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Abstract

The dynamical low-rank (DLR) approximation is an efficient technique to ap-

proximate the solution to matrix differential equations. Recently, the DLR

method was applied to radiation transport calculations to reduce memory re-

quirements and computational costs. This work extends the low-rank scheme

for the time-dependent radiation transport equation in 2-D and 3-D Cartesian

geometries with discrete ordinates discretization in angle (SN method). The

reduced system that evolves on a low-rank manifold is constructed via an “un-

conventional” basis update & Galerkin integrator to avoid a substep that is

backward in time, which could be unstable for dissipative problems. The result-

ing system preserves the information on angular direction by applying separate

low-rank decompositions in each octant where angular intensity has the same

sign as the direction cosines. Then, transport sweeps and source iteration can

efficiently solve this low-rank-SN system. The numerical results in 2-D and 3-D

Cartesian geometries demonstrate that the low-rank solution requires less mem-

ory and computational time than solving the full rank equations using transport

sweeps without losing accuracy.
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1. Introduction

The radiation transport equation (RTE) models the movement of particles

through materials and their interactions with background media. The applica-

tion of RTE among various science and engineering communities, such as optical

imaging [1], neutron transport [2], rarefied gas dynamics [3], to name a few, re-

quire solving RTE accurately and efficiently. The accurate yet computationally

efficient RTE solution has been an active research question for decades but re-

mains open because of its rich dimensional spaces. The solution to the RTE is

radiation intensity, which is determined by up to seven independent variables,

including three in space, two in angle, one in time, and one in energy. Thus, the

computation could consume a large amount of computer memory, challenging

proposed exascale computing systems [4]. This work aims to design a fast and

memory-efficient numerical scheme for solving the RTE.

The angular treatment is essential to solve the RTE. One commonly used

numerical method to discretize the angular variable in RTE is the spherical

harmonic (PN ) method [5–7] that expresses the angular dependence of the radi-

ation density using orthogonal bases on the unit sphere. This method has many

desired properties, such as rotational invariance, but it suffers from oscillations

that destroy the robustness of the method [8].

Another popular angular treatment is the discrete ordinates (SN ) method

[9] that solves the radiation intensity along with particular directions and uses

quadrature to estimate moments of the intensity. Given that the direction of

movement of radiation intensity is pre-selected, the resulting discrete ordinates

system can be solved by a very efficient method called a transport sweep. This

makes the SN method popular in high-performance computing applications be-

cause it is computationally efficient. For this reason, we seek to develop novel

methods based on SN that is compatible with these transport sweeps.

This work follows the development of the dynamical low-rank (DLR) method

applied in transport calculations to reduce the computer memory requirements

and the computational cost. The DLR method aims to approximate large time-
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dependent matrices determined by matrix differential equations [10]. The de-

sired approximation has three components similar to factors in singular value

decomposition (SVD). Each of them is solved by integrating the matrix differ-

ential equation projected onto the tangent space of the low-rank manifold. We

refer to [11–13] for more background. In previous work, the authors applied the

DLR method to transport calculations with a spherical harmonics expansion

and an explicit time scheme [14]. Later, a high-order/low-order algorithm was

developed in [15] to overcome the conservation loss in the low-rank evolution.

For more analytical details, there is an error analysis for the backward Euler

and Crank-Nicholson methods [16]. In [17] the asymptotic-preserving property

is achieved by a macro-micro decomposition of the transport equation.

In this work, we develop a practical computation scheme with the discrete-

ordinates model. By applying the time integrator proposed recently in [18], we

avoid a substep that is backward in time, which could be unstable for dissipative

problems as described in [16]. We then solve the low-rank equation with the

iterative approach and transport sweeps.

The remainder of this paper begins with a brief review of the SN formula-

tion of the radiation transport equation. Then the low-rank representation of

the SN equations is derived. Section 4 will be the numerical implementation

details, including the spatial discretization and the computational method for

the resulting matrix equations. The efficiency and accuracy of our low-rank

algorithms are demonstrated in section 5. Section 6 presents a discussion.

2. Discrete Ordinates Radiation Transport Equation

We begin with the time-dependent radiative transfer equation with one en-

ergy group given by

1

c

∂ψ(r, Ω̂, t)

∂t
+ Ω̂ · ∇ψ(r, Ω̂, t) + σt(r)ψ(r, Ω̂, t) =

1

4π
σs(r)φ(r, t) +Q(r, t).

