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Abstract. Spatial marching methods, in which the flow state is spatially evolved
in the downstream direction, can be used to produce low-cost models of flows con-
taining a slowly varying direction, such as mixing layers, jets, and boundary lay-
ers. The parabolized stability equations (PSE) are popular due to their extremely
low cost but can only capture a single instability mode; all other modes are damped
or distorted by regularization methods required to stabilize the spatial march, pre-
cluding PSE from properly capturing non-modal behavior, acoustics, and interactions
between multiple instability mechanisms. The one-way Navier-Stokes (OWNS) equa-
tions properly retain all downstream-traveling modes at a cost that is a fraction of
that of global methods but still one to two orders of magnitude higher than PSE. In
this paper, we introduce a new variant of OWNS whose cost, both in terms of CPU
time and memory requirements, approaches that of PSE while still properly captur-
ing the contributions of all downstream-traveling modes. The method is formulated
in terms of a projection operator that eliminates upstream-traveling modes. Unlike
previous OWNS variants, the action of this operator on a vector can be efficiently
approximated using a series of equations that can be solved recursively, i.e., succes-
sively one after the next, rather than as a coupled set. In addition to highlighting
the improved cost scaling of our method, we derive explicit error expressions and elu-
cidate the relationship with previous OWNS variants. The properties, efficiency, and
accuracy of our method are demonstrated for both free-shear and wall-bounded flows.

1 Introduction

Despite the inherent nonlinearity of the Navier-Stokes equations, models based on linearized flow
equations have proven useful for understanding physical mechanisms and predicting key flow fea-
tures and behaviors. For example, linear stability and transient growth analyses have provided
insight into receptivity of laminar flows to small disturbances and the ensuing transition to tur-
bulence [1]. Linear models have also been used to study energy amplification mechanisms within
turbulent flows [2, 3] and model the resulting coherent flow structures [4, 5].

A straightforward implementation of linear analyses involves discretizing the linearized Navier-
Stokes (LNS) equations in each inhomogeneous spatial dimension, often referred to as a global
analysis. Global linear analysis has been fruitfully used to study a wide range of flows, including
boundary layers [6], cavity flow [7, 8], wakes [9], and jets [10, 5, 11], among others. Nevertheless,
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the CPU and memory costs of these computations remains substantial even for flows with just two
inhomogeneous directions, while the cost of fully three dimensional linear analyses approach that
of the corresponding nonlinear simulations. Accordingly, there is substantial interest in reducing
the cost of linear modeling methods.

The slow variation of many flows of interest in the streamwise direction, e.g., the direction
tangent to a developing boundary layer or jet, offers an opportunity to reduce the cost of model
development. For example, the evolution of small disturbance in a boundary layer is central to its
laminar-turbulence transition and the dynamics of coherent wavepacket structures are responsible
for peak noise emission from turbulent jets. The classical approach to leveraging this slow variation
is to independently consider the stability of each location along the streamwise direction as part
of a locally parallel analysis [12] or to stitch these local solutions together ex post facto within a
weakly nonparallel analysis [13]. While these approaches can provide critical insight into the types
and behaviors of linear modes within a particular flow [14], they are limited in their ability to
capture the evolution of a mode as it propagates or the interaction of multiple modes.

The parabolized stability equations seek to overcome these limitations by tracking the down-
stream evolution of a disturbance specified at some initial location. Using an ansatz similar to
earlier weakly nonparallel methods, PSE divides the flow state into a rapidly varying wave-like
component and a slowly varying shape-function at each frequency. Paired with a constraint meant
to push as much of the streamwise variation of the solution into the wave-like component, the
linearized equations governing the shape-function are then integrated in the streamwise direction.
PSE is typically several orders of magnitude faster than global methods, and both linear and non-
linear variants of PSE have been successfully used to study a variety of slowly varying wall-bounded
[15, 16] and free shear [17, 18] flows.

Despite its success in some scenarios, PSE suffers from several limitations, which stem from
the fact that, despite their name, the equations governing the shape-function are not parabolic.
This is a consequence of the inherent boundary-value nature of Navier-Stokes equations [19], and
consequently the LNS operator supports modes that transfer energy in both the upstream and down-
stream directions, which we call leftgoing and rightgoing modes, respectively. For well-posedness,
the values of rightgoing and leftgoing modes should be specified at the upstream and downstream
boundaries of the domain, respectively. It is thus ill-posed to integrate the LNS or PSE equations in
the downstream direction, and doing so causes decaying leftgoing waves to be wrongly interpreted
as growing rightgoing waves, leading to instability of the march [20].

Stability of the PSE march is achieved by applying one of several available regularization meth-
ods. The most common technique relies on numerical dissipation introduced by using an implicit
Euler integration scheme along with a minimum step-size restriction to ensure sufficient dissipa-
tion. Alternative methods include the explicit addition of a damping term to to the PSE evolution
equation [21] or neglecting the streamwise pressure gradient [22, 23]. These methods successfully
stabilize the spatial march but create unintended consequences – in addition to damping the un-
wanted leftgoing modes, they damp and/or distort all but one of the rightgoing waves [20]. The
single wave that is well-captured by PSE usually corresponds to the most unstable mode of the flow,
e.g., the Kelvin-Helmholtz instability for free-shear flows and Tollmien–Schlichting or Mack modes
for subsonic and supersonic wall-bounded flows, respectively. The mode to be tracked is selected by
specifying its locally parallel eigenfunction and eigenvalue as initial conditions at the beginning of
the spatial march. Consequently, PSE can give an accurate solution for flows dominated by a single
instability mode, but significant errors are created for applications where non-modal or multiple
modal instabilities are important [24, 25].

The one-way Navier-Stokes (OWNS) equations offer a well-posed alternative spatial marching
method capable of capturing all rightgoing modes [26]. This is accomplished by deriving a ‘one-way’
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operator that governs the spatial evolution of the same rightgoing modes supported by the LNS
operator but does not support any leftgoing modes. As a result, integrating the one-way equations
in the streamwise direction is well-posed, enabling a stable march without need for detrimental
regularization, allowing the contribution of all rightgoing modes to be properly captured. This
one-way operator is derived in terms of the eigenvectors and eigenvalues of the LNS operator, but
the cost of computing this eigen-decomposition, potentially at every step in the spatial march,
is intolerably high and on par with that of solving the full global problem. This cost is drasti-
cally reduced by using ideas originally developed for constructing high-order non-reflecting outflow
boundary conditions to replace the exact one-way operator with an approximation defined in terms
of a set of recursion equations. The approximate one-way equation is also formally well-posed,
converges to the exact operator as the order of the recursion equations increases, and is typically
an order of magnitude faster than global methods while achieving a similar level of accuracy. This
form of OWNS has come to be known as OWNS-O due to its connection with outflow boundary
conditions.

A limitation of OWNS-O is that it cannot accommodate a forcing term applied to the linearized
equations, which can be used to model the impact of nonlinear terms or external inputs such as
control actuation. This lead to the development of a second variant of OWNS that is formulated in
terms a projection operator that, when applied to the flow state vector, removes leftgoing modes
without altering rightgoing modes [27]. This projection operator can be applied to the LNS equa-
tions to remove support for leftgoing modes and obtain a well-posed one-way evolution equation
for the rightgoing modes. The projection is also applied to any desired forcing term to ensure
that it excites only rightgoing modes. This capability has, for example, been used to efficiently
approximate singular modes of the resolvent operator [28, 29], which provide a useful approxima-
tion of coherent flow structures [3, 4], in slowly varying flows. As was the case for OWNS-O, this
projection-based form of OWNS is derived in terms of eigenvalues and eigenvectors of the LNS op-
erator, but efficiency is achieved using a set of recursion equations whose solution approximates the
action of the exact projection operator on a vector. Since it is formulated in terms of a projection
operator, this form of OWNS is known as OWNS-P.

OWNS-O and OWNS-P are typically an order of magnitude less costly than global linear
methods in terms of both speed and memory requirements. At the same time, OWNS is still
one to two orders of magnitude more costly than PSE in both categories. Moreover, the additional
capabilities of OWNS-P come at the expense of efficiency – OWNS-P is around three times slower
than OWNS-O and requires at least twice the memory. The dominant expense in both variants of
OWNS is solving the recursion equations that remove leftgoing modes at each step in the march.
While we call these recursion equations following the terminology of the non-reflecting-boundary-
conditions community [30], they cannot, in fact, be solved recursively, i.e., they cannot be solved
successively one after the next. Instead, the full set of equation is coupled due to asymmetries in
their terminal conditions and must be solved all together as a much larger system of equations.
This unfortunate property limits the cost benefits of OWNS-O and OWNS-P compared to LNS
and yields the higher cost relative to PSE.

In this paper, we develop a new variant of OWNS whose cost approaches that of PSE. Like
OWNS-P, our new method is formulated in terms of a projection operator and therefore is suitable
for applications that necessitate a forcing on the linearized equations, e.g., approximating resolvent
modes, computing the response to an exogenous input, or retaining nonlinear terms as in nonlinear
PSE. The key difference compared to OWNS-P (or OWNS-O) is that the projection operator is
approximated using recursion equations that can be solved recursively, i.e., successively one after
the next, rather than as a coupled set. This significantly reduces both the CPU and memory cost of
the method. Due to the recursive nature of our new OWNS method, we give it the name OWNS-R.
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Given their common reliance on a projection operator that splits the state into rightgoing and
leftgoing modes, we explore the similarities and differences between OWNS-P and OWNS-R. We
show that the two methods produce different convergent approximations of the same projection
operator. Whereas the OWNS-P projection operator shares the same eigenvalues as the exact pro-
jection operator and approximates its eigenvectors, the OWNS-R projection operator approximates
the eigenvalues but has the same eigenvectors as the exact projection operator. A useful advantage
of exact eigenvectors is that it enables derivation of an exact expression for the OWNS-R projection
error for each LNS mode as a function only of its eigenvalue and the choice of recursion parameters,
allowing a priori error assessment using a rough guess of the LNS eigenvalues and no knowledge of
the eigenvectors. An analogous result does not exist for OWNS-O or OWNS-P. Critically, the con-
vergence of the OWNS-R approximation depends on the same criteria as OWNS-O and OWNS-P,
so recursion parameters that have been developed for a variety of flows for these previous OWNS
variants can also be used for OWNS-R.

