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Abstract
In this paper we present a novel particle method for the Vlasov–Poisson equation. Unlike in

conventional particle methods, the particles are not interpreted as point charges, but as point values of
the distribution function. In between the particles, the distribution function is reconstructed using
mesh-free interpolation. Our numerical experiments confirm that this approach results in significantly
increased accuracy and noise reduction. At the same time, many benefits of the conventional schemes
are preserved.

1 Introduction
The Vlasov–Poisson system is a simplified model for the evolution of plasmas in their collisionless limit, as
they occur in, for example, nuclear fusion devices. In dimensionless form this system is given by:

∂tf + v · ∂xf − E · ∂vf = 0, (1)
E := −∇ϕ, (2)
−∆ϕ = ρ, (3)

ρ(t, x) := 1−
∫
R
f(t, x, v) dv. (4)

Here, f = f(t, x, v) is the electron distribution function, i. e., f(t, x, v) describes the probability density of
electrons having velocity v ∈ R and location x ∈ R at time t ∈ R. We will assume that f is periodic in x
with period L > 0, i. e., f(t, x, v) = f(t, x+ kL, v) for any x ∈ R and k ∈ Z. Therefore it suffices to look at
x ∈ [0, L]. We need to demand that f is normalised such that:

1
L

∫
[0,L]

∫
R
f(t, x, v) dv dx = 1. (5)

Equation (4) defines the charge density ρ, were the additional ‘1’ stems from the assumption of a uniform
ion-background and thus ensures overall neutrality∫ L

0
ρ(t, x) dx = 0. (6)

Neglecting collisions and the magnetic field, the Vlasov equation (1) then describes the evolution of f
under the influence of the self-consistent electrical field E = E(t, x), given in terms of the electric potential
ϕ = ϕ(t, x), which in turn is given as the solution of the Poisson equation (3).

Particle-in-Cell methods (PIC) are a long established tool to obtain numerical approximations to solutions
of this system. However, it is well-known that these methods suffer from ‘numerical noise’ and have a
low convergence order.[1],[2] For this reason there has been an increased interest in high-order grid-based
methods.[3],[4] These methods often have good stability properties and generalise to arbitrary order. Unlike
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particle methods, however, they introduce numerical dissipation; especially when the true solution develops
features that are smaller than the grid size. This is also the case for so-called remapped or remeshed particle
methods: here the particles are periodically remapped onto a Cartesian grid to avoid the aforementioned
‘numerical noise’.[5] However, this remeshing effectively acts as a low-pass filter, smearing out features
below the grid resolution.

Particle methods without remapping, on the other hand, are based on an analytic solution: particles
simply follow the characteristic lines, and are thus free of numerical dissipation. It has recently been
shown that the ‘numerical noise’ is actually the result of interpreting the particle field as a quadrature
rule.[6] Instead of interpreting a particle field as a set of points with associated weights, it should be
interpreted as a set of points with associated function values. Instead of regularising a quadrature rule,
one should try to interpolate between the known function values. In this work we want to show that this
in fact leads to particle methods that achieve accuracies comparable to grid-based methods, without the
associated introduction of spurious numerical dissipation. Nonetheless, as our numerical experiments will
show, aliasing effects limit the accuracy of these approaches, giving rise to phenomena which have not yet
been reported for particle methods.

2 Related Literature and Methods
The Vlasov–Poisson–Maxwell equations were introduced by Vlasov in his 1938 seminal paper.[7] The
Vlasov–Poisson system (1)–(4) results when magnetic effects are neglected. In 1945 Landau gave a first
analysis of a linearisation of this system close to an equilibrium state.[8] Arsen’ev gave the first regularity
and well-posedness analysis for the one-dimensional Vlasov–Poisson system.[9],[10] Ukai and Okabe extended
the results to the two-dimensional case.[11] Pfaffelmoser gave an existence and uniqueness result for classical
initial data in the three-dimensional case. Lions and Perthame gave an result for weak data.[12],[13]

Mouhot and Villani extended the analysis done by Landau to the non-linear system in their seminal
paper.[14] We refer to their work for more details; it also contains an extensive review of theory, bibliography
and historic remarks.

A general overview of numerical methods for the Vlasov–Poisson equation is provided in the books by Bird-
sall, Langdon and Glassey.[15],[16] Filbet and Sonnendrücker compared different Eulerian approaches.[3],[4]

Particle methods have their origins in fluid dynamics.[17],[18],[19] An introduction to particle methods and
their application to the Vlasov–Poisson equation can be found in the articles by Raviart and Cottet[1],[20]

as well as in Hockney’s book.[21]

Particle-in-Cell methods (PIC) were originally developed by Evans and Harlow for applications in
hydrodynamics.[19] A literature overview can be found in Hockney and Eastwood’s book.[21] Denavit
suggested to use remeshing to reduce particle noise[22] and Wang, Miller, Colella, Myers and Straalen built
conservative high order PIC methods with remeshing.[5],[23] Cottet and Raviart gave an analysis of the
PIC method for the Vlasov–Poisson equation.[24] A more statistical approach to PIC and a combination
with Monte-Carlo based methods is presented by Ameres in his recent PhD thesis.[2] Ameres also discusses
particle noise and its influence on the convergence of (statistical) PIC methods.

Semi-Lagrangian schemes were proposed by Rossmanith and Seal, Sonnendrücker and Besse as well
as Charles, Després and Mehrenberger.[25],[26],[27] An extension of semi-Lagrangian schemes to higher
dimensions and comparisons to other approaches were presented by Cottet.[28]

Related to the approach we propose, Russo and Strain suggested using interpolation for a purely
Lagrangian scheme in the context of vortex methods.[29] However, unlike our scheme, their method
requires the generation of a triangular mesh using the particle locations as mesh nodes in every time step.
Triangulation is expensive and in particular the method does not scale well with higher dimensions. In
contrast, our apprach is based on ideas from mesh-free methods.

A general overview of the reproducing kernel Hilbert space framework (RKHS) is given in the books
by Wendland and Fasshauer.[30],[31] For brevity we will refer to methods using the RKHS framework as
kernel-based methods. An analysis of the stability of kernel-based interpolation in Sobolev spaces can
be found in the article by de Marchi and Schaback[32] as well as Rieger’s PhD-thesis.[33] The books of
Fasshauer and Wendland also give an overview of efficient implementation of techniques for these methods.

