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Multigroup-like MC resolution of generalised Polynomial Chaos
reduced models of the uncertain linear Boltzmann equation

(+discussion on hybrid intrusive/non-intrusive uncertainty propagation)

Gaël Poëttea

aCEA DAM CESTA, F-33114 Le Barp, France

Abstract

Monte Carlo-generalised Polynomial Chaos (MC-gPC) has already been thoroughly studied in the
literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. MC-gPC both builds a gPC based reduced model of some
kinetic equations of interest and solves it with an MC scheme in order to propagate uncertainties.
In this paper, the kinetic equation of interest is the linear Boltzmann equation. MC-gPC allows
important computational gains on this model on many applications [1, 4, 5, 6, 8, 9]: in a nutshell,
the reasons for its success are spectral convergence [2] plus the fact that it is based on an MC
resolution [1]. Furthermore, MC-gPC can be implemented thanks to simple modifications of an
existing MC code [1, 9, 8]. But MC-gPC also presents some weaknesses: it is sensitive to the curse
of dimensionality [1, 9] and is noisier than other strategies [10]. The aim of this paper is to present
new MC schemes solving the same gPC based reduced model but attenuating the two previous
drawbacks. They are based on multigroup-like resolution methods. The new MC schemes improve
the run times of MC-gPC. The resolution scheme is intrusive: this means that modifications of an
existing solver are necessary (even if people familiar with multigroup MC resolution will not be
intimidated by them). The paper ends with a discussion about taking into account uncertainties at
the early stages of the development of a simulation code together with some original and efficient
hybrid intrusive/non-intrusive applications.
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1. Introduction

Monte Carlo-generalised Polynomial Chaos (MC-gPC) has already been thoroughly studied in
the literature [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. MC-gPC both builds a gPC based reduced model of some
kinetic equations of interest and solves it with an MC scheme in order to propagate uncertainties. In
[3, 4], the kinetic equation is a flocking model; in [5, 6, 7] it corresponds to the quadratic Boltzmann
equation; in [1, 2, 8, 9, 10], it is (or is closely related to) the linear Boltzmann equation. We also
focus on the latter in this paper. It is given by

∂tu(x, t,v,X) + v · ∇xu(x, t,v,X) =− vσt(x,v,X)u(x, t,v,X)

+ v

∫
σs(x,v · v′,X)u(x, t,v′,X) dv′,

(1)
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Preprint February 13, 2022



together with the initial and boundary conditions

u(x, t = 0,v,X) = u0(x,v,X), x ∈ D(X), t ∈ [0, T ] v ∈ V, X ∈ Ω,
u(x, t,v,X) = ub(t,v,X), x ∈ ∂D(X), t ∈ [0, T ] v · ns(x,X) < 0, X ∈ Ω,

(2)

where ns is the outward normal to Ω at x. In the above expression, u is a density of particles.
The variables x ∈ D ⊂ R3, t ∈ [0, T ] ⊂ R+ and v ∈ V ⊂ R3 are respectively the space, time and
velocity1 variables. Variable X = (X1, ..., XQ)t is a vector of Q independent2 random variables

of probability measure dPX =
∏Q
i=1 dPXi modelling the uncertainties. Variables (x, t,v) are the

physical variables in opposition to X which is refered to as the uncertain variable. The cross-
sections σt = σt(x,v,X), σs = σs(x,v · v′,X) are assumed to be given functions of (x,v,X) and
(x,v · v′,X) in this paper. They stand for the total and scattering cross-sections. The quantity σs
defines how the velocities and angles are scattered when a reaction is encountered. Of course, the
above notations are for macroscopic cross-sections, in the sense that many physical reactions are
summed-up in the above notations, see [16, 17, 18]. System (1) together with boundary conditions
(2) define the well-posed [19] mathematical problem we want to solve and in which we want to
be able to accurately take uncertainties3 into account. In other words, we are mainly interested
in the statistics of X → u(x, t,v,X) (i.e. mean, variance, histogram, sensitivity indices [20] etc.)
at specified locations x ∈ D, times t ∈ [0, T ] and velocities v ∈ V. The uncertain transport
equation is of importance in many physical domains such as neutronics [21, 22, 23, 9], photonics
[24, 25, 26, 27, 28, 8, 29], biology [30], socio-economics [6, 31, 4], epidemiology [32] etc. In neutronics
[9] or photonics [8] for example, equation (1) must be solved at each iteration/time step.

Of course, different values of X correspond to different fully decoupled deterministic equations:
in principle, there is no difficulty in solving such uncertain problem. The main issue comes from
the fact that exact propagation of uncertainties is very expensive from the computational point of
view: equation (1) is often solved thanks to an MC scheme [33, 21, 34, 22, 23, 35, 36, 37]. This
resolution method is known to be efficient for high (3(x)+1(t)+3(v) = 7) dimensional problems but
costly. Running several deterministic MC computations for several values of X can consequently
be prohibitive.

This is precisely where MC-gPC comes at play: MC-gPC builds the following reduced model4

∂tu0 + v · ∇xu0 = −v
∫ σt ∑

k≤P

ukφk

φ0 dPX + v

∫∫ σs ∑
k≤P

ukφk

φ0 dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∫ σt ∑

k≤P

ukφk

φP dPX + v

∫∫ σs ∑
k≤P

ukφk

φP dPX

 dv′.

(3)
System (3) is built from (1) by performing a Galerkin projection of (1) onto the P−truncated
orthonormal gPC basis5 (φk)k∈{0,...P}, see [1, 2]. This system is linear and is solved with an MC

1It may be decomposed into v = vω where v = |v| ∈ R+ and ω = v
v
∈ S2.

2It is always possible to come back to such framework, at the cost of more or less tedious pretreatments leading
to a controled approximation [11, 12, 13] and decorrelation [14, 15].

3geometrical, in the cross-sections, in the multiplicity, in the boundary conditions etc.
4We drop the dependencies, initial and boundary conditions for convenience.
5(φk)k∈N is orthonormal with respect to the scalar product defined by the measure dPX of the input uncertain
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scheme. MC-gPC allows important computational gains on this model6 on many7 applications. But
MC-gPC also presents some weaknesses. Let us summarize the pros and cons of MC-gPC when
applied to equation (1). The next points can be considered a summary of what can be found in
[1, 2, 8, 9, 10]. The main benefits of MC-gPC for (1) are

(X1) spectral convergence: it corresponds to the fast convergence with respect to P (proved in [2]).

(X2) Only simple modifications of an existing MC code solving (1) are needed to solve (3), see [1].

(X3) The fact it is based on modifications of an existing MC code makes the MC-gPC solver inherit
the parallel strategies implemented in the native MC code solving (1), see [1, 8, 9].

(X4) Finally, it is also efficient when applied to nonlinear physics [9, 8].

Now, the main drawbacks of MC-gPC when applied to (1) are

(∗1) the curse of dimensionality: the size of the system (P + 1) grows exponentially fast with the
number (Q) of uncertain parameters8. It is commonly accepted that gPC reduced models can
handle Q ∼ 1− 10 but not much more (without additional a priori knowledge, see [38]).

(∗2) This curse of dimensionality has an impact on different phases/characteristics of the MC-gPC
computations:

(a) each MC particle must tally its contribution into an array of size P + 1, see [1].
(b) The parallel reductions on these same arrays can consequently be costly too [1].
(c) Nonlinear physics needing small time steps/many iterations may not benefit from an

MC-gPC implementation if the tallies/parallel reductions are too frequent, see [8, 9].
(d) It also has an impact on the memory consumption: each MC particles carries a field Xp

of size Q in the MC schemes described in [1, 8, 9, 10].

(∗3) Finally, it has recently been proved [10] that the MC schemes solving (3) and described in
[1, 8, 9] are noisier than other strategies (even if the noise remains acceptable).

The aim of this paper is to present new MC schemes solving system (3) and improving drawback
(∗3) above, i.e. reducing the noise in the MC-gPC computations. In practice, this is done in the
following sections by suggesting new ways to discretise system (3) with MC schemes. The new
MC schemes are multigroup-like resolution methods. They are much less noisy than the original
MC-gPC implementation presented in [1, 2, 8, 9, 10]. Besides, by alleviating drawback (∗3), we also
improve the behaviour of MC-gPC with respect to drawbacks (∗2)-a-b-c leading to faster run-times.
But, on another hand, benefit (X2) will not hold anymore: the modifications one must perform
to an existing MC code in order to implement the new versions of MC-gPC are not that simple
anymore even if people familiar with multigroup MC resolution should not be intimidated. Still,
we consider these less simple modifications are worth it, the reasons why are emphasized in the
next sections. The paper ends with a discussion on thinking about uncertainty propagation at early
stage of the development of a code, intrusive methods and the possibility to perform some hybrid

parameters, i.e such that
∫
φk(X)φl(X) dPX = δk,l, ∀(k, l) ∈ N2. Note that in practice, this basis is built once and

for all once dPX known.
6Ranging from ×7 to ×50 accelerations of the run-times with respect to classical non-intrusive methods.
7Linear [1, 4] or nonlinear [5, 6, 8, 9].
8The multivariate polynomial basis is built by tensorization of one-dimensional polynomial basis in every stochastic

direction (Xi)i∈{1,...,Q}. In each direction, the basis must be truncated up to certain orders (pi)i∈{1,...,Q} which
may depend on the directions (Xi)i∈{1,...,Q}. Assume that ∀i ∈ {1, .., Q}, pi = p1D, then the total number of

polynomial coefficients, abusively called the polynomial order later on, is P = P (p1D, Q) = (p1D + 1)Q. It exhibits
an exponential growth with respect to both p1D and Q.
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intrusive/non-intrusive uncertainty analysis from, for example but without loss of generality, the
code developed for this paper.

The paper is organized as follows: section 2 recalls the main results of [10] concerning the fact
that MC-gPC is noisier than other strategies. In particular, the factor responsible for the excess of
variance of MC-gPC is identified. In section 3, we describe the new MC resolution strategies: they
are based on multigroup semi-analog and non-analog MC resolutions of (3). We also insist in this
section on how relying to this framework allows avoiding the aforementioned excess of variance.
Section 4 is devoted to numerical examples with several uncertainty propagations, the resolution of
an uncertain eigenvalue problem and some hydrid non-intrusive/intrusive computations. Section 5
is a concluding paragraph.

2. Forewords: the need to reduce the variance of MC-gPC

In this section, we recall few results from [1, 10] and deepen the analysis. The aim is to iden-
tify which terms are responsible for MC-gPC having lesser performances than ni-gPC9 in terms of
numerical noise and suggest corrections allowing to overcome drawback (∗3) of section 1.

The gPC based reduced models need the numerical approximation of coefficients (uk)k∈{0,...,P}
appearing in the gPC development of u the solution of (1) onto the gPC basis (φk)k∈{0,...,P}. In
other words u is approximated by the P−truncated expansion

u(x, t,v,X) ≈ uP (x, t,v,X) =

P∑
k=0

uk(x, t,v)φk(X).

The above polynomial approximation bears some interesting convergence properties [39, 40, 41] as
P → ∞. Spectral (i.e. fast) convergence for the solution of equation (1) has even been proved in
[2].

Now, there exists several ways to compute the previous coefficients. There are two main class
of methods:

– non-intrusive gPC (ni-gPC) [42, 43, 38, 44, 45, 46, 47] consists in introducing the set of
points/weights (Xi, wi)i∈{1,...,N} approximating random vector X and its probability measure
dPX. The gPC coefficients of u are consequently recovered by numerical integration: ∀k ∈
{0, ..., P}

uk(x, t,v) =

∫
u(x, t,v,X)φk(X) dPX =

N∑
i=1

u(x, t,v,Xi)φk(Xi)wi +O(Nβ), with β < 0. (4)

The numerical integration error strongly depends on the choice of the experimental design
(Xi, wi)i∈{1,...,N}.

Independently of the choice of the experimental design, ni-gPC implies performing N runs of
a code solving (1) in order to gather (u(x, t,v,Xi), wi)i∈{1,...,N} and post-treat them in order
to build the gPC coefficients as in (4). In our MC resolution context, each run needs NMC

9Which asymptotically presents the best performances in terms of numerical noise, see [10].
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particles such that u is approximated as u(x, t,v,Xi) = uNMC (x, t,v,Xi) +O(N
− 1

2

MC), where
uNMC is the code output. This means that we have ∀k ∈ {0, ..., P}

uk(x, t,v) =

N∑
i=1

uNMC (x, t,v,Xi)φk(Xi)wi +O(Nβ) +O(N
− 1

2

MC),

=

N∑
i=1

uNMC (x, t,v,Xi)φk(Xi)wi +O(Nβ) +
σk(x, t,v)√

NMC

Gk.
(5)

In the above expression, (Gk)k∈{0,...,P} are gaussian random variables of mean zero and vari-
ance one, see [10]. From the residual terms in (5), we can see that the experimental design
for the uncertain variable X is tensorised with the one for the physical variables (x, t,v) with

an accuracy which is O(Nβ) +O(N
− 1

2

MC). Both N and NMC must grow in order to converge.
MC-gPC has been introduced in [1] mainly because a full MC experimental design on the
whole set of variables (x, t,v,X) can avoid this tensorization.

– MC-gPC allows integrating the gPC coefficients on-the-fly during MC resolution of system
(3). The details are in [1] and briefly recalled in Appendix C. With MC-gPC, we have
∀k ∈ {0, ..., P}

uk(x, t,v) = uNMCk (x, t,v) +O(N
− 1

2

MC),

= uNMCk (x, t,v) +
σk,MC(x, t,v)√

NMC

Gk.
(6)

Once again, Gk are gaussian random variables of mean zero and variance one, see [10]. In (6),
the convergence only depends on NMC which can be considered an advantage.

non-intrusive NMC = 10
non-intrusive NMC = 20
non-intrusive NMC = 100

gPC intrusive MC scheme (NMC = N)
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Figure 1: Left convergence studies with respect to N and NMC for ni-gPC and MC-gPC on the variance of the

number of physical particles. Right: evolution →
σ2
k,MC-sa(t)

σ2
k,sa

(t)
of the ratio of variances between MC-gPC and ni-gPC.

Figure 1-left illustrates the behaviours summed-up in expressions (5) and (6). It presents some
convergence curves in a very simple configuration (see Appendix A for all the details) for the two
above numerical methods:

– the results obtained by ni-gPC use a deterministic black-box code solved by an MC scheme
(the semi-analog one) of discretisation parameter NMC . The uncertain counterpart is solved
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with an MC sampling of (X, dPX) with N points. Three plots are displayed, corresponding
to three convergence studies with respect to N for fixed values of NMC = 10, 20, 100. Every
curve obtained with ni-gPC presents, first, a converging behaviour with a slope which is
characteristic of the numerical method used in order to integrate the uncertainties, i.e. here
O(N−

1
2 ). Then, the curves present a more or less pronounced kink: a change of slope,

followed by a plateau, a stagnation of the accuracy. It corresponds to the point where the

general accuracy becomes driven by the coarser numerical method, here O(N
− 1

2

MC). Increasing

N (relative to the x−axis) does not allow any significant gain as O(Nβ) = O(N−
1
2 ) � 1.

