r∑

α=1

∫
Ii

∆x2α−1(
dαq`(x)

dxα
)2dx, ` = 0, 1, 2, (2.11)

where r is the degree of the polynomials q`(x). The explicit formulas are given by

β0 =
(
a1 +

1

4
a3

)2
+

13

3

(
a2 +

63

130
a4

)2
+

781

20
a2

3 +
1421461

2275
a2

4,

β1 = (ui − ui−1)2,

β2 = (ui − ui+1)2,
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with 
a1 = −∆x

4

(
vi−1 + vi+1

)
+ 3

4

(
ui+1 − ui−1

)
,

a2 = ∆x
4

(
vi−1 − vi+1

)
+ ui−1 − 2ui + ui+1,

a3 = ∆x
4

(
vi−1 + vi+1

)
+ 1

4

(
ui−1 − ui+1

)
,

a4 = ∆x
4

(
vi+1 − vi−1

)
− 1

2

(
ui−1 − 2ui + ui+1

)
.

The nonlinear weights are defined as

λ` =
λ̄`∑2
`=0 λ̄`

, λ̄` = d`

(
1 +

τ

β` + ε

)
, ` = 0, 1, 2,

where τ = 1
4

(
|β0 − β1|+ |β0 − β2|

)2
and ε = 10−6 is to avoid the denominator by zero.

Finally, the modified derivative ṽi is defined as

ṽi = λ0

( 1

d0

q′0(xi)−
d1

d0

q′1(xi)−
d2

d0

q′2(xi)
)

+ λ1q
′
1(xi) + λ2q

′
2(xi).

Obviously, we have |ṽi− vi| = O(∆x)4. From (2.4) and (2.5), it is not difficult to know
that it maintains the fifth-order accuracy of the HWENO scheme.

Denote

L1
i (u, v) = − 1

∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, i = 1, ..., Nx,

L2
i (u, v) = − 1

∆x

(
ĥi+ 1

2
− ĥi− 1

2

)
, i = 1, ..., Nx.

(2.12)

For time discretization of (2.3), we use the explicit third-order SSP Runge-Kutta
scheme, then we have the fully-discrete scheme as, for i = 1, ..., Nx{

u
(1)
i = uni + ∆tL1

i (u
n, vn),

v
(1)
i = ṽi + ∆tL2

i (u
n, vn),

(2.13a){
u

(2)
i = 3

4
uni + 1

4

(
u

(1)
i + ∆tL1

i (u
(1), v(1))

)
,

v
(2)
i = 3

4
ṽi + 1

4

(
ṽ

(1)
i + ∆tL2

i (u
(1), v(1))

)
,

(2.13b){
un+1
i = 1

3
uni + 2

3

(
u

(2)
i + ∆tL1

i (u
(2), v(2))

)
,

vn+1
i = 1

3
ṽi + 2

3

(
ṽ

(2)
i + ∆tL2

i (u
(2), v(2))

)
,

(2.13c)

where ṽi is the modified derivative of vi obtained by the HWENO limiter.

Remark 2.1. For the system case, such as the one-dimensional compressible Euler
equations, the HWENO reconstruction for f+

i+ 1
2

is implemented based on the local char-

acteristic decomposition [9], while the linear approximation for h+
i+ 1

2

is performed by

component-by-component.

A major advantage of the high-order finite difference scheme is that it is straight-
forward to extend the scheme in one-dimension to two-dimensions by dimension-by-
dimension. Hence, we also can extend the proposed finite difference HWENO scheme to
two-dimensions easily, but use the special treatments of the mixed derivative terms as
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in [25]. One striking feature of the proposed HWENO scheme is that it can achieve the
fifth-order accuracy in two dimensions, while other finite difference HWENO schemes,
e.g., [11, 13], only have the fourth-order accuracy.

We consider the two-dimensional scalar hyperbolic conservation laws{
ut + f(u)x + g(u)y = 0,

u(x, y, 0) = u0(x, y).
(2.14)

We rewrite (2.14) by bringing its derivative equations as
ut + f(u)x + g(u)y = 0,

vt + h(u, v)x + ξ(u, v)y = 0,

wt + η(u,w)x + θ(u,w)y = 0,

(2.15)

where

v = ux, h(u, v) = f ′(u)ux = f ′(u)v, ξ(u, v) = g′(u)ux = g′(u)v,

w = uy, η(u,w) = f ′(u)uy = f ′(u)w, θ(u,w) = g′(u)uy = g′(u)w.