Reproducing kernels are used in Eulerian-based approaches for transport equations where this idea
was introduced amongst others by Schaback and Franke.[34] A kernel-based interpolation approach in the
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Semi-Lagrangian framework was proposed by Iske and Behrends.[35] This ansatz was further developed by
several authors for both the linear transport equation and some non-linear equations like the shallow water
equation.[36],[37],[38],[39]

Finally we want to mention that the RKHS framework was already used in the context of SPH methods.
Several authors worked in this context on the so-called RKHS particle method and also applied it to the
Vlasov–Poisson equation.[40]

3 Solution-structure of the Vlasov–Poisson Equation
While in reality the electric field E(t, x) needs to be computed from the unknown function f via (2)–(4), let
us for the moment assume E(t, x) was given for all times t. In this case (1) is a linear transport equation
and can be written as

∂tf(t, z) + (a(t, z) · ∇z) f(t, z) = 0,

where z := (x, v) ∈ R× R, t ≥ 0 and a(t, z) := (v,−E(t, x)).
This equation can be solved using the method of characteristics. To this end, for each initial time s and

position z, we define the trajectory Φ(t; s, z) as the solution of the following initial value problem:

d
dtΦ(t; s, z) = a (t,Φ(t; s, z)) , (7)

Φ(s; s, z) = z. (8)

We will also use the notation Φt
s(z) := Φ(t; s, z). With these definitions it is a classical result that Φt

s is
a well-defined diffeomorphism with inverse Φs

t = (Φt
s)−1. Intuitively, Φt

s(z) tells us where a ‘particle’ at
location z at time s was or will be at a another time t.

Using the flow-map the solution of (1) can be written as

f(t,Φt0(z)) = f0(z). (9)

Thus, if we track a finite number of ‘particles’ z1, . . . , zN , using (7)–(8), we know the value of the solution
f at the current particle positions at any time t ≥ 0, using (9). This is the motivation behind particle
methods; they differ in the way how values of f are obtained in between the particles.

In the one-dimensional case, for classical initial data satisfying a decay condition, Raviart and Cottet
have proven, using the work of Ukai and Okabe,[11] that (1)–(4) has a unique solution.[20, Theorem 1] Thus
our initial assumption is justified in the sense that the electric field is indeed well-defined. In a numerical
method, the electric field needs to be computed from the current approximation of f .

4 Interpolating Particle Methods
In this section we will first discuss the general structure of interpolating particle methods for the Vlasov–
Poisson equation. To this end, we will first give a general algorithm, whose individual steps will be explained
in detail in the subsequent subsections.

4.1 Overview
The general structure of interpolating particle methods is as follows:

1. Subdivide the computational domain into a Cartesian grid of widths hx and hv. Take a sample
fi := f0(xi, vi), i = 1, . . . , N in each of the grid’s cells. These samples may—but do not need to
be—taken at the respective cell centres.

2. Set t = 0. Enter the time-step loop:
a) Compute an interpolant fh,σ on the current set of particles

(
xi(t), vi(t)

)
and function values fi,

i = 1, . . . , N .
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b) Compute the charge density:

ρh,σ(t, x) := 1−
∫
R
fh,σ(t, x, v) dv.

c) Solve the Poisson equation for the electric potential:

−∆ϕh,σ = ρh,σ,

and define the approximate electric field as Eh,σ(t, x) := −∇ϕh,σ(t, x).
d) Advance the following system of ODEs one step ∆t in time, using, e. g., the symplectic Euler

method: 
dxi
dt (t) = vi(t),

dvi
dt (t) = −Eh,σ

(
t, xi(t)

)
,

i = 1, . . . , N.

Note: For higher order methods, one needs to repeat steps 2a–c for each stage of the Runge–Kutta
method to avoid introducing splitting errors.

e) Set t 7→ t+ ∆t and go to Item 2a.

On the one hand, this algorithm closely mirrors conventional blob-based methods. The key difference
lies in Item 2a. In a conventional blob method one would chose some blob-function ζσ(x, v) of blob-size
σ > 0 and set fh,σ = hd

xh
d
v

∑N
i=1 fiζσ(x− xi, v − vi). The resulting approximation, however, will usually

not interpolate the data and contain large errors. If, on the other hand, an appropriate interpolation
scheme is employed, drastic improvements in accuracy can be achieved.

4.2 Construction of Interpolants
For any given particle field (xi, vi) with associated data fi, i = 1, . . . , N , there are of course infinitely many
possible interpolants. This gives us the freedom to request further conditions. In our case, we demand the
following:

• Accuracy. The interpolant should converge to the true function f at high order, i. e., fulfil error
bounds of the shape O(hs), where h := max{hx, hv} is the particle spacing and s > 0 is the (hopefully
high) convergence order.

• Stability. The interpolant should react gracefully to disturbances in the data (xi, vi) and fi, i =
1, . . . , N .

• Efficiency. Construction and evaluation of interpolants need to be carried out on computers in a
fast manner and should require only little extra storage. In particular the algorithm should be easily
parallelisable.

• Ease of integration. Given an interpolant, it must be possible to compute the charge density ρh,σ
both accurately and efficiently.

These constraints are fulfilled by piece-wise, tensorised kernel-interpolants, which we will describe in
more detail.

4.2.1 Kernel-based Interpolants

For brevity, we will again use the abbreviation z = (x, v) ∈ R×R for coordinates in the phase space. Kernel-
based interpolants are functions of the shape fh,σ(z) =

∑N
i=1 cik(z, zi), where c = (c1, . . . , cN )> ∈ RN is a

4



Function Formula
bW1,2(r) (1− r)5

+(8r2 + 5r + 1)
bW2,2(r) (1− r)6

+(35r2 + 18r + 3)
bW4,2(r) (1− r)7

+(48r2 + 21r + 3)

Table 1: Examples of Wendland’s radial basis functions bWd,n ∈ C2n where d ∈ N is the spatial dimension and n ∈ N
the function’s order.[30, Section 9.3] (We deviate from Wendland’s notation, who uses ϕd,n instead.) For
brevity, we write (1− r)+ := max{0, 1− r}.

coefficient vector, and k(·, ·) is a suitable kernel function. The coefficient vector needs to be chosen such
that the interpolation conditions are fulfilled:

∀i ∈ {1, . . . , N} : fh,σ(zi) = fi

⇐⇒


k(z1, z1) k(z1, z2) · · · k(z1, zN )
k(z2, z1) k(z2, z2) · · · k(z2, zN )

...
...

. . .
...

k(zN , z1) k(zN , z2) · · · k(zN , zN )


︸ ︷︷ ︸

=:K


c1
c2
...
cN


︸ ︷︷ ︸

=:c

=


f1
f2
...
fN


︸ ︷︷ ︸

=:f

. (10)

For a given kernel-function k, the interpolation problem thus reduces to solving the linear system Kc = f,
which can be achieved using standard methods.

Classical choices of kernels are radial kernels, i. e.:

k(z, z̃) = b

(
|z − z̃|
σ

)
, (11)

where b : R+ → R is called the radial basis function, and σ > 0 is a scaling parameter which needs to
be chosen depending on the problem, but independent of h to ensure convergence. Typical choices for b
are Gaussians (b(r) = exp (−r2)), or Wendland’s functions,[30, Section 9.3] which are compactly supported
piece–wise polynomials b(r) = bWd,n(r), see Table 1. In RKHS literature other often used kernels include
inverse multi–quadratics and thin–plate splines. An overview can be found in the books of Wendland and
Fasshauer.[30],[31] The appropriate choice of kernel depends heavily on the expected solution space. These
choices in particular guarantee that the kernel matrix K always is symmetric positive definite, such that
the system (10) always has a unique solution and can be solved using the Cholesky decomposition.