In a sense, the locations of the kinks corresponds to optimal parameter choices (NMC , N):
increasing the accuracy in one direction without the other induces a loss of computational
time. Finding these optimal parameters can be difficult in practice. But recent papers, aiming
at balancing the different types of errors, are certainly promising in that direction, see [48].

– For MC-gPC, the behaviour is quite different and is described by (6). For MC-gPC N =
NMC , i.e. the experimental design is not anymore tensorized with the MC particles. The
approximation obtained with the new MC scheme does not stagnate with the increasing
number of samplings. The uncertainty is solved on-the-fly during the MC resolution and the
convergence rate for the whole problem remains O( 1√

NMC
) avoiding the kinks in the curves

obtained non-intrusively.

Note that on figure 1-left, the slope for MC-gPC and the slope for the finer ni-gPC approximation
are the same, almost overimposed (at least for N ∈ {1, 100}) before the loss of convergence of ni-gPC
(for N > 100). This typically means that their performances in terms of numerical error/variance
are equivalent. But in [10], situations in which the variance of ni-gPC is way smaller than the one of
MC-gPC have been identified: let us consider the simple (monokinetic and homogeneous) problem
(already detailed in [10]) of Appendix B. For this problem, the asymptotical variances on the gPC
coefficients of ni-gPC and MC-gPC have been analytically calculated. Let us consider the case in
which the MC codes are based on a semi-analog (sa) MC scheme (see [10]). Then the asymptotical
variances are given by:

– for ni-gPC [10], σ2
k,sa as in (5) is given by ∀k ∈ {0, ..., P}

σ2
k,sa =

∫
σ2

sa(t,X)φk(X) dPX,∀k ∈ {0, ..., P},

=

∫
U2

0 (X)

(
ev

σ2
s(X)−σ2

t (X)

σt(X)
t − e2v(σs(X)−σt(X))t

)
φk(X) dPX.

(7)

– On another hand [10], with MC-gPC, σ2
k,MC-sa as in (6) is given by ∀k ∈ {0, ..., P}

σ2
k,MC-sa(t) =

∫
U2

0 (X)φ2
k(X)ev

σ2
s(X)−σ2

t (X)

σt(X)
t dPX −

[∫
U0(X)e−vσa(X)tφk(X) dPX

]2

. (8)

Figure 1-right displays t → σ2
k,MC-sa(t)

σ2
k,sa(t)

which is directly proportional to
Nni-gPC
MC

NMC-gPC
MC

. This ratio gives

an idea of the number of MC particles needed by MC-gPC in order to reach the same amplitude
of numerical noise as ni-gPC in the same conditions (but still assuming that N � 1). On figure
1-right, it is first possible to see that for k = 0, i.e. for the mean, the performances of MC-gPC
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and ni-gPC are equivalent: the ratio is equal to 1. For all the other gPC coefficients, MC-gPC
exhibits an excess of variance with respect to ni-gPC. The higher the order of the coefficient, the
higher the excess of variance. Now, depending on the time of interest, this excess of variance is not
necessarily dramatic: for late times, i.e for t > 25, the performances of MC-gPC and ni-gPC are
almost equivalent. This corresponds to what is observed on figure 1-left: the convergence curves
were computed in such a regime. But for early times in figure 1-right, we can see that for this
problem, MC-gPC may need from ×10 to more than ×1000 more MC particles in order to reach
the same accuracy as ni-gPC. For these early times, due to the configuration of interest described in
(B.3), the solution is almost deterministic (i.e. not uncertain). In this paper, we aim at overcoming
this problem: we build MC schemes for MC-gPC which lead to lesser or equivalent numerical errors
on each gPC coefficients as ni-gPC (which corresponds to the less noisy strategy, see [10], even if
not the less computationally intensive, see [1]).

For this, we need to have an idea of which terms in (8) is responsible for the excess of variance
with respect to (7): in the example of figure 1-right, the earliest the time, the closer to a deterministic
(i.e. without uncertainties) problem. Let us see what expression (7) and (8) become when the
different quantities are independent of X (i.e. deterministic). We obtain for ni-gPC

σ2
k,sa(t) =

∫
U2

0 (X)

(
ev

σ2
s(X)−σ2

t (X)

σt(X)
t − e2v(σs(X)−vσt(X))t

)
φk(X) dPX,∀k ∈ {0, ..., P},

= U2
0

(
ev

σ2
s−σ

2
t

σt
t − e2v(σs−σt)t

)∫
φk(X) dPX,∀k ∈ {0, ..., P},

= U2
0

(
ev

σ2
s−σ

2
t

σt
t − e2v(σs−σt)t

)
δk,0,∀k ∈ {0, ..., P}.

(9)

With ni-gPC, in the deterministic case, the numerical error on the high order gPC coefficients is
zero. For MC-gPC on another hand, in exactly the same conditions, we get

σ2
k,MC-sa(t) =

∫
U2

0 (X)φ2
k(X)ev

σ2
s(X)−σ2

t (X)

σt(X)
t dPX −

[∫
U0(X)e−vσa(X)tφk(X) dPX

]2

,

= U2
0 e
v
σ2
s−σ

2
t

σt
t

∫
φ2
k(X) dPX −

[
U0e

−vσat
∫
φk(X) dPX

]2

,

= U2
0

(
ev

σ2
s−σ

2
t

σt
t1− e2v(σs−σt)tδk,0

)
.

(10)

In the above expression the φ2
k factor makes term 1 appear independently of the order k of the gPC

coefficient. It leads to non-zero numerical errors on these quantities even in the deterministic case.
The appearance of such factor is closely related to the explicit use, within the MC estimator (see
the red terms in algorithm 6 of Appendix C), of the gPC basis (φk)k∈{0,...,P} in order to tally the
contributions of every MC particles.

From the previous analysis, we have an idea of what we must do in order to solve (3) with better
performances in terms of noise: we need to get rid of the (φk)k∈{0,...,P} term during the tallying
phase (see the + = operation in algorithm 6). Multigroup MC schemes are specifically designed to
avoid this. In the next section, we present how we can solve (3) with a multigroup-like approach
and verify it can deal with the previously identified spurious term.
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3. New MC discretisations of reduced model (3)

As explained in the previous sections, MC-gPC discretises the following system

∂tu0 + v · ∇xu0 = −v
∫ σt ∑

k≤P

ukφk

φ0 dPX + v

∫∫ σs ∑
k≤P

ukφk

φ0 dPX

 dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∫ σt ∑

k≤P

ukφk

φP dPX + v

∫∫ σs ∑
k≤P

ukφk

φP dPX

 dv′,

(11)
with an MC scheme. One MC scheme has been designed in [1], but it is not unique. One of
the main objective of the MC resolution in [1] was to be able to implement MC-gPC with minimal
modifications of an already existing MC code. As such, MC-gPC allows considerable gains on many
problems [1, 8, 9]. But on another hand, this MC scheme leads to undesirable excess of variances
on the high-order10 gPC coefficients, especially in the deterministic case (see the need for more MC
particles for early times in figure 1-right).

Spectral convergence with respect to P holds for system (11). We want to keep this property so
we are going to keep trying to solve system (11). On another hand, we are going to try to improve
its MC resolution11. We here build new MC schemes which, we will see later on, have better
performances in terms of variances/errors (σ2

k,MC)k∈{0,...,P} on the gPC coefficients (uk)k∈{0,...,P}
and even better run-times.

3.1. Building a multigroup structure for system (11)

In order to build new MC schemes for system (11), let us express it differently. Let us expand
the collisional terms as

∂tu0 + v · ∇xu0 = −v
∑
k≤P

uk

∫
σtφkφ0 dPX + v

∫ ∑
k≤P

uk

∫
σsφkφ0 dPX dv′,

. . . . . .

∂tuP + v · ∇xuP = −v
∑
k≤P

uk

∫
σtφkφP dPX + v

∫ ∑
k≤P

uk

∫
σsφkφP dPX dv′.

(12)

Then we can rewrite (12) in a vectorial form as

∂tU(x, t,v) + v · ∇xU(x, t,v) = −vΣt(x,v)U(x, t,v) + v

∫
Σs(x,v · v′)U(x, t,v′) dv′, (13)

in which U(x, t,v) = (u0(x, t,v), ..., uP (x, t,v))t. The new system (13) does look like a multigroup
transport equation, see [16, 18, 33]. But it is not one: this is mainly due to the expression of the

10i.e. k > 0, see [10].
11Several MC schemes exists. For example, for the deterministic linear Boltzmann equation, several MC schemes

exists: the semi-analog and the non-analog MC schemes are both intensively used in many applications (see [49, 27,
28, 21, 22, 23] for semi-analog based solvers and [50, 24, 25, 51, 52, 53, 29] for non-analog based ones).

8



cross-section Σt. Let us explicit the expressions of the Σt and Σs:

Σα(x,v) =

 ... ... ...

...

∫
σα(x,v,X)φk(X)φl(X) dPX ...

... ... ...

 for α ∈ {s, t}. (14)

The previous matrices Σt,Σs are (potentially) full symetric matrices. For (13) to be rewritten as a
multigroup transport system, Σt needs to be diagonal with positive coefficients. Let us introduce
R such that

Σt(x,v) = R(x,v)Λt(x,v)R−1(x,v),

with Λt a diagonal matrix built from the positive eigenvalues of Σt. Then (13) can be rewritten

∂t
[
R−1(x,v)U(x, t,v)

]
+R−1(x,v)v · ∇xU(x, t,v) = −vΛt(x,v)R−1(x,v)U(x, t,v)

+vR−1(x,v)

∫
Σs(x,v · v′)U(x, t,v′) dv′.

(15)
By performing the change of variable V (x, t,v) = R−1(x,v)U(x, t,v), we do obtain a vectorial
term Λt(x, t,v) in factor of V (x, t,v) leading to:

∂tV (x, t,v) +R−1(x,v)v · ∇xU(x, t,v) = −vΛt(x,v)V (x, t,v)

+v

∫
R−1(x,v)Σs(x,v · v′)R(x,v′)︸ ︷︷ ︸

Λs(x,v·v′)

V (x, t,v′) dv′.

(16)
The next step concerns the term R−1(x,v)v ·∇xU(x, t,v) as, at first glance, R−1 seems to need to
be linearised for V to appear under the spatial operator (∇x). Assume that domain D is tesselated
into ND cells, i.e. we have D = ∪NDi=1Di. Assume furthermore that the cross sections are constant
per cell with respect to x so that we have

Σt(x,v) =

ND∑
i=1

Σit(v)1Di(x).

Then it is possible to diagonalise Λit, ∀i ∈ {1, ..., ND}. This leads to having

Σt(x,v) =

ND∑
i=1

Ri(v)Λit(v)R−1
i (v)1Di(x).

From this point on, two situations can occur:

1. either (Σit(v))i∈{1,...,ND} are all diagonalisable in the same basis ∀i ∈ {1, ..., ND}. This means

that we have R−1
i (v) = R−1(v), ∀i ∈ {1, ..., ND}. In this case, R−1(v)v · ∇xU(x, t,v) =

v · ∇x(R−1(v)U(x, t,v)) = v · ∇xV (x, t,v) which considerably eases the analysis. Unfortu-
nately, it is easy finding configurations of interest in which the matrices (Σit)i∈{1,...,ND} are
not diagonalisable in the same basis (see section 4.4).

2. Or (Σit(v))i∈{1,...,ND} are not diagonalisable in the same basis and, if we introduce R−1(x,v) =∑ND
i=1R

−1
i (v)1Di(x), we have

R−1(x,v)v · ∇xU(x, t,v) = v · ∇x

(
R−1(x,v)U(x, t,v)

)
+ S(x, t,v).

9



In the above expression, S can be expressed as

S(x, t,v) = −v · ∇xR
−1(x,v)U(x, t,v),

= −v · ∇xR
−1(x,v)R(x,v)V (x, t,v),

With the constant per cell hypothesis of R,R−1 and the presence of ∇xR
−1 in S, such a term

induces the appearance of jumps and of Dirac masses across cells. These jumps and Dirac
masses can easily be dealt with in an MC resolution (see for example [54] even if a different
strategy is applied in this paper). But still, they surely add complexity to the implementation
and their treatment is the purpose of a whole paragraph of section 3 (see section 3.7).

Now, assume that the uncertain total cross-section matrix x,v → Σt(x,v) is pre-assembled and
diagonalised (per cell or per material) offline before any calculations. We consider that matrices
x,v→ R(x,v),x,v→ R−1(x,v) and x,v→ ∇xR

−1(x,v) are known at the beginning of the study
∀x ∈ D,∀v ∈ V. This means we can rewrite (15) as the multigroup-like system of equations

∂tV (x, t,v) + v · ∇xV (x, t,v) = +
[
v · ∇xR

−1(x,v)R(x,v)
]
V (x, t,v)

−vΛt(x,v)V (x, t,v)

+v

∫
Λs(x,v · v′)V (x, t,v′) dv′.

(17)

In the next sections, we build MC schemes solving system (17).

Remark 3.1. Of course, if the cross-sections are constant per cell/material with respect to x,
∇xR

−1 is non-zero only at the interfaces between cells/materials and zero inside each cell/material.
Introduce the notation D = D \ ∂D in order to denote the interior of D. Then we have

– ∇xR
−1(x,v) = 0,∀x ∈ Di,∀i ∈ {1, ..., ND},∀v ∈ V. The treatment within the interior of

each cell is described in sections 3.4–3.5–3.6.

– ∇xR
−1(x,v) 6= 0,∀x ∈ Di ∩ Dj ,∀(i, j) ∈ {1, ..., ND}2 for each interface between different

materials. The treatment of this term at each interface between two (different) materials is
fully detailed in section 3.7.

The two above cases could be presented together but we think separating them can ease the description
of the different MC schemes. There are many ways to deal with the non-zero term of the second
above bullet. The one described in section 3.7 is different from the one of paper [54] and can be
considered original.

Remark 3.2. Note that under mild assumptions on X, Λs(x,v,v
′) = R−1(x,v)Σs(x,v,v

′)R(x,v)
may even be diagonal. Besides, the group scattering term related to Λs may have negative coeffi-
cients. Note also that for keff computations, Λs may change at each iteration, see section 4.6.