Denote Ii = [xi− 1
2
, xi+ 1

2
], Jj = [yj− 1

2
, yj+ 1

2
], Ii,j = Ii × Jj, ∆x = xi+ 1

2
− xi− 1

2
, ∆y =

yj+ 1
2
− yj− 1

2
, and (xi, yj) is the center of the element Ii,j. The semi-discrete finite

difference scheme of (2.15) is
d
dt
ui,j(t) = − 1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
− 1

∆y

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
,

d
dt
vi,j(t) = − 1

∆x

(
ĥi+ 1

2
,j − ĥi− 1

2
,j

)
− 1

∆y

(
ξ̂i,j+ 1

2
− ξ̂i,j− 1

2

)
,

d
dt
wi,j(t) = − 1

∆x

(
η̂i+ 1

2
,j − η̂i− 1

2
,j

)
− 1

∆y

(
θ̂i,j+ 1

2
− θ̂i,j− 1

2

)
.

(2.16)

Here, the numerical fluxes f̂i± 1
2
,j, ĝi,j± 1

2
, ĥi± 1

2
,j and θ̂i,j± 1

2
are reconstructed by a

dimension-by-dimension manner, seen in Section 2.1. We can get

f(u)x|(xi,yj) =
1

∆x

(
f̂i+ 1

2
,j − f̂i− 1

2
,j

)
+O(∆x6),

g(u)y|(xi,yj) =
1

∆y

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
+O(∆y6),

h(u, v)x|(xi,yj) =
(
f ′(u)ux

)
x
|(xi,yj) =

1

∆x

(
ĥi+ 1

2
,j − ĥi− 1

2
,j

)
+O(∆x5),

θ(u,w)y|(xi,yj) =
(
g′(u)uy

)
y
|(xi,yj) =

1

∆y

(
θ̂i,j+ 1

2
− θ̂i,j− 1

2

)
+O(∆y5).

(2.17)

To ensure the fifth-order accuracy of the scheme (2.16), we would like to find at least
fourth-order approximations for the mixed derivative terms ξ(u, v)y and η(u,w)x at
point (xi, yj). However, ξ(u, v)y and η(u,w)x don’t have their primitive functions in y
and x directions, respectively, thus, they can’t be approximated using the same way
as was down in other derivative terms h(u, v)x and θ(u,w)y. Here, we adopt the linear
approximation directly (without fluxes splitting) for the mixed derivative terms as

ξ̂i,j+ 1
2

= − 1

12
ξi,j−1 +

7

12
ξi,j +

7

12
ξi,j+1 −

1

12
ξi,j+2,

η̂i+ 1
2
,j = − 1

12
ηi−1,j +

7

12
ηi,j +

7

12
ηi+1,j −

1

12
ηi+2,j.

(2.18)
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Then, we have

ξ(u, v)y|(xi,yj) =
(
g′(u)ux

)
y
|(xi,yj) =

1

∆x

(
ξ̂i,j+ 1

2
− ξ̂i,j− 1

2

)
+O(∆y4),

η(u,w)x|(xi,yj) =
(
f ′(u)uy

)
x
|(xi,yj) =

1

∆y

(
η̂i+ 1

2
,j − η̂i− 1

2
,j

)
+O(∆x4).

(2.19)

Thus, from (2.4) and (2.5), we can prove that the HWENO scheme (2.16) has fifth-order
accuracy.

Similarly as in one dimension, we also use the explicit third-order SSP Runge-Kutta
scheme to discretize (2.3), and add the HWENO limiter to control the derivatives v
and w in time discretization by a dimension-by-dimension manner (cf. Section 2.2).

Remark 2.2. For the system case, the HWENO procedures in x and y directions are
implemented on each local characteristic direction, respectively, while the linear approx-
imations for the fluxes in the derivative equations are performed on each component
straightforwardly.

