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1 SIMPLE PERIODIC BOUNDARY CONDITIONS FOR MOLECULAR

SIMULATION OF UNIAXIAL FLOW

MATTHEW DOBSON AND ABDEL KADER GERALDO

Department of Mathematics, University of Massachusetts Amherst, Amherst, MA 01003

Abstract. We present rotating periodic boundary conditions (PBCs) for the simulation
of nonequilibrium molecular dynamics (NEMD) under uniaxial stretching flow (USF) or
biaxial stretching flow (BSF). Such nonequilibrium flows need specialized PBCs since the
simulation box deforms with the background flow. The technique builds on previous models
using one or lattice remappings, and is simpler than the PBCs developed for the general
three dimensional flow. For general three dimensional flows, Dobson [4] and Hunt [7]
proposed schemes which are not time-periodic since they use more than one automorphism
remapping. This paper presents a single automorphism remapping PBCs for USF and BSF
which is time periodic up to a rotation matrix and has a better minimum lattice spacing
properties.

1. Introduction

Nonequilibrium molecular dynamics (NEMD) [5,25] techniques are one tool used to study
molecular fluids under steady flow, and for instance, some of recent applications can be found
in [6, 9, 13, 15–17, 19–22]. However, there are special challenges in formulating the periodic
boundary conditions (PBCs) in the nonequilibrium setting [2, 3, 23,24,26].

We consider a molecular simulation where the particles have an average flow consistent
with a homogeneous background flow matrix A = ∇u ∈ R3×3. This flow is used to simulate
the micro-scale motion of a fluid with local strain rate ∇u. We denote the coordinates of
the simulation box via three linearly independent vectors coming from the origin, and we
write the vectors as the columns of the matrix

Lt =
[

v1
t v2

t v3
t

]

∈ R3×3, t ∈ [0,∞).

To be consistent with the background flow, a particle with a coordinates (q,v), where q is
the position and v is the velocity, has images with coordinates (q+Ltn, v+ALtn), where
n ∈ Z3 are triples of integers. Since the image velocity is the time derivative of its position
we have

d

dt
(q+ Ltn) = v+ALtn,

which implies that the simulation box deforms with the flow

d

dt
Lt = ALt.
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If the initial lattice L0 is not chosen carefully, the resulting lattice deformation

Lt = eAtL0

can become degenerate and lead to a particle and some of its images becoming arbitrarily
close. We want to ensure that the minimum distance between a particle and its images is
nonzero for all time,

d = inf
n∈Z3\0

t∈R≥0

||Ltn||2 > 0. (1)

This is necessary in order to have long-time stable periodic boundary conditions for NEMD
flows.

We consider a class of PBCs based on remapping the simulation box at various times
during the simulation by choosing a new set of basis vectors for the lattice Lt that describes
the simulation box. This remapping is called a lattice automorphism and can be represented
as a 3 × 3 integer matrix with determinant one. This was first used for the case of shear
flow by Lees-Edwards [11] and was then extended to the case of planar elongational flow by
Kraynik and Reinelt (KR) [8]. Those algorithms result in remappings which are periodic
in time, though KR showed that a time-periodic remapping to the original simulation
box using such matrices is impossible for general three dimensional flows. Dobson [4] and
Hunt [7] developed PBCs for general three dimensional diagonalizable flow using similar
remapping technique to the KR scheme. Those schemes use more than one automorphism
matrix and result in a remapping that is not time periodic. In this paper we present a
rotating box algorithm applicable to uniaxial stretching flow (USF) and biaxial stretching
flow (BSF) which features advantageous properties. Namely, we will show that using the
class of automorphism matrices that has a pair of complex conjugate eigenvalues, we can
construct a single remapping matrix algorithm which is time periodic up to a rotation matrix
and whose minimum distance (1) is larger than those of the GenKR and Hunt algorithms.

The outline of this paper is as follows. Section 2 gives the background for PBCs especially
shear flow, planar elongational flow, and general three dimensional flows. Section 3 presents
the rotating box algorithm, and Section 4 gives the prove that the deformed lattice obtained
is not time periodic. Section 5 compares the rotating box algorithm with the existing three
dimensional flow PBCs.