Remark 3.3. In the next sections, we assume that the cross-sections Λs,Λt are available. They
can, for example, be pre-processed (with an accurate integration with respect to dPX) in a pretreat-
ment code. Note that building physical data from pretreatment codes is common: in neutronics for
example, Galilee [55], NJOY [56], CALENDF [57] or PREPRO [58] pre-process evaluated data [59]
to make them usable in deterministic or MC resolution codes. From now on, we assume that the
pretreated cross-sections Λs,Λt together with matrices R,R−1 and v · ∇xR

−1 are available at the
beginning of the computations.
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3.2. The multigroup-like MC schemes allowing to to solve (17)

Equation (17) has now exactly the same structure as a classical multigroup transport equation
[16, 18, 33]. It can be solved applying the classical MC schemes, such as the semi-analog12 MC
scheme [33, 60, 49, 27, 28] or the non-analog one [33, 60, 50, 24, 25, 51, 52, 53, 29]. Readers familiar
with such resolution technics can easily skip the next sections. Still, we include the next paragraphs
despite the fact that this type of solvers are quite classical [16, 18, 17, 33] for three reasons. First,
for the sake of reproducibility of the result of the paper. Second, because of the singular structure
of the group scattering term Λs which can (legitimately) have negative coefficients and leads to
treatments at the collision (see (22) and algorithm 4) which may be considered original. Third,
because the special treatment at the interface between two different cells/materials induced by the
term v · ∇xR

−1RV needs additional explainations (even if the treatment implied by this term is
very similar to the one for Λs, see section 4.4).

All the next steps aim at applying the material of [33] and more precisely theorem 3.2.1 which
ensures the MC schemes we build are unbiased converging ones.

3.3. Rewriting system (17) as a scalar equation

The first step in order to build an unbiased converging MC scheme for system (17) is to rewrite it
as an equivalent scalar equation of unknown f(x, t,v, g). Quantity f has one additional dependence
with respect to the uncertainty related group g but is scalar. Of course, f also depends on V ,
unknown of (17). It is defined by

f(x, t,v, g) =

P∑
k=0

Vk(x, t,v)δk(g). (18)

The scalar equation satisfied by f is given by

∂tf(x, t,v, g) + v · ∇xf(x, t,v, g) = +
[
v · ∇xR

−1Rf
]

(x, t,v, g)
−vΛt(x,v, g)f(x, t,v, g)

+v

∫∫
Λs(x,v · v′, g · g′)f(x, t,v′, g′) dv′ dg′,

(19)

where13
[
v · ∇xR

−1Rf
]

(x, t,v, g), Λt(x,v, g) and Λs(x,v·v′, g·g′) are built fromR(x,v), R−1(x,v),
v · ∇xR

−1(x,v), Λt(x,v) and Λs(x,v · v′). Those new cross-sections are built such that the kth

component of (17) is recovered when formally applying operator

Lk(h) =

∫
hδk(g) dg,∀k ∈ {0, ..., P},

12Also known as implicit capture.
13Note that we use what may seem to be abusive notations here but we take care of expliciting the dependences

with respect to all variables. As a consequence, there are no ambiguities between, for example Λt(x,v, g) involved
in (19) and Λt(x,v) involved in (17).
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to every terms of equation (19). For example, introduce the notation
[
v · ∇xR

−1(x,v)R(x,v)
]
i,j

=

Ri,j(x,v), then we have

R [f ] (x, t,v, g) =
[
v · ∇xR

−1Rf
]

(x, t,v, g),

=

∫ P∑
i=0

Ri,k(x,v)δi,k(g′, g)f(x, t,v, g′) dg′.

Applying operator Lk to the above expression leads to

Lk
([
v · ∇xR

−1Rf
]

(x, t,v, g)
)

=

∫ P∑
i=0

Ri,k(x,v)δi(g
′)f(x, t,v, g′) dg′,

=

P∑
i=0

Ri,k(x,v)Vi(x, t,v),

=
[[
v · ∇xR

−1R
]

(x,v)V (x, t,v)
]
k
.

Introduce the notation Λt(x,v) = diag(λ0
t (x,v), ..., λPt (x,v)), then Λt(x,v, g) is defined by

Λt(x,v, g) =

P∑
k=0

λkt (x,v)δk(g). (20)

In a same manner, for the scattering counterpart, if we denote the general term of Λs(x,v · v′) as
λk,k

′

s (x,v · v′),∀(k, k′) ∈ {0, ..., P}2, we have

Λs(x,v · v′, g · g′) =

P∑
k′=0

λk,k
′

s (x,v · v′)δk,k′(g, g′). (21)

Now, in the following paragraphs, we define few notations related to Λs(x,v · v′, g · g′) which will
ease the description of the MC schemes. Those quantities basically aim at building conditionnal
probability distributions which will be used at each collision during the MC resolution. First, let
us decompose Λs(x,v · v′, g · g′) as

Λs(x,v · v′, g · g′) =

P∑
k′=0

λk,k
′

s (x,v)γk,k
′
(x,v)P k,k

′

λs
(x,v · v′)δk,k′(g, g′), (22)

where λk,k
′

s (x,v) = |
∫
λk,k

′

s (x,v · v′) dv′|. The term γk,k
′
(x,v) is introduced mainly because there

may exists14 some couples (k, k′) ∈ {0, ..., P}2 such that λk,k
′

s (x,v) < 0. This term is equal

to γk,k
′
(x,v) =

∫
λk,k

′
s (x,v·v′) dv′

|
∫
λk,k

′
s (x,v·v′) dv′|

, i.e. it corresponds to the sign of
∫
λk,k

′

s (x,v · v′) dv′,∀(k, k′) ∈

{0, ..., P}2. Such choice of decomposition is handy because we can then easily define P k,k
′

λs
(x,v·v′) =

Λk,k
′

s (x,v·v′)
λk,k

′
s (x,v)

, ∀(k, k′) ∈ {0, ..., P}2 such that P k,k
′

λs
(x,v·v′) > 0 and such that

∫
P k,k

′

λs
(x,v·v′) dv′ = 1

∀x ∈ D,v ∈ V, (k, k′) ∈ {0, ..., P}2. In other words, the quantities P k,k
′

λs
(x,v ·v′) dv′ are probability

14This is the case for example in the test-problem of section 4.5.
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measures with respect to v′, ∀x ∈ D,∀v ∈ V,∀(k, k′) ∈ {0, ..., P}2. Quantities (P k,k
′

λs
)(k,k′)∈{0,...,P}2

will be used to sample the velocity and angles of each MC particle conditionnally to changing of
uncertain group from k′ to k in a backward resolution or from k to k′ in a forward one.

In the next sections 3.4–3.5–3.6, we consider we are within a cell Di (cf. remark 3.1). This
means that in these sections, we can consider that the interface term

[
v · ∇xR

−1Rf
]

(x, t,v, g) = 0
without lack of generality. This will ease the next computations. The MC operations needed to
treat the interface case

[
v · ∇xR

−1Rf
]

(x, t,v, g) 6= 0 are described in section 3.7.

3.4. The integral form of equation (19) within a cell (i.e. for v · ∇xR
−1RV = 0, cf. remark 3.1)

In order to build an MC scheme for equation (19), we need to define consistent samplings. The
first step for this consists in rewriting (19) in an integral form. The computations may appear
tedious due to the fact that all dependences with respect to (x, t,v, g) must be recalled: it is im-
portant in order to ensure the consistency/unbiasedness of the MC resolution (see theorem 3.2.1 of
[33]). In order to rewrite (19) in integral form, we perform several successive changes of variable.
We detail every of them in the following sections. The described methodology leads to the adjoint
MC resolution of the equation (or backward Kolmogorov equation, see [61]). The direct counterpart
(forward Kolmogorov equation) can easily be deduced from the next analysis (see remark 3.5).

As explained before, the methodology resumes to a succession of changes of variable. The first
one consists in rewriting the transport equation (19) on a characteristic x + vt. Equation (19)
rewritten along a characteristic (x + vs, s,v, g) becomes

∂sf(x + vs, s,v, g) = −vΛt(x + vs,v, g)f(x + vs, s,v, g)

+

∫∫
vΛs(x + vs,v · v′, g · g′)f(x + vs, s,v′, g′) dv′ dg′.

(23)

Let us multiply each side of the equality by exp
[∫ s

0
vΛt(x + vα,v, g) dα

]
. We then get

∂s

[
f(x + vs, s,v, g)e

∫ s
0
vΛt(x+vα,v,g) dα

]
=

e
∫ s
0
vΛt(x+vα,v,g) dα

∫∫
vΛs(x + vs,v · v′, g · g′)f(x + vs, s,v′, g′) dv′ dg′.

(24)

Integrating (24) in the time interval [0, t] leads to

f(x + vt, t,v, g) = f0(x,v, g)e−
∫ t
0
vΛt(x+vα,v,g) dα

+

∫ t

0

e−
∫ t
s
vΛt(x+vα,v,g) dα

∫∫
vΛs(x + vs,v · v′, g · g′)f(x + vs, s,v′, g′) dv′ dg′ ds.

(25)

We have then

f(x, t,v, g) = f0(x− vt,v, g)e−
∫ t
0
vΛt(x−v(t−α),v,g) dα

+

∫ t

0

e−
∫ t
s
vΛt(x−v(t−α),v,g) dα

∫∫
vΛs(x− v(t− s),v · v′, g · g′)f(x− v(t− s), s,v′, g′) dv′ dg′ ds.

(26)

Equation (26) is an integral equation but still needs to be worked on: first, notice that

e−
∫ t
0
vΛt(x−v(t−α),v,g) dα = e−

∫ t
0
vΛt(x−vα,v,g) dα,

=

∫ ∞
t

vΛt(x− vs,v, g)e−
∫ s
0
vΛt(x−vα,v,g) dα ds.
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Then, the integral counterpart of (19) is given by

f(x, t,v, g) =

+

∫ ∞
t

f0(x− vt,v, g)vΛt(x− vs,v, g)e−
∫ s
0
vΛt(x−vα,v,g) dα ds

+

∫ t

0

e−
∫ t
s
vΛt(x−v(t−α),v,g) dα

∫∫
vΛs(x− v(t− s),v · v′, g · g′)f(x− v(t− s), s,v′, g′) dv′ dg′ ds.

(27)

Building an MC scheme now implies introducing a set of random variables together with their
probability measure in order to rewrite (27) as an expectation. The choice of the set of random
variables is not unique and consequently leads to different MC schemes having different properties.
In the following sections, we detail the construction of two MC schemes

– the semi-analog multigroup-like one (section 3.5),

– and the non-analog multigroup-like one (section 3.6).

3.5. The semi-analog multigroup (adjoint) MC scheme

The semi-analog MC scheme (also known as ’implicit capture’ in the literature [17, 16]) starts
from the integral form (27). Let us perform a change of variable (β = t − s and β is immediately
replaced by s) in the time integration in the scattering part. We obtain

f(x, t,v, g) =

+

∫ ∞
t

f0(x− vt,v, g)vΛt(x− vs,v, g)e−
∫ s
0
vΛt(x−vα,v,g) dα ds

+

∫ t

0

e−
∫ s
0
vΛt(x−vα,v,g) dα

∫∫
vΛs(x− vs,v · v′, g · g′)f(x− vs, t− s,v′, g′) dv′ dg′ ds.

(28)

It is then possible to factorize by

ft(x, s,v, g) ds = 1[0,∞[(s)vΛt(x− vs,v, g)e−
∫ s
0
vΛt(x−vα,v,g) dα ds. (29)

The above expression is a probability measure ∀(x, s,v, g) ∈ D× [0, T ]×R3 ×{0, ..., P}: indeed, it
is positive and sums up to 1 ∀(x, s,v, g) ∈ D× [0, T ]×R3 × {0, ..., P}. Using its expression in (28)
leads to

f(x, t,v, g) =

∫∫∫  +1[t,∞[(s) f0(x− vt,v, g) δv(v′)δg(g
′)

+1[0,t](s) f(x− vs, t− s,v′, g′) Λs(x− vs,v · v′, g · g′)
Λt(x− vs,v, g)

 ft(x, s,v, g) dsdv′ dg′. (30)

Let us now build the probability distributions related to the scattering part of the integral equation.
With the notations introduced in section 3.3, we can rewrite Λs as

Λs(x− vs,v · v′, g · g′) =

P∑
k′=0

λk,k
′

s (x− vs,v)γk,k
′
(x− vs,v)P k,k

′

λs
(x− vs,v · v′)δk,k′(g, g′).

Let us integrate the above relation with respect to both g′ and v′: we obtain∫∫
Λs(x− vs,v · v′, g · g′) dv′ dg′ =

P∑
k′=0

λg,k
′

s (x− vs,v)γg,k
′
(x− vs,v).
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∫∫
Λs(x− vs,v · v′, g · g′) dv′ dg′ =

[
P∑

k′=0

λg,k
′

s (x− vs,v)

]
︸ ︷︷ ︸

Λs(x−vs,v,g)

P∑
k′=0

λg,k
′

s (x− vs,v)

Λs(x− vs,v, g)
γg,k

′
(x− vs,v).

Let us introduce

Gs(x− vs,v, g, g′) =

P∑
k′=0

λg,k
′

s (x− vs,v)
P∑

k′=0

λg,k
′

s (x− vs,v)

δk′(g
′).

(31)

The quantity Gs(x−vs,v, g, g′) dg′ is positive and is summing up to 1. It is consequently a discrete
probability measure ∀(x, s,v, g) ∈ D × [0, T ]× R3 × {0, ..., P}. It defines the probability, incoming
from the uncertain group g′, to outcome, at a collision, in the uncertain group g. Furthermore,

recall that P k,k
′

λs
(x − vs,v · v′) dv′ is already positive and summing up to 1 ∀(x, s,v, k, k′) ∈

D × [0, T ] × R3 × {0, ..., P} × {0, ..., P}. Let us then introduce the following random variables
associated to the previously identified probability measures

τ with probability measure ft(x, t,v, g) ds,
g′ with probability measure Gs(x− vs,v, g, g′) dg′,

V′ with probability measure P g,g
′

λs
(x− vs,v · v′) dv′.

(32)

Then (30) can be rewritten in an adjoint recursive way as an expectation over the above set of
random variables (32)

f(x, t,v, g) = E

 +1[t,∞[(τ)f0(x− vt,v, g)δv(V′)δg(g
′)

+1[0,t](τ)
Λs(x− vτ,v, g)

Λt(x− vτ,v, g)
γg,g

′
(x− vτ,v)f(x− vτ, t− τ,V′,g′)

 . (33)

Let us now consider a ’particle’ solution (fp)p∈{1,...,NMC} of (33) having the particular form

fp(x, t,v, g) = wp(t)δx(xp(t))δv(vp(t))δg(gp(t)). (34)

The MC scheme intensively uses the linearity of equation (33): if (fp)p∈{1,...,NMC} are independent

solutions of (33) then
∑NMC
p=1 fp is also solution of (33). Now, remains to identify the operations

one has to apply in order to ensure each (fp)p∈{1,...,NMC} is effectively a MC solution of (33). To
do so, one needs to plug fp into (33) and solve a system of (compatible) equations with unknowns
wp(t),xp(t),vp(t), gp(t). Plugging (34) in (33) leads to

wp(t)δx(xp(t))δv(vp(t))δg(gp(t)) =
1[t,∞[(τ) wp(0) δx−vt(xp(0)) δv(vp(0)) δg(gp(0))

1[0,t](τ)
Λs
Λt

(x− vτ,v)γg,g
′
(x− vτ,v)wp(t− τ) δx−vτ (xp(t− τ)) δV′(vp(t− τ)) δg′(gp(t− τ)),

so that the weight, the position, the velocity and the uncertain group satisfy
xp(t) = 1[t,∞[(τ)(x0 + vt) +1[0,t](τ)(xt−τ + vτ),
gp(t) = 1[t,∞[(τ)g +1[0,t](τ)g′.

wp(t) = 1[t,∞[(τ)wp(0) +1[0,t](τ)
Λs
Λt

(xp(t− τ),vp(t− τ))γg,g
′
(xp(t− τ),vp(t− τ))wp(t− τ),

vp(t) = 1[t,∞[(τ)v +1[0,t](τ)V′.