3 Numerical experiments

In this section, we present the numerical results to show the good performances of the
proposed finite difference HWENO scheme combined with limiter. For comparisons,
we consider three variants of the HWENO or WENO schemes:

• The fifth-order finite difference L-HWENO scheme: the proposed HWENO scheme,
where the modified derivatives are only used in time discretization while remain-
ing the original derivatives in fluxes reconstruction, seen in Section 2.

• The fifth-order finite difference M-HWENO scheme: the modified HWENO scheme
[25], where the modified derivatives are used both in fluxes reconstruction and
time discretization.

• The fifth-order finite difference WENO-JS scheme: the classical WENO scheme
constructed by Jiang and Shu [9].

Since the M-HWENO scheme [25] had shown its smaller error for accuracy tests and
higher resolution near discontinuities than the WENO-JS scheme [9], we only present
the results of the WENO-JS scheme for the accuracy tests to compare their efficiency
here.

The CFL number is set as 0.6 in our computation. Unless otherwise stated, the
linear weights for the reconstruction fluxes in the governing equation and limiter are
taken as {γ0 = 0.98, γ1 = γ2 = 0.01} and {d0 = 0.98, d1 = d2 = 0.01}, respectively.
For examples where the analytical exact solution is unavailable, we take the numerical
solution obtained by the WENO-JS scheme [9] with Nx = 2000 as the referenced
“exact” solution.

Example 3.1. (Accuracy test of the one-dimensional Burgers’ equation.)

This example is used to verify the fifth-order accuracy and efficiency of the proposed
L-HWENO scheme for the one-dimensional nonlinear Burgers’ equation. The Burgers’
equation in one dimension reads as

ut + (
u2

2
)x = 0, 0 < x < 2, (3.1)
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with the periodic boundary condition. The initial condition is u(x, 0) = 0.5 + sin(πx).
The final simulation time is T = 0.5/π when the solution is still smooth. The

L1 and L∞ norm of the error with M-HWENO and L-HWENO schemes are listed in
Table 1. It can be seen that the schemes both achieve the optimal fifth-order accuracy,
but the error obtained by the L-HWENO scheme is smaller than that obtained by
M-HWENO scheme.

For comparisons of their efficiency, we also plot the L1 norm of the error against
CPU time measured in seconds in Fig. 1(a). One can find that the proposed L-HWENO
scheme is more efficient than the M-HWENO scheme or WENO-JS scheme in the sense
that the former leads to a smaller error than the latter for a fixed amount of the CPU
time. Thus, the proposed L-HWENO scheme has better efficiency than the M-HWENO
scheme when Nx is relatively large.

Table 1: Example 3.1. The L1 and L∞ norm of the error computed by the M-HWENO
and L-HWENO schemes.

Nx M-HWENO L-HWENO
L1 error order L∞ error order L1 error order L∞ error order

10 6.42E-03 3.01E-02 1.88E-02 6.17E-02
20 5.69E-04 3.50 4.05E-03 2.90 9.18E-04 4.36 5.42E-03 3.51
40 3.20E-05 4.15 3.86E-04 3.39 9.52E-06 6.59 1.13E-04 5.59
80 1.35E-06 4.56 1.31E-05 4.88 3.13E-07 4.93 4.14E-06 4.77
160 5.32E-08 4.67 5.67E-07 4.53 1.02E-08 4.94 1.34E-07 4.95
320 1.55E-09 5.10 2.06E-08 4.78 3.23E-10 4.98 4.29E-09 4.96

(a) Example 3.1. (b) Example 3.2.

Figure 1: The error of L1 norm against the CPU time.

Example 3.2. (Accuracy test of the one-dimensional Euler equations.)

This example is used to verify the fifth-order accuracy and efficiency of the proposed
L-HWENO scheme for the one-dimensional system of Euler equations. The Euler
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equations in one-dimension read as

∂

∂t

 ρρµ
E

+
∂

∂x

 ρµ
ρµ2 + p
µ(E + p)

 = 0, (3.2)

where ρ is the density, µ is the velocity, E is the total energy and p is the pressure,
where E = p/(γ − 1) + ρµ2/2 with γ = 1.4. The computational domain is [0, 2].
The periodic boundary conditions are used for all unknown variables and the initial
conditions are given by

ρ(x, 0) = 1 + 0.2 sin(πx), µ(x, 0) = 1, p(x, 0) = 1.