Note that this approach greatly differs from conventional blob-methods. Superficially, they both use
approximations of the shape

∑N
i=1 cik(z, zi). However, in conventional methods the resulting approximations

usually do not interpolate the function values fi, the coefficient vector is fixed over time, the blob width σ
depends on h, and no linear system needs to be solved.

It can be shown that these interpolants have several beneficial mathematical properties, such as minimising
the so-called native space norms.[30, Chapter 10] For the Wendland kernels the native spaces are isomorphic
and norm-equivalent to Sobolev spaces, where the regularity of the Sobolev space depends on the order of
the kernel. The norm-minimising property guarantees both accuracy and stability.[30, Chapters 10–13] While
these interpolants are essentially ideal from the perspective of accuracy and stability, there are practical
hurdles to their application in our context:

• Evaluation is costly when the number of particles N is large. To evaluate fh,σ at a single location z,
it is necessary to perform a summation over all points zi, i = 1, . . . , N .

• The kernel-matrices K are densely populated and tend to be extremely ill-conditioned. This excludes
the use of iterative solvers. Especially for Gaussians the matrices quickly become singular within
machine precision. This also excludes the use of ‘fast algorithms’ like multipole methods to speed up
evaluation and to avoid explicitly storing K.

• Integration along the v-direction is possible, but difficult.
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The first two points are only problematic when using very fine discretisations with large numbers of
particles N . This problem can be alleviated using piece-wise interpolants, as described in Section 4.2.3.
Integration becomes significantly easier when one uses tensor–product kernels instead.

4.2.2 Tensorised Kernels

Using the Euclidean distance | · |, a radial basis function b can be turned into a kernel in arbitrary high
spatial dimensions. An alternative approach is to use tensorised kernels, which result from multiplying
low-dimensional kernels

k(z, z̃) = k
(
(x, v), (x̃, ṽ)

)
= b

(
|x− x̃|
σx

)
b

(
|v − ṽ|
σv

)
, (12)

e. g., with b(r) = bW1,2(r) from Table 1. Kernels of this form inherit most of the favourable properties of
radial kernels. In particular, when choosing the same radial basis function b as above, they also always
result in symmetric positive definite kernel matrices K. They give equally high asymptotic convergence
orders, albeit with different error constants. The only potential drawback is that now for a single evaluation
of k multiple evaluations of b are necessary, which is, however, only relevant if b is expensive to evaluate.

The main benefit in our case is that such interpolants are significantly easier to integrate along a single
coordinate axis. Assume we are given an interpolant fh,σ(z) =

∑N
i=1 cik(z, zi) with a tensorised kernel k.

We then can compute the charge density ρh,σ as follows:

ρh,σ(x) = 1−
∫ ∞
−∞

fh,σ dv = 1−
N∑
i=1

cib

(
|x− xi|
σx

)∫ ∞
−∞

b

(
|v − vi|
σv

)
dv︸ ︷︷ ︸

:=Λ

, (13)

where the last integral is a constant that only depends on b and σv. Once this constant has been computed,
evaluation of ρh,σ then reduces to computing the sum and the evaluation of b. In the case of Wendland’s
functions, b is a piece-wise polynomial and the integral can be easily evaluated analytically.

4.2.3 Piece-wise Interpolants

In case of the Vlasov–Poisson equation, only integrals along the v-direction of f are taken. In particular, no
derivatives or point evaluations of f are required. It is thus not necessary to construct a globally smooth
interpolant fh,σ. This justifies the use of piece-wise interpolants: the computational domain is divided
into a disjoint union of axis-aligned boxes, each of which containing only a small number of particles Nbox,
where for each box we demand that Nmin ≤ Nbox ≤ 2Nmin for a fixed, user-defined parameter Nmin. In
our experience, chosing 50 ≤ Nmin ≤ 200 usually suffices for the one-dimensional case.

Then in each of these boxes a local, kernel-based interpolant is computed. This way, the size of the
kernel-system (10) remains bounded: instead of solving one large system of dimension RN×N , we now solve
many small systems of maximal dimension R2Nmin×2Nmin . As Nmin is a user-defined constant, the cost for
solving this local system remains constant as well. Below we will describe a simple subdivision scheme
motivated by kd-trees that guarantees Nmin ≤ Nbox ≤ 2Nmin. Thus, solving all of these local systems
separately, one ends up with an overall optimal complexity of O(N).

Our subdivision is based on kd-trees using the so-called cyclic splitting rule. To this end, let Z ⊂ RD
with D ∈ N be a point cloud and let B = RD denote the initial box. Set n = 1 and fix a minimal number
of points per box Nmin ∈ N. The algorithm then proceeds as follows:

1. If |Z| < 2Nmin stop and return B and Z.

2. Split the box B into two: B = B1 ∪B2, where

B1 = {z ∈ B | zn ≤ median n-coordinate of the set Z},
B2 = B \B1.

(14)

Similarly, split the point cloud into two: Z = Z1 ∪ Z2, where Z1 = Z ∩B1 and Z2 = Z ∩B2.
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3. If n < D increase n by 1, else set n = 1.

4. Recursively apply this procedure on to B1, Z1 and B2, Z2.

For more details see Wendland’s monograph.[30, Chapter 14.2] Other spatial sub-division schemes are certainly
possible, but we found this simple approach to deliver satisfactory results.

The integration of the resulting interpolant fh,σ along the v-axis gets only slightly more complicated.
Suppose we are given a finite set of locations x1, x2, x3, . . . , xNρ at which we want to evaluate ρh,σ =
1 −

∫
f dv. We use superscripts to distinguish these points from the particle locations zi = (xi, vi),

i = 1, . . . , N . This evaluation can be achieved using the following algorithm:

1. For i = 1, . . . , Nρ set ρih,σ ← 1.

2. For each box B of the piece-wise interpolant fh,σ:
a) Find the evaluation points xi with

(
{xi} × R

)
∩B 6= ∅.

b) For each such point xi set:

ρih,σ ← ρih,σ −
∫ vmax(B)

vmin(B)
fh,σ(xi, v) dv. (15)

Here vmin(B) and vmax(B) denote the respective minimum and maximum v coordinates of the axis-aligned
box B. In the spirit of equation (13), the last integral can be evaluated exactly when using tensorised
kernels and if the radial function b can be integrated analytically. This is trivially the case for the piece-wise
polynomial Wendland kernels b = bW1,n, n ∈ N. Thus, in this case, integration can be carried out efficiently
and exactly. We also remark that this algorithm can be efficiently parallelised.