We also suggest an alternative approach for deploying the projection operator. Rather than
applying it to the LNS evolution equation to obtain a one-way equation that is subsequently
integrated as in OWNS-P, we simply apply the projection operator to the state vector to remove
the contribution of leftgoing modes after each step in the march as the unmodified LNS operator is
integrated. We show that this simplified implementation is equivalent or nearly equivalent to the
previous approach (depending on integration scheme), which ensures that the method remains well-
posed and stable on a discrete level. An advantage of our simplified approach is that it eliminates
the need to work in terms of characteristic variables, making it easier to incorporate into existing
codes and lowering the barrier of entry for potential users.

The remainder of the paper is organized as follows. In Section 2, we formulate the OWNS-
R method, discuss its implementation and cost scaling, and derive error expressions. Detailed
comparisons between OWNS-P and OWNS-R are made in Section 3. Section 4 contains three
example applications: a simple acoustics problem used to illustrate properties of the method, a
turbulent jet, and a supersonic boundary layer. Finally, we summarize the paper and discuss
future developments in Section 5.

2 Method

2.1 Problem formulation

We begin with the compressible Navier-Stokes equations (including mass, momemntum, and energy
equations), written schematically as

∂q

∂t
= N (q). (2.1)

The state vector q(x, y, z, t) ∈ RNq contains velocity components and two thermodynamics variales,
e.g., density and pressure, and Nq is the number of the state variables, i.e., Nq = 5 for three-
dimensional flows.

The Navier-Stokes operator N in (2.1) is nonlinear. Applying the Reynolds decomposition,

q(x, y, z, t) = q(x, y, z) + q′(x, y, z, t), (2.2)

and moving terms that are linear and nonlinear in the perturbation q′ to the left-hand-side and
right-hand-side, respectively, results in an equation of the form

∂q′

∂t
+ Lq′ = f, (2.3)
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where

L(q) =
∂N
∂q

∣∣∣∣
q̄

(2.4)

is the linearized Navier-Stokes operator and f = f(q, q′) contains the remaining nonlinear terms,
which we view as a forcing on the linearized equations. More generally, f may contain both the
nonlinear terms as well as exogenous forcing applied to the flow stemming from boundary conditions,
control actuation, and so on.

To enable development of a one-way equation, we separate the linear operator into two parts,

L = A
∂

∂x
+B. (2.5)

Here, x is the coordinate direction in which the mean flow is slowly varying, and thus the direction
in which we wish to spatially integrate the equations. In (2.5), we have isolated the derivatives
in the x direction, and all other terms from L are in the operator B. The linear operator L also
contains the second derivative in x arising from the viscous terms in the Navier-Stokes equations.
While not strictly necessary [27, 31], we neglect these terms in the present formulation for the sake
of simplicity and note that extensive testing has shown them to be unimportant in a variety of
flows [26]. Substituting (2.5) into (2.3), we have

∂q′

∂t
+A

∂q′

∂x
+Bq′ = f. (2.6)

Discretizing (2.6) in the transverse directions, i.e., y and z, using a collocation method such as
finite differences leads to the the semi-discrete form

∂q′

∂t
+A

∂q′

∂x
+Bq′ = f . (2.7)

Here, q′ ∈ RN and A,B ∈ RN×N are the semi-discrete forms of q′, A, and B, respectively, and
N = Nq × Nd is the size of the discretized state, where Nd is the total number of discretization
points in the transverse directions.

Previous OWNS variants proceed by transforming the state vector q′ and its governing equa-
tion (2.6) into characteristic space, which aids in developing recursion equations that lead to efficient
implementations of the one-way equations. While this is not necessary for the current formulation,
we follow this precedent to enable straightforward comparisons with these earlier variants. Char-
acteristic variables are obtained via the transformation

φ(x, t) = T (x)q′(x, t), (2.8)

where T is a matrix containing the eigenvectors of A,

TAT−1 = Ã, (2.9)

and Ã is a diagonal matrix containing the eigenvalues. Then (2.7) can be written in terms of the
characteristic variables as

∂φ

∂t
+ Ã

∂φ

∂x
+ B̃φ = fφ, (2.10)

where fφ = Tf and B̃ = TBT−1 + ÃT dT−1

dx .
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Our goal is to obtain a one-way equation in the frequency (Fourier) domain. However, we begin
by applying a more general Laplace transform in time, which enables a rigorous identification of
rightgoing and leftgoing waves. Taking a Laplace transform of (2.10) gives

sφ̂+ Ã
∂φ̂

∂x
+ B̃φ̂ = f̂φ, (2.11)

where φ̂(x, s) is the Laplace transform of φ(x, t), s = η − iω, i is the imaginary unit, and η and ω
are real scalars. We will later set η = 0 to revert to the Fourier domain. Solving for x derivatives,
(2.11) can be written as

dφ̂

dx
= M(x, s)φ̂+ ĝ(x, s) (2.12)

with

M = −Ã−1
(sI + B̃), (2.13a)

ĝ = Ã
−1
f̂φ. (2.13b)

Here, we have assumed that A, and thus Ã, is full rank. A simple procedure for accommodating a
singular A is presented in Appendix A, and we note that handling this case is considerably more
straightforward within the OWNS-R formulation than in OWNS-P [28].

The manipulations leading from (2.1) to (2.12) have produced a form more conducive to the
analysis to follow but have not altered the basic character of the equations. Indeed, a global
solution of the linearized equations could be obtained by discretizing (2.12) in the x direction,
applying boundary conditions at the begining and end of the x domain, and solving the resulting
linear system of equations. However, this approach is computationally costly and does not leverage
the slow variation of the mean flow. Instead, the solution of (2.12) can be obtained by spatial
integration. While integrating (2.12) is nominally ill-posed and numerically unstable, these issues
can be overcome by removing leftgoing components of the solution that are responsible for the
ill-posedness and instability.

To this end, consider the eigen-decomposition of the spatial marching operator,

M = V DV −1 = V iΛV −1. (2.14)

The eigenvalues and eigenvectors of M are located in the columns of V and in the diagonal matrix
Λ, respectively. Here, we have assumed that M has a full basis of eigenvectors; the defective case
is discussed in detail by Towne et al. [26]. The solution of (2.12) can be written as an expansion
in the eigenvectors of M ,

φ̂(x) =
N∑
i=1

vk(x)ψk(x) = V ψ, (2.15)

where vk is the k-th eigenvector of M , ψk is the associated expansion coefficient that determines
the contribution of the eigenvector to the state vector, and ψ ∈ CN is a vector containing all of
the expansion coefficients.

The solution contains contributions from both rightgoing modes and leftgoing modes. Briggs
criteria [32], and its extension to non-parallel flows [33, 13, 26], provides a rigorous means to dis-
tinguish between rightgoing and leftgoing modes. Denote αk(x, s) as the eigenvalue corresponding
to the eigenvector vk, i.e., the k-th element in Λ. Then the k-th mode is rightgoing at x = x0 if

lim
η→+∞

Im[αk(x0, s)] = +∞ (2.16)
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and leftgoing at x = x0 if

lim
η→+∞

Im[αk(x0, s)] = −∞. (2.17)

After the modes are classified, V and ψ can be reorganized as

V =
[
V + V −

]
, ψ =

[
ψ+

ψ−

]
, (2.18)

where V + and V − contain the eigenvectors of rightgoing and leftgoing modes, respectively, and
ψ+ and ψ− contain the corresponding expansion coefficients. Using this partitioning, (2.15) can
be written as

φ̂(x) =

N+∑
i=1

vk(x)ψk(x) +

N++N−∑
i=N++1

vk(x)ψk(x) = V +ψ+ + V −ψ−. (2.19)

Here, N+ andN− are the number of rightgoing and leftgoing modes, respectively, andN++N− = N .
If (2.12) is spatially integrated in the positive x (rightgoing) direction, leftgoing modes that

physically represent waves that decay as they travel in the negative x direction will be wrongly
captured as growing rightgoing modes, leading to exponential instability in the march. In order to
make the problem well-posed and stabilize the march, the contribution of leftgoing modes, i.e. the
second summation in (2.19), must be eliminated. In the following section, we will discuss how to
eliminate the leftgoing modes, beginning with an exact formulation followed by a computationally
efficient approximation.

2.2 Exact one-way projection operator

A projection operator that exactly eliminates leftgoing modes can be written in terms of the eigen-
vectors of M [27, 28], i.e.,

P = V EV −1 =
[
V + V −

] [I++

0−−

] [
V + V −

]−1
, (2.20)

where I++ ∈ RN+×N+ is an identity matrix and 0−− ∈ RN−×N− is the null matrix. Applying this
projection operator to the state vector φ̂ gives

φ̂
′
, Pφ̂ = PV ψ = V +ψ+ =

N+∑
i=1

viψi. (2.21)

It is clear from (2.21) that the projection operator eliminates the leftgoing modes such that the

projected state vector φ̂
′

contains only rightgoing modes, as desired. Equivalently, this can be
expressed as a relationship between the expansion coefficients for the projected and original states,

ψ′ = Eψ. (2.22)

Since the eigenvalues of P contained within the diagonal matrix E are one for rightgoing modes
and zero for leftgoing modes, the expansion coefficients for rightgoing modes are unaltered, while
the expansion coefficients for leftgoing modes have been set to zero by the projection.
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In the previous OWNS-P method, this projection operator (and approximations thereof) is

used to obtain a one-way evolution equation for the projected state vector φ̂
′

by projecting (2.12).
In the present work, we instead use it to project out the influence of the leftgoing modes at each
step in the march as (2.12) is integrated. This simplifies the formulation and implementation of
the method, and we will show in Section 3.2 that these two procedures are closely related. The
equations can also be integrated in the opposite, upstream direction to obtain an approximation of
the leftgoing modes using the projection I − P in place of P .