(35)
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Practically, the above set of treatments means that in order to consistently solve system (19) in a
backward way, with a converging unbiased MC scheme (see theorem 3.2.1 of [33]), for any given
MC particle of fields x, t,v, g,

– a collisional time τ must be sampled according to ft given by (29).

– if τ < t then a collision occurs:

– the MC particle moves from its position to the position of the collision,

– its outer/inner group is sampled from the discrete probability measure Gs given by (31),

– its weight is multiplied by the ratio Λs
Λt

at the position of the collision. The weight may

change of sign depending on the value of γg,g
′
,

– and finally, the velocity of the particle is sampled from P g,g
′

λs
which is built from (22).

– if τ > t, a collision does not occur and the particle simply moves in a straight line from its
position to x0. The tracking of the particle ends with this event as it finishes the recursive
treatment.

The above system of equation in terms of weight, position, velocity and group leads to the recursive
numerical treatment/algorithm (remember we here detailed the adjoint formulation) summed up
in algorithm 1.

3.6. The non-analog multigroup (adjoint) MC scheme

In the previous section, we presented the semi-analog MC scheme for solving the linear Boltz-
mann equation (19). Such an MC scheme is mostly used in neutronic applications [49, 27, 28,
21, 22, 23]. In this section, we describe the non-analog scheme, intensively applied in photonic
ones [50, 24, 25, 51, 52, 53, 29]. As in the previous sections, we first rewrite the linear Boltzmann
equation (19) in an integral form. The non-analog one is obtained from slightly different changes
of variables which are detailed in the next section. We then present the set of random variables at
the basis of the MC scheme. The scheme is also refered to as ’capture along the flight path’ in the
literature.

First, note that in this section, we intensively rely on the assumption that we have access to
same quantities Λs,Λt, R,R

−1 as in the previous section 3.5 (see remark 3.3). The non-analog
scheme needs the additional introduction of

Λa(x,v, g) = Λt(x,v, g)− Λs(x,v, g).

Let us decompose Λt into Λa + Λs in (26). This allows keeping the term e−
∫ s
0
vΛa(x−v(t−α),v,g) dα

in factor of f0 and f . Now using the fact that

e−
∫ t
0
vΛs(x−v(t−α),v,g) dα = e−

∫ t
0
vΛs(x−vα,v,g) dα =

∫ ∞
t

vΛs(x− vs,v, g)e−
∫ s
0
vΛs(x−vα,v,g) dα ds,

equation (26) rewrites

f(x, t,v, g) =

+

∫ ∞
t

f0(x− vt,v, g)e−
∫ s
0
vΛa(x−vα,v,g) dαvΛs(x− vs,v, g)e−

∫ s
0
vΛs(x−vα,v,g) dα ds

+

∫ t

0

 vΛs(x− vs,v, g)e−
∫ s
0
vΛs(x−vα,v,g) dαe−

∫ s
0
vΛa(x−vα,v,g) dα

×
∫∫

Ps(x− vs,v · v′, g · g′)f(x− vs, t− s,v′, g′) dv′ dg′

 ds,

(36)
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where Ps(x− vs,v · v′, g · g′) is defined by

Ps(x− vs,v · v′, g · g′) =
Λs(x− vs,v · v′, g · g′)

Λs(x− vs,v, g)
.

It is then possible to factorize by

fs(x, s,v, g) ds = 1[0,∞[(s)vΛs(x− vs,v, g)e−
∫ s
0
vΛs(x−vα,v,g) dα ds. (37)

It is also a probability measure (with respect to Λs rather than Λt). We then rewrite the linear
Boltzmann equation in another integral form given by

f(x, t,v, g) =∫∫ [
1[t,∞[(s) f0(x− vt,v, g) e−

∫ s
0
vΛa(x−vα,v,g) dα δv(v′)δg(g

′)

1[0,t](s) f(x− vs, t− s,v′, g′) e−
∫ s
0
vΛa(x−vα,v,g) dα Ps(x− vs,v · v′, g · g′)

]
×fs(x, s,v, g) dv′ dsdg′.

(38)

Integral form (38) obtained here is different from the one (27) used for the semi-analog MC scheme.
It mainly differs due to the exponential term multiplying f0 and f . Let us now introduce the
random variables

τ with probability measure fs(x, t,v, g) ds,
g′ with probability measure Gs(x− vs,v, g, g′) dg′,

V′ with probability measure P g,g
′

λs
(x− vs,v · v′) dv′.

(39)

Equation (38) can then be rewritten in an adjoint recursive way as an expectation over the above
set of non-analog random variables (39)

f(x, t,v, g) = E
[

+1[t,∞[(τ) e−
∫ t
0
vΛa(x−vα,v,g) dα f0(x− vt,v, g)δv(v′)δg(g

′)

+1[0,t](τ) e−
∫ τ
0
vΛa(x−vα,v,g) dα γg,g

′
(x− vτ,v)f(x− vτ, t− τ,V′,g′)

]
. (40)

In the next section we deduce the MC treatments to apply in order to solve (40).
The steps for the construction of the non-analog MC scheme are similar to the previous ones.

Let us consider ’particle’ solutions (fp)p∈{1,...,NMC} of (40) having the particular form (34). Let us
plug them into (40) in order to identify the operations to perform to make sure each (fp)p∈{1,...,NMC}
is solution of (40). This leads to

wp(t)δx(xp(t))δv(vp(t))δg(gp(t)) =

+1[t,∞[(τ) wp(0) δx−vt(xp(0)) δv(vp(0)) e−
∫ t
0
vΛa(x−vα,v,g) dα δg(gp(0))

+1[0,t](τ) wp(t− τ) δx−vτ (xp(t− τ)) δV′(vp(t− τ)) e−
∫ τ
0
vΛa(x−vα,v,g) dα γg,g

′
(xp(t− τ),vp(t− τ))

,

so that the weight, the position and the velocity satisfy
xp(t) = 1[t,∞[(τ)(x0 + vt) +1[0,t](τ)(xt−τ + vτ),
gp(t) = 1[t,∞[(τ)g +1[0,t](τ)g′.

wp(t) = 1[t,∞[(τ)wp(0)e−
∫ t
0
vΛa(x−vα,v,g) dα +1[0,t](τ)e−

∫ τ
0
vΛa(x−vα,v,g) dαγg,g

′
(xp(t− τ),v)wp(t− τ),

vp(t) = 1[t,∞[(τ)v +1[0,t](τ)V′.

(41)

Practically, the above set of treatment means that in order to consistently solve system (19) in
backward way, with a converging non-analog MC scheme (see theorem 3.2.1 of [33]), for any given
MC particle of fields x, t,v, g,
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– a collisional time τ must be sampled according to fs given by (37).

– if τ < t then a collision occurs:

– the MC particle moves from its position to the position of the collision,

– its outer/inner15 group is sampled from the discrete probability measure Gs given by
(31),

– its weight is multiplied by e−
∫ τ
0
vΛa(x−vα,v,g) dα corresponding to a change of weight

along the flight path of the particle between times t and 0. If the cross-section remains
constant along the flight path of the particle, then e−

∫ τ
0
vΛa(x−vα,v,g) dα = e−vΛa(v,g)τ .

The weight may change of sign depending on the value of γg,g
′
.

– Finally, the velocity of the particle is sampled from P g,g
′

λs
which is built from (22).

– if τ > t, a collision does not occur and the particle simply moves in a straight line from its
position to x0. The tracking of the particle ends with this event as it finishes the recursive
treatment.

The above system of equation in terms of weight, position, velocity and group leads to the recursive
numerical treatment/algorithm (remember we here detailed the adjoint formulation) summed up
in algorithm 1.

3.7. The integral form of equation (19) at the interface (i.e. for v ·∇xR
−1RV 6= 0, cf. remark 3.1)

In the previous sections, we identified the samplings allowing to solve equation (19) within a
cell (with two different MC schemes). In this section, we focus on what must be done when an
MC particle crosses the interface between two cells with different total cross-sections Λt (in other
words, when the time to reach the interface of a cell τexit is smaller than the sampled collision time
τinter, see algorithm 1).

In this section, we focus on the treatment of term
[
v · ∇xR

−1R
]
V 6= 0 of system (17). For this,

we first notice that we have

∂s
[
ln(R−1(x + vs,v))

]
=
[
∂s(R

−1(x + vs,v))R(x + vs,v)
]
,

=
[
v · ∇x(R−1(x + vs,v))R(x + vs,v)

]
.

This means that on a characteristic and without considering the collision counterpart of (17) (which
has been treated in sections 3.5–3.6), we have

∂sV (x + vs, s,v) = ∂s
[
ln(R−1(x + vs,v))

]
V (x + vs, s,v). (42)

By equivalently rewriting vector V = (V0, ..., VP )t as matrix V = diag(V0, ..., VP ), the above ex-
pression can be recast as

∂s [ln(V (x + vs, s,v))] = ∂s
[
ln(R−1(x + vs,v))

]
. (43)

We are going to integrate the above expression with respect to time between [0, t]. But first, let us
introduce t∗ ∈ [0, t] such that R−1 is constant for s < t∗ and t∗ < s but is discontinuous, i.e. such
that

R−1
− (v) = R−1(x + vt−∗ ,v) 6= R−1(x + vt+∗ ,v) = R−1

+ (v),

15Depending on performing a forward or backward resolution.
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where t−∗ and t+∗ are the superior and inferior limits toward t∗. By integrating (43) between
[0, t−∗ ] ∪ [t−∗ , t

+
∗ ] ∪ [t+∗ , t], we get

V (x + vt, t,v) = V (x + vt+∗ , t
+
∗ v), ∀s ∈ [t+∗ , t],

V (x + vt+∗ , t
+
∗ v) = R−1

+ (v)R−(v)V (x + vt−∗ , t
−
∗ v), at t∗,

V (x + vt−∗ , t
−
∗ v) = V (x, 0,v), ∀s ∈ [0, t−∗ ].

Let us now focus on what happens at the interface, i.e. at t∗: if we rewrite R(v) = R−1
+ (v)R−(v)

of general term [R(v)]i,j = Ri,j(v) for conciseness, we have

f(x + vt+∗ , t
+
∗ ,v, g) =

∫ P∑
k=0

Rg,k(v)δk(g′)f(x + vt−∗ , t
−
∗ ,v, g

′) dg′.

Let us now do the same trick as for the scattering cross-section Λs in the previous sections, i.e. we
rewrite the above expression as

f(x + vt+∗ , t
+
∗ ,v, g) =

∫ P∑
k=0

|Rg,k|
P∑
k=0

sgn(Rg,k)
|Rg,k|∑P
l=0 |Rg,l|

δk(g′)f(x + vt−∗ , t
−
∗ ,v, g

′) dg′. (44)

By doing so, we just introduced a discrete probability measure assigning probability
(

|Rg,k(v)|∑P
m=0 |Rg,m(v)|

)
k∈{0,...,P}k∈{0,...,P}

to group k ∈ {0, ..., P}. Introduce random variable g′ sampled according to the discrete probability
measure

g′ ∼ B
(
{0, ..., P},

{
|Rg,0(v)|∑P
k=0 |Rg,k(v)| , ...,

|Rg,P (v)|∑P
k=0 |Rg,k(v)|

})
. (45)

Then integral equation (44) can be rewritten as an expection over realisations of random variable
g′ (backward formulation)

f(x + vt+∗ , t
+
∗ ,v, g) =

P∑
k=0

|Rg,k(v)| × E
[
sgn (Rg,g′(v)) f(x + vt−∗ , t

−
∗ ,v,g

′)
]
. (46)

Now, it only remains, just as in the previous section, to introduce an ’uncertain MC particle’
solution of equation (46) in order to identify the treatments one must perform each time a particle
crosses an interface with different uncertain cross-sections Λt on each side. The calculations are

similar to the ones for P k,k
′

λs
(x − vs,v · v′) dv′: a particle incoming with group g′ outcomes with

group g and sees its weight multiplied by
∑P
k=0 |Rg,k(v)|.

Remark 3.4. Note that when R is continuous through the cell interface, the above treatments
degenerate toward the identity operator. In practice, in order to lighten the computations, the
previous operations are triggered only when an interface between two different materials is crossed.

In the next section, we sum-up the previous treatments/operations one must perform on an
uncertain MC particle in order to consistently solve equation (19).
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3.8. The algorithmic sketch of the multigroup-like MC-gPC resolution schemes

In this section, we sum-up the results of the previous sections concerning the semi-analog and
non-analog MC schemes for the multigroup-like linear Boltzmann equation (19) in an algorithmic
sketch and comment it. We also compare the next algorithms for multigroup-like MC-gPC to
the ones implementing (the former version of) MC-gPC (which is recalled in Appendix C). The
algorithmic sketches are for a backward resolution.

