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Abstract

A stabilized finite element method is introduced for the simulation of time-periodic creeping flows,

such as those found in the cardiorespiratory systems. The new technique, which is formulated in the

frequency rather than time domain, strictly uses real arithmetics and permits the use of similar shape

functions for pressure and velocity for ease of implementation. It involves the addition of the Laplacian

of pressure to the continuity equation with a complex-valued stabilization parameter that is derived

systematically from the momentum equation. The numerical experiments show the excellent accuracy

and robustness of the proposed method in simulating flows in complex and canonical geometries for a

wide range of conditions. The present method significantly outperforms a traditional solver in terms of

both computational cost and scalability, which lowers the overall solution turnover time by several orders

of magnitude.

1 Introduction

Simulation of time-periodic creeping flows, such as cardiorespiratory flows in smaller vessels, can signifi-
cantly benefit from a formulation that is expressed in the frequency rather than the time domain. Firstly,
the boundary conditions in these problems, which typically vary smoothly in time, can be represented via
a handful of Fourier modes. By solving for those few selected Fourier modes rather than integrating over
thousands of time steps, a frequency formulation reduces the cost of a simulation by orders of magnitude.
The absence of homogeneous solution in the frequency formulation presents a second major cost advantage.
In a standard time formulation, the transient solution obtained at the beginning of the simulation has little
significance, yet it must be computed before the particular solution can be obtained. Since a frequency
formulation is independent of the initial conditions, it directly produces the particular solution, thus avoid-
ing this costly and unnecessary computation. Thirdly, while the frequency formulation is embarrassingly
parallelizable, a standard time formulation can be hardly parallelized in time. Thus, computations that are
based on frequency formulation can be scaled to a much larger number of processors, permitting a much
shorter solution turnover time. Fourthly, the time integration error present in the standard time formulation
is absent in the frequency formulation. The truncation error associated with the selection of a finite number
of Fourier modes is, however, present in the frequency formulation. Lastly, the stability consideration asso-
ciated with the time integrator is no longer a concern in a frequency formulation as the solution is obtained
from solving a boundary value problem.

The advantages of the frequency formulation for the solution of the incompressible unsteady Stokes
equations enumerated above were shown in practice in a recent article [1]. That included one to two orders
of magnitude reduction in cost and improvement in scalability by the number of computed modes. Despite
these attractive results, the formulation presented in [1] had several shortcomings. Firstly, it relies on complex
arithmetics and thus was hard to implement by requiring a significant change in the existing implementation
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of both the fluid and linear solver. Furthermore, a Bubnov-Galerkin formulation was employed in that case
to satisfy the inf-sup condition [2, 3, 4]. That led to two additional shortcomings, namely the requirement
to use mixed shape functions for pressure and velocity and also the stiffness of the tangent matrix. The use
of linear shape function for pressure and quadratic shape function for velocity is not a convenient choice,
particularly in the case of complex geometries. The issue associated with the stiffness of the tangent matrix
is caused by a zero block on the diagonal of the stiffness matrix (given that the continuity equation does not
depend on the pressure), which delays the convergence of the iterative linear solver. It was shown that this
slow convergence contributes to an order of magnitude increase in cost, particularly at higher modes where
the condition number of the stiffness matrix increases.

The present article introduces a stabilized formulation to overcome the aforementioned issues. Namely,
the new formulation uses purely real arithmetics, permits the use of equal order shape functions, and avoids
the zero block in the tangent matrix for faster convergence of the linear solver. The article is organized as
follows. In Section 2, the stabilized formulation is presented. Then in Section 3, the proposed formulation is
tested using a canonical and a complex patient-specific geometry. Lastly, Section 4 contains the concluding
remarks.

2 A time-spectral stabilized formulation for Stokes equation

Creeping flows, such as those found in cardiorespiratory flows, can be modeled using the incompressible
unsteady Stokes equation. Taking the temporal Fourier transformation of the unsteady Stokes equations
produces a boundary value problem that is stated as

ĵρωu = −∇p+∇ · (µ∇u) in Ω,

∇ · u = 0 in Ω,

u = g on Γg,

(−pI + µ∇u) · n = h on Γh.