The projection operator (2.20) is exact, but its formation requires the eigen-decomposition of
the spatial marching operator M at every x station in the spatial march. While such an approach
has been pursued by others [34], this is prohibitively expensive, e.g., more expensive than simply
solving the global problem to begin with, except in some special cases, e.g., problems that are
homogeneous in the x direction or that posses a small number of relevant eigenmodes. To make
the OWNS formulation useful, efficient approximations of the projection operator are needed.

2.3 Approximate one-way projection operator

An approximate projection operator was developed as part of the OWNS-P method [27, 28], as
discussed in the introduction. However, the computational cost associated with building the ap-
proximate OWNS-P projection operator remains significant; it is typically around three times more
costly than OWNS-O and ten to one hundred times more costly than PSE. In this paper, we develop
a new approximation of the exact projection operator whose cost (per step) approaches that of PSE
while retaining the accuracy of previous OWNS methods. The two formulations are compared in
detail in Section 3.

Our new approximate projection operator takes the form

PNβ = (I + cZ)−1, (2.23)

where

Z =

Nβ∏
j=1

(M − iβ+
j I)(M − iβ−j I)−1. (2.24)

As in previous variant of OWNS [26, 27, 28], we have introduced a set of recursion parameters{
β+
j , β

−
j : j = 1, 2, ..., Nβ

}
, and c is an additional parameter whose effect will be elaborated later.

The approximate projection operator PNβ can be used in place of the exact projection operator P
to obtain an approximation of the projected state variable

φ̂
′
Nβ

= PNβ φ̂. (2.25)

To show how this approximation works and elucidate the properties of the approximate projec-
tion, we transform equations (2.23) - (2.25) into the eigenspace of M . The eigen-decomposition of
Z is

Z = V FV −1, (2.26)

where

F =

Nβ∏
j=1

(Λ− β+
j I)(Λ− β−j I)−1 (2.27)
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and V and Λ contain, respectively, the eigenvectors and eigenvalues ofM , as in (2.14). This follows
from the fact that each term in the product (2.24) has the same eigenvectors, e.g., M − iβ+

j I =

V (iΛ− iβ+
j I)V −1.

Inserting (2.26) into (2.23) shows that the eigen-expansion of PNβ is

PNβ = V ENβV
−1 (2.28)

with

ENβ = (I + cF )−1. (2.29)

Comparing (2.28) with (2.20) shows that PNβ has the same eigenvectors as P . Furthermore, the
exact eigenvalues E are approximated by ENβ , which depends on the eigenvalues of M (contained
in Λ) and the recursion parameters through Z and F .

Applying the approximate projection operator to the state vector φ̂ gives

φ̂
′
Nβ

= PNβ φ̂ = V ENβψ (2.30)

and the expansion coefficients for the approximate projected state are

ψ′Nβ = ENβψ. (2.31)

Comparing (2.30) and (2.31) with (2.21) and (2.22) reveals that ENβ plays the same role in the
approximate projection that E does in the exact one, which is a consequence of both operators
sharing the same eigenvectors. For the approximate projection operator to faithfully mimic the
exact one, the recursion parameters must be selected such that ENβ converges to E, i.e., that
the entries of ENβ converge to one and zero for rightgoing and leftgoing modes such that the
corresponding expansion coefficients are unaltered and set to zero, respectively.

To understand how the recursions accomplish this, it is helpful to define the functions

F(α) =

Nβ∏
j=1

α− β+
j

α− β−j
(2.32)

and

E(α) =
1

1 + cF(α)
. (2.33)

These functions have been defined such that F(αk) and E(αk) return the k-th entries of the diagonal
matrices F and ENβ , respectively. Defining these functions is made possible by the fact that each
eigenvalue of PNβ depends only on the corresponding eigenvalue of M . As discussed later in
Section 3, previous OWNS variants do not exhibit this complete decoupling of each eigenmode, a
property that offers several advantages.

Recall that our goal is to choose the recursion parameters such that the eigenvalues ENβ of
the approximate projection matrix PNβ are close to one and zero for rightgoing and leftgoing
modes, respectively. That is, we want the function E(α) to take on these values in regions of
the complex α plane where rightgoing and leftgoing modes reside. This will be accomplished by
choosing recursion parameters that drive the function F(α) to zero and infinity in the vicinity of
rightgoing and leftgoing modes, respectively. Note that the function F(α) is also defined in previous
variants of OWNS, and the recursion parameters are defined to accomplish the same goals. An
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important consequence of this similarity is that recursion parameters developed for previous OWNS
variants can also be used for the improved formulation developed in this paper.

As described by Towne et al. [26], a general strategy for choosing recursion parameters can be
devised by considering individual terms from the product in (2.32),

Fj(α) =
α− β+

j

α− β−j
. (2.34)

For a given j, this term will be smaller than one, and thus contribute to driving E(α) to one, for
any eigenvalue that is closer in the complex plane to β+

j than to β−j . Conversely, Fj(α) will be
larger than one, and thus contribute to driving E(α) to zero, for any eigenvalue that is closer in
the complex plane to β−j than to β+

j . Therefore, the β+
j and β−j parameters should be placed near

rightgoing and leftgoing modes, respectively, to achieve the desired properties of the projection
operator. Towne et al. [26] showed that finite sets of recursion parameters that drive F(α) to its
desired limits always exist, and effective parameters have been developed for a variety of flows,
including mixing layers [25], subsonic and supersonic jets [35], and subsonic [36] and hypersonic
[31] boundary layers.

The present OWNS formulation (2.23) contains one additional parameter, c. It is clear in (2.33)
that large and small values of c drive E(α) toward zero and one, respectively. In other words, large
values of c aid F(α) in eliminating leftgoing modes, while small values aid F(α) in accurately
retaining rightgoing modes. Thus, c can be used to prioritize the accuracy of the method in
retaining rightgoing modes or eliminating leftgoing modes. Since both objectives are important,
we recommend setting c ∼ O(1) in practice.

2.4 Implementation of approximate one-way Navier-Stokes equations

Conceptually, the approximate projection operator PNβ can be applied in the same way as the
exact one, i.e., by forming the operator and multiplying it with the state vector at each step in the
spatial march to remove the contributions of leftgoing modes. However, forming the approximate
projection operator using (2.23) has two disadvantages. First, building the matrix Z via the
successive multiplications in (2.24) lead to errors due to finite precision arithmetic symptomatic
of the fact that its eigenvalues are designed to be either very large (for leftgoing modes) or very
small (for rightgoing modes). This issue becomes increasingly severe as Nβ increases, preventing
convergence and leading to errors in the projection operator that inhibit stabilization of the march.

Second, directly forming the approximate projection operator is computationally expensive
due to the need to compute inverse matrices. This can be overcome by solving a linear system
whose solution gives the action of the approximate projection operator on a vector. The most
straightforward approach to doing so would be to define a sequence of auxiliary variables and solve
an expanded system of equations whose size scales with NNβ, as in previous variants of OWNS.
However, this can be avoided in the present formulation due to the comparative simplicity of the
recursions. In what follows, we show how the action of the approximate projection operator on a
vector can be computed by solving a sequence of Nβ smaller systems of size N ; it is this attribute
of OWNS-R that enables the improved scaling of the method and brings its cost down to a level
commensurate with PSE.

First, we write Z as

Z = Π+(Π−)−1, (2.35)
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where

Π+ =

Nβ∏
j=1

(M − iβj+I), (2.36a)

Π− =

Nβ∏
j=1

(M − iβj−I). (2.36b)

Then the approximate projection matrix PNβ can be written as

PNβ = (I + cZ)−1 = Π−(Π− + cΠ+)−1 = Π−(Π∗)−1, (2.37)

where

Π∗ = Π− + cΠ+. (2.38)

Since both Π+ and Π− are Nβ-order polynomials of M , so is Π∗. The matrix polynomials defining
PNβ in (2.37) can be factorized; the factorization of Π− is given by its definition in (2.36b), while
the factorization of Π∗ must be computed from its definition in (2.38). Critically, this matrix
factorization can be computed by finding to scalar factorizationNβ∏

j=1

(α− β−j )

+ c

Nβ∏
j=1

(α− β+
j )

 = h

Nβ∏
j=1

(α− β∗j ), (2.39)

where h is the coefficient of the highest-order term on the left-hand-side and the parame-

ters
{
β∗j : j = 1, 2, ..., Nβ

}
are the roots to be determined. Given the recursion parameters{

β+
j , β

−
j : j = 1, 2, ..., Nβ

}
, this factorization can be easily calculated using standard polynomial

factorization functions, such as the roots function in MATLAB. Pulling out the scaling factor h is
not theoretically necessary but helps with the numerical conditioning of the root finding procedure.

Using this factorization, Π∗ can be written as

Π∗ = h

Nβ∏
j=1

(M − iβ∗j I). (2.40)

Then, (2.37) becomes

PNβ =
1

h

Nβ∏
j=1

(M − iβ∗j I)−1(M − iβ−j I). (2.41)

The form of (2.41) facilitates a sequential solution strategy for computing the action of the
approximate projection operator on a vector that avoids the difficulties involved in explicitly forming
the operator. Specifically, this is accomplished by the recursions

φ̂
0

=
1

h
φ̂, (2.42a)

(M − iβ∗j I)φ̂
j

= (M − iβj−I)φ̂
j−1

, j = 1, 2, ..., Nβ, (2.42b)

φ̂
′
Nβ

= φ̂
Nβ
. (2.42c)

11



Given the state vector φ̂ as input, the solution φ̂
′
Nβ

gives the approximate projected state vector.

This can be easily verified by eliminating the auxiliary variables φ̂
j

from (2.42), yielding

φ̂
′
Nβ

=
1

h

Nβ∏
j=1

(M − iβ∗j I)−1(M − iβj−I) φ̂ = PNβ φ̂. (2.43)

We emphasize that the matrices Z and PNβ are never formed in practice; instead, the action of
the approximate projection on a vector is obtained by solving the recursion equation (2.42).