Remark 3.5. The backward forms of the previous sections are convenient in order to identify the
probability measures used for the treatment of each MC particles. The probability measures for a
direct resolution can be built from Λs (see [61]) via the construction of

vΛS(x, t,v, g)PS(x, t,v · v′, g · g′) = v′Λs(x, t,v
′, g′)Ps(x, t,v · v′, g · g′),

and its use, instead of Λs, in the different samplings described in the next algorithms.
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Function backward multigroup-like MC-gPC tracking()
for k ∈ {0, ..., P} do

set vk(x, t,v) = 0
set v2

k(x, t,v) = 0
end
for p ∈ {1, ..., NMC} do

set sp = t #this will be the life time of particle p
set xp = x
set vp = v
set gp = g
set ip=find cell(xp)

set wp(t) =
1

NMC
while sp > 0 do

if xp /∈ D then
#here a general function for the application of arbitrary boundary conditions
apply boundary conditions(xp, sp,vp, gp)

end
τcensus = sp
τexit = compute time until cell exit(xp,vp, gp)
τinter = sample interaction time(ip,vp, gp)
τ = min(τinter, τexit, τcensus)
#set the life time of particle p to:
sp ←− sp − τ
#move the particle p
xp ←− xp + vpτ ,
K = compute weight modif(xp, vp, τ , τcensus, τexit, τinter, ip, gp)
wp ←− K × wp
if τ == τcensus then

#tally the contribution of particle p for the first and second moments
vgp (x, t,v)+ =wp × v0(xp,vp, gp)

v2
gp

(x, t,v)+ =wp × v2
0(xp,vp, gp)

end
if τ == τexit then

# find the new cell in which particle p will evolve
iold
p = ip

ip ←− find adjacent cell(iold
p ),

#Multiply the weight of the particle according to gp and ip, i
old
p

wp ← wp ×
∑P
k=0 R

ip,i
old
p

gp,k
(vp)

#Sample the group g′ of particle p from B given by (45)

g′ =sample uncertain group(R
ip,i

old
p , vp, gp)

#Multiply the weight of the particle according to gp and g′

wp ← wp × sgn
(
R
ip,

old
p

gp,g′
(vp)

)
gp ←− g′

end
if τ == τinter then

#Sample the group g′ of particle p from Gs(xp,vp, gp, g
′) dg′

g′ =sample uncertain group(Λ
ip
s , xp, vp, gp)

#Multiply the weight of the particle according to gp and g′

wp ← wp × γgp,g
′
(xp,vp)

#Sample the velocity V′ of particle p from P
gp,g

′

Λs
(xp,vp · v′) dv′

V′ =sample velocity(xp, vp, gp, g′)
gp ← g′

vp ← V′

end

end

end

# remember we have V = (v0, ..., vk)t

U = R−1V
# remember we have V 2 = (v2

0 , ..., v
2
k)t and σ2

MC = (σ2
0,MC, ..., σ

2
P,MC)t

1√
NMC

σ2
MC = R−1V 2R− U2

end

Algorithm 1: The semi-analog and non-analog multigroup-like MC-gPC schemes described
in term of algorithmic operations in order to compute (adjoint) V (x, t,v) and its vector of
asymptotical variances σ2

MC. 21



The tracking phase allowing to solve (19) is described in algorithm 1. It describes the ’tracking’
of an uncertain population of particles within the simulation domain D. In order to present both
implementations (of the semi-analog and non-analog multigroup-like MC schemes) in the same
general framework/code, we encapsulated some key parts of the resolution in several functions:
sample interaction time, compute weight modif, sample uncertain group, sample velocity16. The
four latter key functions are described in algorithms 2–3–4–5 but for the moment let us focus on
the common canvas (i.e. algorithm 1).

Function sample interaction time(int i, real v, int g)
set τ = REAL MAX
U =sample uniform law()
if MC scheme == semi− analog then

τ = − ln(U)

vΛit(v, g)
end
if MC scheme == non− analog then

τ = − ln(U)

vΛis(v, g)
end
return τ

end
Algorithm 2: The sampling of the interaction time function depending on the choice of the
MC scheme. The cross-sections are assumed constant in cell i.

Function sample velocity(real x, real v, int g, int g′)

V′ =sample from P g,g
′

λs
(x,v, g, g′)

return V′

end
Algorithm 3: Sampling of the velocity

In algorithm 1, we can see that each presented scheme relies on comparing three times, τinter
the interaction time, τexit the time at which an MC particle p would get out of the cell ip, τcensus
the time before ending the time step. For each scheme, the particle moves along vpτ where τ is
the minimum of the three above times. Its weight is modified or not (in compute weight modif)
depending on the scheme. Furthermore, depending on the minimum of τcensus, τexit, τinter, the par-
ticle sees its life time updated and finishes its treatment (census) or crosses the interface between
two cells (exit) or encounters an interaction (inter). In the two latter cases, its group and weight
may change. In the last one, its velocity may also change. All the samplings potentially depends
on the uncertain field gp carried out by the uncertain MC particle p. The first and second order
moments of the gPC coefficients are computed during the MC resolution. The instrumentation of
the tracking corresponds to the tallying phases (i.e. the + = operations in algorithm 1).

Let us now focus on the encapsulated functions. First, note that they all only depend on particle
fields (xp,vp, ip, gp, ...). The first function, used to sample the interaction time, only needs the cell
in which the particle evolves ip, particle energy vp and the uncertain one gp and is detailed in

16We do not detail the functions compute time until cell exit, find cell and find adjacent cell as they depend more
on the type of grid (cartesian, structured, unstructured) than on the MC resolution scheme.
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algorithm 2 (which is valid for a constant per cell cross-section). Depending on the chosen scheme,
the interaction time is sampled from the total cross-section Λt (semi-analog) or from the scattering
one Λs in the current cell ip. Both are obtained inversing the cumulative density function of an
exponential law.

The second encapsulated function corresponds to the modification of the weight of the particle,
detailed in algorithm 5. For this function, the event the particle encounters explicitly appears in
the treatment. The non-analog scheme is the only one having a treatment independent of the event.
The weight of a particle remains unchanged for the semi-analog schemes for the census and cell exit
events. It changes in the case of an interaction: for the semi-analog scheme, the weight is multiplied
by the probability of being scattered Λs

Λt
.

Function sample uncertain group(Matrix Λ, real x, real v, int g)
#Sample a uniform random variables in [0, 1]
U =sample uniform law()
#Sample from Gs given by (31) or R given by (45) depending on argument Λ :

g′ = min
h∈{0,...,G}


U <

h∑
g′=0

λg,g
′
(x,v)

P∑
g′=0

λg,g
′
(x,v)


return g′

end
Algorithm 4: The sampling of the uncertain group at the collision (Gs) or at the interface
between two materials (in this case, Gs must be replaced by R).

Function compute weight modif(real v, real τmin, real τcensus, real τexit, real τinter, int i,
int g)

set K = 1
if MC scheme == semi− analog then

if τmin == τexit or τmin == τcensus then
K = 1

end
if τmin == τinter then

K =
Λis(v, g)

Λit(v, g)
end

end
if MC scheme == non− analog then

K = e−v(Λit(v,g)−Λis(v,g))τmin

end
return K

end
Algorithm 5: The weight modification depending on the MC scheme

At the interaction time, each scheme needs the sampling of the outer velocity V′ and outer
uncertain group g′, summed up in algorithm 3 and 4. We do not spend time commenting algorithm
3, its details mainly depend on the format of the velocity scattering file/data and is classical
in MC codes. The uncertain group scattering algorithm 4 is also classical in the sense that it
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only corresponds to the sampling from a discrete probability measure. But remains singular as it
corresponds to a change of uncertain group. Besides, this change of uncertain group may occur at
the interface between two materials of different uncertain cross-sections. For both events (scattering
or cell exit), the weight of the uncertain MC particle may change sign via the multiplication by

γgp,g
′

or sgn(R
ip,i

old
p

gp,g′
) which, we recall are either equal to 1 or −1, see (22) and (46).

In algorithm 1, time steps are explicitly detailed but for the linear Boltzmann equation, time
steps may coincide with the times of interest (MC methods are inconditionally stable for the linear
Boltzmann equation). In other words, if one is only interested in time T , it is possible choosing
∆t = T . This is not the case in [8, 9] in which the coupling with additional equations induces
restrictions on the time step. Note that the above algorithm description still applies for the MC
resolution of the linear Boltzmann equation coupled to other equations but may need additional
instrumentations (track length estimator for example).

The algorithmic sketches for the multigroup-like MC-gPC solvers can now be compared to the
ones of the classical MC-gPC ones (see [1, 10] for example). These are reminded in Appendix C.
First, there are similarities between the multigroup-like MC-gPC (algorithms 1–2–3–4–5) and the
MC-gPC ones (algorithms 6–7–8–9):

– for each MC-gPC versions, some arrays of size P + 1 must be initialised and used to store the
contributions of the uncertain MC particles. This is mainly because both versions of MC-gPC
solve system (11).

– Besides, each time a call to the cross-sections is made, an additional field relative to the
uncertain dimension is needed. For MC-gPC , it corresponds to Xp, for the multigroup-like
coounterpart, it corresponds to gp.

– Furthermore, except from the fact that the calls depend on σs, σt for MC-gPC and on Λs,Λt for
its multigroup counterpart, the operations are relatively similar (see the exponential samplings
of algorithms 2 and 7 for example, or the computations in algorithms 5 and 9).

But there are also important differences (which are all highlighted in cyan in algorithm 1):

– The new multigroup-like MC-gPC solves the system of unknown V = (v0, ..., vP )t whereas
MC-gPC solves the system of unknown U = (u0, ..., uP )t. The new MC-gPC solver conse-
quently needs a matrix multiplication U = R−1V at the end of the time step [0, t] in order
to come back to unknown U .

– The new multigroup-like MC-gPC solver needs one additional sampling: the one for the
change of uncertain group of algorithm 4 (when the particle encounters an interaction with
matter or crosses an interface between two cells of different uncertain cross-sections).

– The weight may need an additional correction in case γgp,g
′

or sgn(R
ip,i

old
p

g,g′ ) is negative.

– In the new MC-gPC version, each uncertain MC particle p needs to keep its uncertain group
gp as a field whereas MC-gPC needs a vector Xp of sample of the uncertain parameters. The
new version allows a gain in terms of memory consumption per MC particle, especially in
high uncertain dimensions.
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– In the tallying phase (see the lines with the + = operation), the term φk explicitly appears
in the score of each uncertain MC particle for the MC-gPC algorithm 7. This term has been
identified in section 1 as the one responsible for the excess of variance of MC-gPC : it does
not appear for the multigroup-like one (see algorithm 2).

– The tallying phase does not anymore depend on a for loop: the uncertain MC particle only
contributes to its own final group gp. This considerably decreases the cost of this phase,
especially in high uncertain dimensions (i.e. for 1� P ).

The two last points are the ones which make the multigroup-like MC-gPC solver more efficient than
MC-gPC. In the next section, we consider several benchmarks and verify the new solver ensures
gains in terms of asymptotical numerical variance/error and of run-times.

4. Numerical results

In this section, we revisit several test-cases of papers [10, 1, 9] with the multigroup-like MC-gPC
solvers described in the previous sections. In particular, we begin by some simple problems (sections
4.1–4.2) from [10] for which the excess of variance of the MC scheme of MC-gPC presented in [1] has
been put forward. We verify that the new multigroup-like MC-gPC solver of section 3 does have a
smaller asymptotically numerical variance (cf. the σk,MC term in expression (6)) than its previous
versions and even compare it to some non-intrusive strategies. We also introduce new test-cases
(see sections 4.3 and 4.4), specifically designed to easily verify the group scattering implementation
(see algorithm 4) of the new solver and highlight the importance of the material of section 3.7. We
then revisit (section 4.5) a test-problem from [1] for which MC-gPC already ensured gains. The
new MC-gPC solver is even more efficient. We finally consider an eigenvalue/eigenvector prob-
lem (section 4.6) from [9]. This latter test-problem allows verifying the new MC-gPC solver can
still efficiently handle keff computations (i.e. nonlinear/time dependences within the cross-sections).

Note that in the following test-cases, independent uniform random variables X are considered
for the modeling of the input uncertain parameters (without loss of generality). The gPC framework
implies using the orthonormal Legendre polynomials for the basis (φk(X))k∈N in the next test-cases.

4.1. The collisional regime

In this section, we revisit one test-case from [10] on which the excess of variance of MC-gPC
(with respect to ni-gPC) has been put forward. The configuration is homogeneous, monokinetic,
the uncertainty affects the fission cross-section σf . The details of the test-problem are given in
Appendix B. This regime corresponds to the case of an infinite medium with constant cross-
sections with respect to time, space and energy. With these assumptions, the transport equation
(1) resumes to ∀k ∈ {0, ..., P}

∂t

∫∫
u(t, ω,X)φk(X) dω dPX = −v

∫
σt(X)

∫
u(t, ω,X) dωφk(X) dPX

+v

∫
σs(X)

∫
Ps(ω

′, ω,X)u(t, ω′,X) dω′φk(X) dPX.
(47)
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From the definition of Ps ensuring17 ∀ω ∈ S2,∀X ∈ Ω,
∫
Ps(ω

′, ω,X) dω′ = 1, it even simplifies to
the classical ODE

∂tU(t) + vΣtU(t) = vΣsU(t), (48)

where U(t) = (U0(t), ..., UP (t))T with Uk(t) =
∫
u(t, ω,X)φk(X) dω dPX,∀k ∈ {0, ..., P} and Σt,Σs

defined as in section 3. Now, if we apply the material of section 3 to the above equation and
introduce the diagonal matrix Λt such that Λt = R−1ΣtR and Λs such that Λs = R−1ΣsR, we get

∂tR
−1U(t) + vΛtR

−1U(t) = vΛsR
−1U(t).

The equation satisfied by V (t) = R−1U(t) is given by

∂tV (t) = −vΛtV (t) + vΛsV (t). (49)

Now, assume that only the fission cross-section σf is uncertain: in neutronics for example, this
means that σt(X) = σa + σs + σf (X) and that σs(X) = σs + νfσf (X) where νf is the multiplicity
of the fission reaction. In this case, both Λt and Λs can be diagonalised in the same basis. We can

t→ Vk(t) t→ Uk(t)
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Figure 2: Time evolutions of t → Vk(t) (top-left), t → Uk(t) (top-right), t → V[V ](t) given by (51) (bottom-left)
and t→ V[U ](t) given by (52) (bottom-right) obtained with reference solutions and with the new MC-gPC strategy
described in section 3.

17It only corresponds to a pretreatment of the cross-sections.
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consequently write Λα = diag(λ0
α, ..., λ

P
α ),∀α ∈ {s, t}. The solution V = (V0, ..., VP )t of (49) is then

given by

Vk(t) = V 0
k e
−v(λkt−λ

k
s )t,∀k ∈ {0, ..., P}, (50)

together with V0 = (V 0
0 , ..., V

0
P )t = R−1U0. Figure 2 (top-left) compares the analytical expression

of t → Vk(t), k ∈ {0, ..., P = 3}, see (50), to the one computed with a semi-analog MC scheme
solving (17). The new MC-gPC solver solves the equation of unknown V and builds the solution
U from V : the latter is given by U(t) = RV (t). Figure 2 (top-right) compares the time evolutions
of the gPC coefficients of U obtained with the new MC-gPC solver to the analytical expression of
U(t) obtained from (50). The results are in perfect agreement. Now, the material of paper [10]
can be applied to the resolution of (49) in order to characterise the asymptotical variance of the
semi-analog MC scheme for solving the equation of unknown V . It is given by (see [10] for more
details)

V[V sa
k ](t) = (V 0

k )2

(
e
v

(λks )2−(λkt )2

λkt

t − e2v(λks−λ
k
t )t

)
,∀k ∈ {0, ..., P}. (51)

The asymptotical numerical variance V[U sa] on the vector of gPC coefficients U = (U0, ..., UP )T

can be deduced from the one V[V sa] on the vector of gPC coefficients of V (whose components are
given by (51)) using the classical probability result [62]

V[U sa](t) = V[RV sa](t) = RV[V sa](t)RT . (52)

Figure 2 (bottom-left) compares the results obtained with expression (51) and the variance com-
puted by instrumenting the semi-analog MC solver on V (see the line about σ2

MC in algorithm 1).
Once again, the curves are in agreement. Finally, figure 2 (bottom-right) compares the analytical
asymptotical variance on U to the one computed by instrumenting the MC-gPC resolution (i.e.
with an estimator, see the second + = term in algorithm 1). Once again, the curves are in agree-
ment. With the results of figure 2, we consider the new semi-analog MC-gPC solver is verified (as
in V&V for Verification & Validation, see [63]). This means we can now compare the asymptotical
variances of the new MC-gPC solver with the one of MC-gPC and ni-gPC. But before, note that
we can also solve the problem with a non-analog MC scheme: in this configuration, the numer-
ical noise on V is zero (see [10]), V[V na](t) = 0, leading to a zero numerical noise also on U as
V[Una](t) = RV[V na]RT = 0. We do not display the verification plots for the non-analog solver
but ensure that we recover a zero variance on this problem (as soon as there is one uncertain MC
particle per group).