(1)

In this equation, ψ(r, Ω̂, t) is the radiation intensity with units of particles per

area per steradian per time. We use the standard notation with r = (x, y, z) ∈
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R
3 being the position, the unit angular vector Ω̂(µ, ϕ) ∈ S

2 specified by the

cosine of the polar angle µ ∈ [−1, 1] and the azimuthal angle ϕ ∈ [0, 2π], and

t as the time. Additionally, σs(r) and σt(r) are isotropic scattering and total

macroscopic cross-sections with units of inverse length; Q(r, t) is a prescribed

source. We integrate ψ(r, Ω̂, t) over all angles to obtain the scalar intensity:

φ(r, t) =

∫

4π

ψ(r, Ω̂, t) dΩ̂. (2)

The scalar intensity is important because it can be used to compute reaction

rate densities (e.g., absorption rate density) that determine the coupling with

other physical operators in a given system.

We apply the SN discretization to the angular variables with a finite quadra-

ture set {(Ω̂n, wn) |1 ≤ n ≤ N}, and solve Eq. (1) along these angular directions

as

1

c

∂ψn(r, t)

∂t
+ Ω̂n · ∇ψn(r, t) + σt(r)ψn(r, t) =

1

4π
σs(r)φ(r, t) +Q(r, t). (3)

where the discrete direction Ω̂n is specified by the direction cosines µn, ηn and

ξn. The angular integral is approximated by quadrature rules, e.g., suppose

there are NΩ directions, the scalar intensity can be written as

φ(r, t) =

NΩ
∑

n

ωnψn(r, t), (4)

Many kinds of quadrature sets can be implemented to the SN method, such

as level-symmetric [19], Legendre-Chebyshev, and Legendre-equal weight [20],

to name a few. We refer to [21] for a comprehensive comparison. We use the

Legendre-Chebyshev quadrature sets throughout this work because it enables a

high quadrature order, which is not available with level-symmetric quadrature

sets [22]. Then we have the formula for the number of discrete ordinates in

each octant as N = SN2

4 and NΩ = Nno, where SN is the order of discrete

ordinates, no is the number of octants, e.g., no = 4 for 2-D space and no = 8

for 3-D space, and N is the number of angles per octant.

One most commonly used method to solve Eq. (3) is source iteration and

transport sweep equipped with the implicit Euler method for time discretiza-
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tions. To simplify the notation we define several operators that only used in

this section [23]

L = Ω̂ · ∇+ σt(r) (5)

Mφ =
1

4π
φ, Dψ =

NΩ
∑

n=1

wnψn dΩ̂, Sφ = σs(r)φ. (6)

where L denotes the streaming and collision operator that operates on the an-

gular intensity at the NΩ angles and outputs a vector of the same size, M is

known as the moment-to-discrete operator that projects the scalar intensity

to the angular intensity, S is the scattering operator, and D is the discrete-to-

moment operator that represents the angular quadrature. Using these operators

we obtain the abstract form of Eq. (3) as

1

c∆t
ψℓ+1 + Lψℓ+1 =MSDψℓ+1 +Q+

1

c∆t
ψℓ, (7)

where ψℓ is the solution for the radiation intensity at time step ℓ at each angle

Ωn. We can further simplify this equation into a quasi-steady form by defining

L∗ = Ω̂n · ∇+

(

σt(r) +
1

c∆t

)

, q = Q+
1

c∆t
ψℓ. (8)

to get

L∗ψℓ+1 = Sψℓ+1 + q. (9)

Discrete ordinates with implicit Euler time integration can be computed us-

ing an efficient algorithm called a “transport sweep,” which is highly desirable in

computation. The idea is that we can solve for the unknowns by marching along

the direction of the flow of particles from the given boundary conditions and

iterating over a lagged scattering source. After spatial discretizations, (L∗)−1

is a triangular matrix for each angle so that

φℓ+1,c+1 = D (L∗)
−1
MSφℓ+1,c +Dq (10)

can be computed by a simple lower or upper triangular solve in each angle.

This iterative method is known as the source iteration (SI) method [9]. These

iterations are repeated until the scalar intensity φ converges, and we denote c
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as the iteration index. A further benefit of this method is that ψℓ+1,c does not

need to be stored during the iteration process. After convergence, it can be

computed using one more application of (L∗)
−1

.

3. Low-rank Representations of the Solution

Figure 1: The sign of direction cosines in the form (x,y,z) in the 3D Cartesian geometry for

each octant.