(1)

where ĵ =
√
−1, ω is the oscillation frequency, x is position, u(ω,x) is the velocity, p(ω,x) is pressure, g(ω,x)

is the imposed velocity on the Dirichlet boundary Γg, and h(ω,x) is the imposed traction on the Neumann
boundary Γh. Note that the time derivative term in the Stokes equations is transformed to a complex-valued
source term in Eq. (1). Thus, the unsteady Stokes equations, when expressed in the frequency domain,
behave similarly to the steady Stokes equations with a nonzero complex source term.

Since u and p are complex-valued variables in general, numerical simulation of Eq. (1) will require
complex arithmetics [1]. For a real-valued formulation, the state variables as well as boundary conditions
can be expressed as

u = ur + ĵui,

p = pr + ĵpi,

g = gr + ĵgi,

h = hr + ĵhi.

(2)

Using these changes of variables, Eq. (1) can be rewritten in the real domain as

−ρωui = −∇pr +∇ · (µ∇ur), ρωur = −∇pi +∇ · (µ∇ui) in Ω,

∇ · ur = 0, ∇ · ui = 0 in Ω,

ur = gr, ui = gi on Γg,

(−prI + µ∇ur) · n = hr, (−piI + µ∇ui) · n = hi on Γh.

(3)
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To weak form of Eq. (3) can be expressed as finding ur ∈ Sr, ui ∈ Si and pr, pi ∈ L2 such that for any
wr,wi ∈ W and qr, qi ∈ L2 the following must hold

BG =

ˆ

Ω

[

− ρωwr · ui +∇wr : (−prI + µ∇ur)− qr∇ · ur

− ρωwi · ur −∇wi : (−piI + µ∇ui) + qi∇ · ui

]

dΩ,

FG =

ˆ

Γh

[

wr · hr −wi · hi

]

dΓ.

(4)

In this equation, wr, wi, qr and qi are test functions for velocity and pressure and

Sr =
{

ur|ur ∈ (H1)nsd , u = gr on Γg

}

,

Si =
{

ui|ui ∈ (H1)nsd , u = gi on Γg

}

,

W =
{

w|w ∈ (H1)nsd , w = 0 on Γg

}

.

(5)

In above, L2 denotes the space of scalar-valued functions that are square-integrable on Ω. Also, (H1)nsd

denotes the space of vector-valued functions with square-integrable derivatives on Ω.
In obtaining BG and FG in Eq. (4), the imaginary part of the momentum equation and real part of the

continuity equation were multiplied by −1. The sign of those equations was changed to ensure the tangent
matrix remains symmetric.

To stabilize Eq. (4) for equal order shape functions for u and p and relate the continuity equation to
pressure, the Laplacian of pressure is added to the continuity equation. To systematically derive this term,
consider the divergence of the momentum equation from Eq. (1) that is

ĵρω∇ · u = −∇2p+∇ · [∇ · (µ∇u)] . (6)

Since the last term in Eq. (6) involves the third derivative of velocity, it will vanish in the interior of an
element when linear shape functions are employed. It is thus approximated using the characteristic size of
the element H as ∇ · [∇ · (µ∇u)] ≈ (µ/H2)∇ · u. Thus, Eq. (6) can be written as

∇ · u− τ∇2p = 0, (7)

where

τ =
1

(µ/H2)− ρωĵ
. (8)

The numerical experiments show that incorporating a small constant in the definition of τ improves the
solution accuracy and reduces the number of linear solver iterations. They also show ξ ∈ R

nsd ×R
nsd , which

is the covariant tensor obtained from a mapping between the physical and parent elements, provides a good
approximation for H [5]. Thus, in practice, the real and imaginary component of τ are defined as

τr =
cµ

√
ξ : ξ

(ρω)2 + µ2ξ : ξ
, τi =

cρω

(ρω)2 + µ2ξ : ξ
. (9)

The numerical simulation involving 2D triangular elements and 3D tetrahedral elements show c = 2−5 ≈ 0.03
produces satisfactory results. This value of c is utilized for all the computations reported in Section 3.