In the remainder of the paper, when using piece-wise interpolants, we will refer to this as the piece-wise
method or the PW method; in contrast, when using global kernel interpolants we will use the term ‘direct
method’.

4.3 Computation of the Electric field
Given the numerical approximation ρh,σ, one needs to solve the Poisson equation with periodic boundary
conditions to obtain Eh,σ, i. e., one has to solve:

−∆ϕh,σ = ρh,σ (16)
ϕh,σ(0) = ϕh,σ(L) = 0. (17)

From this one can compute Eh,σ = −∇xϕh,σ. In this work we use a standard Galerkin method and periodic
B-Splines on a uniform grid.

Alternatively it is possible to exploit the solution structure of fh,σ and ρh,σ, when using tensorised
Wendland-kernels. For the one-dimensional Poisson equation with periodic boundary conditions the Green’s
function G(x, y) and it’s derivative K(x, y) = ∂xG(x, y) are explicitly known,[20] such that we can write

Eh,σ(x) =
∫ L

0
K(x, y)ρh,σ(y)dy. (18)

Now, using (13), the above equation turns into

Eh,σ(x) =
∫ L

0
K(x, y)dy − Λ

N∑
i=1

ci

∫ L

0
K(x, y)b

(
|x− xi|
σx

)
dy. (19)

Both integrals can be evaluated analytically. This would result in a speed-up and for a given approximation
fh,σ give the exact solution of the electric field. However, our benchmarks showed that the interpolation
process to obtain fh,σ takes several times more computation time than solving for the electric field Eh,σ,
even when going to very high resolution in the numerical Poisson solver. We therefore decided against
implementing equation (19).
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4.4 Remarks on Computational Complexity and Feasibility
The computationally most expensive steps in both the direct and the piece-wise approaches is the solution
of the kernel systems (10). When the Cholesky decomposition is used, this results in complexities of:

• O( 1
3N

3) operations for the direct approach, using the Cholesky decomposition on a single RN×N
system.

• O( 8
3NN

2
min), using the Cholesky decomposition on at most N/Nmin systems of dimensions less or

equal to R2Nmin×2Nmin .

One thus immediately sees that the direct approach quickly becomes infeasible, while the piece-wise
approach achieves O(N) scaling, with the hidden constant scaling as N2

min. As mentioned before, in one
spatial dimension it suffices to chose 50 ≤ Nmin ≤ 200. Therefore, the constant N2

min appears to be rather
large.

One should keep in mind, however, that the bottleneck of many modern computer systems typically is not
computational power, but memory bandwidth and latency. The solution of the linear systems for each box
is a dense, local operation: highly optimised implementations are readily available and can make optimal
use of the processor’s arithmetic units. For this reason, as our experiments will show, the performance
difference compared to conventional PIC is not as dramatic as one might expect on first sight.

Nevertheless, we expect that in higher dimensions Nmin will need to be chosen larger as well, thereby
reducing the method’s efficiency. This problem can likely only be alleviated with suitable preconditioners
and iterative methods – an ongoing research topic in the RKHS community.[31, Chapter 34] This method, in
its current form, is best suited for lower dimensional problems.

5 Elements of a Convergence Analysis
In the following we will sketch a proof for the theoretic convergence order of our method. To this end we
will restrict ourselves to the linear case, i. e., we assume that the electric field E(t, x), and therefore the
velocity field a(t, ·) to be known at all times t. We will neglect the time-integration error when solving (7)
and (8). In other words, we assume there is no error in the particle locations, such that all times t the
particle cloud carries the values of the exact solution: f

(
t, zi(t)

)
= fi, i = 1, . . . , N .

Furthermore, we will restrict ourselves to radial instead of tensorised kernels. We expect similar results
to hold for both radial and tensorised kernels and numerical experiments support this hypothesis as well.
However, their respective native spaces would differ slightly, thus we would need to give a technical and
lengthy derivation of the correct estimates.

We only consider the direct method. The related convergence result for the piecewise method can be
proven analogously when interpreting the piecewise interpolant as a approximation of the global interpolant,
thus having locally the same convergence order.

We assume we are given initial data f0 : R2 → [0,+∞) which is smooth enough and periodic in the first
component with period L > 0. Furthermore let f0 satisfy

∃vmax > 0 : ∀x ∈ R, |v| ≥ vmax : f0(x, v) = 0 (20)

and
1
L

∫ L

0

∫ ∞
−∞

f0(x, v)dvdx = 1. (21)

Define Q := [0, L] × [−vmax, vmax] and fix a finite set of points Z0 ⊂ Q, Z0 = {z1, ..., zN} with
the respective function values f = (f1, . . . , fN ) = (f0(z1), . . . , f0(zN )

)
∈ RN . Fix a Wendland kernel

k(z, z̃) = bW2,n(|z − z̃|/σ) of order n ∈ N, n > 1, and without loss of generality set the scaling parameter
σ = 1. We define the fill distance of the initial point cloud Z0 as follows:

h := hZ0,Q := sup
z∈Q

inf
zi∈Z0

|z − zi|. (22)
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The numerical approximation fh,σ(t, z) of f(t, z) is then defined for all times t ≥ 0 analogous to (10),
i. e., the time-dependent coefficients c(t) =

(
c1(t), . . . , cN (t)

)
∈ RN are given as the solution of the linear

system:
K(t)c(t) = f (23)

with time-dependent matrix entries Kij(t) := k
(
zi(t), zj(t)

)
and

fh,σ(t, z) :=
N∑
i=1

ci(t)k(zi(t), z). (24)

We then obtain the following result.
Theorem (Convergence linear case). Let the above assumptions be fulfilled and let T > 0. Let m =
n+ 1. Then, for h small emough and for all t ∈ [0, T ], the interpolant fh,σ satisfies the error bound

‖f(t, ·)− fh,σ(t, ·)‖Lp(Q) ≤ C(T )hm−l(p)‖f0‖Hm(Q), (25)

where C(T ) > 0 depends on the problem and on discretisation parameters such as vmax and order n, but is
independent of h. The constant l := l(p) is defined as

l(p) =
{

1− 2
p if 2 ≤ p ≤ ∞,

0 if 1 ≤ p ≤ 2.

Proof. Let t ≥ 0 be a fixed time and the exact solution of (7)–(8) with the starting positions Z(0) = Z0.
Furthermore assume that the particle positions Z(t) are mapped back to their periodically equivalent
positions in Q at time t, i. e., Z(t) ⊂ Q without loss of generality.