The preliminary requirement for transport sweeps is the known direction

of particle advection. As mentioned above, the original SN equations (3) can

be updated with a transport sweep using a triangular solve along one discrete

ordinate at a time. This property is not guaranteed to be preserved by low-

rank equations if the low-rank procedure combines solutions along angles from

different octants. As shown later, the low-rank formulation reduces the number

of equations by coupling them with linear combinations, so different directions

are mixed and solved together. The key idea of the low-rank method proposed

in this work is to apply a separate low-rank decomposition to the unknowns

with different sign combinations of the direction cosines, as shown in Figure 1.

In other words, we group the equations in the same octant, so they have the
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same propagation directions even after being coupled.

We begin the derivation by writing the low-rank approximation of rank r

to the solution of (3) in the form of a linear combination of r basis functions

similar as [14]

ψk(r, t) =

r
∑

ij

Xk
i (r, t)S

k
ij(t)V

k
j (t) (11)

where ψk = [ψk
1 , ψ

k
2 , ..., ψ

k
N ]T collect all the intensities in octant k, and Xk

i (r, t)

and V k
j (t) are orthonormal bases, e.g., 〈Xk

i , X
k
j 〉r = V k

i V
k
j = δij . The inner

product over space is defined as 〈f, g〉r =
∫

R3 fg dr. We build the low-rank equa-

tion in each octant by using X̄k = {Xk
1 , X

k
2 , ..., X

k
r } and V̄ k = {V k

1 , V
k
2 , ..., V

k
r }

as ansatz spaces. Then we define orthogonal projectors using the bases:

P (X̄k) g =

r
∑

i=1

Xk
i 〈X

k
i g〉r, (12)

P (V̄ k) g =

r
∑

j=1

V k
j V

k
j g. (13)

The projector onto the tangent space of the low-rank manifold Mr is given by

P (X̄, V̄ ) g = PV̄ g − PX̄PV̄ g + PX̄g. (14)

Using this projector, we can define the low-rank governing equations as

∂tψ
k = P (X̄k, V̄ k)F (t,ψk) (15)

where the nth component of F (t,ψk) is

F (t,ψk)n = −Ω̂n · ∇ψk
n − σt(r)ψ

k
n +

1

4π
σs(r)φ+Q.

We apply the integrating method proposed in [18] to solve the Eq.(15) at

t0 + h from t0 implicitly where h is the step size. The initial condition is given

by the low-rank formulation of ψk(r, t0)

ψk(r, t0) =

r
∑

i,j=1

Xk
i (r, t0)S

k
ij(t0)V

k
j (t0) =

r
∑

i,j=1

X
k,0
i S

k,0
ij V

k,0
j . (16)
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and the intended solution at t0 + h is denoted as

ψk(r, t0 + h) =

r
∑

i,j=1

Xk
i (r, t0 + h)Sk

ij(t0 + h)V k
j (t0 + h)

=

r
∑

i,j=1

X
k,1
i S

k,1
ij V

k,1
j .

(17)

The first part of the solving procedure computes Xk,1
i and V k,1

j by solving

∂tψ
k = PV̄ F (t,ψ

k) (18)

and

∂tψ
k = PX̄F (t,ψ

k) (19)

in parallel. In Eq. (18) the basis V k
j does not change with time and is evalu-

ated at the initial value V k,0
j . We simplify the notation by writing Kk

j (r, t) =
∑r

i X
k
i (r, t)S

k
ij(t), then the initial condition (16) becomes

ψk,0 =

r
∑

j=1

K
k,0
j V

k,0
j . (20)

We plug Eq. (20) into Eq. (18) and multiply the both sides by V k,0
ℓ to get

∂tK
k
j = −

r
∑

l=1

∇Kk
ℓ V

k
ℓ Ω̂kV k

j − σtK
k
j +

1

4π
σsφV

k
j +QV k

j . (21)

Note that we use Ω̂k to collect all the ordinates in octant k. This equation

can be solved by the source iteration method and we will return to it with

more details in the next subsection. The solution to Eq (21) is factored into

Kk
j (r, t0 + h) =

∑r

i X
k,1
i T̃ k

ij by a QR decomposition.