The exact solution of this example is

ρ(x, t) = 1 + 0.2 sin(π(x− t)), µ(x, 0) = 1, p(x, 0) = 1.

The final simulation time is T = 2.
The L1 and L∞ norm of the error obtained by the M-HWENO and the proposed

L-HWENO schemes are presented in Table 2. Similarly as the last example, we can
clearly see that the schemes both achieve the optimal fifth-order accuracy, and the
error of the solution obtained by the L-HWENO scheme is smaller than that obtained
by the M-HWENO scheme.

To show the efficiency of the proposed L-HWENO scheme for the one-dimensional
system, we plot the L1 norm of the error against CPU time in Fig. 1(b). One can find
that the L-HWENO scheme is more efficient than either the M-HWENO or WENO-
JS scheme in the sense that the former leads to a smaller error than the latter for
a fixed amount of the CPU time. Moreover, the better efficiency of the proposed
L-HWENO scheme is more obvious in this example than that in Example 3.1 for one-
dimensional Burgers’ equation. The reason is that the linear approximations for the
fluxes in the L-HWENO scheme are applied in each component directly without any
local characteristic decomposition for systems.

Table 2: Example 3.2. The L1 and L∞ norm of the error obtained by the M-HWENO
and L-HWENO schemes.

Nx M-HWENO L-HWENO
L1 error order L∞ error order L1 error order L∞ error order

10 5.62E-03 9.93E-03 9.97E-04 2.49E-03
20 2.43E-04 4.53 4.42E-04 4.49 1.51E-05 6.05 3.51E-05 6.15
40 7.14E-06 5.09 1.40E-05 4.98 4.83E-07 4.96 8.35E-07 5.39
80 2.21E-07 5.01 4.36E-07 5.00 1.53E-08 4.98 2.46E-08 5.08
160 6.84E-09 5.01 1.25E-08 5.13 4.80E-10 4.99 7.59E-10 5.02
320 2.05E-10 5.06 3.53E-10 5.14 1.51E-11 4.99 2.37E-11 5.00

Example 3.3. (Shock wave of the one-dimensional Burgers’ equation.)

In this test, we repeat the one-dimensional Burgers’ equation (3.1) given in Example
3.1, but the final simulation time is T = 1.5/π when the solution is discontinuous. The
numerical solution u obtained by the M-HWENO and L-HWENO schemes against the
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exact solution is plotted in Fig. 2. From the figure, we can know that their performances
are similar with non-oscillations.

(a) solution u: Nx = 80 (b) close view of (a)

Figure 2: Example 3.3. The numerical solution at T = 1.5/π obtained by the M-
HWENO and L-HWENO schemes.

Example 3.4. (Buckley-Leverett problem of the one-dimensional nonlinear non-convex
equation.)

This example is used to verify the performance of the proposed L-HWENO scheme
for the one-dimensional nonlinear non-convex scalar equation. It is not easy to simulate
since the numerical solution may violate the entropy condition. We consider a one-
dimensional nonlinear non-convex Buckley-Leverett problem

ut +

(
4u2

4u2 + (1− u)2

)
x

= 0, −1 ≤ x ≤ 1.

The initial condition is

u(x, 0) =

{
1, for − 1

2
≤ x ≤ 0,

0, otherwise.

The final simulation time is T = 0.4. The exact solution of this problem contains both
shock wave and rarefaction wave.

In Fig. 3, we plot the solution obtained by the M-HWENO and L-HWENO schemes.
We can see that the two schemes have similar performances generally, but the M-
HWENO scheme seemly has higher resolution near the peak, and we will investigate
the reasons of this phenomenon in Example 3.7 below.
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(a) solution u: Nx = 80 (b) close view of (a)

Figure 3: Example 3.4. The numerical solution at T = 0.4 obtained by the M-HWENO
and L-HWENO schemes.

Example 3.5. (Lax problem of the one-dimensional Euler equations.)