From Section 3 we know that f(t, ·) has the same regularity as f0. Thus, using standard estimates we
obtain the existence of a constant C1 > 0 independent of h such that:[30, Corollary 11.33]

‖f(t, ·)− fh,σ(t, ·)‖Lp(Q) ≤ C1h
m−l(p)
Z(t),Q ‖f(t, ·)‖Hm(Q). (26)

Using (9), and Hölder’s inequality one obtains

‖f(t, ·)‖Hm(Q) = ‖f0 ◦ Φ0
t‖Hm(Q) ≤ ‖Φ0

t‖Hm(Q)︸ ︷︷ ︸
=:C2(t)

‖f0‖Hm(Q). (27)

The constant C2(t) depends on time t and the problem, but is independent of h and thus:

‖f(t, ·)− fh,σ(t, ·)‖Lp(Q) ≤ C1C2(t)hm−l(p)Z(t),Q ‖f0‖Hm(Q), (28)

where hZ(t),Q is the fill distance of Z(t).[20, section 1]

Finally, using that ‖∇Φt0‖L∞ is bounded for all finite t, one obtains

hZ(t),Ω ≤ C3(t)h, (29)

where the constant C3(t) > 0 again depends on the problem and time t.[20, Lemma 3-5] Thus, letting:

C(T ) := sup
t∈[0,T ]

C1C2(t)C3(t)m−l(p)

the result follows. This concludes the proof.

Our numerical experiments indicate that high orders of convergence are preserved in the non-linear
setting. A complete proof is beyond the scope of this work.
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6 Numerical results
We consider three standard benchmarks: weak linear Landau damping, two stream instability and bump on
tail instability. For the interpolation step we used both the direct and piece-wise ansatz (PW), depending
on the number of particles. Piece-wise interpolants tend to develop overshoots near the boundaries of the
respective boxes, but can be efficiently computed for large numbers of particles. Direct kernel-interpolants
use the entire set of particles at once and therefore do not suffer from this problem. This, however, comes
at the price of an O(N3) complexity and for this reason the direct approach does not scale well to large
numbers of particles. We will carry out experiments using both approaches to assess whether the increased
accuracy of the direct ansatz outweighs its cost.

Tensorised Wendland kernels were used for all interpolations, i. e., we used kernels of the shape:

k(z, z̃) = bW1,n

(
|x− x̃|
σx

)
bW1,n

(
|v − ṽ|
σv

)
.

In the following we will only specify the order n ∈ N of the kernel in use.
Preliminary experiments have shown that for our test cases reasonable ranges for the scaling parameters

are 0.5 ≤ σx, σv ≤ 6. For the finest discretisations the resulting kernel matrices became too ill-conditioned
even for direct linear solvers. For this reason we apply Tikhonov regularisation and solve the modified
systems

(
K + µ2I

)
c = f with regularisation parameter µ = 10−6.

For the phase-space sub-division we use Nmin ∈ [100, 200]. The Poisson solver is a standard Galerkin
method using uses B-Splines of order 8 (degree 7) on a uniform grid with ∆x = L

256 . The high resolution of
the Poisson solver was chosen such that we can neglect the influence of errors in the computation of the
electric field Eh,σ from ρh,σ. Furthermore note that the computation time of Eh,σ, even for this resolution,
is neglible compared to the computation time of the interpolation step.

6.1 Weak Landau damping
The initial condition is

f0(x, v) := 1√
2π
e−

v2
2
(
1 + α cos(kx)

)
, (x, v) ∈ [0, L]× R (30)

with k = 0.5, α = 0.01, L = 4π. The velocity space is cut at vmax = 6. The initial state (30) is a small
perturbation to the Maxwellian distribution

fM (v) = 1√
2π
e−

v2
2 ,

which is a steady state solution of the Vlasov–Poisson equation (1). For the direct method we used hx = L
32

and hv = vmax
32 , while for the PW ansatz hx = L

512 and hv = vmax
512 were used. The scaling parameters were

chosen as σx = 3, σv = 1 for the direct method and σx = 6, σv = 3 for the PW method. We used order
n = 2 for both methods. For time-integration we used the classical Runge–Kutta method with ∆t = 1

8 for
the direct method and a symplectic Euler scheme with ∆t = 1

16 for the PW method. We chose a low order
time-integration method for the PW ansatz as the reconstructed solution is only piecewise continuous.
Note that while larger time-steps would be possible due to the lack of a CFL-condition, we opted for
smaller time-steps to better resolve the evolution of the electric field amplitude when plotting.

Figure 1 shows the evolution of the electric field amplitude over time. From theory and numerical
experiments we know that the electric field will get damped periodically at rate γ = 0.153359 and oscillation
frequency ω = 1.41566.[41] Until t ≈ 25 both methods are in good agreement with theory. At this point we
observe a recurrence phenomenon for the direct approach: the electric field amplitude increases again and
a new damping process begins. This is remarkable as recurrence has been known for grid-based solvers,[42]

but is has been claimed that particle methods do not suffer from this effect.[43] Conventional blob methods,
however, become ‘noisy’ at this stage, and we believe that it is this noise that masks the recurrence.[2],[5],[23]

The cause of this phenomenon can be seen in Figure 3, which shows the evolution of the difference
between the numerical solution fh,σ and the Maxwellian distribution fM . One can observe waves of
increasing frequency entering the domain from v → ±∞. Starting at t = 30, unphysical artefacts appear in
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Direct, hx = L/32, hv = vmax/32

PW, hx = L/512, hv = vmax/512

0.015 · e−γ·t

Figure 1: Electric field amplitude for the weak Landau damping benchmark. The direct method (blue graph) uses
hx = L

32 , hv = vmax
32 , ∆t = 1

8 , fourth order classical Runge–Kutta method and kernels of order n = 2. The
PW method (green graph) uses hx = L

512 , hv = vmax
512 , ∆t = 1

16 , symplectic Euler method and also kernels
of order n = 2. Up to t = 25 the numerical damping rate of both methods are in good agreement with the
theoretical prediction. At t ≈ 29 the recurrence effect sets in for the direct method, and between t = 24
and 29 the amplitude maxima are slightly overshooting their theoretical value. The PW method, on the
other hand, reproduces the correct damping behaviour until t = 35.
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(t
)‖
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PW, hx = L/32, hv = vmax/32

PW, hx = L/64, hv = vmax/64

0.015 · e−γ·t

Figure 2: Amplitude of Eh,σ when running PW method with low resolution, resolution and parameters as for the
direct method above.

11



the plot of the direct method. At this point we can observe an aliasing effect: the high-frequency modes
are not correctly captured by the low resolution of the direct method. The higher resolution of the PW
method, however, can correctly reproduce f for extended period of times.

In the limit t→ +∞ and for the initial datum (30) the analytic solution f(t, ·, ·) will weakly converge to
a steady state but not in a strong sense.[14] The solution f develops waves of increasing frequency and
number with time and therefore develops a small scale structure. Thus the PW method will eventually
suffer from recurrence as well.