Similarly, by writing Lk
i (t) =

∑r

j S
k
ij(t)V

k
j (t) we can expand the Eq.(19) as

d

dt
Lk
i = −Ω̂k

r
∑

l

〈∇Xk
ℓ X

k
i 〉rL

k
ℓ −

r
∑

l

〈σtX
k
ℓX

k
i 〉rL

k
l

+
1

4π
σs〈X

k
i φ〉r + 〈Xk

i Q〉r. (22)

With the initial condition L
k,0
i =

∑r

j S
k,0
ij V

k,0
j , we obtain the basis V k,1

j by

factoring the solution Lk,1
i into

∑r

j=1 R̃
k
ijV

k,1
j using a QR decomposition. We

mention that R̃k
ij and T̃ k

ij are not kept in these two steps.
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Last we update Sk
ij(t) by solving the matrix differential equation

d

dt
Sk
ij = −

r
∑

ml

〈∂rX
k
mXk

i 〉rS
k
mlV

k
ℓ Ω̂kV k

j −

r
∑

m

〈σtX
k
mX

k
i 〉rS

k
mj

+
1

4π
σs〈X

k
i φ〉rV

k
j + 〈Xk

i Q〉rV
k
j (23)

with the initial condition Sk,0
ij =

∑r

m,l=1〈X
k,1
i Xk,0

m 〉rS
k,0
ml V

k,0
ℓ V

k,1
j .

4. Implementation Details

This section presents the numerical scheme for solving Eqs.(21)-(23). Specif-

ically, we apply the finite volume method for the spatial discretization and the

backward Euler for the implicit time integration. For simplicity we present the

method in 1-D slab geometry. We begin with the governing equations discussed

above

∂tK
k
j = −

r
∑

l=1

∂xK
k
ℓ V

k
ℓ µ

kV k
j − σtK

k
j +

1

2
σsφV

k
j +

1

2
QV k

j , (24)

d

dt
Lk
i = −µk

r
∑

l

〈∂xX
k
ℓ X

k
i 〉xL

k
ℓ −

r
∑

l

〈σtX
k
ℓX

k
i 〉xL

k
l

+
1

2
σs〈X

k
i φ〉x + 〈Xk

i Q〉x, (25)

and

d

dt
Sk
ij = −

r
∑

ml

〈∂xX
k
mXk

i 〉xS
k
mlV

k
ℓ µ

kV k
j −

r
∑

m

〈σtX
k
mX

k
i 〉xS

k
mj

+
1

2
σs〈X

k
i φ〉xV

k
j + 〈Xk

i Q〉xV
k
j , (26)

where the superscript k = + or − denotes directions moving in positive or

negative x-direction, and µk collects the cosine of corresponding polar angles.

4.1. Numerical Scheme

We define the orthonormal bases Xi and Vj as

Xk
i (t, x) =

M
∑

m=1

Zm(x)ukmi(t), (27)
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V k
j (t) = vk∗,j(t), (28)

where Zm(x) = 1√
∆x

with x ∈ [xm− 1

2

, xm+ 1

2

] are based on a finite volume

discretization in space with a constant mesh spacing ∆x and M zones; m is the

cell number. Here ukmi are components of the time dependent matrix Uk(t) ∈

R
M×r, and vk∗,j refers to the jth column of the V k(t) ∈ R

N×r. Note that the

N×1 vector vk∗,j is a group of linear factors of all positive or negative ordinates,

so there are r combinations for each set of angles.

Next we describe procedures to solve Eq. (24) using source iteration and

transport sweeps. By applying the standard upwinding technique, we write the

spatial derivative term using upwind finite differences as

∂xK
+
ℓ V +

ℓ µ
+V +

j ≈
1

∆x
(K+

i,ℓ −K+
i−1,ℓ)V

+
ℓ µ

+V +
j ,

∂xK
−
ℓ V −

ℓ µ
−V −

j ≈
1

∆x
(K−

i+1,ℓ −K−
i,ℓ)V

−
ℓ µ

−V −
j .

(29)

Note that V k
ℓ µ

kV k
j forms a matrix Rk = (rkℓj) ∈ R

r×r that is precomputed.

Thus we can discretize Eq. (24) using backward Euler method for the time

integration

1

h
K

+,1
i,j = −

1

∆x

r
∑

l=1

(K+,1
i,ℓ −K

+,1
i−1,ℓ) r

+
ℓj − σtK

+,1
i,j + s+ij for µ > 0

1

h
K

−,1
i,j = −

1

∆x

r
∑

l=1

(K−,1
i+1,ℓ −K

−,1
i,ℓ ) r−lj − σtK

−,1
i,j + s−ij for µ < 0

(30)

where (skij)
± = 1

2σsφV
± + 1

2QV
± + 1

h
K±,0 ∈ R

M×r is the source term and the

superscript 1 denotes the current time step and 0 denotes the previous time
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step. For maximal clarity we write out Eq. (4.1) in full, matrix form:























P+
1 0 0 ... 0

−R̄+ P+
2 0 ... 0

0 −R̄+ P+
3 ... 0

... ... ... ... ...