2.5 Computational cost scaling

The primary advantage of our new OWNS formulation compared to previous OWNS variants is its
improved cost scaling with the recursion order Nβ. To make the cost scaling explicit, recall that N is
the dimension of the semi-discretized state vector, i.e., the number of transverse discretization points
times the number of continuous state variables, and define Nx to be the number of discretization
points in x, i.e., the number of streamwise stations in the spatial march.

First, we establish the cost scaling of OWNS-R. Solving for φ̂
j

in each step of the recursion (2.42)
requires solving a linear system of size N . The CPU and memory costs of this solution scale like
O(Na) and O(N b), respectively, where a and b depend on the properties of the linear system. For
a generic dense system, a = 3 and b = 2. However, sparse disctrizations such as the collocation
methods used in the derivation of OWNS lead to sparse M , resulting in improved scaling, often
1.5 < a < 2 and 1.2 < b < 2 [37]. Computing the action of the approximate projection operator on
the state vector via (2.42) requires the solution of Nβ linear systems, and the projection must be
applied at each step in the march. Thus, the total CPU cost of OWNS-R scales like O(NaNβNx).
Notice that the linear scaling with the recursion order Nβ is a consequence of the successive form of
the recursion (2.42), i.e., they can be solved one at a time, beginning with the known state vector
and ending with the desired projected state vector. Likewise, since the size of each system to be
solved at each step in the march is independent of Nβ, the memory cost is independent of Nβ and
Nx and scales like O(N b).

In contrast, previous variants of OWNS are formulated in terms of a coupled set of recursion
equations that must be solved simultaneously. Given its close connection with the present formula-
tion, we use OWNS-P as an example. Given the state vector φ̂, the OWNS-P projection is defined
by the coupled recursion equations [27]

φ̂
−Nβ
+ = 0, (2.44a)

(M − iβj−I)φ̂
−j

= (M − iβj+I)φ̂
−j−1

, j = 1, 2, ..., Nβ − 1, (2.44b)

(M − iβ0
−I)φ̂

0 − (M − iβ0
+I)φ̂

−1
= (M − iβ0

−I)φ̂, (2.44c)

(M − iβj+I)φ̂
j

= (M − iβj−I)φ̂
j+1

, j = 0, 1, ..., Nβ − 1, (2.44d)

φ̂
Nβ
− = 0. (2.44e)

Here, the projected state is recovered from the auxiliary variables as φ̂
′
= φ̂

0
. The plus and minus

subscripts indicate taking the first N+ and the last N− entries in a vector, respectively. Notice that

the known inputs φ̂ and φ̂
−Nβ
+ = φ̂

Nβ
− = 0 enter the recursions in three different places. Because

of this, the interior recursions in (2.44)(b-d) cannot be solved successively, and instead the entire
system must be solved simultaneously. The size of this system is 2NβN , so solving such a system

12



Table 1: Cost Scaling: 1 < a < 3 and 1 < b < 2, with typically values a ≈ 1.5 and b ≈ 1.2.

Method CPU Memory

Global (NNx)a (NNx)b

PSE NaNitNx N b

OWNS-O (NNβ)aNx (NNβ)b

OWNS-P (2NNβ)aNx (2NNβ)b

OWNS-R NaNβNx N b

at each step in the spatial march leads to an overall CPU scaling of O((2NβN)aNx) and memory
scaling of O((2NβN)b). OWNS-O leads to the same scaling, but without the factor of 2 [26, 27].

We can also compare these OWNS-R scalings with those obtained for other methods. For global
linear methods, a linear system of size NNx is solved, leading to CPU and memory cost scalings
of O((NNx)a) and O((NNx)b), respectively. The relative CPU cost of a global method compared
to OWNS-R is thus O(Na−1

x /Nβ). Since Nx >> Nβ, this can lead to substantial speedups. The
relative memory cost of a global method compared to OWNS-R is O(N b

x), so the memory savings
achieved by OWNS-R are always large. An exact formulation of any of the OWNS methods requires
the eigendecomposition of M at each step in the march, which scales like O(N3Nx). Therefore,
the relative CPU cost compared to OWNS-R is O(N3−a/Nβ). Since N >> Nβ, the approximate
OWNS-R formulation is typically orders of magnitude faster than an exact formulation.

Finally, in PSE a linear system of size N must be solved Nit times at each step in the march,
leading to CPU and memory cost scalings of O(NaNxNit) and O(N b). Here Nit is the number
of iterations required to satisfy a nonlinear constraint that is part of the PSE formulation. The
relative CPU cost compared to OWNS-R is thus O(Nit/Nβ). Typically Nit is slightly smaller but
similar in size to Nβ. This suggests that OWNS-R can approach the speed of PSE while capturing
all rightgoing modes rather than just one, and this will be verified using several example problems in
Section 4. Furthermore, this improved OWNS-R solution requires no additional memory compared
to PSE.

2.6 Error analysis

Next, we derive an expression for the error produced by the approximate projection operator
relative to the exact one. Specifically, we define the error as the norm of the difference between the
approximate and true projected state, normalized by the norm of the un-projected state,

error =
‖φ̂′Nβ − φ̂

′‖
2

‖φ̂‖2
≤ ‖PNβ − P ‖2. (2.45)

The inequality follows from the identify ‖φ̂′Nβ − φ̂
′‖

2
= ‖PNβ φ̂− Pφ̂‖2 ≤ ‖P − PNβ‖2 ‖φ̂‖2.

Using (2.20) to replace P and (2.28) and (2.29) to replace PNβ , the difference between the
approximate and exact projection operators appearing in (2.45) becomes

PNβ − P = V

[
(I++ + cF++)−1 − I++ O

O (I−− + cF−−)−1

]
V −1, (2.46)

where F++ ∈ CN+×N+ and F−− ∈ CN−×N− are a diagonal matrices containing the entries of F
related to rightgoing and leftgoing modes, respectively, and I++ and I−− are identity matrices of
appropriate dimension.
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Since our recursion parameters have been chosen to drive the function F(α) toward zero for
rightgoing modes and infinity for leftgoing modes, we assume that ‖F++‖2 � ‖I++‖2, ‖F−−‖2 �
‖I−−‖2 for sufficiently large Nβ. This permits the first-order series approximations

(I++ + cF++)−1 ≈ I++ − cF++, (2.47a)

(I−− + cF−−)−1 ≈ (cF−−)−1. (2.47b)

Using these approximations, (2.46) takes the simplified form

PNβ−P ≈ V
[
(I++ − cF++ − I++) O

O (cF−−)−1

]
V −1 = V

[
−cF++ O
O (cF−−)−1

]
V −1. (2.48)

Using this result in (2.45), the projection error can be expressed as

error ≤ ‖PNβ − P ‖2 ≤ ‖V ‖2 ‖V
−1‖2max(c‖F++‖2, c

−1‖F−1
−−‖2). (2.49)

Equation (2.49) shows that the maximum error is influenced by three factors. The first is the
value of ‖V ‖2‖V

−1‖2, which is the condition number of the eigenvector matrix V . Fluid systems
often exhibit non-normal operators leading to the potential of large condition numbers. The second
factor is the maximum amplitude of F++ and F−1

−−, which depends on the number and locations
of the recursion parameters and thus can be made arbitrarily small by increasing the order of the
recursions. Finally, as discussed previously, the parameter c can be used to balance the error in
retaining rightgoing modes and eliminating leftgoing modes.

The preceding analysis provides an upper bound for the worst-case error. More useful expres-
sions can be obtained by considering the error of individual modes. From (2.15), the contribution
of the k-th mode to the state vector is vkψk. The error produced by projecting this component of
the solution with the approximate projection rather than the exact one is

errork =
‖PNβvkψk − Pvkψk‖2

‖vkψk‖2
. (2.50)

Using the eigen-expansions for PNβ and P given in (2.28) and (2.20), respectively, the difference
in the numerator of (2.50) can be written as

V
(
ENβ −E

)
V −1vk. (2.51)

Since the product V −1vk yields the k-th row of the identity matrix, (2.51) simplifies to vk times
the difference between the k-th eigenvalues of PNβ and P located in the diagonal matrices ENβ

and E. Recall that the k-th eigenvalue of PNβ is given by E(αk), while the eigenvalues of P are
one for leftgoing modes and zero for rightgoing modes. Using this result in (2.50) gives an explicit
expression for the error for the k-th mode,

errork =
‖PNβvkψk − Pvkψk‖2

‖vkψk‖2
=

{
E(αk)− 1 for rightgoing modes,

E(αk) for leftgoing modes.
(2.52)

The recursion parameters are selected to force E(αk) toward one and zero for rightgoing and left-
going modes, respectively, driving the error toward zero.

Since E(α) is a function only of the recursion parameters, the error for any possible eigenvalue
α can be assessed a priori with no need for knowledge of the associated eigenvector or other modes
of the system. This result is a consequence of the exact and approximate projection operators
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sharing the same eigenvectors. As a result, the error does not depend on the condition number of
the eigenvector matrix V , despite its appearance in the upper-bound error estimate in (4.1). We
emphasize that exact error expressions in terms of eigenvalues alone cannot be derived for previous
OWNS variants; the error produced by OWNS-O and OWNS-P does depend on the eigenvectors
of the system and can be impacted by their non-normality.

3 Comparison to OWNS-P

As mentioned already, the present OWNS-R formulation and the previous OWNS-P method are
closely related in that they both produce an approximation of the same exact projection operator
P . The cost savings achieved by OWNS-R compared to OWNS-P were highlighted in Section 2.5.
In this section, we compare two further differences between these methods: the nature of the
approximation of the exact projection operator delivered by each method and the way in which the
projection operator is applied to achieve a stable spatial march.