In Figure 4 we display the results of running the PW method at low resolution; nameley the same
number of particles and the same scaling parameters as for the direct method. Along the boundaries of the
boxes B one observes errors caused by the discontinuity of the PW approximations. This also leads to
noisy results in the amplitude plot, Figure 2. Note however, that for a discontinuous function the L∞-norm
is not suitable to analyse errors and therefore the noisy results in below figure are to be expected when
using to low resolutions. Still even though there are strong errors along the boundaries of the cover boxes,
the overall dynamic in f is correctly captured to a similar extend as for the direct method. Especially one
observes a similar wave-structure for t = 10, 30 and 50 when comparing Figures 3a and 3e with Figures 4b
and 4d.

This leads to the conclusion that using the PW method starts to be reasonable when discontinuity
errors are on the same level as the local interpolation errors, which can only be expected for high enough
resolutions. When looking at Figure 2 we see that doubling the resolution from hx = L/32 and hv = vmax/32
to hx = L/64 and hv = vmax/64 already significantly lowers the errors in the amplitude plots, suggesting
that the latter resolution is the lowest resolution to get reasonable results with PW methods for this set of
parameters and this benchmark. This also the reason why we chose to run our tests for the PW method
with hx = L/512 and hv = vmax/512, i. e., a relatively high resolution. Note that the direct method can be
run with lower resolution and still produce good results, however, takes significantly longer to run and uses
significantly more resources. This is why we decided to run the test for the direct method in the relatively
low resolution only. The performance and accuracy trade-off between the direct and PW method will be
discussed in more detail later in Section 6.4 and Section 6.5.

In figure 5 we compare the domain decomposition using the kd-tree for different times in the simulation
using hx = L

512 and hx = vmax
512 . We notice that the decomposition essentially stays close to an uniform

grid for both t = 0 and t = 50. The strongest adaptation can be observed where waves enter the domain,
around |v| ≈ 3.

6.2 Two stream instability
For our second benchmark we consider the initial condition

f0(x, v) = 1√
2π
v2e−

v2
2
(
1 + α cos(kx)

)
, (x, v) ∈ [0, L]× R (31)

with α = 0.01, k = 0.5, L = 4π. We use vmax = 8 as cut-off in velocity-space. The two stream instability
simulates two particle streams of same density but opposing velocities colliding with each other. The initial
state is a slight perturbation of the instable equilibrium

feq(v) = 1√
2π
v2e−

v2
2 .

We used hx = L
64 and hv = vmax

128 for the direct method and hx = L
512 and hv = vmax

1024 for the PW method.
The scaling parameters were fixed as σx = 2, σv = 1 for the direct method and σx = 4, σv = 2 for the PW
method. For both methods we used fourth order kernels. The time-steps are set to ∆t = 1

4 and ∆t = 1
32

with classical Runge-Kutta and symplectic Euler as time-integrators respectively.
The evolution of the electric field’s amplitude is depicted in Figure 6. Because the direct approach is

limited to fairly small numbers of particles, i. e., coarse resolutions, it performs worse than the PW method.
However, the direct method is still able to capture the dynamics of both f and E qualitatively correctly.
The forming of the filaments introduces steep gradients. This results in overshoots in the numerical solution,
as soon as these gradients can no longer be resolved by the fixed resolution.

This can cleary be observed in Figure 7 after t ≈ 30 in the plots for the direct method. While the direct
and PW methods, similar to grid-based methods, suffer from overshoots and thus do not provide good
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(a) Direct, t = 10 (b) PW, t = 10

(c) Direct, t = 30 (d) PW, t = 30

(e) Direct, t = 50 (f) PW, t = 50

Figure 3: Difference between the numerical solution fh,σ and the Maxwellian equilibrium fM for the weak Landau
damping benchmark. On the left-hand-side fh,σ is computed via the direct method and on the right-hand-
side using the PW method. The resolutions are the same as in Figure 1. For t ≤ 30 the number of waves
is steadily increasing. For the lower resolution, starting at t = 30, numerical artefacts can be observed. At
t = 50 aliasing occurs: the spatial resolution is insufficient to capture the highest frequencies. Therefore
high frequencies appear as low ones. The high-resolution solution can resolve the solution correctly up to
t = 50.
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(a) t = 0 (b) t = 10

(c) t = 30 (d) t = 50

Figure 4: Difference between fh,σ and fM for the weak Landau damping benchmark when using the PW method at a
low resolution, equal to that of the direct method. One observes jumps in the errors along the boundaries
of the boxes B used in the sub-division of the phase space. However, the simulation still captures the
correct global dynamic of f .

Figure 5: Comparison between domain decompositions for the PW method for t = 0 and t = 50 for the weak Landau
damping benchmark using hx = L

512 and hx = vmax
512 .
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Figure 6: Electric field amplitude for the two stream instability. The direct method (blue) used hx = L
64 , hv = 10

128 ,
∆t = 1

4 and the classical Runge-Kutta method. The PW method (green) used hx = L
512 , 10

1024 , ∆t = 1
32

and the symplectic Euler method. Both the direct and PW method employed fourth order kernels. After an
initial damping until t ≈ 5 the mixing process starts dominating the dynamics. The electric field amplitude
arrives at its maximum at approximately t ≈ 23 and starts periodically oscillating afterwards. Until t ≈ 23
the increase of amplitude is captured correctly by both methods. After t ≈ 25 slight numerical artefacts
appear in the solution computed with lower resolution.

accuracy for extended times in turbulent simulations, they reproduce the fine details of f better than
Eulerian or PIC methods.

In Figure 8 we compare the domain decompositions of the PW scheme for different times t using hx = L
512

and hx = vmax
1024 . At t = 0 it is close to a uniform grid. This is expected due to the uniforml particle

distribution at t = 0. Later, at t = 50 the particles are in more disarray and thus we observe some
adaptation of the domain decomposition. However, the decompositions seem to be still close to an uniform
grid, suggesting that the particle distribution is also still quasi-uniform. The strongest adaptations can be
seen close to the filaments.

6.3 Bump on tail instability
The initial condition for our final benchmark, the bump on tail instability, is

f0(x, v) = 1√
2π

(
np · e−

v2
2 + nb · e

− 1
2

(v−vb)2

v2
t

)
(1 + α cos(kx)) . (32)

with np = 0.9, nb = 0.2, vb = 4.5, vt = 0.5, α = 0.04, k = 0.3, L = 2π
0.3 .[41] The cut-off in velocity space

is set to vmax = 10. For this test case we only consider the PW method and are interested in both long-
and short-term accuracy. We chose hx = L

1024 and hv = vmax
512 as resolution and second order kernels. The

scaling parameters were set to σx = 6, σv = 3. The time-step is set to ∆t = 1
16 and the symplectic Euler

time integration method was used.
The bump on tail instability simulates the clash of a low density particle stream with Maxwellian velocity

distribution around vb = 4.5 into resting particles, i. e., with Maxwellian velocity distribution around 0.
The equilibrium state

feq(v) = 1√
2π

(
np · e−

v2
2 + nb · e

− 1
2

(v−vb)2

v2
t

)
gets slightly perturbed, whereby the mixing process is initiated. The resulting dynamics can be described
as an overlapping of the effects of weak Landau damping and the two stream instability, i. e., an overlapping
of mixing and damping processes. Which effect dominates, depends on the difference in density and the
strength of the initial perturbation.
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Direct, t = 10 PW, t = 10