2. Background

In this section, we give a description of the existing remapping PBCs, starting with the
two dimensional flows, especially, shear flow and planar elongational flow. In the case of
three dimensional flows, the generalized KR (GenKR) algorithm developed by Dobson and
Hunt are presented. All the algorithms follow the same procedure: given a background flow
A, for each time t we find the appropriate integer power of the chosen automorphism matrix
(or matrices) to remap the lattice Lt.

2.1. Shear Flow. We first consider the shear flow case where the background matrix A is
given by

A =





0 ǫ 0
0 0 0
0 0 0



.
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At time t, the lattice is given by

Lt =





1 tǫ 0
0 1 0
0 0 1



L0 where L0 =





1 0 0
0 1 0
0 0 1



.

A highly sheared box makes the computation of interparticle interactions more difficult,
however this problem can be overcome by looking at the geometry of shears that are integer
multiples of the box length. The Lees-Edwards (LE) boundary conditions [11] is used to
prevent the simulation box from becoming too deformed. Whenever the simulation time is
an integer multiple of the inverse shear rate, tn = nǫ−1, the simulation box is sheared by n

box lengths. We remap the simulation box with the matrix

Mn =





1 −1 0
0 1 0
0 0 1





n

=





1 −n 0
0 1 0
0 0 1



, n ∈ Z

such that at a time t, the simulation box lattice is

LtM
n =





1 tǫ− n 0
0 1 0
0 0 1



, n ∈ Z.

Since M is an integer matrix with determinant equal to one, that is, M ∈ SL(3,Z), the
matrices Lt and LtM

n generate the same lattice. Throughout the simulation, we choose
n = −⌊tǫ⌉ so that the stretch is at most half of the simulation box, and that this remapping
process is time-periodic with period t∗ = 1

ǫ
, where ⌊x⌉ denote x rounded to nearest integer.

2.2. Planar Elongational Flow. Here, the background flow matrix is

A =





ǫ 0 0
0 −ǫ 0
0 0 0



,

meaning that the simulation box elongates in the x direction and shrinks in the y direction of
the standard coordinate plane. To treat this case, KR proposed the use of a diagonalizable
automorphism matrix M ∈ SL(3,Z) that has the form

MV = V Λ, Λ =





λ 0 0
0 λ−1 0
0 0 1



, λ > 0, λ 6= 1,

to remap the simulation box. We consider the initial lattice L0 = V −1 so that at time t

when we apply Mn to the lattice basis vectors

LtM
n = etAL0M

n = etǫDΛnV −1 = eAtV −1, where D =





1 0 0
0 −1 0
0 0 0



,

and At = (tǫ + n log(λ))D. Letting n = −
⌊

t ǫ
log(λ)

⌉

, the stretch of the flow At remains

bounded during the simulation, and in addition, it is time periodic with period t∗ =
log(λ)

ǫ
.
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For instance,

M =





2 −1 0
−1 1 0
0 0 1





is an example of matrix which gives a good minimum distance between a particle and its
images.

2.3. General three-dimensional (3D) flow PBCs. For a general 3D flow

A =





ǫ1 0 0
0 ǫ2 0
0 0 −ǫ1 − ǫ2



,

Dobson and Hunt proposed equivalent algorithms to control the deformation.

2.3.1. Dobson’s Approach. In [4], the author develops PBCs which use two commutative
automorphism matrices M1,M2 ∈ SL(3,Z) which have positive eigenvalues for the remap-
ping of the simulation box. Since the matrices are commutative, they are simultaneously
diagonalizable, MiV = V Λi. An example of the pair of the automorphism matrices are

M1 =





1 1 1
1 2 2
1 2 3



 and M2 =





2 −2 1
−2 3 −1
1 −1 1



.

The algorithm requires that the diagonal of the logarithm of the eigenvalue matrices ω̂i =
log(Λi) must be linearly independent, thus there exists δi ∈ R solving A = δ1ω̂1 + δ2ω̂2.
Now by considering the initial lattice L0 = V −1 and picking ni = −⌊tδi⌉, we remark that
the remapping of the simulation box with Mn1

1 Mn2

2 results in the remapped lattice

L̃t = LtM
n1

1 Mn2

2 = eAtL0M
n1

1 Mn2

2 = etAΛn1

1 Λn2

2 V −1 = eAtV −1,

where the remaining stretch matrix

At = tA+ n1ω̂1 + n2ω̂2 = (tδ1 − ⌊tδ1⌉)ω̂1 + (tδ2 − ⌊tδ2⌉)ω̂2,

is clearly bounded for every time t. Thus the minimum distance of the remapped lattice is
bounded away from zero during the entire simulation.