3.1 Approximation of the projection operator

OWNS-R and OWNS-P produce two different approximations of the same exact projection operator
P . As a point of comparison, recall that the exact projection operator can be written in the form

P = V

[
I++

0−−

]
V −1. (3.1)

We showed in Section 2.3 that the OWNS-R approximation of the projection operator can be
written in terms of its eigen-decomposition as

PNβ = V (I + cF )−1V −1. (3.2)

Finally, Towne et al.[28] showed that the projection operator implicitly defined by the OWNS-P
recursion in (2.44) can be written in terms of its eigen-decomposition as

P̃Nβ = Ṽ

[
I++

0−−

]
Ṽ
−1
, (3.3)

where

Ṽ =
[
V + V −

] [ I++ −R+−
−R−+ I−−

]−1

(3.4)

is a matrix containing the eigenvectors of P̃Nβ and R+− and R−+ are matrices that converge
toward zero as the order of the recursions increases.

Comparing (3.2) and (3.3) with (3.1) reveals a fundamental, symmetric difference between the
two approximations: the OWNS-P operator P̃Nβ has exact eigenvalues but approximate eigen-
vectors, while the OWNS-R operator PNβ has approximate eigenvalues but exact eigenvectors.
Both approximations converge toward the same exact projection operator P as the order of the
recursions increases: the eigenvalues of PNβ converge toward their exact values as F tends toward

zero for rightgoing modes and infinity for leftgoing modes, while the eigenvectors of P̃Nβ converge
toward V as R+− and R−+ tend toward zero.
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3.2 Stabilization of the spatial march

Next, we compare the way in which the projection operator is used to stabilize the spatial march
in OWNS-P and OWNS-R. For simplicity, we assume that the recursions are sufficiently converged
such that the exact projection operator P can be used in place of the approximate projection
operators for both methods.

In OWNS-P, the projection operator is used to derive an evolution equation for the projected

state variable φ̂
′
. Multiplying (2.12) by P , using the fact that the projection operator commutes

with M and satisfies the condition PP = P , and negelcting x derivatives of P yields an evolution
equation for the projected state in continuous x space,

dφ̂
′

dx
= PMφ̂

′
+ P ĝ. (3.5)

Since the projection operator removes all leftgoing modes from the evolution operator M , (3.5) can
be stably integrated in the positive x direction. While theoretically sound, Towne [27] observed
that this approach can lead to an accumulation of energy in leftgoing modes due to numerical
errors. These leftgoing waves can be eliminated by applying the projection operator again after
each step in the march.

In our OWNS-R formulation, we forgo the use of the x-continuous one-way equation (3.5) and
instead rely entirely on projecting the state variable after each step in the integration of (2.12)
to stabilize the march. In what follows, we show that these two approaches are closely related.
The derivation of this point is dependent on the integration scheme. For brevity, we focus our
attention on the prototypical explicit and implicit integration schemes – the explicit and implicit
Euler methods – but we note that similar results and conclusions can be obtained for broad classes
of linear multistep and Runge-Kutta methods.

For an explicit Euler integration of the one-way evolution equation (3.5), the projected state
variable is advanced from xn to xn+1 = xn + ∆x as

φ̂
′
n+1 = (I + ∆xP nMn)φ̂

′
n + ∆xP nĝn, (3.6)

where the n and n+1 subscripts indicate where the operators are evaluated, e.g., P n is the projection
operator at x = xn. Subsequent application of the projection operator Pn+1, as described above,
gives the total OWNS-P step,

φ̂
′
n+1 = P n+1(I + ∆xP nMn)φ̂

′
n + ∆xP n+1P nĝn. (3.7)

The OWNS-R explicit Euler step is obtained by first applying explicit Euler integration of the
(un-projected) evolution equation (2.12),

φ̂n+1 = (I + ∆xMn)φ̂
′
n + ∆xĝn, (3.8)

and subsequently applying the projection operator P n+1 to the solution, yielding

φ̂
′
n+1 = P n+1(I + ∆xMn)φ̂

′
n + ∆xP n+1ĝn. (3.9)

In (3.8) and (3.9), we used φ̂
′
n instead of φ̂n to represent the previous state because the state vector

at xn will have already been projected using P n as part of the previous step in the march.
Comparing the OWNS-P step in (3.7) and the OWNS-R step in (3.9) revels two apparent

differences. The first is that the φ̂
′
n term contains an extra instance of P n. However, this P n
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has no impact on the solution. To see this, recall that P n and Mn commute and that applying

P n to φ̂
′
n has no impact since it has already been projected during the previous step. Thus,

P nMnφ̂
′
n = MnP nφ̂

′
n = Mnφ̂

′
n, so the extra P n is redundant and falls out of the equation. The

second difference is that the forcing ĝn is projected by P n+1P n rather than just P n+1 as part of
the OWNS-P step. However, as long as the flow is slowly varying in x, which was already assumed
in the derivation of the one-way equation and is necessary for a spatial marching equation to be
appropriate in the first place, P n+1 ≈ P n, so the extra P n will have little impact on the projected
forcing. Overall, then, using the original evolution equation (2.12) rather than the formal one-way
equation (3.5) within the OWNS-R framework along with explicit Euler integration has negligible
impact on the solution.

Next, we repeat the same analysis for implicit Euler integration. An implicit Euler step of the
OWNS-P one-way evolution equation (3.5) followed by application of P n+1 yields

φ̂
′
n+1 = P n+1(I −∆xP n+1Mn+1)−1(φ̂

′
n + ∆xP n+1ĝn+1). (3.10)

Similarly, an implicit Euler step of the original evolution equation (2.12) followed by application of
P n+1 yields

φ̂
′
n+1 = P n+1(I −∆xMn+1)−1(φ̂

′
n + ∆xĝn+1). (3.11)

Comparing these results again reveals two apparent differences: the inverse term and the forcing
term each contain an additional instance of P n+1 in (3.10). Neither impacts the solution. Using that
P n+1 is a projection and commutes withMn+1, it can be shown that P n+1(I−∆xP n+1Mn+1)−1 =
P n+1(I − ∆xMn+1)−1 and P n+1(I − ∆xMn+1)−1 = P n+1(I − ∆xMn+1)−1P n+1. The first of

these results show that the terms involving φ̂
′
n are equivalent in (3.10) and (3.11) and the second

result shows that the terms involving ĝn+1 are equivalent. Therefore, using the original evolution
equation (2.12) rather than the formal one-way equation (3.5) within the OWNS-R framework
along with implicit Euler integration has no impact on the solution.

4 Example applications

In this section, the OWNS-R method is applied to three example problems: a dipole forcing in
a quiescent fluid, a Mach 0.9 turbulent jet, and a supersonic boundary layer. For each case, the
result and computational cost are compared to other methods to show the accuracy and efficiency
of our new formation of OWNS. All simulations are performed on a laptop with an Intel Core i7-
8750H@2.2GHz processor and 32 GB of RAM. In all cases, recursion parameters are selected using
the recipe outlined by Towne et al. [26] and the parameter c is set to one. The linearized Navier-
Stokes equations are discretized in transverse directions using fourth-order central finite differences
with summation-by-parts boundary closure [38]. Far-field radiation boundary conditions are en-
forced at free transverse boundaries using a super-grid damping layer [39] truncated by Thompson
characteristic conditions [40]. Unless otherwise noted, the spatial march in x is performed using a
second-order backward difference formula [41] for all OWNS variants, while PSE employs implicit
Euler integration by construction. Additional problem-specific details of the numerical methods
are reported in the appropriate subsections that follow.

4.1 Dipole acoustic waves in a quiescent fluid

First, we consider propagation of acoustic waves generated by a two-dimensional dipole forcing
in a quiescent, inviscid fluid. Its relative simplicity along with the ability to compute an exact
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OWNS solution (due to spatial homogeneity) makes this a useful case for illustrating the properties
and performance of the new OWNS-R formulation. The dipole is placed at the origin of the
computational domain, i.e., x = 0, y = 0. The transverse domain, not including the damping layer,
extends from −5 to 5 and is discretized using 201 grid points. In the x direction, the linearized
equations are integrated from −5 to 5 with a uniform step size of ∆x = 0.05. A zero initial
disturbance is specified at the domain inlet and the response is generated entirely by the right-
hand-side dipole forcing term. The dipole oscillates at angular frequency ω = 2π such that the
wavelength of the emitted acoustic waves is equal to one.

The eigenvalues of the approximate projection operator, i.e., ENβ , are shown in Fig. 1 for dif-
ferent numbers of recursion parameters, Nβ = 5, 7, 10, 15. Blue and red symbols indicate rightgoing
and leftgoing modes, respectively. To remove leftgoing modes while accurately retaining rightgoing
modes, the associated eigenvalues should take on values of (0, 0) and (1, 0), respectively. When too
fewer recursion parameters are used, e.g., Nβ = 5 shown in Fig. 1(a), the eigenvalues of the projec-
tion operator for the leftgoing modes are clustered around (0, 0) but still deviate significantly from
this value, and an analogous statement can be made about the rightgoing modes. In particular,
the error in the leftgoing modes for Nβ = 5 is large enough to prevent a stable spatial march. With
increasing Nβ, the eigenvalues of the approximate projection operator converge to (0, 0) and (1, 0)
for leftgoing and rightgoing modes, respectively. As a result, the leftgoing modes are eliminated
and the rightgoing modes are accurately retained.

Fig. 2 demonstrates the quantitative convergence of the approximate projection operator by
plotting E(αk) and E(αk)− 1, as specified in (2.50), for two leftgoing modes and rightgoing modes,
i.e., α = 1.5± 6.1i and α = ±26.8i. The convergence is roughly exponential, as expected [26].