0 0 ... −R̄+ P+
M )













































K
+,1
1 ∗

K
+,1
2 ∗

K
+,1
3 ∗

...

K
+,1
M, ∗























=























s+1,∗ + b+L

s+2,∗

s+3,∗

...

s+M,∗ + b+R























for µ > 0,























P−
1 R̄− 0 ... 0

0 P−
2 R̄− ... 0

... ... ... ... ...

0 0 ... P−
3 R̄−

0 0 ... 0 P−
M













































K
−,1
1 ∗

K
−,1
2 ∗

K
−,1
3 ∗

...

K
−,1
M, ∗























=























s−1,∗ + b−L

s−2,∗

s−3,∗

...

s−M,∗ + b−R























for µ < 0.

(31)

Here L+
i = 1

∆x
R++

(

σt(i) +
1
h

)

Ir, L
−
i = − 1

∆x
R−+

(

σt(i) +
1
h

)

Ir, Ir is the r×r

identity matrix, R̄k = 1
∆x
Rk, σt(i) denotes the value of total cross-section in cell

i, bkL and bkR are the left and the right boundary values. We set bkL = bkR = 0 to

correspond to vacuum boundary conditions. A compact form of the marching

scheme for Eq.(31) is

K
+,1
i,∗ =

(

P+
i

)−1
(

R̄+K
+,1
i−1,∗ + s+i,∗

)

for µ > 0

K
−,1
i,∗ =

(

P−
i

)−1
(

−R̄−K−,1
i+1,∗ + s−i,∗

)

for µ < 0
(32)

Eqs. (25) and (26) are matrix ordinary differential equations and can be

solved by an implicit Runge–Kutta method.

4.2. Computational Cost

This work focuses on reducing the computer memory cost for radiative trans-

fer simulations. The memory consumption for solving Eq. (3) using the classical

iteration solution procedure is 2×M × (NΩ +1) during each time step to store

the angular and scalar intensities. Here we do not include the simulation pa-

rameters such as the scattering/absorption cross-sections and the prescribed
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source based on the assumption that they can be stored efficiently during the

computation.

In the low-rank algorithm the memory requirements are determined by the

size of matrices U , S and V . The initial conditions Uk,0, V k,0, and Sk,0 take

(M × r + N × r + r2) × no floating point numbers. Solving Eq. (24) requires

M × r × no +M more memory to store the scattering source and the updated

matrix U (factorized from the updated matrix K). Eq.(25) is solved next and

uses N×r×no memory for the updated V for a total of (M×r+N×r+r2)×no

for the updated basis. Lastly, the no equations in Eq. (26) are r × r Sylvester

matrix equations which require no×O(r3) of memory when using the algorithm

proposed in [24]. In this step the memory usage is (M × r+N × r+ r2)× no +

no ×O(r3). In practice, we choose the rank r ≪ min(M,N), so we can assume

O(r3)+r2 < M×r+N×r. To summarize we use 2×(M×r×no+N×r×no+M)

to approximate the largest memory usage during the low-rank calculations. We

can see that the low-rank solution requires much smaller memory than the full

solution, when r ≪ min(M,N).

In numerical experiments we measure the low-rank memory occupied by

double precision floating point numbers in megabytes (MB) as

memory = 8× (M × r × no +N × r × no +M)× 10−6, (33)

and for the full-rank solution the memory required is

memory = 8× 2×M × (NΩ + 1)× 10−6. (34)

4.3. Initial Condition

Usually, the initial conditions Uk,0, V k,0, and Sk,0 for the low-rank evolution

are obtained by taking the SVD of the given initial intensity and then truncating

the singular values smaller than the rth largest in matrix S and removing the

corresponding rows and columns in U and V . Nevertheless, setting the initial

condition is not always straightforward. If the intensities are zero or a constant

initially (as in many common test problems), the initial condition will be of
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rank 0 or 1. One way to deal with this issue is to add r randomly generated

orthogonal basis to U and V and set S to a r × r matrix of zeros [12]. We find

that this approach does not work well for implicit schemes with large time steps.

In this work, we choose to let the low-rank basis evolve for a very small time

step, such as CFL= 0.01, to obtain initial conditions with a basis that is in the

range of the low-rank operator. After this treatment, we can set time steps as

intended.