2.3.2. Hunt’s Approach. Hunt’s approach is similar to Dobson’s, using the Lenstra-Lenstra-
Lovász ( LLL) [12] in place of a second automorphism matrix. As convention in this paper,
we will describe Hunt’s algorithm using column vectors instead of the row vectors used in
the original paper. In fact, Hunt’s PBCs consists of remapping the simulation box with the
automorphism

M =





0 0 1
1 0 −5
0 1 6



, where MV = V Λ

and choosing the initial lattice basis L0 = V −1. After applying Mn, the remapped lattice
becomes

L̃t = etAL0M
n
1 = etAΛn

1V
−1 = eAtV −1,
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where At = tA + n log(Λ1). This singe matrix is not enough to control the deformation.

The LLL reduction algorithm [12] is used to reduce the remapped lattice L̃t by finding a
matrix M2 ∈ SL(3,Z) using a high precision reduction,

L̂t = LLL(L̃t) = eAtV −1M2.

In comparison to the GenKR’s approach, suchM2 is automatically found on the earlier stage
of the method while considering the communicative matrices. On this point, we can improve
the Hunt PBCs by finding the commutative matrix M2 manually and apply the GenKR to
produce remapped lattice which minimum distance is bounded before the reduction step.
The combination of this algorithm is presented in Algorithms 2 will be presented later in
the paper.

3. Rotating Box Algorithm

In this section, we will develop PBCs for USF and BSF that are time periodic up to a
rotation. We write the background flow as

A = ǫD, where D =





1 0 0
0 1 0
0 0 −2



.

Here, rather than choosing a pair of matrices Mi ∈ SL(3,Z) with real spectrum, we will
use a single matrix M ∈ SL(3,Z) which has a pair of complex conjugate eigenvalues and
use it to remap the simulation box.

Let us consider M ∈ SL(3,Z), a matrix that has a pair of complex conjugate eigenvalues
and write its real Jordan form

MV = V Λ where Λ =





η̃ −β̃ 0

β̃ η̃ 0

0 0 (η̃2 + β̃2)−1



,

where η̃, β̃ 6= 0 , and η̃2 + β̃2 6= 1 in order to avoid a full rotation. Taking the logarithm of
Λ, we have

log(Λ) =





η −β 0
β η 0
0 0 −2η



, where η =
1

2
log(η̃2 + β̃2), β = arctan

( β̃

η̃

)

,

which can be decomposed as:

log(Λ) = βB + ηD, where B =





0 −1 0
1 0 0
0 0 0



 .

For all time t, by choosing the initial lattice L0 = V −1, we can keep the lattice Lt = eAtL0

bounded by remapping the simulation box with Mn

L̃t = eAtL0M
n = eǫDtΛnV −1 = enβBeAtV −1,

where At =
(

ǫt−
⌊

tǫ
η

⌉

η
)

D for n = −
⌊

tǫ
η

⌉

. We have already seen in the planar elongational

flow case (Section 2.2) that the remapped lattice eAtV −1 is bounded and time-periodic of
period t∗ =

η
ǫ
. In this case, the remapped lattice is time-periodic up to the rotation matrix

R = enβB . For a forward simulation in time, the algorithm reads
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Algorithm 1 R-KR

V,Λ = RealJordan(M) ⊲ Compute eigenbasis V and the Jordan Λ of M
ηD = diag(log(Λ)) ⊲ Compute the diagonal part of the logarithm of Λ
B = log(Λ)− ηD ⊲ Compute the rotation part of logarithm of Λ
L0 = V −1 ⊲ Compute the initial lattice

θ = 0 ⊲ Initialize θ

for i = 1 . . . Nsteps do

n← −
⌊

θ
η
+ τ

⌉

⊲ Compute the power n of M necessary for the remap

θ ← θ + τη + ηn ⊲ Compute the remaining stretch value
L̃← enβBeθDV −1 ⊲ Compute the lattice value at the t iteration

Since the rotation matrix is bounded, we observe that the remapped lattice is also
bounded during all the simulation. In the next section, we show that the rotating al-
gorithm is not time periodic using the fact that the rotation matrix is never equal to the
identity matrix for any automorphism chosen.