Direct, t = 30 PW, t = 30

Direct, t = 50 PW, t = 50

Figure 7: The distribution function fh,σ(t, x, v) for the two stream instability benchmark. The numerical solution
computed using the direct method is on the left-hand side, the PW method on the right-hand side. The
parameters were chosen as in Figure 6. At t ≈ 10 the phase-space ‘vortex’ starts to form. After t = 30
one can observe the ‘vortex’ rotation. With each rotation further filaments enter the ‘vortex’. It can also
be observed that the filaments enter at x = 0 or x = 4π and drift towards the center of the ‘vortex’. While
both methods reproduce the dynamics of f qualitatively correct, the errors made by the direct method are
significantly higher. Both methods suffer from overshoots near filaments.
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Figure 8: Comparison between domain decompositions for the PW method for t = 0 and t = 50 for the two stream
benchmark using hx = L

512 and hx = vmax
1024 .

For the chosen set of parameters, the damping effect on electric field is small and only becomes apparent
at large time intervals. Therefore the benchmark involves being able to simulate the correct behaviour for
times t� 100. In Figure 9 one sees the long time damping, which is in good agreement with the results
presented by Arber and Vann.[41]

In Figure 10 we see an initial damping between t = 0 and t ≈ 5. On the one hand, after t ≈ 5 a ‘vortex’
begins to form that will eventually dominate the dynamics for early times. The ‘vortex’ moves periodically
in phase space along the x-axis. This can be seen in Figure 11. After t ≈ 20 an increase in the number
of filaments can be observed. This effect is similar to that of Figure 7 from the two stream instability
simulation.

On the other hand, starting at t ≈ 20 one can observe waves forming on the particle cluster centred
at v = 0. This is comparable to weak linear Landau damping, see Figure 3. Note, that compared to
the previous two benchmarks, the perturbation strength α = 0.04 is significantly higher and thus the
amplitudes of appearing waves are higher as well.

Similar to the two stream instability benchmark, we observe overshoots resulting in slight numerical
noise in this simulation, see Figures 11e and 11f. But in contrast to the two stream instability benchmark,
the gradients do not get as steep and therefore the simulation stays stable even with fewer particles and for
extended periods of time.

6.4 Convergence study
In this section we investigate the convergence behaviour of the presented methods in the setting of the weak
Landau damping benchmark, see Section 6.1. In particular we compare both the performance and accuracy
of the direct and PW methods. We compute the errors for fh,σ with respect to a reference solution with
hx = L

4096 , hv = vmax
4096 using the PW method and second order kernels. Note that we use the PW method

for the reference solution as computation of a global interpolant in this resolution is not feasible from both
memory usage and run-time perspective on the machine we used.

For all benchmarks we used the classical Runge–Kutta method with ∆t = 1
8 for the direct approach and

the symplectic Euler time-integration scheme with ∆t = 1
16 for the PW approach. The minimal box-size

for the PW method was set to Nmin = 100.
The L2- and L∞-errors for both schemes when using kernels of order n = 2 are displayed in Figures 12

and 13. The corresponding results for kernels of order n = 4 are given in Figures 14 and 15.
For all of these approaches, the error does not significantly grow with time t; no ‘noise’ becomes visibible.

For the direct method the L2 and L∞-errors are of similar magnitude. Surprisingly, this is also the case for
the PW method, albeit to a somewhat lesser extent. This lesser extent can be attributed to the fact that
the discontinuities of the PW approach more strongly affect the L∞-norm than the L2-norm.

For the direct method we observe a rapid decrase of the error with increasing resoltion. We empirically
observe convergence rates of O(h5.5) and O(h7) in the L2-norm for respectively n = 2 and n = 4, clearly
exceeding the expected rates.
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Figure 9: Amplitude of the electric field until T = 2000 for the bump on tail instability benchmark. The simulation
was run at resolution hx = L

1024 , hv = 10
512 and time step ∆t = 1

16 using the symplectic Euler method.
After an initial increase of amplitude, several oscillation modes can be observed. In the long time limit
t→ 2000 the amplitude gets gradually damped.
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Figure 10: Amplitude of the electric field of the bump on tail instability until T = 50 with simulation parameters
as in figure Figure 9. After an initial damping until t ≈ 5 the amplitude increases to reach its global
maximum at t ≈ 20. Then there are two dominating oscillation modes, a slow oscillation with period
≈ 22 and another faster oscillation with period ≈ 2.5. The first oscillation is caused by the mixing of
the two particle streams, see Figure 6, the second oscillation is caused by a Landau damping effect, see
Figure 1. Between t = 30 and t = 40 one can observe numerical noise. At this point the mixing of the
two streams is causing steep gradients and thus overshoots in the numerical solution fh,σ which results in
numerical errors when computing Eh,σ. After t = 50, the amplitude is reproduced correctly again.
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(a) t = 0 (b) t = 10

(c) t = 20 (d) t = 30

(e) t = 40 (f) t = 50

Figure 11: Evolution of the distribution function fh,σ(t, x, v) until T = 50 for the bump on tail instability. Computed
using the PW method with the same parameters as in Figure 9. Beginning at t ≈ 10 the phase-space
‘vortex’ starts to form and gets fully developed at t ≈ 20. Afterwards it starts periodically moving along
the x-axis with a period of ≈ 22 which coincides with the slow oscillation in Figure 10. After t = 20 the
formation of so-called Langmuir waves on the bigger particle cluster can be observed. This coincides with
the faster oscillations appearing in Figure 10 with period ≈ 2.5.
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Figure 12: A comparison of L2-errors for fh,σ in time using second order kernels and σx = 1 and σv = 0.5. Left
the direct and on the right the PW approach was used. One observes a higher convergence order for
the direct approach exceeding the theoretically predicted convergence order of O(h3), while the observed
convergence order for the PW method is slightly below the predicted convergence order.
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Figure 13: A comparison of L∞-errors for fh,σ in time using second order kernels and σx = 1 and σv = 0.5. Left
the direct and on the right the PW approach was used. One observes a higher convergence order for the
direct approach, however, both approaches exceed the theoretically predicted convergence order of O(h2.5).

For the PW approach, convergence only starts later, at higher resolutions and does not reach the same
rates as the direct method does. Here empirical convergence rates approach O(h3) and O(h4.5) in the
L2-norm respectively for orders n = 2 and n = 4; much closer to the expected rates.