In this example, we consider the Lax problem of the one-dimensional Euler equa-
tions (3.2) with the following initial conditions

(ρ, µ, p) =

{
(0.445, 0.698, 3.528), x < 0,

(0.5, 0, 0.571), x > 0.

The final time is T = 0.16. The density ρ obtained by the M-HWENO and L-HWENO
schemes is presented in Fig. 4. We can find that the result obtained by the L-HWENO
scheme has a slight higher resolution than that by M-HWENO scheme. It is worth
pointing out that the modification for the derivative of the solution is significant to
control oscillations in the M-HWENO scheme [25], while the limiter also plays the same
role in the L-HWENO scheme. Similarly, lacking the limiter also generates obvious
oscillations, seen in [25] for details.

(a) density ρ: Nx = 200 (b) close view of (a)

Figure 4: Example 3.5. The density ρ at T = 0.16 obtained by the M-HWENO and
L-HWENO schemes.
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Example 3.6. (Shu-Osher problem of the one-dimensional Euler equations.)

In this example, we consider the following Shu-Osher problem of one-dimensional
Euler equations (3.2), and the initial conditions are

(ρ, µ, p) =

{
(3.857143, 2.629369, 10.333333), x < −4,

(1 + 0.2 sin(5x), 0, 1), x ≥ −4.

The final time is T = 1.8. The solution of this problem has a moving Mach 3 shock
interacting with sine waves in density [17], and contains both shock waves and complex
smooth region structures. The density ρ obtained by the M-HWENO and L-HWENO
schemes is shown in Fig. 5, which clearly illustrates that the L-HWENO scheme has
higher resolution than the M-HWENO scheme.

(a) density ρ: Nx = 400 (b) close view of (a)

Figure 5: Example 3.6. The density ρ at T = 1.8 obtained by the M-HWENO and
L-HWENO schemes.

Example 3.7. (Two blast waves problem of the one-dimensional Euler equations.)

In this example, we consider a problem of the interaction of two blast waves, and
the initial conditions are

(ρ, µ, p) =


(1, 0, 103), 0 < x < 0.1,

(1, 0, 10−2), 0.1 < x < 0.9,

(1, 0, 102), 0.9 < x < 1.

The final time T = 0.038 and the reflective boundary condition is applied.
The density ρ obtained by the M-HWENO and L-HWENO schemes at Nx = 800

is plotted in Fig. 6. From the figure, we can know that the resolution of the solution
obtained by the L-HWENO scheme near x = 0.75 is slightly higher than that obtained
by the M-HWENO scheme, but the resolution of the solution obtained by the L-
HWENO scheme near x = 0.78 is slightly lower than that obtained by the M-HWENO
scheme. We think the reason is that two linear polynomials on the small stencils in
the limiter have great influence for the derivatives in the L-HWENO scheme. In fact,
this phenomenon had been presented in the WENO/HWENO schemes with artificial
linear weights [24, 27].
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To study the linear weights how to affect the performance of the L-WENO scheme,
we choose several different sets of linear weights {γ0, γ1, γ2} (in reconstruction of fluxes)
and {d0, d1, d2} (in limiter). The linear weights in the spatial reconstruction are chosen
as: G1 = {γ0 = 0.99, γ1 = γ2 = 0.005}; G2 = {γ0 = γ1 = γ2 = 1/3} and G3 =
{γ0 = 0.01, γ1 = r2 = 0.495}. Similarly, we use the same sets of linear weights in
limiter: D1 = {d0 = 0.99, d1 = d2 = 0.005}; D2 = {d0 = d1 = d2 = 1/3} and
D3 = {d0 = 0.01, d1 = d2 = 0.495}. For comparisons, we test the L-HWENO scheme
with the linear weights (G1, D1), (G1, D2), (G1, D3), seen in Fig. 7(a), and combining
(G1, D1), (G2, D1) and (G3, D1), seen in Fig. 7(b).