From Eqs. (7) and (9), the stabilization terms are computed as

BS =
∑

e

ˆ

Ωe

[

−∇qr · (τr∇pr − τi∇pi) +∇qi · (τr∇pi + τi∇pr)

]

dΩ, (10)
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where the signs are selected to be consistent with those in Eq. (4). These integrals are added to the Galerkin’s
weak form from Eq. (4) to obtain

BG +BS = FG. (11)

Derivation of the matrix form of Eq. (11) follows a standard process and, thus, not included here in
detail. The result is


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
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




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
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




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
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(12)

where

LAB =

ˆ

Ω

∇NA · ∇NBdΩ,

GAB =

ˆ

Ω

∇NANBdΩ,

DAB =

ˆ

Ω

NA∇NBdΩ,

MAB =

ˆ

Ω

NANBdΩ,

(13)

and

Rm
rA = −

ˆ

Γh

NAhrdΓ + µLABgrB − ρωMABgiB ,

Rm
iA =

ˆ

Γh

NAhidΓ− µLABgiB − ρωMABgrB,

Rc
rA = −DABgrB,

Rc
iA = DABgiB .

(14)

In Eq. (12), U rB and U iB are the real and imaginary component of velocity vector at node B, respectively,
and PrB and PiB are the real and imaginary component of pressure at node B, respectively.

Remarks on Eq. (12)

1. The tangent matrix in Eq. (12) is independent of the solution, thus, there is no need for Newton-
Raphson iterations when this scheme is implemented. This linear property, which is a result of the
linearity of the Stokes equations and that of the designed stabilization scheme, permits one to obtain
the final solution via a single linear solution.

2. There is a linear relationship between the number of nonzero blocks in the tangent matrix and the
number of spatial dimensions nsd. In total, the tangent matrix contains 4(nsd +1)2 blocks from which
only 8nsd + 4 are nonzero. That translates to less than half of all blocks for 3D problems (28 out of
64 are nonzero). Despite its relatively large size, this matrix is symmetric and can be solved using an
efficient iterative solver.
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3. It is possible to design a linear solver with a specialized library for the matrix-vector product that
only operates on the nonzero blocks of the tangent matrix. Such an implementation is expected to
roughly reduce the cost of 3D computations by half. What is presented below, however, does not
take advantage of this optimization and is based on a standard matrix-vector product library that is
developed in-house [6].

4. A set of iterative techniques are tested for solving this linear system including, conjugate gradient,
successive over-relaxation, bi-conjugate gradient, generalized minimal residual [7], and bi-partitioned
methods [8]. A symmetric Jacobi preconditioner was used for all these cases, producing diagonal entries
with a mod of one. The results show that the conjugate gradient is the most efficient technique for
solving the linear system in Eq. (12) and thus used for all the cases presented in Section 3. This
superior performance is despite the nonmonotonic convergence of the conjugate gradient and the fact
that the tangent matrix is symmetric but indefinite. Nevertheless, the conjugate gradient successfully
converges for all cases considered below while being the least costly method among all techniques
enumerated above.

5. The introduced scheme only requires the use of a single complex-valued stabilization parameter, i.e.
τ defined in Eq. (9). There is an arbitrary constant c that is incorporated into the definition of τ .
The numerical results involving 2D and 3D elements show that using a different value for c has a
minimal effect on the accuracy of this stabilized formulation. Also, the numerical experiments show
this formulation is fairly robust if the element length scale in Eq. (9) is based on a parameter other
than ξ (e.g., the Jacobian of element mapping or its volume).

6. The imaginary component of τ , namely τi, is crucially necessary at high frequencies. This scheme
will struggle to converge for ωH2/ν ≫ 1 if one ignores the contribution of the off-diagonal terms
associated with τi in the tangent matrix. Similarly at the steady state limit where ω → 0, τi → 0
and τr → c/(µ

√
ξ : ξ). At this limit, the form of τr becomes identical to the existing stabilization

parameters that is utilized in the residual-based variational multiscale method at the limit of ∆t → ∞
and ‖u‖ → 0 [9, 10].