6.5 Computational Efficiency
In Tables 2 to 5 we give the timings for a single time-step in the weak Landau damping test-case. The
hardware hardware has the following specfications:

CPU Intel(R) Xeon(R) E-2276M CPU @ 2.80GHz
6 cores

RAM 32 GB DDR4 Synchronous 2667 MHz

For the direct approach only resulutions up to hx = L/64, hv = vmax/64 were tested, due to memory
constraints. When comparing the timings for a single time-step for the direct and PW methods, we observe
that the PW method is always significantly faster. Even for low resolutions the PW method is still at
least one order of magnitude faster than the direct method. Thus we conclude that from a performance
perspective the PW method is indeed always the best choice. In particular, Tables 4 and 5 confirm that
the PW method scales linearly in the number of particles.

Figures 12 and 15 show that for a given resolution, the direct method is up to two orders of magnitude
more accurate than the PW method. However, this comparison is misleading: the PW requires higher
resolutions to reach the same accuracy, but still needs significantly less computational time to do so.
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Figure 14: A comparison of L2-errors for fh,σ in time using fourth order kernels and σx = 1 and σv = 0.5. Left
the direct and on the right the PW approach was used. One observes a higher convergence order for
the direct approach again exceeding the theoretically predicted convergence order of O(h5). For the PW
method one observes a slighlty lower convergence order than expected.
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Figure 15: A comparison of L∞-errors for fh,σ in time using fourth order kernels and σx = 1 and σv = 0.5. Left
the direct and on the right the PW approach was used. One observes a higher convergence order for the
direct approach exceeding the theoretically predicted convergence order of O(h4.5). For the PW method
one observes a slighlty lower convergence order than expected.

Resolution tstep in s ttotal in s
hx = L/16, hv = vmax/16 2.03 · 10−2 4.92
hx = L/32, hv = vmax/32 1.78 · 10−1 43.0
hx = L/64, hv = vmax/64 5.62 1360

Table 2: Timings for the direct approach using second order kernels.

Resolution tstep in s ttotal in s
hx = L/16, hv = vmax/16 2.43 · 10−2 5.89
hx = L/32, hv = vmax/32 2.54 · 10−1 61.5
hx = L/64, hv = vmax/64 7.16 1730

Table 3: Timings for the direct approach using fourth order kernels.
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Resolution tstep in s ttotal in s
hx = L/16, hv = vmax/16 1.22 · 10−3 0.590
hx = L/32, hv = vmax/32 2.77 · 10−3 1.34
hx = L/64, hv = vmax/64 9.05 · 10−3 4.28
hx = L/128, hv = vmax/256 3.00 · 10−2 14.3
hx = L/256, hv = vmax/512 1.15 · 10−1 55.7

Table 4: Timings for the PW approach using second order kernels.

Resolution tstep in s ttotal in s
hx = L/16, hv = vmax/16 2.29 · 10−3 1.11
hx = L/32, hv = vmax/32 5.94 · 10−3 2.88
hx = L/64, hv = vmax/64 1.90 · 10−2 9.18
hx = L/128, hv = vmax/256 6.45 · 10−2 31.2
hx = L/256, hv = vmax/512 2.55 · 10−1 123

Table 5: Timings for the PW approach using fourth order kernels.

Finally we also compare the PW method with a simple PIC method. Our PIC code approximates the
density ρ(x) for jhx ≤ x < (j + 1)hx by adding the masses of all particles in that x-range, and dividing
the result by hx. The electric potential ϕ is approximated using a standard second-order finite-element
method, time-integration uses the classical Runge–Kutta scheme with time-step ∆t = 1

8 . Figures 16 and 17
show the resulting errors in the elictric field.

One observes that the PW method converges significantly faster in both the L2 and L∞-norm. This is in
particular the case for the finest resolutions. On the other hand, the simple PIC code is significantly faster
for a given resolution, as can be seen by comparing Tables 5 and 6. However, the high L∞-errors for the
PIC method suggest a strong level of numerical noise, which is much less present in the PW method. Here,
especially in the L2-sense, it is much less clear at which level of accuracy the PW method will begin to
outperform the PIC method. On the other hand, it is clear that the PIC method will require significantly
larger numbers of particles and thus imposes larger memory constraints on the machine.

Resolution tstep in s ttotal in s
hx = L/16, hv = vmax/16 1.07 · 10−4 2.57 · 10−2

hx = L/32, hv = vmax/32 1.63 · 10−4 3.92 · 10−2

hx = L/64, hv = vmax/64 2.90 · 10−4 6.94 · 10−2

hx = L/128, hv = vmax/256 9.37 · 10−4 2.25 · 10−1

hx = L/256, hv = vmax/512 4.40 · 10−3 1.06

Table 6: Timings for a simple PIC method.
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Figure 16: A comparison of L2-errors for the numerically computed electric field using on the one hand the PW
method with fourth order kernels and σx = 1, σv = 0.5, and, on the other hand, a simple PIC method.
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Figure 17: A comparison of L∞-errors for the numerically computed electric field using on the one hand the PW
method with fourth order kernels and σx = 1, σv = 0.5, and, on the other hand, a simple PIC method.

7 Conclusion
We have presented a particle method using meshfree interpolation of arbitrary high order and investigated
numerically, whether the good convergence behaviour from RKHS theory carries over to the case of the
fully non-linear Vlasov-Poisson equation in the d = 1 case.

In contrast to conventional particle methods like PIC or SPH, our method does not need a remapping
strategy to avoid numerical noise. Furthermore, as interpolation with Wendland kernels is stable with
arbitrary high convergence order, our method needs significantly fewer particles to achieve the same accuracy
as classical particle methods. The downside is that our method struggles with steep gradients, which
naturally appear in solutions of the Vlasov–Poisson equation. To resolve them correctly, any interpolation
method needs high resolution, irrespective of the convergence order of the method. Similar problems can
be observed with higher order Eulerian Vlasov solvers. Steep gradients lead to overshoots. However, while
negative values of f do not make any physical sense, their effect on the quantities ρ and E seems to be
limited.

The ill-conditioning of the kernel matrices is a well-known problem and its solution is an ongoing research
topic in the RKHS community. This limits the particle numbers for the direct method. In case of the
Vlasov–Poisson equation, however, this problem can to some extend be bypassed by using piece-wise
interpolants instead. Our simulations have illustrated that this approach does in fact result in efficient
Lagrangian schemes, albeit with convergence orders that are lower than those of the direct approach.

To summarise, at least in the one-dimensional case, the presented PW method offers a good compromise
between the stability and high accuracy of purely Eulerian methods on the one hand and speed and
hyperbolicity of classical particle methods on the other hand, while avoiding the inherent numerical noise
of the latter.

It is unclear whether the piecewise approach is suitable for higher dimensions, for which we expect
reduced efficiency as larger local systems need to be solved. On the other hand, we believe that the
piece-wise approach could prove to be beneficial for stellar dynamics, where particles tend cluster more
stronlgy, and could thus provide ‘auto-adaptation’. These points require further investigation.
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