Fig. 3 provides further insights into the convergence of the approximate projection operator.
The eigenvalues of the spatial evolution operator M are indicated with pink (x) symbols in the
complex α plane. Eigenvalues in the upper-right and lower-left quadrants correspond to rightgoing
and leftgoing modes, respectively [26]. In each sub-figure, the green and back squares indicate the
locations of the β+

j and β−j recursion parameters, respectively, for the same four values of Nβ as
in Fig. 1. As described in Section 2.3, these parameters are located near rightgoing and leftgoing
eigenvalues, respectively. The background contour levels show the magnitude of the function E(α)
for each Nβ. It is apparent that E(α) is converging toward its desired limits (1 and 0) in regions
occupied by rightgoing and leftgoing eigenvalues, respectively, and that the cutoff between these
limiting values is becoming increasingly sharp. Note that the exact locations of the eigenvalues ofM
are not needed to define the recursion parameters (they are based on an analytical approximation
of their locations [26]) or to estimate the the magnitude of the eigenvalues of the approximate
projection operator using the function E(α) and thus the projection error defined in (2.52).

Additionally, the blue and red circles in Fig. 3 show the eigenvalues of the projected spatial
marching operator PNβM . While our OWNS-R methodology does not directly use this projected
operator, instead applying the projection directly to the state vector at each step in the march,
we showed in Section 3 that using a projected spatial evolution operator is consistent with our
approach. Additionally, previous OWNS variants have been traditionally understood in terms
of these modified eigenvalues. For both of these reasons, considering them here is helpful for
understanding the error introduced by the approximate projection matrix. Ideally, the rightgoing
eigenvalues of the projected evolution operator PNβM will match the corresponding modes of
M , while the leftgoing modes will be set to zero. Large deviations from this ideal behavior are
observed for low values of Nβ, but the desired results are obtained with increasing accuracy as Nβ

is increased.
The pressure fields obtained using the exact, OWNS-P, and OWNS-R projection operators are

shown in Fig. 4 for Nβ = 10. OWNS-O and PSE are not applicable for the dipole problem due to
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Figure 1: The eigenvalues of the approximate projection matrix PNβ
for: (a) Nβ = 5; (b) Nβ = 7; (c) Nβ

= 10; (d) Nβ = 15. Symbols: (E) rightgoing modes; (E) leftgoing modes. As desired, the eigenvalues
converge to (0,0) and (1,0) for leftgoing and rightgoing modes, respectively, as the order of the recursions
increases.

their inability to accommodate the necessary forcing term. Physically, the dipole forcing and its
emitted acoustic waves are symmetric in the positive and negative x directions, but here we are
spatially integrating only in the positive x direction. Accordingly, the OWNS solutions capture
rightgoing acoustic waves, as those propagating in the leftgoing direction are eliminated. Visually,
the three solutions are indistinguishable. A more quantitative assessment of the error between the
OWNS-R and exact OWNS solutions can be made using the solution error defined as

1

A

∫
A

∣∣∣∣pOWNS − pexact
pmax

∣∣∣∣2 dA, (4.1)

where pOWNS is the pressure computed by OWNS-R, pexact is the pressure computed by the exact
OWNS formulation, and pmax is the maximum value of the pressure computed using the exact
OWNS. The integration region A is the area of the physical domain, not including the far-field
damping layers. Fig. 5 shows that the solution error decreases exponentially with increasing Nβ

[26] and that reasonable accuracy can be achieved using O(10) recursion parameters.
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Figure 2: Convergence of the eigenvalues of the approximate projection matrix PNβ
as a function of the

recursion order Nβ for: (u) α = 1.5+6.1 i; (u) α = -1.5-6.1 i; (p) α = 26.8 i; (p) α = -26.8 i.

4.2 Turbulent jet

Second, we consider the example of a turbulent jet. Turbulent jets contain a diverse set of physical
phenomena described by multiple modes of the linearized equations, making this a challenging
test case and a useful point of comparison between OWNS and PSE. Important types of waves
supported by the linearized equations include the Kelvin-Helmholtz instability, which gives rise to
large-scale coherent wavepacket structures [42], the Orr mechanism [43, 5], and acoustic waves both
trapped within the core of the jet [44, 14] and emitted to the far field.

We consider the specific case of a round jet with Mach number M = Uj/c∞ = 0.9, Reynolds
number Re = ρjUjD/µ ≈ 1 × 106, and temperature ratio Tj/T∞ = 1, where the subscripts j and
∞ denote conditions at the jet nozzle exit and in the far-field, respectively, and D is the nozzle
geometry. The mean flow about which the Navier-Stokes equations are linearized is obtained from
a high-fidelity large-eddy simulation [45]. Following Schmidt et al. [5], we use a turbulent Reynolds
number of ReT = 30000 within the linearized equations. This choice is motivated by recent work
showing that using an eddy-viscosity model or reduced effective Reynolds number within linear
models improves both near-field [46] and far-field [47] predictions in free-shear flows.

The linearized equations in cylindrical coordinates are discretized in the radial direction using
200 grid points within a physical domain extending to r/D = 10 and an additional 80 grid points in
the damping layer. Since the jet is round, the mean flow is homogeneous in the azimuthal direction
and the linearized equations can be decomposed into a series of independent azimuthal Fourier
modes. We focus on the asymmetric mode, which is typically of foremost interest in the study of
jet aeroacoustics [48, 49]. For the sake of brevity, we also focus on a single frequency coorsponding
to a Stouhal number of St = ωD/2πUj = 0.35, which is close to the most unstable frequency
for the Kelvin-Helmholtz mode and the same condition used by Towne et al. [26] to demonstrate
the OWNS-O method. The equations are integrated from x/D = 0.5 to x/D = 25. All OWNS
solutions use a second-order diagonally implicit Runge-Kutta method [41] with a uniform step size
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Figure 3: Eigen-space results for the dipole test case for: (a) Nβ = 5; (b) Nβ = 7; (c) Nβ = 10; (d) Nβ
= 15. Symbols: (�) eigenvalues of M ; (E) rightgoing eigenvalues of PNβ

M ; (E) leftgoing eigenvalues of

PNβ
M ; (p) βj

+; (p) βj
−. The contours show the magnitude of E(α), which converges toward 1 and 0 in

the vicinity of rightgoing and leftgoing modes, respectively.

of ∆x = 0.1. The step size for PSE is set to its minimum stable value [23, 20] (plus a small safety
factor) and is on average about four times larger than the OWNS step size. We set Nβ = 20 for
all OWNS calculations. To enable comparisons with PSE and OWNS-O, we excite the flow using
an initial perturbation at the near-nozzle boundary, corresponding to the local Kelvin-Helmholtz
eigenmode, and do not consider a volumetric forcing.

Fig. 6 shows eigen-space results at x/D = 1 for the jet analogous to those shown in Fig. 3
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Figure 4: Pressure scaled by the maximum amplitude for the dipole test case computed using: (a) exact
OWNS; (b) OWNS-P; (c) OWNS-R. Both OWNS-P and OWNS-R properly capture the one-way response
to the dipole forcing.

Figure 5: Solution error defined in (4.1) for the dipole problem. The error decreases exponentially with
increasing number of recursion parameters.

for the dipole problem. The pink (x) symbols show a subset of the eigenvalues of M for the
jet. The L-shaped branches that extend along the imaginary axis toward plus and minus infinity
are rightgoing and leftgoing free-stream acoustic modes analogous to those observed in the dipole
problem. The discrete mode located at approximately (3,−1) in the complex plane is the Kelvin-
Helmholtz mode. The branch beginning at around (2, 0) and extending upward into the positive
imaginary plane superimpose non-normally to generate Orr waves [43]. Finally, the discrete modes
at about (−9,±4) are acoustic waves trapped within the core of the jet, which are unimportant at
this frequency [14]. The green and back squares indicate the locations of the β+

j and β−j recursion
parameters, respectively. The background contours show the magnitude of E(α) for Nβ = 10, 15, 20
and 25 in the four subfigures, and it is again clear that this function approaches zero and one for
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Figure 6: Eigen-space results for the jet test case for: (a) Nβ = 10; (b) Nβ = 15; (c) Nβ = 20; (d) Nβ
= 25. Symbols: (�) eigenvalues of M ; (E) rightgoing eigenvalues of PNβ

M ; (E) leftgoing eigenvalues of

PNβ
M ; (p) βj

+; (p) βj
−. The contours show the magnitude of E(α), which converges toward 1 and 0 in

the vicinity of rightgoing and leftgoing modes, respectively.

regions of the complex plane occupied by leftgoing and rightgoing modes, respectively, as desired.
Finally, the blue and red circles show that the rightgoing and leftgoing eigenvalues of the one-way
operator are converging toward the eigenvalues of M and toward zero, respectively, as the order of
the recursions is increased, with good accuracy observed for the two higher values.

Fig. 7 shows the pressure fields calculated by PSE and the OWNS-O, OWNS-P, and OWNS-R
methods for Nβ = 20. All four solutions contain a clear wavepacket structure, produced by the
Kelvin-Helmholtz mode, in the jet near field that begins at the computational inlet and persists
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Figure 7: Contours of pressure fluctuations for the jet scaled by the maximum amplitude: (a) PSE; (b)
OWNS-O; (c) OWNS-P; (d) OWNS-R. PSE fails to capture the Orr waves and radiated acoustic waves
captured by all three OWNS variants.

to x/D ≈ 20. This is the dominant mode tracked by PSE. However, the PSE solution misses two
other important features that are properly captures by all three OWNS solutions. The first is the
acoustic waves that are emitted from the Kelvin-Helmholtz wavepacket. These acoustic waves are
described by rightgoing modes whose eigenvalues lie in a different region of the complex plane, as
shown in Fig. 6, and therefore cannot be captured by PSE [20]. However, these modes are faithfully
retained by all variants of OWNS, allowing these methods to properly capture the acoustic radiation
associated with the Kelvin-Helmholtz instability, which is a primary source of jet noise [42]. The
second feature captured by OWNS but not PSE is Orr waves. These waves are less visually obvious
and can be easily mistaken as an extension of the Kelvin-Helmholtz wavepackets. However, the
higher amplitude of the waves in the OWNS solutions in the region 15 < x/D < 20 and their
persistence beyond x/D = 20 is a result not of the Kelvin-Helmholtz mode, but of a superposition
of multiple non-normal stable modes that together make up the tilted structures typical of the
Orr mechanism [43]. Again, PSE cannot capture these Orr waves due to their reliance on multiple
eigenvalues that differ from the Kelvin-Helmholtz mode that PSE is tracking.