7. The real and imaginary unknowns are coupled via two sets of off-diagonal blocks in the tangent matrix,
both of which are proportional to ω. As ω → 0, the two sets of unknowns become decoupled. That
is when ur and pr depend only on hr and gr and not on hi and gi and vice versa. This limit is
physically known as the quasi steady limit where the acceleration term in the Stokes equations is
negligible compared to the viscous and pressure terms.

8. Once the velocity and pressure unknowns are computed in the frequency domain, their temporal
counterparts can be simply computed using Eq. (2) and

û(x, t) =
∑

ω

u(x, ω)eĵωt,

p̂(x, t) =
∑

ω

p(x, ω)eĵωt.
(15)

3 Results

Two sets of tests cases are considered in this section: 1) a canonical case of an unsteady pipe flow, where
the analytical Womersley solution is available for establishing the accuracy of the proposed scheme, and
2) a patient-specific geometry for evaluating the performance of this method on more complex geometries.
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Although not presented here for the sake of brevity, simulation involving 2D channel flow has also been
performed, where the results are in line with the above 3D cases.

The method described above is implemented in an in-house finite element solver. This solver is parallelized
using a message passing interface (MPI). The workload is only parallelized using spatial partitioning by
employing ParMETIS library [11]. Further parallelization across different frequencies is not considered here
as it involves a trivial process of running a series of simulations with different ω. All computations are
performed on a cluster of AMD OpteronTM 6378 processors that are interconnected via a QDR Infiniband.

Unless stated otherwise, a tolerance of ǫLS = 10−3 is used for the conjugate gradient to solve the linear
systems.

3.1 Oscillatory pipe flow

An oscillatory laminar pipe flow is considered for the first test case. A pipe with a length to radius ratio
of L/R = 15 is considered with an oscillatory unit inlet and zero outlet Neumann boundary condition (i.e.,
hr = 1n and hi = 0 on the inlet and h = 0 on the outlet). The oscillation frequency ω is varied to simulate
flow at eleven Womersley numbers α = R

√

ρω/µ = 0,
√
2, 2, · · · , 25. Three tetrahedral meshes (M1, M2,

and M3) are utilized for spatial discretization (Table 1). All these computations are performed using 16
processors unless stated otherwise.

Table 1: Tetrahedral meshes used for discretization of the 3D pipe flow (M1–M3). Nele and Nnds denote the
numbers of elements and nodes, respectively.

M1 M2 M3
Nele 24,450 207,063 728,922
Nnds 5,462 37,401 122,291

An analytical solution is available for an oscillatory flow in a pipe, that is expressed in the frequency
domain as [12]

uref(r, α) =























h

4µL
(R2 − r2), α = 0,

− ĵhR2

Lµα2

[

1− J0(ĵ
3

2α)−1J0(ĵ
3

2α
r

R
)
]

, α 6= 0,

(16)

where J0 is the zero order Bessel function of the first kind and h is the magnitude of the imposed Neumann
boundary condition, which is one in this case. The Womersley solution from Eq. (16) is used as the reference
solution to evaluate the performance of the proposed solver.

All the results are normalized using the steady centerline velocity from the reference solution, uref(0, 0).
An overall good agreement is observed between the simulation and the reference results (Figure 1), partic-
ularly at smaller Womersley numbers. Accurate computation of the velocity profile at larger Womersley
numbers requires the use finer grids as sharper gradients are developed in those regimes.