5. Numerical Results

We present results for four 2-D and one 3-D benchmark problems. In all

of the test results, we set the particle speed to 1 cm/s. The CFL condition is

defined as CFL = min(∆t
∆x
, ∆t
∆y
, ∆t
∆z

). We implement the low-rank algorithm in

MATLAB. For several problems, we measured the running memory in MATLAB

with the built-in function “memory” and record the running time with the

stopwatch timer functions.

5.1. Double Chevron problem

To demonstrate the accuracy of our low-rank algorithm, we consider a multi-

material 2-D problem with an asymmetric layout originally presented in [14]. As

detailed in Figure 2, this problem has purely scattering zones with σt = σs =

0.01 cm−1, absorbing zones σt = 100 cm−1, σs = 0.1 cm−1, and an isotropic

source at the bottom with Q = 1 of thickness 0.1 mm. We solve this problem

using the spatial grid of size 90× 90 for the computational domain [0, 9mm]×

[0, 9mm], and the simulation time t = 0.9 s. The CFL number is set to be 3.

Figure 3 compares the low-rank solutions for the scalar intensity with S32

and varying rank to the full rank S32 solution and the S100 benchmark solution.

As we can see S32 with rank 36 is close to the full rank S32 solution but it

is not enough to resolve the particle distribution behind the second obstacle

and the negative results are observed. The low-rank solution with rank 25 is

nearly identical to the full rank S32 solution, which means rank 25 is sufficient

to capture the important features in this problem.
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Figure 4 presents a comparison for scalar intensities along x = 0.45 cm and

x = 0.6 cm. The left plot emphasizes their different behavior behind the second

chevron, and the right plot shows the particle distribution along the gap that

particles can travel through. We find that the low-rank solution with rank 36 has

a similar error to the full rank S32 solution when compared to the benchmark.

We also notice that S32 is not enough to capture the particle stream along the

gap and it requires high angular resolution to obtain.

The computational efficiency of our low-rank algorithm is presented in Figure

5. Our solutions’ accuracy is measured by the root mean square (RMS) error to

the benchmark solution. In Figure 5a we plot the error of our solutions versus

the running memory in the sweeping process. As we can see, the third point

in the red dotted line, which indicates the solution with rank 16, has already

achieved the same error level as the full rank S32 solution, but with only 10% of

the memory. It also can be seen that the low-rank and the full rank solution use

a similar amount of memory for the same rank. As explained by our memory

formula (33), the memory usage depends on the rank when M is fixed, and N

is much smaller than M .

Figure 5b makes the similar comparison with the running time per one time

step (∆t = 0.03 s for this test). It appears that our rank 16 solution could

save 95% of the computational time compared to the full rank solution. We

also point out that our low-rank method will take more time than the full rank

solution with the same rank. For example, the rightmost dot in the red line is

the solution with rank 100, the same as the full rank S20 solution, but it runs

twice as long. But when rank is properly chosen and relatively small, we can

still save a large amount of memory and time.

The computer memory occupied in MATLAB during the calculation and

the theoretical values are shown in Figure 6. The coefficients of determination

(R2) for the linear fit are approximately one, which indicates a strong linear

relationship between the theoretical and actual memory. We conclude that

Eqs. (33) and (34) are valid estimations for the actual memory usage, and

the low-rank algorithm reduces the memory requirement proportionally to the
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reduction in rank.

Figure 2: The layout for the double chevron problem is shown. The blue are dense materials

and the blank are purely-scattering region. There is an isotropic source at the bottom and

other three sides have vacuum boundary conditions.

5.2. Lattice problem

Next, we consider the lattice problem: a 7×7 cm checkerboard consisting of

pure absorbers, purely scattering regions, and a strong source turned on at t = 0

with a zero initial condition. We use a computational domain of [0, 7] × [0, 7]

with a 210 spatial grid. We solve this problem with a single, large time step

using CFL = 104. The layout and the reference solution calculated with S64 for

this problem are shown in Figure 7.

This test aims to show the accuracy improvement by adding more angular

directions while keeping the rank fixed. As shown in Figure 8, the full rank

S6 solution has ray effects in the solution near the bottom, right and left sides.

These can be alleviated by using more discrete ordinates as observed in solutions

with S64 and rank 9. Similar phenomena are found in solutions with rank 16,

where the full rank solution suffered from ray effects while the low-rank solution

is closer to our reference. We also plot the solution along x = 3.5 cm, where we

can see that low-rank solutions are closer to the benchmark solution than the

full rank solution.
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Figure 3: Solutions to the double chevron problem at t = 0.9 s. The color scale is logarithmic

and negative regions are shaded gray.