A more quantitative assessment of these observations is provided in Fig 8, where the pressure
from the PSE and three OWNS solutions is plotted as a function of x/D at two radial positions,
r/D = 0.5 and 5. Consider first the results for r/D = 0.5 (the lipline of the jet) shown in
Fig. 8(a). While the three OWNS solutions are indistinguishable, the PSE solution differs in two
ways. Small but discernible differences can be observed between the Kelvin-Helmholtz wavepackets
(0 < x/D < 15) computed by PSE and OWNS. More importantly, the OWNS solutions capture
low-amplitude Orr waves in the region x/D > 15 that PSE is unable to capture. The amplitude
of these Orr waves is low in this test case because we have excited to system using only an initial
condition rather than a volumetric forcing (which was necessary to enable PSE and OWNS-O
solutions), while Orr waves are most efficiently excited by volumetric forcing from turbulence [5].
Including such forcing is critical for creating accurate jet noise models [50, 4], making the ability
of OWNS to capture these waves vital for this endeavor [35, 51].

Fig. 8(b) shows the pressure for the four methods along r/D = 5. For x/D . 15, the pressure
field at this radial distance contains both hydrodynamic and acoustic components [52]; the presence
of remnant hydrodynamic contributions (whose amplitude decays exponentially with increasing
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Figure 8: Pressure fluctuations, scaled by the maximum magnitude, in the jet at (a) r/D = 0.5 and (b)
r/D = 5 computed using: (—) PSE; (- -) OWNS-O; (- -) OWNS-P; (- -) OWNS-R. All three OWNS
variants give nearly the same pressure fields, while the result of PSE differ due to missing Orr waves in (a)
and radiated acoustic waves in (b).

r/D) is made clear by the non-zero PSE solution in this region. The three OWNS solutions
contain additional acoustic contributions, leading to a higher amplitude than PSE. The OWNS-P
and OWNS-R solutions are closely matched, as expected, but differ somewhat from the OWNS-O
solution in this region. A close comparison between the three OWNS solutions in Fig. 7 reveals that
the higher amplitude of the OWNS-P and OWNS-R solutions is the result of additional high-angle,
low amplitude acoustic waves that are present in these solutions but not in the OWNS-O solution.
This minor discrepancy was previous observed in comparisons between OWNS-O and OWNS-P
and the root cause is under further investigation, but we emphasize that these extra acoustic waves
are weak and dissipate quickly compared to the main acoustic beam that radiates at lower angles
to the jet axis. For x/D & 15, the solution at r/D = 5 is dominated by this main acoustic beam.
All three OWNS solutions capture this low-angle acoustic radiation, which is the target of interest
in jet aeroacoustics studies, while the PSE solution completely misses this radiation due to its
inability to capture acoustic modes during the spatial march [20].

Table 2 shows the computational cost of the different methods. First comparing between the
three OWNS methods, we see that OWNS-R is approximately 7 and 29 times faster than OWNS-O
and OWNS-P, respectively. The most relevant comparison is between OWNS-R and OWNS-P,
since these two methods share the same capabilities, i.e., the ability to accommodate volumetric
forcing. To aid in making cost comparisons between OWNS and PSE, we report both the wall
time of the simulations as well as the wall time per step in the spatial march. These two metrics
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Table 2: Computational cost for PSE, OWNS-O, OWNS-P and OWNS-R for the turbulent jet case.

Method Wall time (s) Steps (Nx) Wall time / step (s) Memory cost (MB)

PSE 5.4 63 0.086 15

OWNS-O 449 246 1.83 432

OWNS-P 1941 246 7.9 1278

OWNS-R 68 246 0.28 18

convey different information because the large step size needed to stablize the PSE march leads to
a smaller number of total steps. While taking a smaller number of steps may at first glance seem to
be a feature of PSE, in reality it is a undesirable artifact of the ad-hoc PSE parabolization. In other
words, if we could take smaller steps in the PSE march, we would, and indeed several methods have
been proposed to enable smaller steps by reducing the minimum step size restriction [22, 53, 23, 21].
Stated differently, the OWNS solutions could also be computed using larger, PSE-like step size, but
this leads to a deleterious loss of accuracy, just as it does for PSE. Given that the smaller number
of steps is actually a detrimental limitation of PSE, cost per step is arguably the more relevant
metric for comparing PSE and OWNS. Using this metric, the OWNS-O and OWNS-P solutions
are approximately 21 and 92 times more expensive than PSE. In contrast, OWNS-R is only 3
times more expensive, while delivering a solution equivalent to OWNS-P. Thus, our new OWNS
formulation approaches the cost of PSE while retaining the accuracy of previous OWNS variants.
The cost of all three OWNS solutions could be further reduced by using a linear multistep method
rather than the two-stage Runge-Kutta method used here. With respect to memory cost, OWNS-O
and OWNS-P use approximately 29 and 85 times more RAM than PSE. This is consistent with
the fact that OWNS-O and OWNS-P need to form and solve a linear system with the size of NNβ.
In contrast, the memory cost for OWNS-R is the same as PSE.

Finally, the computational costs for the PSE, OWNS-O, OWNS-P, and OWNS-R solutions,
measured in terms of wall-time/step and maximum memory usage, are reported in Fig. 9 as a
function of Nβ. The cost of PSE is not a function of Nβ since the PSE procedure does not involve
recursion parameters. The OWNS-O and OWNS-P methods exhibits wall time scalings of O(Na

β )
with a ≈ 1.5 and 1.4, respectively, while OWNS-R achieves the expected linear scaling, a ≈ 1.0. The
memory scaling of the OWNS-O and OWNS-P methods is O(N b

β) with b ≈ 1.4 and 1.2, respectively,
whereas the memory consumption of OWNS-R is independent of Nβ by construction. Moreover,
the maximum memory consumption of OWNS-R is nearly identical to that of PSE. Overall, these
results confirm the theoretical cost scaling analysis reported in Table 1 and highlight the significant
computational advantages of OWNS-R.

4.3 Supersonic boundary layer

Third, we consider a supersonic boundary layer to demonstrate OWNS-R applied to a wall-bounded
flow. Modeling the amplification of disturbances in supersonic boundary layers is important for
predicting laminar to turbulent transition, which is critical for managing aerodynamic and thermal
loads in high-speed flight.

Following Ma & Zhong [54], we consider a Mach 4.5 boundary layer over an adiabatic flat plate.
The flow conditions are: M∞ = 4.5, T ∗∞ = 65.15K, p∗∞ = 728.44Pa, Pr = 0.72, unit Reynolds

number Re∗∞ = ρ∗∞u
∗
∞

µ∗∞
= 7.2 × 106 m−1. The base flow about which the Navier-Stokes equa-

tions (written in Cartesian coordinates) are linearized is obtained from the Howarth–Dorodnitsyn
transformation of the compressible Blasius boundary layer equations under the assumption of zero
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Figure 9: Wall time / step and memory cost as a function of the recursion order Nβ : (ppp) PSE; (u) OWNS-
O; (u) OWNS-P; (u) OWNS-R; (—) fit line for OWNS-O; (—) fit line for OWNS-P; (—)fit line for OWNS-R. The
scalings of fit lines are labelled and the results match the theoretical prediction reported in Table 1. Note that the
cost of PSE is independent of Nβ since it does not involve recursions, and the memory cost for OWNS-R is nearly
independent of Nβ , so the fit line is not shown here.

pressure gradient. We focus on spanwise-constant perturbations such that the linearized equations
reduce to their two-dimensional form.

In the streamwise direction, the various OWNS equations are integrated from R = 400 to
1200, where R =

√
Rex and Rex = Re∗∞x

∗. Here, R is the local Reynolds number, Rex is the
dimensionless local Reynolds number, and x∗ is the dimensional coordinate in meters measured
from the leading edge along the plate surface [54]. The wall-normal coordinate y is discretized
using 200 points within the physical domain extending to Y = 1200. Here, Y is the dimensionless
wall-normal direction, non-dimensionalized using the boundary thickness at R = 400. All results
shown below are for the non-dimensional frequency F = ω∗µ∗∞/(ρ

∗
∞u
∗2
∞) = 2.2 × 10−4, following

one of the cases in Ma & Zhong [54].
Fig. 10 shows the same visualization of the OWNS-R projection at R = 400 as discussed for

the previous two examples. Several different types of eigenvalues of M can be identified. First, the
horizontal branch of modes represents free-stream acoustic waves [23]; this branch looks different
from the free-stream acoustic branches in the jet problem because of the supersonic free-stream
velocity above the boundary layer. Second, the vertical branch that begins near the origin and
extends into the positive complex plane represents stable, convective vorticity and entropy modes.
Third, the unstable discrete mode is a Mack mode, which is an important instability mode in
supersonic boundary layers [55, 56, 57]. All of these modes discussed so far are rightgoing modes,
and thus should be preserved in the OWNS march. Finally, one leftgoing discrete mode is visible
[23], and several more exist outside the axes of the figure; these modes must be eliminated to
achieve a stable march. As before, the black and green squares show locations of the β+

j and β−j
recursion parameters, respectively, and the background contours show the value of the function
E(α) for Nβ = 10, 15, 20, and 25 in the four subfigures. Clearly, E(α) is achieving its desired limits
with increased accuracy as Nβ is increased, especially for the unstable discrete mode.

The unstable Mach mode is used to initialize the PSE and OWNS marches at R = 400. Fig. 11
shows the real part of the pressure field obtained using PSE and OWNS-R with Nβ = 20; the
OWNS-O and OWNS-P solutions are indistinguishable from the OWNS-R solution and are thus
omitted for brevity. While both the PSE and OWNS-R solutions contain a qualitatively similar
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Figure 10: Eigen-space results for the supersonic boundary layer test case for: (a) Nβ = 10; (b) Nβ = 15;
(c) Nβ = 20; (d) Nβ = 25. Symbols: (�) eigenvalues of M ; (E) rightgoing eigenvalues of PNβ

M ; (E)

leftgoing eigenvalues of PNβ
M ; (p) βj

+; (p) βj
−. The contours show the magnitude of E(α).

structure close to the wall, the latter includes a more complex pattern further from the wall due to
additional acoustic waves that cannot be captured by PSE.