The real and imaginary components of the predicted flow rate are compared against the analytical solution
of Womersley that is

qref(α) =



























hπR4

8µL
, α = 0,

−ĵπhR4

Lµα2

[

1 +
2ĵ

1

2 J1(ĵ
3

2α)

αJ0(ĵ
3

2α)

]

, α 6= 0,

(17)
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Figure 1: Axial velocity of a pulsating pipe flow as a function of radius computed from the proposed
formulation on three meshes (Table 1 where M1, M2, and M3 are represented by dash-dot, dashed, and solid
lines, respectively) and the analytical reference solution (Eq. (16) that is shown by dots). Different panels
correspond to different Womersley number α = R

√

ρω/µ. (a) α = 0, (b) α = 2, (c) α = 4, (d) α = 8, (e)
α = 16, and (f) α = 32.
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Figure 2: The normalized real (q∗r ) and imaginary (q∗i ) flow rate versus Womersley number α = R
√

ρω/µ
for three meshes, M1 (dashed-dot), M2 (dashed), and M3 (solid) and their comparison against the reference
results (dots) from Eq. (17).

in Figure 2. The results, which are normalized based on the reference steady flow rate (qref (0)), show a good
agreement with the reference results. As correctly computed, the portion of the flow rate that is in phase
with pressure drops faster at larger α than the out of phase component (i.e., qr → 0 faster than qi → 0 as
α → ∞). Thus, the fact that pressure and flow are in phase and out of phase by π/2 at small and large α,
respectively, are correctly captured by the proposed formulation.

The change in error as a function of Womersley number (or oscillation frequency ω) and mesh resolution
is captured more explicitly in Figure 3(a). Similar to what was observed earlier, increasing the Womersley
number or the element size increases the error in the solution. The increase in error with α only occurs
beyond a certain threshold since the curvature in the fluid velocity field remains relatively unchanged at
small α.

To better understand the computational cost of the proposed method, the number of iterations of the
linear solver Nitr is plotted for these computations in Figure 3(b). These results show that Nitr = O(103)
as α is increased from zero to 32, indicating the relative independence of the computational cost as the flow
becomes more oscillatory. This independence is in contrast to the previous Bubnov-Galerkin formulation in
[1] that showed an increase in cost at high Womersley numbers due to the ill-conditioning of the tangent
matrix owing to its zero diagonal block. The higher number of iterations required for the finer grid in Figure
3-(b) is a consequence of the broader range of eigenvalues in the tangent matrix. Adopting a multigrid
preconditioner in future studies should break the dependence of Nitr on L/H , thus leading to an overall cost
that linearly scales with the number of nodes in the mesh.

As stated earlier, the proposed stabilized method has one adjustable parameter c that appeared in Eq.
(9). One of the attractive properties of the proposed scheme is that its accuracy hardly depends on this
parameter. As shown in Figure 4, changing c by orders of magnitude has little effect on the error. However,
the number of linear solver iterations Nitr and thus the overall cost do depend on c. These results, which are
obtained at α = 1, are relatively independent of α. Therefore, it is expected that the proposed c = 2−5 to
produce accurate results across the board even if it produces a suboptimal convergence rate when an element
type other than those tested here (i.e., bilateral and triangular) are used.

The computational performance of the proposed scheme, both in terms of CPU-hours and solution
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pipe flow versus the stabilization parameter c in Eq. (9). The results are obtained at α = 1 for three meshes,
M1 (dashed-dot), M2 (dashed), and M3 (solid). Similar behavior is observed at other values of α.
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three meshes, M1 (dashed-dot), M2 (dashed), and M3 (solid).

turnover time, is far shorter than a standard CFD solver and the previously proposed Bubnov-Galerkin
formulation. Taking mesh M2 at α2 = 8π as an example, the present formulation takes 3 seconds to produce
a solution using 32 processors, which is roughly 0.027 CPU-hours (Figure 5). Similar simulation performed
using the Bubnov-Galerkin formulation and a standard CFD solver will require 1.25 and over 300 CPU-hours,
respectively [1]. The four orders of magnitude reduction in cost in comparison to the standard CFD solver
is roughly the same as the ratio between the number of time steps for the CFD solver and the number of
solution modes for the present formulation, which is 10,000 to 1. Even if the number of modes required for
an accurate representation of the boundary conditions is O(10), the present formulation will reduce the cost
by three orders of magnitude. The solution turnover time of this case, on the other hand, will always be
four orders of magnitude shorter than that of the conventional CFD solver given that all the modes can be
computed in parallel for the linear Stokes equations.