Figure 9 gives a quantitative comparison between low-rank and full rank

solutions in terms of their memory usage and error measured by RMS deviations

to the reference. We notice that the low-rank solutions converge faster than the
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Figure 4: Logarithmic scalar insentityes to the double chevron problem at t = 0.9 s.

full rank solutions, where the low-rank solution with rank 49 achieves the same

accuracy as the full rank S50 solution, but only requires 10% of the memory.

5.3. Line source problem

The line source problem describes a beam of radiation is spreading out

in a purely scattering plane. In this problem we have the initial condition

ψ(x, z, µ, ϕ, t) = δ(x)δ(z), and the purely scattering medium σs = σt = 1 with

no source Q = 0. We use a computational domain of [−1.5, 1.5]× [−1.5, 1.5] for

the simulation time t = 1 s, while the spatial grid is set to be 150× 150. Figure

10 shows the analytic solution and our benchmark solution.

We use the line source test to demonstrate the benefits of the low-rank

method with high angular resolutions. Figure 11 compares the full rank so-

lution to low-rank solutions with the same rank. We notice that all the full-

rank solutions have remarkable ray effects, which means the number of angular

directions are insufficiently dense to move particles to all the regions . The

low-rank method could significantly improve the full rank solution by using a

small amount of extra memory. As we can see, the ray effects are alleviated in

the solution with rank 16, and the solution with rank 36 is comparable to the

benchmark solution.

5.4. Hohlraum problem

The last 2-D problem is a modified Hohlraum problem as shown in Figure

12. The hohlraum is surrounded by vacuums, except for the incoming source on
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Figure 5: The comparison of errors for the low-rank and full-rank solutions of double chevron

problem with different memory usage and computational time is shown. The red dots repre-

sents low-rank solution with rank 4, 9, 16, 25, 49, 64, 81, and 100.
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(a) Geometry for Lattice test
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Figure 7: The left plot shows the layout of the lattice problem, where the blue zones are

purely scattering region with σs = σt = 1 cm−1, the black are absorbing region with σs = 0,

σt = 10 cm−1 and the yellow is the scattering region with an isotropic source Q = 1. The

right plot is the benchmark solution with the logarithmic color scale.

the left. In this problem, we are interested in the particle distribution behind

the block that particles cannot reach directly, which will require more angular

direction samples to resolve. For this problem we use a computational domain

of [0, 1.3]× [0, 1.3] for the simulation time t = 0.9 s, and set the spatial grid to
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Figure 8: The logarithmic scalar insentity to the lattice problem calculated by the low-rank

method with S64 are compared to the full rank solutions with the same rank.
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Figure 10: The scalar insentity φ of the line source problem at t = 1 s calculated by full-rank

S100 is compared to the benchmark solution.

150× 150.

We make a similar comparison between the low-rank solutions to the full rank

solutions with the same rank in Figure 13. We observe beam-shaped shadows in

the left part of the full rank S8 solution, but not in the low-rank solution with

S100 and rank 16. There are negative regions in the low-rank solutions brought
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(c) S12, rank 36 (full rank)

-1.5 -0.75 0 0.75 1.5
x (cm)

-1.5

-0.75

0

0.75

1.5

z 
(c

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(d) S100, rank 16

-1.5 -0.75 0 0.75 1.5
x (cm)

-1.5

-0.75

0

0.75

1.5

z 
(c

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(e) S100, rank 25

-1.5 -0.75 0 0.75 1.5
x (cm)

-1.5

-0.75

0

0.75

1.5

z 
(c

m
)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(f) S100, rank 36

Figure 11: The scalar insentity to the line source problem calculated by the low-rank method

are compared to the full rank solution with the same rank.

by the truncation from low-rank algorithms.

Figure 14 presents the cut along z = 0.65 cm to compare the particle dis-

tribution behind the obstacle. The left plot shows that the solution with rank

36 is nearly identical to the full rank solution. The right plot shows that the

low-rank solutions are closer to the benchmark than the full rank solution with

the same rank.

(a) Geometry for Hohlraum test
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Figure 12: The layout of the Hohlraum problem and the high-order benchmark solution.