Now that our solvers are verified, let us focus on their different asymptotical variances with
respect to time for the configuration of this section. Figure 3 compares the asymptotical variances
for several resolution strategies

– semi-analog MC-gPC on U (as in [10]),

– non-analog MC-gPC on U (as in [10]),

– semi-analog ni-gPC (as in [10]),

– non-analog ni-gPC (as in [10]),
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Figure 3: Time evolutions of the logarithm of t → V[Uk](t) for k ∈ {0, 1, 2, 3} for semi-analog MC-gPC on U , non-
analog MC-gPC on U , semi-analog ni-gPC, non-analog ni-gPC, semi-analog MC-gPC on V , non-analog MC-gPC on
V .

– semi-analog multigroup-like MC-gPC (on V , as in section 3),

– non-analog multigroup-like MC-gPC (on V , as in section 3),

on the gPC coefficients (Uk)k∈{0,...,P=3}. With figure 3, we can see that:

– the MC-gPC strategies solving directly the equations on U are the noisiest ones (as already
seen in [10]). In particular, we can see that at time t = 0 for which the problem is deterministic,
the variance on the gPC coefficients is non zero as soon as k > 0. This is typically due to the
φ2
k term, in red in expression (10) and in algorithm 6, appearing ∀k ∈ {1, ..., P}.

– Having a semi-analog or a non-analog MC-gPC solver on U does not lead to significant im-
provements (as already seen in [10]), the curves are almost overimposed with this logarithmic
scale.

– The semi-analog ni-gPC solver only shows slightly better results than MC-gPC on this prob-
lem.

– The non-analog ni-gPC has the best performance (in terms of asymptotical variance but not
in terms of run-times, see [10]) for this problem with a zero asymptotical error.

– The new MC-gPC strategies (i.e on V ) are much less noisy than the classical MC-gPC ones.
In particular, the error is zero at time t = 0 with the semi and non-analog multigroup-like
MC schemes solving (17). Note that φk is not involved in the estimators (see the + = terms
in algorithm 1).
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– The multigroup-like non-analog MC-gPC on V is much less noisy than the semi-analog MC-
gPC one on V .

– The semi-analog multigroup-like MC-gPC on V is ×102 to ×105 much less noisy than the
MC-gPC solvers and the semi-analog ni-gPC solver.

– The non-analog MC-gPC on V have the same (optimal) performances as the non-analog ni-
gPC solver, with a zero asymptotical variance on this homogeneous configuration. On this
problem, the non-analog MC-gPC solver on V is also 5 times faster than the ni-gPC one.

In this collisional regime, the new MC-gPC solvers, based on the resolution of the multigroup
equation (17) of unknown V considerably improve the numerical noise. The solvers are now better
in terms of noise than the less noisy strategies together with relying on only one run of an MC
code. In particular, as can be seen on the pictures of figure 3, the new MC-gPC solvers do not
anymore display an excess of variance for early times (i.e. in the deterministic case): the new
MC-gPC solvers need as many (non-analog) or even less (semi-analog) MC particles as the ni-gPC
resolutions. In other words, drawback ∗3 emphasized in section 2 and figure 1 has been corrected
(at least in this collisional regime). More detailed performance comparisons will be made in the
next sections. In the next paragraph, we focus once more on a particular regime (free-flight).

4.2. The free-flight regime

In this section, we consider the free flight regime. It corresponds to the particular case where
σt = σs = 0. In this regime, the non-analog and the semi-analog MC schemes are equivalent. In
the uncertain free flight regime, (1) degenerates toward ∂tu(x, t,v,X) + v∂xu(x, t,v,X) = 0,

u(x, 0,v,X) = u0(x,v,X),
u(x, t,v,X) = ub(t,v,X),x ∈ ∂D, t ∈ [0, T ], v · ns < 0, X ∼ dPX.

(53)

In this case, the solution at time t is made of a contribution of the initial condition together with
the contribution of the boundary one [16, 17, 19]. In order to ease the computation, let us consider
an infinite medium so that the solution of (53) resumes to

u(x, t,v,X) = u0(x− vt,v,X),∀x ∈ D,v ∈ V, t ∈ [0, T ],X ∼ dPX. (54)

Let us compute the gPC coefficients of the above solution with different MC strategies, for initial
condition u0(x,X) = U0(X)1[−0.1,0.1](x) with U0(X) = U0 + Û0X with U0 = 1, Û0 = 1

2 and
X ∼ U([−1, 1]).

Figure 4 presents the results in terms of spatial profiles obtained by different resolution strategies
in the aforementioned configuration. Figure 4 (top-left) presents the spatial profiles x→ Uk(x, t∗)
for final time t∗ = 1: every numerical strategies (MC-gPC, ni-gPC and the new MC-gPC one) allow
capturing the gPC coefficients solution of the problem. Figure 4 (top-right) displays two different
results obtained by two different ways to estimate the numerical noise on the gPC coefficients with
the new MC-gPC solver:

– first, thanks to the MC estimator instrumenting every MC resolution (see the + = operations
in algorithms 1–6),

– Second, thanks to an estimation of the variance computed with Nseed = 2000 runs of NMC =
100 particles, each initialised with a different seed.
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Figure 4: Spatial profiles x→ σ2
k,α(t) for k ∈ {0, 1, 2, 3} for α ∈ { semi-analog MC-gPC on U , non-analog MC-gPC

on U , semi-analog ni-gPC , non-analog ni-gPC, semi-analog MC-gPC on V , non-analog MC-gPC on V }.

The good agreement between the two estimations tends to verify our implementation.
Figure 4 (bottom-left) compares the numerical noise obtained with MC-gPC and the new

multigroup-like MC-gPC solver: even in the free-flight regime, the new MC-gPC solver allows
a gain with respect to MC-gPC on the numerical noise. The new MC-gPC is about 5 times less
noisy than MC-gPC. Note that the two variants of MC-gPC have one common point: the numer-
ical noise is the same on every gPC coefficient for this problem. Finally, figure 4 (bottom-right)
compares the numerical noise of ni-gPC to the one of the new MC-gPC solver: the new MC-gPC
solver is 5 times and 2 times less noisy than ni-gPC on, respectively, the two first gPC coefficients.
But it is 4 times noisier on the third gPC coefficient, in this particular regime.

With the two previous sections, we focused on verifying that the new MC-gPC solvers ensure
the expected gain in terms of asymptotical variances/errors. In the next sections, we show that
additionally to being less noisy, the new MC-gPC solvers are less sensitive to the curse of dimen-
sionality: the new MC-gPC are consequently even less computationally intensive than MC-gPC,
which already presented important gains with respect to ni-gPC on many applications [1, 9, 8].

4.3. Uncertain scattering opacity: a verification (V&V) test case for (31)

The test-cases of the two previous sections allowed verifying our new MC-gPC solvers ensure a
gain in terms of variance reduction. The test-case of this section has a more practical aim: we are
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aware that any new implementation needs to be verified (as in verification & validation, see [63]).
This test-case considerably eases the verification of the implementation of the group scattering
term (31) of algorithm 4. Let us explain how: assume, as in section 4.1, that we are in an infinite
medium of deterministic total opacity σt and unknown scattering one σs(X). Furthermore, random
variable X = X (1D) is uniformly distributed in [−1, 1] so that our problem resumes to solving the
uncertain ODE: {

∂tu(t,X) + vσtu(t,X) = vσs(X)u(t,X),
U(t = 0, X) = U0 = 1.

(55)

In this case, we have Σt = Λt = σtI where I is the identity matrix of size P + 1 ∀P ∈ N. We
consequently also have R = R−1 = I, independently of the order of the polynomial truncation. As
a consequence, for this test-case,

Λs = R−1ΣsR = Σs =
[
Σi,js

]
=

[∫
σs(X)φi(X)φj(X) dPX

]
.

We also have V = R−1U = U . For this test-case, the P−truncated gPC reduced model of (55)

t→ Uk(t) ∀k ∈ {0, ..., P = 3}
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Figure 5: Time evolutions of the gPC coefficients t→ uk(t), k ∈ {0, ..., P = 3} for problem (55).

resumes to  ∂tuk(t) + vσtuk(t) = v

P∑
i=0

Σi,ks uk(t),∀k ∈ {0, ..., P},

uk(t = 0) = δ0,k,∀k ∈ {0, ..., P}.
(56)

The above system can easily be solved numerically with a non-intrusive application or even with a
simple explicit Euler time discretisation scheme.
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On another hand, this same equation (56) can also be solved applying the material described in
the previous section, relative to term (31). Indeed, it can easily be rewritten ∂tuk(t) + vσtuk(t) = vλks

P∑
i=0

|Σi,ks |
λks

sgn(Σi,ks )uk(t),∀k ∈ {0, ..., P}

uk(t = 0) = δ0,k,∀k ∈ {0, ..., P},
(57)

where λks =
∑P
i=0 |Σi,ks | and where sgn(x) = x

|x| ∀x ∈ R \ {0}. It allows building the probability

density measure of equation (31) whose sampling is described in algorithm 4. Indeed, as can be
seen in the above expression, at time t = 0, u0(t = 0) 6= 0 and uk(t = 0) = 0,∀k ∈ {1, ..., P}. This
means that for t > 0, when we have uk(t) 6= 0 for k > 0, this is due to a change of group/gPC
coefficient from a scattering from group 0 to group k > 0.

Figure 5 presents the time evolutions of the gPC coefficients t → uk(t), k ∈ {0, ..., P = 3} for
σt = 1, σs = σs + σ̂sX with σs = 0.8 and σ̂s = 0.21. The reference has been computed using
ni-gPC with 10 Gauss-Legendre points. The computations have NMC = 104 MC particles. Once
again, both solvers present an excellent agreement.

4.4. Two materials with both uncertain total cross-section (the case where v · ∇xR
−1RV 6= 0)

In this section, we present a test-case with two layers of two different uncertain materials. For
this problem, we have v · ∇xR

−1RV 6= 0 at the interface between the two materials. This test-case
allows testing and verifying the resolution strategy of section 3.7 (we insist on the fact that without
the material of section 3.7, the results would not be in agreement with the references).

Let us assume the particles are monokinetic, i.e. σα(x,v,X) = σα(x,X), ∀α ∈ {s, t},∀X ∼
dPX,∀x ∈ D = [0, 1], with v = 1, and that the scattering cross-sections are deterministic and
isotropic for both materials, i.e. Ps(x,v,X) dv = 1S2(ω) dω ∀x ∈ D, ∀v = vω = ω ∈ V = S2. The
uncertain parameters X = (X0, X1) control the fluctuations of the total cross-sections and we have

σ0
t (X0) = σ0

t + σ̂0
tX0 = 1 + 0.4X0, with X0 ∼ U([−1, 1]),

σ1
t (X1) = σ1

t + σ̂1
tX1 = 1 + 0.4X1, with X1 ∼ U([−1, 1]),

σ0
s = σ0

s = 1.3,
σ1
s = σ1

s = 0.9.

(58)

The geometry consists in domain x ∈ [0, 1] with specular boundary condition at x = 0 and vaccum
one at x = 1. Material 0 occupies the first half of the domain, i.e. x ∈ [0, 1

2 ] while material 1
occupies the remaining half x ∈ [ 1

2 , 1]. In other words, we have

σα(x,X) = σ0
α(X0)1[0, 12 ](x) + σ1

α(X1)1[ 1
2 ,1](x),∀α ∈ {s, t}.

Both materials have a relatively high probability of being multiplicative as we have

P(σ0
s > σ0

t (X0)) = 0.875 and P(σ1
s > σ1

t (X1)) = 0.375.

The initial conditions is given by u(x, t = 0, ω,X) = u0(x) = 1: it is deterministic, isotropic
and spatially homogeneous. Figure 6 compares the results obtained with (old) MC-gPC (of [1])
and the new multigroup-like MC-gPC of this paper. The comparisons are made on the spatial
profiles of the mean x→ E[U ](x, t∗) (figure 6-left) and variance x→ E[U ](x, t∗) (figure 6-right) of
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Figure 6: Left: spatial profiles of the mean x → E[U ](x, t∗) for t∗ = 1 obtained from ni-gPC , (old) MC-gPC and
from the new multigroup-like MC-gPC. Right: spatial profiles of the variance x → V[U ](x, t∗) for t∗ = 1 obtained
from ni-gPC , (old) MC-gPC and from the new multigroup-like MC-gPC.

U(x, t∗, X) =
∫
u(x, t∗, ω,X) dω for t∗ = 1. The computations have been carried out with p1D = 2

in each directions so that for every versions of gPC, i.e. we have P = (2 + 1)2 = 9.
On figure 6-left, for the mean, we can see that the configuration, in the vicinity of x = 0 is

globally mutiplicative: the mean density of particles is higher than its initial value of 1. On the
second half of the domain x ∈ [ 1

2 , 1], the boundary condition tend to let particles get out of the
domain. The variance (figure 6-right) is higher in the first half of the domain: this is closely related
to the higher probability of being multiplicative within this part of the domain. The uncertainty
considerably drops for x ∼ 1.

Now, we can see on figure 6 that every gPC solvers are in agreement on both the mean and
variance, which tends to verify the new solver. For this example, it is easy verifying that, for
example for p1D = 1 in each direction, Σt(x), x ∈ [0, 1

2 ] and Σt(x), x ∈ [ 1
2 , 1] are not diagonalisable

in the same basis. This also means that in order to obtain the results of figure 6, we had to consider
discontinuous R−1 across the interface between the two material at x = 1

2 . In other words, for
this test-case, the material of section 3.7 is activated each time an uncertain MC particle pass at
x = 1

2 . We insist on the fact that without the material of section 3.7, the results would not be in
agreement.

4.5. Uncertainty propagation and sensitivity analysis on a 3D uncertain problem

This example is a 3-dimensional stochastic (i.e. Q = 3) test-problem. The set-up (in terms of
initial and boundary conditions) is the same as in [1] and is recalled below:

– monokinetic problem with v = 1, x ∈ D = [0, 1], subdivided into Nx = 20 cells ∪Nxi=1Di = D.

– Specular boundary condition on left (at x = 0) and vacuum one on the right hand side (at
x = 1).

– Initially, the density of particles is homogeneous and deterministic, equal to 1, i.e. u(x, t =
0, ω,X) = u0(x, ω,X) = 1 ∀x ∈ D,∀ω ∈ S2.