From Fig. 7(a), we can find that if the quartic polynomial has larger linear weight in
the limiter, the results of the L-HWENO scheme has higher resolution, but it also may
have poorer capacity to control non-physical oscillations. And from the figure 7(b),
we know the results are quite similar. That is to say, the resolution of the solution
obtained by the L-HWENO scheme is mainly affected by the linear weights in the
limiter, and the readers can adjust the linear weights suitably according the explicit
problem. Actually, the L-HWENO scheme combining (G1, D1), (G2, D1) and (G3, D1)
has similar performance with the M-HWENO scheme near the peak.

(a) density ρ: Nx = 800 (b) close view of (a)

Figure 6: Example 3.7. The density ρ at T = 0.038 obtained by the M-HWENO and
L-HWENO schemes.
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(a) fixed G1 in fluxes reconstruction (b) fixed D1 in limiter

Figure 7: Example 3.7. The density ρ obtained by the L-HWENO scheme at Nx = 800
with different linear weights setting in limiter and fluxes reconstruction, respectively.

Example 3.8. (Accuracy test of the two-dimensional Burgers’ equation.)

This example is used to verify the accuracy and efficiency of the proposed L-
HWENO scheme for the two-dimensional nonlinear Burgers’ equation over [0, 4]×[0, 4].
The Burgers’ equation in two dimensions is

ut + (
u2

2
)x + (

u2

2
)y = 0. (3.3)

The initial condition is u(x, y, 0) = 0.5 + sin(π(x + y)/2) with periodic boundary
conditions. The final time is T = 0.5/π when the solution is still smooth.

The L1 and L∞ norm of the error computed by the M-HWENO and L-HWENO
schemes are given in Table 3, which shows the L-HWENO scheme has fifth-order ac-
curacy, and the numerical error of the L-HWENO scheme is smaller than that of
M-HWENO scheme. The numerical error against CPU time obtained by the proposed
L-HWENO, M-HWENO and WENO-JS schemes is plotted in Fig. 8(a), which illus-
trates the L-HWENO scheme is more efficient than either the M-HWENO scheme or
WENO-JS scheme.

Table 3: Example 3.8. The L1 and L∞ norm of the error obtained by the M-HWENO
and L-HWENO schemes.

Nx = Ny M-HWENO L-HWENO
L1 error order L∞ error order L1 error order L∞ error order

10 6.99E-03 3.04E-02 2.41E-02 7.30E-02
20 5.91E-04 3.56 3.98E-03 2.93 5.33E-04 5.50 1.90E-03 5.26
40 3.22E-05 4.20 3.82E-04 3.38 1.02E-05 5.71 1.25E-04 3.93
80 1.35E-06 4.57 1.29E-05 4.89 3.23E-07 4.98 4.28E-06 4.86
160 5.30E-08 4.67 5.65E-07 4.51 1.02E-08 4.99 1.34E-07 5.00
320 1.54E-09 5.11 2.05E-08 4.78 3.19E-10 4.99 4.25E-09 4.97
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(a) Example 3.8. (b) Example 3.9.

Figure 8: The error of L1 norm against the CPU time.

Example 3.9. (Accuracy test of the two-dimensional Euler equations.)

This example is used to verify the accuracy and efficiency of the proposed L-
HWENO scheme for the Euler equations in two dimensions. The system of Euler
equations in two dimensions is

∂

∂t


ρ
ρµ
ρν
E

+
∂

∂x


ρµ

ρµ2 + p
ρµν

µ(E + p)

+
∂

∂y


ρν
ρµν

ρν2 + p
ν(E + p)

 = 0, (3.4)

where ρ is the density, (µ, ν) is the velocity, E is the total energy and p is the pressure,
in which E = p/(γ − 1) + ρ(µ2 + ν2)/2 with γ = 1.4. The computational domain is
[0, 2]× [0, 2]. The initial conditions are ρ(x, y, 0) = 1 + 0.2 sin(π(x+ y)), µ(x, y, 0) = 1,
ν(x, y, 0) = 1, p(x, y, 0) = 1. Periodic boundary conditions are used for all unknown
variables. The exact solution of ρ is ρ(x, y, t) = 1 + 0.2 sin(π(x+ y − 2t)).