Fig. 12 more clearly shows the discrepancies in the PSE solution by plotting the pressure ampli-
tude as a function of x∗ for two wall-normal positions, Y = 0 and 300. For reference, the pressure
along the wall from the DNS results of Ma & Zhong [54] is also shown. Note that the solutions for
all three OWNS variants lie on top of one another. Along the wall, shown in Fig. 12(a), the peak of
the pressure fluctuations is slightly further downstream in the DNS results (x∗ = 0.155m) compared
to PSE (x∗ = 0.147m) and OWNS (x∗ = 0.145m). This can be attributed to differences in the DNS
mean velocity compared to the similarity transformation used for our calculations. Specifically, the
momentum thickness growth as the boundary layer develops downstream if slightly different in the
DNS compared to the similarity solution. These differences aside, it is still clear that the OWNS
solutions do a better job than PSE in capturing the growth at intermediate x∗ values. The benefit
of OWNS over PSE is more obvious at the position further from the wall, shown in Fig. 12(b).
The OWNS solutions contain a clear amplitude modulation caused by the acoustic waves that are
emitted from the main instability wave; PSE misses this due to its inability to properly capture
the additional waves involved in this physical phenomena.
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Figure 11: Contours of pressure fluctuations in the supersonic boundary layer scaled by the maximum
amplitude: (a) PSE; (b) OWNS-R. Both methods capture the Mack mode, but PSE fails to capture the
radiated acoustic waves.

Finally, Table 3 shows that OWNS-R obtains these superior results at a CPU cost per step of
only two times that of PSE and using equal (or actually sightly lower) memory. Moreover, OWNS-
R obtains a solution indiscernible from the OWNS-O and OWNS-P solutions, but 10 and 20 times
faster using 15 and 32 times less memory, respectively.

5 Conclusions

In this paper, we have developed a new variant of the one-way Navier-Stokes equations, which we call
OWNS-R. As in previous versions of OWNS, the basic idea is to evolve rightgoing modes, i.e., those
that transfer energy in the downstream direction, via spatial integration of the governing equations
in the downstream direction. The OWNS-R method is formulated in terms of a projection operator
P that eliminates leftgoing modes, i.e., those that transfer energy in the upstream direction, without
altering rightgoing modes. As the flow equations are integrated in the downstream direction, this
projection operator is applied to the state vector after each step in the spatial march to remove the
leftgoing modes and prevent them from destabilizing the march. The method is derived in terms
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Figure 12: Pressure amplitude in the supersonic boundary layer (scaled by the maximum) at (a) Y = 0 and
(b) Y = 300, computed using: (—) PSE; (- -) OWNS-O; (- -) OWNS-P; (- -) OWNS-R; (—) DNS from Ma
& Zhong [54]. All OWNS variants capture the radiated acoustic waves, unlike PSE.

of the eigen-decomposition of the spatial LNS operator M , but actually implementing it in this
manner is unnecessarily expensive. Instead, the action of the projection operator on a vector is
efficiently approximated using a set of recursion equations similar to those employed by previous
OWNS variants. Unlike these previous methods, the OWNS-R recursion equations can actually be
solved recursively, i.e., one at a time, rather than as a coupled set. This leads to improved cost
scaling with respect to the order of the recursions Nβ: the CPU cost of OWNS-R scales linearly
with Nβ and its memory usage in independent of Nβ. We show by comparing these scaling results
with other methods and via example problems that OWNS-R is an order of magnitude less costly
than previous OWNS variants and similar in cost to PSE. However, while PSE can capture only
one rightgoing mode, OWNS-R properly evolves all rightgoing modes supported by the spatial LNS
operator.

Since both OWNS-R and OWNS-P (a previous variant of OWNS) are formulated in terms of
projection operators, we conduct a detailed comparison between these two methods. Both methods
approximate the same exact projection operator and converge to this common limit as the order
of the recursions increases. Compared to the exact projection operator, the eigenvalues of the
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Table 3: Computational cost for PSE, OWNS-O, OWNS-P and OWNS-R for supersonic boundary layer case.

Method Wall time (s) Steps (Nx) Wall time / step (s) Memory cost (MB)

PSE 17.7 323 0.055 46

OWNS-O 1099 1201 0.92 458

OWNS-P 2541 1201 2.12 995

OWNS-R 154 1201 0.128 31

OWNS-P projection operator are exact but its eigenvectors are approximated. Conversely, the
eigenvalues of the OWNS-R projection operator are approximated while its eigenvectors are exact.
A notable benefit of exact eigenvectors is that expressions for the OWNS-R projection error can
be derived that enable a priori error analysis as a function of the position in the complex plane of
an eigenvalue of interest and a chosen set of recursions parameters without any knowledge of the
corresponding eigenvector. Additionally, whereas poor convergence of the function F(α) for one
mode potentially impacts the projection error of all modes for OWNS-O and OWNS-P, the error
in each mode is completely uncoupled from all other modes in OWNS-R.

Critically, recursion parameters that have been derived for a variety of flows [25, 35, 26, 36,
31] for use with OWNS-O and OWNS-P can also be used for OWNS-R. The error decoupling
described above could also provide additional flexibility in defining the recursions parameters for
OWNS-R. For example, whereas recursion parameters must be defined such that exactly N+ modes
are retained in OWNS-O and OWNS-P, unimportant rightgoing modes could be projected out in
OWNS-R, which could simplify the choice of recursions parameters.

We also use the projection operator differently than in OWNS-P. There, the projection operator
is used to project the spatial LNS equations, the projected equations are then integrated, and the
resulting state vector is again projected after each step in the march to prevent buildup of energy in
leftgoing modes. In OWNS-R, we propose to skip the intermediate step of projecting the equations
and instead rely exclusively on projecting the state vector after each step in the march. We show
that both approaches are nearly equivalent, ensuring stability of the OWNS-R march.

The capabilities of our OWNS-R method are demonstrated using three example problems. First,
we consider a simple case in which a dipole forcing term excites acoustic waves in a quiescent fluid.
This provides a clean environment to illustrate the properties of the method and demonstrate
the convergence of the eigenvalues of the approximate projection operator and of the solution.
Second, we consider a prototypical free-shear flow – a Mach 0.9 turbulent jet. Whereas PSE can
only capture the Kelvin-Helmholtz instability of the annular shear layer, all three OWNS variants
additional capture Orr waves and radiated acoustic waves. The improved cost scaling of OWNS-R
compared to OWNS-O and OWNS-P is also confirmed. Third, we consider a prototypical wall-
bounded flow – a Mach 4.5 flow over an adiabatic flat plate. In this case, the dominant instability
mode is a Mack mode and both PSE and all three OWNS variants capture this mode. The OWNS
methods also capture the radiated acoustic waves..

The low-cost, accurate solutions offered by OWNS-R make it an attractive candidate to replace
global methods, previous OWNS variants, and PSE in a variety of contexts. Traditional stability
analyses of slowly varying flows can be conducted using OWNS-R at lower cost than OWNS-O
or OWNS-P and with improved accuracy compared to PSE, specifically the ability to capture
the influence of multiple modes. Reducing the cost of resolvent analysis has recently received
considerable attention [58, 59, 60], and OWNS-R could be used in place of OWNS-P to further
reduce the CPU and memory cost of the approach recently developed by Towne et al. [28] and
Rigas et al. [29] for slowly varying flows. Finally, since OWNS-R can accommodate a forcing
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term, it could be used as the basis for a nonlinear extension of OWNS analogous to nonlinear PSE.
Whereas nonlinear PSE retains nonlinear interactions between just one mode at each frequency,
nonlinear OWNS could capture nonlinear interactions between all rightgoing modes at minimal
additional cost.
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Appendix A Extension to singular A

We assumed in the main text that the matrix A is invertible, i.e., that none of its eigenvalues
are zero such that Ã does not contain zeros on its diagonal. Zero eigenvalues of A correspond to
modes the do not propagate (they are neither leftgoing nor rightgoing). Physically, these modes
arise when the streamwise velocity is either sonic or zero and are therefore intrinsic to supersonic and
wall-bounded flows [26]. Mathematically, the zero eigenvalues make (2.11) a differential-algebraic
equation (DAE), and the operator M can no longer be defined as in (2.13a). In the OWNS-P
method, M is redefined by eliminating the states and equations associated with the zero eigenvalue
modes [28]. This additional complication can be avoided in the OWNS-R formulation, as described
below.

Since the projection operator is applied to the state after each step in the march, the process
of integrating the equations and forming the approximate projection operator can be considered
separately in the OWNS-R method (unlike OWNS-P, where the projection is applied to the equation
prior to integration, thus requiring that both steps be carefully considered together for singular A).
First, (2.12) is replaced with

Ã
dφ̂

dx
= Lφ̂+ f̂φ, (A.1)

to avoid taking the inverse of the singular matrix, where

L = −(sI + B̃). (A.2)

Equation (A.1) is a DAE since Ã is singular. The DAE can be integrated implicitly [41]; for
example, using the implicit Euler method yields

(Ã−∆xL)φ̂(xn+1) = Ãφ̂(xn) + ∆xf̂φ. (A.3)

Since Ã−∆xL is generally not singular, the state can be advanced as

φ̂(xn+1) = (Ã−∆xL)−1(Ãφ̂(xn) + ∆xf̂φ). (A.4)

Second, to form the approximate projection operator PNβ without the need to invert the sin-

gular matrix Ã, the definition of Z in (2.24) is replaced with

Z =

Nβ∏
j=1

[(L− iβj−Ã)−1(L− iβj+Ã)]. (A.5)

Then, the approximate projection operator PNβ can be formed as before using (2.23). Finally,
applying this projection to the state vector obtained in (A.4) completes the OWNS-R algorithm
for singular A.
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