4. Non time periodicity of the lattice in the rotating box algorithm

As mentioned above, for the class of automorphism matrices with real eigenvalues, it
has been shown in [8] that it is impossible to construct KR PBCs with a time periodic
lattice for USF or BSF. In this section, we will extend this demonstration to the class of
automorphism matrices which have complex conjugate eigenvalues. Namely, we show in the
following corollary that although the rotation algorithm applied to USF or BSF is time-
periodic up to a rotation matrix, there is no choice of M ∈ SL(3,Z) where the period of the
remapping aligns with that of the rotation. In other word, we show that rotation matrix
enβB is not equal to the identity matrix for n 6= 0, or β is not a equal of π times a rational
number

β = tan−1
( β̃

η̃

)

6= 2π
m

n
, n,m ∈ Z, n 6= 0,

for any M consider in Section 3, i.e with complex eigenvalues one of the eigenvalue of M is
not equal to 1.

We start by reminding that η̃±iβ̃, (η̃2+β̃2)−1 are the roots of the characteristic polynomial
P (λ) = λ3 − hλ2 + kλ − 1, h, k ∈ Z of M ∈ SL(3,Z), and write these roots in the polar

coordinate as r−2 = (η̃2 + β̃2)−1, re±β = η̃ ± iβ̃. Let us first show the following lemma:

Lemma 1. A matrix M ∈ SL(3,Z) with complex eigenvalues as define above has β = 2πm
n

if it has at least an eigenvalue equal to 1.

The proof of Lemma 1 requires the use of the following results. Let us consider ϕ, the
Euler totient function where ϕ(n) is the number of positive integers that are relatively
prime to n. A scalar α is said to be algebraic over a field K if there exists elements
a0, . . . , ai, (i ≥ 1) of K, not equal to zero, such that

α0 + αa1 + · · ·+ αiai = 0,

and deg{α} is the degree of the irreducible characteristic polynomial. We refer the reader
to [10, Chapter 4] or any introduction to Algebra book for the background about the
definitions used in this section. Then we have:
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Theorem 1. [18, Theorem 3.11] For n > 4 and gcd(m,n) = 1,

deg
{

tan
2mπ

n

}

=











ϕ(n) for gcd(n, 8) < 4,
ϕ(n)
2 for gcd(n, 8) = 4,

ϕ(n)
4 for gcd(n, 8) > 4.

Theorem 2. [1, Theorem 16.8.5] For K the splitting field of an irreducible cubic polynomial
P over a field Q and DP the discriminant of P ,

• If DP is a square in Q, the degree of the extension field K over Q is three
• If DP is not a square in Q, the degree of the extension field K over Q is six.

We determine the degree of the algebraic integer tan β in the following lemma:

Lemma 2. tan β = β̃
η̃
is an algebraic integer of degree at most six.

Proof. Since η̃ and β̃ are elements of the splitting field K = Q(r, eβ) of the irreducible

polynomial P , we have that β̃
η̃
is also an element of K. By Theorem 2, K has a degree as

most six in Q and so does β̃
η̃
. �

Let us prove Lemma 1 by finding all coefficients k, h ∈ Z+ of the characteristic polynomial
of M for which β = 2mπ

n
,m, n ∈ Z.

Proof. Let us assume that β = 2mπ
n

,m, n ∈ Z, and find the possible n,m by using Theorem 1

and the Theorem 2 which guarantee that tan 2mπ
n

is an algebraic integer of degree at most
six. Thus using [14], we find all n that satisfy the following

ϕ(n) ≤ 6 for gcd(n, 8) < 4,

ϕ(n)

2
≤ 6 for gcd(n, 8) = 4,

ϕ(n)

4
≤ 6 for gcd(n, 8) > 4,

and report all n and deg
{

tan 2mπ
n

}

≤ 6 in Table 1. Then after few computing we find that

deg
{

tan 2mπ
n

}

n

1 1, 2
2 3, 6, 12, 16, 24
4 5, 10, 20, 32, 40, 48
6 7, 9, 14, 18, 28, 36, 56, 72

Table 1. Table of n and deg
{

tan 2mπ
n

}

≤ 6

h =
1 + 2r3 cos 2πm

n

r2
, k =

r3 + 2cos 2πm
n

r
,

and plugging in n from the Table 1 andm such that gcd(m,n) = 1, we remark that k, h ∈ Z+

if n = 1, 2. In result, P has at least one eigenvalue equal to 1, since P (λ) = λ3−λ2+λ− 1,
or P (λ) = λ3 − 3λ2 + 3λ− 1 for the latter values of n. �
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In sum, we derive the main corollary of this section:

Corollary 1. The rotating box algorithm cannot give a time-periodic simulation box for
any choice of integer commutative complex conjugate matrix.