The final time is T = 2. The error of the L1 and L∞ norm computed by the M-
HWENO scheme and the proposed L-HWENO scheme is presented in Table 4, which
shows the L-HWENO scheme has fifth-order accuracy, and the solution obtained by
the L-HWENO scheme is more accurate than that by the M-HWENO scheme. To
show the efficiency of the L-HWENO scheme for this two-dimensional system, we plot
the numerical error against CPU time of the L-HWENO, M-HWENO and WENO-JS
schemes in Fig. 8(b). We can find that the error of the L-HWENO scheme is smaller
than either the M-HWENO scheme or WENO-JS scheme for a fixed amount of the
CPU time.

We also list the L1 and L∞ norm of the error obtained by the proposed HWENO
scheme with and without the limiter in Table 5 for this example. We can clearly
see that the proposed HWENO scheme without limiter loses the convergence order
at 320 × 320 points, which violates the common sense because the limiter for the
derivatives has the same order accuracy comparing with the reconstruction, therefore,
to some extend, the limiter for the derivatives has significant effect to hold stability
of the L-HWENO scheme and make its numerical solution be convergent. The main
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reason of this phenomenon is the linear approximation of the mixed derivatives in the
expression (2.18), and this instability also can be solved by splitting the fluxes about
the mixed derivatives as other finite different HWENO schemes [11, 13], but splitting
the fluxes leads to the HWENO schemes [11, 13] be only the fourth-order accuracy.

Table 4: Example 3.9. The L1 and L∞ norm of the error computed by the M-HWENO
and L-HWENO schemes.

Nx = Ny M-HWENO L-HWENO
L1 error order L∞ error order L1 error order L∞ error order

10 1.11E-02 1.64E-02 1.62E-03 3.57E-03
20 4.92E-04 4.50 7.89E-04 4.37 3.10E-05 5.71 6.47E-05 5.78
40 1.44E-05 5.09 2.69E-05 4.87 9.87E-07 4.97 1.64E-06 5.30
80 4.43E-07 5.03 8.32E-07 5.02 3.09E-08 5.00 4.91E-08 5.06
160 1.36E-08 5.02 2.49E-08 5.06 9.66E-10 5.00 1.52E-09 5.02
320 4.08E-10 5.06 7.00E-10 5.16 3.02E-11 5.00 4.75E-11 5.00

Table 5: Example 3.9. The L1 and L∞ norm of the error obtained by the proposed
HWENO scheme with and without limiter.

Nx = Ny L-HWENO proposed HWENO without limiter
L1 error order L∞ error order L1 error order L∞ error order

10 1.62E-03 3.57E-03 2.16E-03 3.33E-03
20 3.10E-05 5.71 6.47E-05 5.78 9.74E-05 4.47 1.54E-04 4.44
40 9.87E-07 4.97 1.64E-06 5.30 3.62E-06 4.75 5.68E-06 4.76
80 3.09E-08 5.00 4.91E-08 5.06 1.20E-07 4.91 1.89E-07 4.91
160 9.66E-10 5.00 1.52E-09 5.02 3.85E-09 4.97 6.09E-09 4.95
320 3.02E-11 5.00 4.75E-11 5.00 2.10E-06 -9.09 1.42E-05 -11.18

Example 3.10. (Shock wave of the two-dimensional Burgers’ equation.)

We repeat the two-dimensional Burgers’ equation (3.3) given in Example 3.8, but
the final simulation time is T = 1.5/π when the solution is discontinuous. The numer-
ical solution computed by the M-HWENO and L-HWENO schemes, along with the
exact solution is presented in Fig. 9. Again, the two HWENO schemes have similar
results with high resolutions.
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(a) (b)

Figure 9: Example 3.10. The solution u cut along the line x = y at T = 1.5/π obtained
by the M-HWENO and L-HWENO schemes.

Example 3.11. (Double Mach reflection problem of the two-dimensional Euler equa-
tion.)

In this example, we test the double Mach reflection problem from [21] modeled by
two-dimensional Euler equations (3.4) over [0, 4]× [0, 1]. This example has a reflection
wall located at the bottom, starting from x = 1

6
, y = 0, making a 60o angle with the

x-axis. The exact post-shock condition is imposed from x = 0 to x = 1
6

and the rest
has the reflection boundary condition for the bottom boundary, and the exact motion
of the Mach 10 shock is imposed for the top boundary. Inflow and outflow boundary
conditions are used for the left and right boundaries, respectively.