– The medium is homogeneous and considered uncertain. It depends on three parameters
X = (X1, X2, X3) affecting the microscopic total and scattering cross-sections and the material
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density as

σmt (x, t,X) = σmt (X1) = σmt + σ̂mt X1, ∀x ∈ D, t ∈ R+,
σms (x, t, ω, ω′,X) = σms (X2) = σms + σ̂ms X2, ∀x ∈ D, t ∈ R+,∀(ω, ω′) ∈ S2,
ηm(x, t,X) = ηm(X3) = ηm + η̂mX3, ∀x ∈ D, t ∈ R+,

(59)

in which X = (X1, X2, X3) are independent uniformly distributed random variables on [−1, 1],
i.e. ∀i ∈ {1, 2, 3}, Xi ∼ U([−1, 1]). The macroscopic cross-sections are defined, as in neutron-

ics [18], by σα =
∑M
m=1 σ

m
α η

m for M material. In this test-case, M = 1.

– For the next computations, the mean quantities are set to σmt = 1.0, σms = 0.9, ηm = 1.0
and the ones controling the variability to σ̂mt = 0.4, σ̂ms = 0.4, η̂m = 0.4.

– We are interested in the mean E[U ], variance V[U ] profiles of U(x, t,X) =
∫
u(x, t, ω,X) dω

at time t = 1.0.
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Figure 7: Comparison between MC-gPC and the new multigroup-like MC-gPC . Left: mean of U(x, t = 1,X) with
respect to x. Right: variance of U(x, t = 1,X) with respect to x.

Figure 7 compares results obtained with MC-gPC and the new multigroup-like MC-gPC scheme
for the aforementioned statistical outputs of interest. Before going through resolution strategy
comparisons, let us present briefly the results: figure 7 (top) shows the mean of U(x, t = 1,X).
Particles are globally absorbed in the vicinity of x = 0: indeed, we initially have U(x, t = 0,X) =
1,∀x ∈ D and on figure 7 (top), we have E[U ](x ∼ 0, t = 1) < E[U ](x ∼ 0, t = 0) = 1. This
averaged particle absorption occurs despite the probable multiplicative effect (σs(X) > σt(X) for
some realisations of X) of the medium. Particles are globally lost in the vicinity of x = 1, as
E[U ](x ∼ 1, t = 1) < E[U ](x ∼ 1, t = 0) = 1, mainly due to the vacuum aboundary condition.
Figure 7 (bottom-left) shows the variance of U . The uncertainty is more important in the vicinity
of x = 0 and drops of a decade between x = 0 and x = 1.

Remark 4.1 (Few remarks).

– Note that for this test-case, the group scattering matrix Λs is such that not all coefficients of
the scattering matrix are positive. This means that the group scattering strategy presented in
algorithm 4 is in a sense successfully verified with this test problem.
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– Note also that the test-case is not exactly in the same conditions as in [1]: we here use less
MC particles (NMC = 107 instead of NMC = 32 × 107 and Nx = 20). These numerical
parameters are chosen on purpose in order to highlight the gain in terms of MC noise for the
new multigroup-like MC-gPC solver.

– Note also that the computations of this section have not been performed on the same computers
as in [1], hence the small differences in run-times.

On figure 7, the two resolutions are in agreement, even if they are not exactly of equivalent
accuracies, whatever the statistical observable of interest (mean, variance). Each solution has been
obtained with NMC = 107 particles and P = (p1D + 1)Q = (2 + 1)3 = 27 coefficients. The new
multigroup-like MC-gPC scheme solves the same set of equations as MC-gPC : we obtain accurate
comparable solutions for low (p1D = 2, see [1] for more details on the fact the problem is already
converged for such low polynomial order per direction) polynomial orders in every direction. The
new MC-gPC scheme gives equivalent results with one run and (P + 1)Q = (2 + 1)3 = 27 gPC
coefficients: it consequently also takes advantage of the fast convergence rate of gPC. The new
solver is less noisy than the first MC-gPC version, this is especially observable on the variance
(figure 7 right).

Second, let us discuss the average CPU times and costs of the two methods for (almost) equiv-
alent accuracies:

– MC-gPC : cost = 1 × CPU time of 1 run = 1× 6 min 29s.
– new MC-gPC : cost = 1 × CPU time of 1 run = 1× 1 min 25s.
– ni-gPC : cost = 64 × CPU time of 1 run = 64× 0 min 54s = 58 min 06s.

Note that for the last line, for ni-gPC , the CPU time is averaged over the 64 non-intrusive runs.
The above CPU times present a signicative differences deserving a careful study:

– first, one (old) MC-gPC run, for this particular set-up, costs about ×7 the average CPU time
of the ni-gPC ones. This increase has been thoroughly studied in the previous MC-gPC papers
[1, 8, 9] and has been explained by the number of tallies18 one MC particle must perform.
With MC-gPC, every MC particle must contribute to P + 1 cell-arrays. The main increase
in computational time comes from the tallying and not the parallel reduction. This can take
a considerable amount of time, especially if those tallies must be performed frequently (see
[9, 8]).

– Now, the new multigroup-like MC-gPC of this paper does not need every MC particle to
contribute to the P cell-arrays when tallying their respective scores. With the new solver,
each MC particle only contributes to the cell-array of its group. As a consequence, the cost
of the new multigroup-like MC-gPC solver is only ×1.5 with respect to one averaged ni-gPC
run (for this test-case).

– Still, if we compare the total cost of an ni-gPC application, MC-gPC ensures a sequential
gain of ×10 for this problem and the new multigroup-like MC-gPC solver ensures a sequential
gain of ×40 (and a gain of ×4.5 with respect to MC-gPC ).

– We finally recall that both MC-gPC solvers can benefit from the same parallel accelerations
as classical MC codes (mainly domain replication, see [1, 35, 64, 65, 66, 37]).

18What we call a tally corresponds to the + = operations in algorithms 1–6.
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With the three previous sections 4.1–4.2–4.3–4.4–4.5, we considered uncertain linear problems.
With the next section, we want to emphasize the fact that the coupling of the new MC-gPC solver
with nonlinear physics is still possible. We also insist on the differences in the implementation
between MC-gPC and its new variant in this nonlinear context.

4.6. Eigenvalue/eigenvector problems: keff computations in neutronics

In this section, we revisit a test-case from [9] corresponding to an eigenvalue/eigenvector com-
putation. Such kind of computation is of importance in epidemiology [32] or reactor physics [18]
for a non-exhaustive list of applications. In such a problem, the iterative process involving the
transport equation (1) and needed in order to estimate the eigenvalue/eigenvector leads to having
a nonlinear dependence in the cross-section: for such problem, matrix Λs must be rebuilt in each
material at each iteration.

4.6.1. Reminder of the material of [9] about MC-gPC and eigenproblems

The uncertain eigenvalue/eigenvector problem can be formalised as follows: find keff(X) and
u(x, t,v,X) such that

v · ∂xu(x,v,X) + vσt(x,v,X)u(x,v,X) = vσs(x,v,X)

∫
P (x,v · v′,X)u(x,v′,X) dv′,

+
vνf (x,v,X)σf (x,v,X)

keff(X)

∫
Pf (x,v · v′,X)u(x,v′,X) dv′,

(60)

together with boundary conditions

u(x,v,X) = ub(v,X), x ∈ ∂D(X), ω · ns(X) < 0, X ∼ dPX. (61)

In the above problem, we are mainly interested in the statistics of X→ keff(X) and X→ u(x,v,X)
(i.e. mean, variance, histogram, sensitivity indices [20] etc.) at specified locations x ∈ D and
velocities v ∈ V. In particular, we are interested in neutronics but many other physical applications
could benefit the results of this paper (biology [30], socio-economics [6, 31, 4], epidemiology [32]
etc.). Quantity keff is the first eigenvalue, and u, its corresponding eigenvector. The first eigenvalue
keff physically corresponds to (for a non-exhaustive list of examples) the effective multiplication
factor in neutronics [18]. It gives an estimation of the average number of neutrons coming out of
a fission reaction. It is intensively used in reactor physics and in nuclear safety risk management
[18]. In epidemiology, the same quantity is commonly called the reproduction number and is usually
denoted by R0, see [67]. It indicates how contagious an infectious disease is. It is an estimation
of the average number of people who will contract a contagious disease from one person with that
disease. Independently of the physics of interest, if keff = 1, the environment (i.e. the spatial
domain D) is said critical. Nuclear reactors reproduce a critical environment to maintain stable
chain reactions in order to produce energy. If keff < 1, the environment is said subcritical. In this
case, in epidemiology for example, each existing infection leads to less than one new one: the disease
declines and dies out. In neutronics, care is taken to have subcritical environments for fuel transport
or during storage. If keff > 1, the environment is said supercritical. In this case, a disease spreads
exponentially fast leading to an outbreak or an epidemic, a nuclear reactor may melt down. Being
able to accurately estimate this eigenvalue (keff or R0 etc. depending on the physics of interest)
together with its uncertainties is consequently of primary importance.
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The eigenproblem (60) is often solved thanks to a power iteration method [68, 69, 70, 71]. Let
us begin by formally describing the general idea behind the algorithm: let us introduce the linear
operators LX and FX defined by

LXu = v · ∇xu(x,v,X) + vσt(x,v,X)u(x,v,X)− vσs(x,v,X)

∫
Ps(x,v · v′,X)u(x,v′) dv′,

FXu =
vνf (x,v,X)σf (x,v,X)

keff(X)

∫
Pf (x,v · v′,X)u(x,v′,X) dv′,

and the boundary one defined by

BXu =
{
u(x,v,X) = ub(vX), x ∈ ∂D(X),

v

v
· ns < 0, with |v| = v

}
.

Then the power method consists in iterating on the fission part F of the linear operator and in
looking for u the fixed point of {

LXu = 1
keff(X)F

Xu,

BXu.
(62)

One possibility [9] consists in choosing the nth iteration of the algorithm as the resolution of the
instationary linear Boltzmann equation on a time step [tn−1, tn = tn−1 + ∆t]:

∂tu
n + LXun = 1

kn−1
eff (X)

FXun,

u0 = un−1,
BXun,

(63)

where

kneff(X) = kn−1
eff (X)×

∫
D
∫
V u

P (x, tn,v,X)∫
D
∫
V u

P (x, tn−1,v,X)
. (64)

Then, asymptotically as n∆t→∞, the solution un ≈ un−1 ≈ u∞ solves (62) ∀X ∼ dPX.
The stochastic power method designed in [9] and based on MC-gPC is an adaptation of the

previously described algorithm. It can be summed up as, at each iteration/time step:

1. the resolution of (63) with MC-gPC (and in this paper, with the new multigroup-like solver)
during time step [tn−1, tn = tn−1 + ∆t],

2. the projection of (64) onto the components of the gPC basis (φk)k∈{0,...,P} as in [9]: for this,
we define ∀k ∈ {0, ..., P}

kk,neff =

∫
kP,n−1

eff (X)×
∫
D
∫
V u

P (x, tn,v,X)∫
D
∫
V u

P (x, tn−1,v,X)
φk(X) dPX,∀k ∈ {0, .., P}, (65)

in which

– kP,n−1
eff (X) =

∑P
k=0 k

k,n−1
eff φk(X) is an approximation of kn−1

eff (X) with (kk,n−1
eff )k∈{0,...,P}

the gPC coefficients of the uncertain keff at the iteration n− 1,

– uP (x, tn−1,v,X) is the initial condition of a P -truncated MC-gPC resolution of (63),

– and uP (x, tn,v,X) is the P−truncated MC-gPC solution of (63) at time tn.
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Now, the main difference with the material described in [9] regarding the resolution of uncertain
eigenproblems concerns the treatment of the fission term: kn−1

eff (X) appears in factor of FX which
means that Λs must be updated at each iterations. Note that it does not imply a diagonalisation
at each iteration, only

– the reconstruction of Σs of general term

Σi,js (x,v · v′) =

∫ [
σs(x,v · v′,X) +

νf (x,v,X)∑P
k=0 k

k,n−1
eff φk(X)

σf (x,v · v′,X)

]
φi(X)φj(X) dPX. (66)

There are several ways to compute the above expression, see [72]. In practice, we use a
Gauss quadrature rule with N points (p1D + 1 points in each direction in practice) such that
(Xi, wi)i∈{1,...,N} ∼ (X, dPX) so that (66) is discretised as

Σi,js (x,v · v′) ≈
N∑
l=1

wl

[
σs(x,v · v′,Xl) +

νf (x,v,Xl)∑P
k=0 k

k,n−1
eff φl(Xl)

σf (x,v · v′,Xl)

]
φi(Xl)φj(Xl). (67)

– Once Σs built, it only remains to build Λs = RΣsR
−1 (remember that R and R−1 have been

computed once and for all at the beginning of the computation in each material). Note that
this step could easily benefit from vectorial optimisations.

The general sketch for the resolution of uncertain eigenproblems with MC-gPC and the new
multigroup-like MC-gPC solvers is recalled in Appendix D. We suggest finishing this paragraph
with an application.

4.6.2. Application of the new multigroup-like MC-gPC solver to keff computations

Let us apply MC-gPC and its new variant to an analytical uncertain solution of (60). Let us
assume the particles are monokinetic, i.e. σα(x,v,X) = σα(x,X), ∀α ∈ {s, t, f},∀X ∼ dPX,∀x ∈
D, with v = 1, and that the scattering and fission reactions are deterministic, homogeneous and
isotropic, i.e. Pα(x,v,X)) dv = 1S2(ω) dω ∀x ∈ D, ∀v = vω = ω ∈ V = S2, ∀α ∈ {s, f}. Then
equation (60) resumes to

ω · ∇xu(x, ω,X) + σt(x,X)u(x, ω,X) = σs(x,X)

∫
u(x, ω′,X) dω′,

+
νf (x,X)σf (x,X)

keff(X)

∫
u(x, ω′,X) dω′.

(68)

Let us integrate the above equation with respect to x ∈ D to get

ω ·
∫
∂D

u(x, ω,X) dx +

∫
D
σt(x,X)u(x, ω,X) dx =

∫
D
σs(x,X)

∫
u(x, ω′,X) dω′ dx,

+

∫
D

νf (x,X)σf (x,X)

keff(X)

∫
u(x, ω′,X) dω′ dx.