22



0 0.2 0.4 0.6 0.8 1 1.2
x (cm)

0

0.2

0.4

0.6

0.8

1

1.2

z 
(c

m
)

-6

-5

-4

-3

-2

-1

0

(a) S8, rank 16 (full rank)

0 0.2 0.4 0.6 0.8 1 1.2
x (cm)

0

0.2

0.4

0.6

0.8

1

1.2

z 
(c

m
)

-6

-5

-4

-3

-2

-1

0

(b) S10, rank 25 (full rank)

0 0.2 0.4 0.6 0.8 1 1.2
x (cm)

0

0.2

0.4

0.6

0.8

1

1.2

z 
(c

m
)

-6

-5

-4

-3

-2

-1

0

(c) S12, rank 36 (full rank)
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(f) S100, rank 36

Figure 13: The scalar insentity to the Hohlraum problem calculated by the low-rank method

with S100 are compared to the same rank solutions without rank reduction. The color scale

is logarithmic and negative regions are shaded gray.
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Figure 14: The logarithm of the scalar insentity along z = 0.65 cm.

5.5. Wires Problem

As shown in Figure 15, we introduce the 3-D wires problem, inspired by the

2-D problem in [8], has an emitting dense material embedded vacuum. Particles

are emitted from the central wire with Q = 1. All the five wires are made by the

same material with σs = 0.1 and σt = 5. The streaming regions has σs = σt = 0

and we use vacuum boundary conditions. The computational domain for this
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problem is set to [−0.01, 0.01] × [−0.01, 0.01] × [0, 0.02] with a 40 × 40 × 40

mesh grid. We simulate this problem to t = 0.6s using a time step ∆t = 0.2

(CFL= 1200).

The following results compare the low-rank solution and the full rank solu-

tion with the same rank. Figure 16 shows the solution in the plane of x − y

along z = 0.1. First, we notice strong ray effects in the full rank S4 solution,

especially along y = 0. The low-rank solution with S64 and rank 4 looks better

in this aspect. The full rank solution with S8 achieves better distributions than

S4 but is still unable to avoid the ray effects along y = 0. But we can see that

the low-rank solution with rank 16 is close to the full rank solution. If we fur-

ther increase the rank to 36, the low-rank solution is identical to the benchmark

solution.

We also plot the solution in the y-z plane along x = 0 shown in Figure 17. We

can see that the solution with rank 4 is has large, qualitative errors, especially

in the center source region. The low-rank solution significantly improves the

situation with the errors greatly reduced.

The running memory to carry out these simulations in MATLAB is shown

in Figure 18. The rank 64 solution with S64, represented by the rightmost dot

in the solid red line, uses 25% of the full rank S32 solution but achieves the same

accuracy. It also reaches five times lower error than the full rank S16 solution

with slightly more memory.

6. Conclusion

In this work, we have presented a low-rank-SN scheme to simulate discrete

ordinate (SN ) radiative transfer equations using reduced computational costs.

By applying the unconventional low-rank integrator, our scheme can be solved

implicitly by transport sweeps, enabling more efficient radiation transport sim-

ulations on computing platforms with reduced memory per core. With the

carefully chosen rank based on the intrinsic property of problems, this low-rank

method can save up to 90% of the computer memory and 95% of the compu-
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Figure 15: The layout of the wires problem and the high-order benchmark solution.

tational time. We also observe that if the rank is chosen to be too large, the

solution does not suffer, but the calculation is not maximally efficient.

We point out that the effect of the computational cost saving on a specific

problem relies on the discovery of its “true” rank. We are working on various

radiative transfer problems simulations to find a practical strategy for selecting

the rank. Another open question in low-rank methods is conserving the intrinsic

properties of the underlying problem such as conservation of particles or the

appropriate asymtotic limits. As in our previous work [15], the high-order/low-

order (HOLO) algorithm is one way to perform the fix. The implementation is

straightforward since we can also calculate the Eddington tensor with the low-

rank SN solution. Furthermore, we would be interested in applying the low-rank
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Figure 16: The logarithmic scalar intensity solution the wires problem calculated by the low-

rank method with S64 are compared to the same rank solutions without rank reduction.
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Figure 17: The logarithmic scalar intensity solution to the wires problem calculated by the

low-rank method with S64 are compared to the same rank solutions without rank reduction.

method to the multi-group transport problems for future study. This would give

another dimension to potentially compress and potentially give even greater
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Figure 18: The comparison of errors for the wires problem with different memory usage. The

green dots represent the error of the full rank solutions that varies the number of discrete

ordinates. The red solid line represents the error of the low-rank solutions with S64 that

varies the rank (rank = [4, 9, 16, 25, 36, 49, 64]).

memory savings. Recent work on diffusion-based particle transport problems

with multigroup indicates that this could be a fruitful investigation [25].
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