Proof. Using Lemma 1, we know that only matrices with an eigenvalue equal to one 1
have a rotational part that is a root of unity. However, those matrices are themselves pure
rotations and have no use for the PBCs since they cannot control the stretching caused by
the underlying background flow. �

5. Comparison of the three dimensional algorithms

In this section, we compute the minimum distance of the particle images for our algorithm
and compare it with the GenKR using, Hunt’s and Dobson’s automorphism matrices.

To compute the minimum distance between a particle and its images when the rotating
box PBCs is applied, we propose the matrix

M =





0 −2 1
1 1 0
0 1 0



,

which has a pair of complex conjugate eigenvalues with positive real part. Then, the initial
lattice is given by

L0 =





0.7726 0 −0.2083
−0.26086 0.43442 0.48424
−0.35555 −0.14106 0.84978



,

which implies that, given the standard lattice with the coordinate (x, y, z), the xy plane is
rotated counterclockwise by approximately 113 degrees, and xz by 111 degrees.

Moreover for the GenKR algorithm, we keep the automorphism matrices and the initial
lattice given in the original paper. The commutative matrices Mi ∈ SL(3,Z) and associated
with the initial orthonormal lattice basis L0 which determinant is equal to one, are given
by

M1 =





1 1 1
1 2 2
1 2 3



,M2 =





2 −2 1
−2 3 −1
1 −1 1



and, L0 =





0.59101 −0.73698 0.32799
0.73698 0.32799 −0.59101
0.32799 0.59101 0.73698



.

For Hunt’s formulation, we find a second automorphism matrix which has positive eigen-
values and is commutative with the matrix given in the original paper. The commutative
matrices M1,M2 and the normalized initial lattice L0 respectively read

M1 =





0 0 1
1 0 −5
0 1 6



,M2 =





3 1 1
−5 −2 −4
1 1 4



and, L0 =





0.52276 2.6394 13.3259
0.52276 0.33619 0.2162
0.52276 0.161 0.049584



.
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Figure 1. Minimum distance vs simulation time for our new algorithm
R-KR (red triangle), Dobson-GenKR (black plus) and, Hunt-GenKR (blue
stars). The minimum distance in our case is periodic and better than in the
other cases.

Algorithm 2 GenKR-Hunt

Λi = L0MiL
−1
0 ⊲ Diagonalization of Mi

ω̂i = diag(log(Λi)) ⊲ Compute the logarithm of the diagonal of Λi

A = δ1ω̂1 + δ2ω̂2 ⊲ Compute δi

θi = 0 ⊲ Initialize θi
for i = 1 . . . Nsteps do

θi ← θi + δkτt∗ ⊲ Update the time
θi ← θi − ⌊θi⌉ ⊲ Find the decimal part of θi
Ai ← θ1ω̂1 + θ2ω̂2 ⊲ Compute the remain stretch vector
L̃i ← ediag(Ai)L0 ⊲ Compute the lattice value at the i iteration
L̂i ← LLL(L̃i) ⊲ Reduce the remapped lattice with the LLL reduction algorithm

Then we graph the minimum distance for the three dimensional algorithms in figure 1,
when the stretch is ǫ = 1. We can observe in the graph that the minimum distance
curve in rotating box PBCs case presents a clear pattern of periodicity. In addition, the
minimum distance for all the simulation for the rotating box algorithm is approximately
1.0271 compare to 0.9054 in GenKR’s case.

6. Conclusion

Kraynik-Reinelt proved that it is impossible to find time periodic PBCs for general three
dimensional flow, using SL(3,Z) matrices with real eigenvalues. In this paper, we show that
by using an SL(3,Z) matrix with complex eigenvalues, we can create an algorithm that is
time-periodic up to a rotation matrix for USF and BSF. Although we show that the rotations
never align, the regularity of the remapping make this algorithm more straightforward than
the existing ones. These PBCs also offer a better minimum distance between a particle and
its images.
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