3.2 Patient-specific Glenn geometry

To demonstrate the applicability of the proposed method to more complex problems, a patient-specific
geometry obtained from a patient undergoing Glenn operation is considered [13]. There are three inflow-
outflow boundaries, namely superior vena cava (SVC) and the left and right pulmonary arteries (LPA and
RPA). Zero Neumann boundary condition is imposed at the LPA and RPA and a non-slip boundary condition
is imposed at the walls (Figure 6). To derive the flow, a unit oscillatory traction is imposed at the SVC with
a frequency that is adjusted to obtain different Womersley numbers. The Womersley number, in this case,
is defined as α = Dh

√

ρω/µ, where Dh is the hydraulic diameter of the SVC. The geometry is discretized
using 988,747 linear tetrahedral elements, resulting in 163,791 nodes.

The significant dependency of the solution to the Womersley number is shown in Figure 6 for the simu-
lations performed at α = 0, 5, and 10. Despite geometrical complexity, the overall variation in the real and
imaginary component of velocity follows that of the pipe flow case. For the steady case with α = 0, ui = 0

and ur forms a parabolic profile at the annular cross sections. As α increases, ur develops peaks in the near
wall region while ui grows in relative magnitude to create a bulk flow at the annular cross sections.

The convergence behavior of the conjugate gradient solver for the three simulations at α = 0, 5, and
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Figure 6: The real (left column) and imaginary (right column) components of velocity shown on a 2D slice
of the Glenn geometry. The first row corresponds to the steady flow (α = 0), the second row corresponds to
moderately oscillatory flow (α = 5), and the last row corresponds to a highly oscillatory flow (α = 10).
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Figure 7: The norm of the residual in the conjugate gradient solver as a function of the iteration number.
The linear system is obtained from the Glenn geometry at three different Womersley numbers (solid; α = 0,
dashed; α = 5, and dashed-dot; α = 10).

10 are shown in Figure 7. Even though there are intermittent increases in the error, all cases show an
exponential convergence rate with α = 5 case requiring the largest number of iterations.

Since there is no closed-form solution available for the assessment of the accuracy of this case, the net
flow through three branches (SVC, LPA, and RPA) is computed to obtain a measure of the error in the
solution of the continuity equation (Figure 8). It is observed that this error is linearly proportional to the
tolerance by which the linear system of equations is solved. Varying the Womersley number has little effect
on this error, demonstrating the robustness of the proposed method for a wide range of oscillatory flows.

In terms of cost, it takes a full day and 3,000 CPU-hours to simulate this case on a 128 processor cluster
using a conventional CFD solver [1]. These numbers are reduced to 5.75 seconds and 0.2 CPU-hours when
using the proposed formulation (considering the most expensive case of α = 5). This four orders of magnitude
reduction in wall clock time and computational cost is roughly equal to the number of time steps for the
conventional solver, which is 10,000 (to simulate a total of 5 cycles to ensure cycle-to-cycle convergence). As
stated earlier, this large gap in wall-clock time is independent of the number of computed modes as these
computations are embarrassingly parallelizable across different modes.

4 Conclusions

A new technique was proposed for solving the Stokes equations in the frequency domain. This method only
relied on real arithmetics and allowed for the use of similar order shape functions for pressure and velocity
unknowns. The method was built around the addition of a stabilization term in the form of the Laplacian
of pressure to the continuity equation (Eq. (7)). This stabilization term that was derived systematically
from the momentum equation produced a complex-valued stabilization parameter τ (Eq. (9)). Varying the
single adjustable parameter that appeared in its definition showed that it had little effect on the accuracy of
the overall scheme. The results also showed the robustness of the proposed method against variation in the
Womersley number, mesh size, and geometrical complexity. The proposed method was very computationally
efficient, enabling a typical simulation, which otherwise takes hours to simulate using a conventional solver,
to be simulated in seconds.
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Figure 8: The imbalance between the total flow going in and out of the Glenn geometry (i.e., a measure
of error in satisfying the conservation of mass) as a function of linear solver tolerance at three different
Womersley numbers (solid; α = 0, dashed; α = 5, and dashed-dot; α = 10).
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