The final time is T = 0.2. In Fig. 10, we show the numerical results computed by
the M-HWENO and L-HWENO schemes in the region [0, 3] × [0, 1] and the blow-up
region around the double Mach stems. It is observed that the L-HWENO scheme has
higher resolution than the M-HWENO scheme, and the L-HWENO scheme captures
more complicated structures.
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(a) density ρ: M-HWENO (b) density ρ: L-HWENO

(c) close view of (a) (d) close view of (b)

Figure 10: Example 3.11. The density ρ at T = 0.2 obtained by the M-HWENO and
L-HWENO schemes.

Example 3.12. (Forward step problem of the two-dimensional Euler equation.)

In this example, we test a forward step [21] modeled of the two-dimensional Euler
equations (3.4). There is a wind tunnel with a initial right-going Mach 3 flow, and
it has the width of 1 unit and the length of 3 units. The location of the step corner
is (x, y) = (0.6, 0.2). Reflective boundary conditions are used along the wall of the
tunnel. Inflow and outflow boundary conditions are used at the entrance and the exit,
respectively. The corner of the step is a singular point and we treat it as in [21].

We compute the time up to T = 4. The numerical results of the M-HWENO and
L-HWENO schemes at 960 × 320 grid points are shown in Fig. 11. We can observe
that the L-HWENO scheme has higher resolution than the M-HWENO scheme.

(a) density ρ: M-HWENO (b) density ρ: L-HWENO

Figure 11: Example 3.12. The density ρ at T = 4 obtained by the M-HWENO and
L-HWENO schemes.

4 Conclusions

In this paper, a simple fifth-order finite difference Hermite weighted essentially non-
oscillatory (HWENO) scheme combined with limiter (called as the L-HWENO scheme)
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is constructed for one- and two- dimensional hyperbolic conservation laws. The fluxes
in the governing equation are approximated by the nonlinear HWENO reconstruction
which is the combination of a quintic polynomial with two quadratic polynomials, where
the linear weights can be artificial positive numbers as long as their sum equals one.
And other fluxes are approximated by high-degree polynomials directly, which leads to
the result that the reconstruction of the fluxes for derivative equations is linear. For the
purpose of controlling spurious oscillations, an HWENO limiter is applied to modify
the derivatives as the modified HWENO (M-HWENO) scheme [25]. Instead of using
the modified derivatives both in fluxes reconstruction and time discretization as in
[25], we only apply the modified derivatives in time discretization while remaining the
original derivatives in fluxes reconstruction. Comparing with the M-HWENO scheme
[25], the proposed L-HWENO scheme is simpler, more accurate, efficient, and higher
resolution.

The spatial reconstruction and the limiter for the derivatives both use a high-
degree polynomial combined with two lower-degree polynomials convexly, where the
corresponding linear weights can be any positive numbers (their sum is 1). It is easy
to implement and has the ability to capture complicated structures. In the imple-
mentation, the limiter in the proposed L-HWENO scheme plays an important role to
improve stability and keep high resolution, where lacking this procedure would lead to
instability in two dimensions even for a linear problem (cf. Example 3.9). Meanwhile,
different linear weights in the limiter will impact the resolution near discontinuities,
while the linear weights in the spatial reconstruction have a slight effect (cf. Example
3.7).

Various benchmark numerical examples have been tested to demonstrate the accu-
racy and efficiency of the L-HWENO scheme. The results show that the L-HWENO
scheme has fifth-order accuracy, and the solution of the L-HWENO scheme is more
accurate than that of the M-HWENO scheme. Meanwhile, the L-HWENO scheme is
more efficient than either the M-HWENO scheme [25] or WENO-JS scheme [9]. Note
that the efficiency of the M-HWENO scheme is slightly less than that of the WENO-JS
scheme. In addition, we would mention that the L-HWENO and M-HWENO schemes
both use a compact three-point reconstructed stencil while a five-point stencil is need
in [9] even though they all have the fifth-order accuracy.
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