(69)

Assume periodic boundary conditions (i.e. such that
∫
∂D u(x,v,X) dx = 0) and homogeneous

cross-sections (i.e. σα(x,X) = σα(X)), we obtain

σt(X) = σs(X) +
νf (X)σf (X)

keff(X)
, (70)
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hence,

keff(X) =
νf (X)σf (X)

σt(X)− σs(X)
=

νf (X)σf (X)

σa(X) + σf (X)
. (71)

If the cross-sections and the multiplicity are deterministic, we recover the classical expression of a
keff in an infinite medium. In the following, we intensively have resort to the conditions of test-
case UD2O-1-0-IN19 of [73], we are only going to assume that σa = σa + σ̂aX is uncertain with
σa = 0.027314, σ̂a = 0.01 and X ∼ U([−1, 1]). Figure 8 (left) presents the results (kneff)n∈{1,...,40}
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Figure 8: Left: evolution of the mean and 95% confidence interval of the keff through the iterations of the power
method. Right: histograms of the keff obtained thanks to the reference solution (71) and the multigroup-like MC-gPC
solver for P = 7 and NMC = 104.

obtained with MC-gPCP=7 and its new variant in the same conditions with respect to the number
of (stochastic) power iterations n. Each time, care has been taken to make sure n × ∆t is large
enough to have kneff ≈ k∞eff as n × ∆t = 200. Figure 8 displays the reference solution obtained
with MC-gPC (which already presented excellent agreements with the analytical solution, see [9])
in terms of mean solution and in terms of 2.5% and 97.5% quantiles20. The computation of the
quantiles allows guarantying that the keff has a 95% probability of being between the × curves.
Note that the quantile curves are not exactly equidistant from the mean: this is because the keff

distribution is slightly skewed as testifies figure 8 (right). As a consequence, keff closer to 1 are
more probable than higher ones. The two variants of MC-gPC are asymptotically (i.e. for n� 1)
in perfect agreement on those statistical observables of the keff . The two variants only differ for the
early iterations: they do not compute exactly the same transient regime. Figure 8 (right) displays
the reference histogram obtained by sampling (106 samples) X through (71) and the new MC-

gPCP=7 one, obtained by sampling X through the gPC approximation kPeff(X) =
∑P
k=0 k

k
effφ

X
k (X)

for P = 7: the histogram have an excellent agreement, MC-gPC can efficiently approximate the
histogram of keff(X).

The previous studies were mainly qualitative. Let us consider more quantitative ones. Tables
1 and 2 present the run-times obtained with MC-gPC, ni-gPC and the new MC-gPC solver in the

19Infinite medium, νf = 1.7, σa = 0.027314, σs = 0.464338, σf = 0.054628 where the ν notation stands for
averaging.

20The quantiles have been evaluated with 106 samples of the MC-gPCP=7 based approximations.
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NMC = 5× 104 P = 1 P = 2 P = 3 P = 4 P = 5
old MC-gPC 40 iter. ∆t = 5.0 13.13s. 15.95s. 20.46s. 25.69s. 29.92s.
new MC-gPC 40 iter. ∆t = 5.0 13.02s. 13.05s. 13.73s. 13.78s. 13.68s.
old MC-gPC 80 iter. ∆t = 2.5 15.92s. 19.85s. 25.31s. 33.03s. 38.59s.
new MC-gPC 80 iter. ∆t = 2.5 16.60s. 16.22s. 16.07s. 17.06s. 16.99s.
old MC-gPC 200 iter. ∆t = 1 24.55s. 33.59s. 44.39s. 50.93s. 63.67s.
new MC-gPC 200 iter. ∆t = 1 28.59s. 30.21s. 29.75s. 28.51s. 28.81s.

Average time of ni-gPC runs
40 iter. ∆t = 5.0 12.90s.
80 iter. ∆t = 2.5 12.64s.
200 iter. ∆t = 1.0 31.09s.

Table 1: run-times with respect to the polynomial order P and the number of power iterations n.

same conditions. Table 1 studies the dependence of the run-time with respect to P and to the
number of iteration of the power iteration method. Table 2 studies the influence of the number of
MC particles on the run-times of the three methods.

Let us begin by commenting on table 1: for this study, NMC = 5 × 104 and n × ∆t = 200
both remain constant. But the number of iterations n and the time step ∆t do change, so that
their product remains 200: in such conditions, the results, for this problem, are converged in
terms of power iteration (just as in figure 8). First, as can be seen for the results of ni-gPC, even
for the non-intrusive application, the run-time can be affected by the number of iterations: with
n×∆t = 200×1.0, the average run-time of ni-gPC (31.09s.) is greater than for couples with smaller
number of iterations n. The same increase can be observed for the two MC-gPC variants, see for
example the first column (P = 1) of table 1: for P = 1, the run-times with respect to n × ∆t of
the MC-gPC solvers are even comparable to the ones of ni-gPC. On every line of table 1 for (the
old version of) MC-gPC, the cost increases with respect to P . This is because with the MC scheme
described in [1], each MC particle must contribute to every gPC coefficients (see the + = operation
in algorithm 6). On another hand, the cost on each line of table 1 for the new MC-gPC solver
remains quite the same, even as P increases. This is because with the new MC-gPC solver, the
tallying phase is much less costly as each MC particle only contribute to the gPC coefficient of its
final group. Now, independently of P , as n grows, the cost of the MC-gPC solvers grow. For the
old version of MC-gPC, the cost grows with both P and n as the tallying phase, which is the costly
one, is more frequent with n. On another hand, with the new MC-gPC solver, the cost only grows
with n, just as for ni-gPC. Furthermore, the cost with respect to n of the new MC-gPC is almost
the same as the cost of one ni-gPC run.

40 iter. ∆t = 5.0, P = 5 NMC = 103 NMC = 104 NMC = 105 NMC = 106

old MC-gPC 0.77s. 6.41s. 60.4s. 598.8s.
new MC-gPC 0.55s. 3.20s. 29.0s. 284.4s.

Average time of ni-gPC runs 0.25s. 2.9s. 20.3s. 211.0s.

Table 2: run-times with respect to NMC .

Table 2 studies the influence of NMC on the run-times of the three solvers. For each solver (i.e.
each line of table 2), as the number of MC particles is multiplied by 10, the cost is multiplied by
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10. This is typical of MC schemes. Now, the cost of the treatment of one MC particle is more
important for the old version of MC-gPC than for the new one. The treatment of one MC particle
with the new MC-gPC solver remains more important than for ni-gPC. Still, the gain with MC-gPC
with respect to ni-gPC, in this configuration is about × 211.0×N

598.8 = 211.0×6
598.8 = 2.11 whereas the gain

of its new variant with respect to ni-gPC is about × 211.0×N
284.4 = 211.0×6

284.4 = 4.45 with an even better
numerical noise.

We consider this test-case demonstrates that the new version of MC-gPC can also handle (more)
efficiently keff computations and also, indirectly, nonlinear problems for which the cross-sections
may change with respect to time.

4.7. Hybrid intrusive/non-intrusive uncertainty propagation

In this section, we would like to take few lines to discuss about what intrusive uncertainty
propagation codes (independently of the physics of interest) can bring:

– from the previous sections, we saw situations in which intrusiveness is worth it (from ×2 to
×40 computational gains).

– Still, intrusiveness can be more or less costly in terms of development and implementation:
even if the modifications are simple, the verification always takes time.

Based on these two observations, we would like to show that hybrid non-intrusive/intrusive applica-
tions are at hand as soon as an intrusive code is available. Furthermore, these hybrid computations
are competitive with respect to a full classical non-intrusive application.

Let us develop the idea: suppose that one can take into account intrusively the main sources
of uncertainties. Take the example of section 4.5 and assume that the developments are ready in
order to take into account the uncertainties on σt(X1), σs(X2) but not yet on η(X3). Then we
can quite easily run the intrusive code (here the MC-gPC solvers) in order to propagate the uncer-
tainties with respect to X1, X2 several times for several values of (Xi

3, wi)i∈{1,...,N} ∼ (X3, dPX3)
non-intrusively (here with ni-gPC ). We run the MC-gPC solvers propagating the uncertainties
with respect to (X1, X2) at several points (Xi

3, wi)i∈{1,...,N} and gather the solutions of MC-gPC
(U(x, t,v, Xi

3), wi)i∈{1,...,N}. We can then compute the remaining gPC coefficients for the remaining
stochastic dimension X3 non-intrusively by numerical integration on the gPC coefficients obtained
intrusively via MC-gPC : the coefficients

Uk(x, t,v) =

∫
U(x, t,v, X3)φX3

k (X3) dPX3 ≈
N∑
i=1

U(x, t,v, Xi
3)wiφ

X3

k (Xi
3),∀k ∈ {0, ..., pX3

1D},

corresponds to the gPC coefficients obtained from a classical tensorisation of the gPC basis relative
to X1, X2, X3.

Figure 9 compares the results in terms of spatial profiles of the mean and variance obtained
intrusively with MC-gPC and with the hybrid ni-gPC /MC-gPC strategy described above. The
dimensionQ = 2 relative toX1, X2 are treated intrusively thanks to MC-gPC with P = (p1D+1)Q =
(2 + 1)2 = 9 and the dimension X3 is treated non-intrusively (ni-gPC ) thanks to 4 Gauss-Legendre
points in direction X3 and pX3

1D = 2 resulting in a total of (p1D + 1)2 × (pX3

1D + 1) = 27 hybrid gPC
coefficients. On figure 9, the results are in agreement. Now, the costs of each numerical strategies
are given by
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Figure 9: Comparison between the results from new multigroup-like MC-gPC in 3D stochastic dimension and some
hybrid ni-gPC /MC-gPC results (for Q = 2 for MC-gPC and the last stochastic dimension taken into account by
ni-gPC ). Left: mean of U(x, t = 1, X) with respect to x. Right: variance of U(x, t = 1, X) with respect to x.

– new MC-gPC : cost = 1 × CPU time of 1 run = 1× 1 min 25s.
– ni-gPC : cost = 64 × CPU time of 1 run = 64× 0 min 54s = 58 min 06s.
– hybrid : cost = 4 × CPU time of 1 run = 4× 0 min 58s = 3 min 52s.

The above three first lines are the same as in section 4.5. The hybrid line corresponds to an ni-gPC
/new MC-gPC hybridization (so we do not report the line concerning the old MC-gPC solver here).
As can be seen, the hybrid computations cost more than the full intrusive MC-gPC strategy but
still much less than the ni-gPC one. The gain is ×15 instead of ×40. Furthermore, with Q = 2, the
cost of MC-gPC is closer to the cost of a non-intrusive application (≈ 58s) as less coefficients need
to be computed. Furthermore, note that if we take p1D = 0 in every stochastic direction, P = 1 and
only one gPC coefficient (u0) is computed: it corresponds to a deterministic run whose cost is the
same as a classical MC computation without uncertainties. Concerning the ni-gPC computations:
they have been made in 1D, only with respect to X3. In this sense, the intrusive resolution of the
two first stochastic dimensions (X1, X2) mitigates the curse of dimensionality on this problem (see
point ∗1 of section 1).

With the previous example, we wanted the reader to have in mind that developing an intrusive
uncertainty propagation code can be long but can be made progressive: uncertain parameter per
uncertain parameter, beginning by the ones which need to be systematically propagated (in order
to identify them, it is common performing a sensitivity analysis for example, see [74]). This can
be progressive and the code remains usable in a deterministic way (p1D = 0). Finally, when a
more exotic situation occurs, with respect to a new uncertain parameter, we can rely on the hybrid
uncertainty propagation for punctual studies.

5. Conclusion

In this paper, we deepened the study and analysis of MC-gPC for the construction and the
resolution of efficient gPC based reduced model of the uncertain linear Boltzmann equation. In
particular, we focused on understanding, identifying and correcting the terms responsible for MC-
gPC to have a higher numerical noise/error. The correction we suggest is based on rewriting
astutely the gPC based reduced model as a multigroup-like system of equations and solve it with
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classical multigroup MC schemes (semi-analog and non-analog mainly in this paper). The new
MC-gPC solvers not only have better performances in terms of numerical noise but also presents
improved run-times, considerably increasing the overall gain of MC-gPC. The aformentioned gains
have been obtained on several benchmarks of the literature, for the resolution of the uncertain
linear Boltzmann equation and in an uncertain eigenproblem context (computation of effective
multiplication factor keff in neutronics). The paper also provides a discussion on implementing
progressively intrusive uncertainty propagation codes and benefiting from their efficiency thanks to
an intrusive/non-intrusive hybridization.
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[72] B. J. Debusshere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem, O. P. L. Mâıtre,
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes,
J. Sci. Comp. 26 (2004) 698–719.

[73] Sood, Avneet, Forster, Arthur, Parsons, Kent, Analytical benchmark test set for criticality
code verification, Progress in Nuclear Energy 42 (1) (2003) 55–106.

[74] S. da Veiga, F. Gamboa, B. Iooss, C. Prieur, S. for Industrial, A. Mathematics, Basics and
Trends in Sensitivity Analysis: Theory and Practice in R, Society for Industrial and Applied
Mathematics, 2021.
URL https://books.google.fr/books?id=Tqt9zgEACAAJ

Appendix A. A simple analytical uncertain solution

In this section we build an analytical solution in a simple uncertain configuration. It is used
as a reference solution for the convergence studies of section 2 and figure 1-left. The configura-
tion is monokinetic (i.e. v = 1) and homogeneous (i.e. u(x, t,v, X) = u(t, ω,X)). We assume
the uncertainty, one-dimensional here for the sake of simplicity, affects the scattering cross-sections
σs = σs + σ̂sX, where X ∼ U [−1, 1] and σ̂s is closely related to the variance of the uncertain scat-
tering cross-section. Let us introduce U(t,X) =

∫∫
u(x, t, ω,X) dxdω. In the previously described

48



configuration, the uncertain linear Boltzmann equation resumes to the following stochastic ordinary
differential equation {

∂tU(t,X) + vσtU(t,X) = vσs(X)U(t,X),
U(0) = U0,

(A.1)

satisfied by U . Introduce σa = σt − σs, then the solution is given by

U(t,X) = U0e
−vσa(X)t = U0e

−v(σt−σs−σ̂sX)t = U0e
−v(σa−σ̂sX)t. (A.2)

The quantity U(t,X) is a random variable indexed by time t, i.e. it is a stochastic process. In this
case, mean and variance of the stochastic process (A.2) can be computed analytically and are given
by

MU
1 (t) = E[U(t,X)] = 1

2U0e
−vσat e

vσ̂st − e−vσ̂st
σ̂stv

,

MU
2 (t) = E[U2(t,X)] = 1

4U
2
0 e
−2vσat

e2vσ̂st − e−2vσ̂st

σ̂stv
,

V[U ](t) = MU
2 (t)− (MU

1 (t))2.

(A.3)

Of course, higher order moments, probability of failure, complete characterisation of the probability
density function of the stochastic process can be calculated but in figure 1, we focus on the variance
V[U ](t) to perform the convergence studies. Note that in practice, we take v = 1, U0 = 1, σt =
σs = 0.1, σ̂s = 0.1. The L1-norm of the error is computed at time t = 10. The curves of figure 1
implying an MC scheme are averaged over 128 computations with different seeds.

Appendix B. A simple test-case in the collisional regime

From [10], the variance of the error made ∀X ∈ dPX in a non-intrusive resolution is

σ2
sa(t,X) = U2

0 (X)

e (vσs(X))2 − (vσt(X))2

(vσt(X))
t
− e2(vσs(X)−vσt(X))t

 . (B.1)

As a consequence, asymptotically with NMC , according to the Central Limit Theorem, the error
made on U(t,X), ∀X ∈ dPX is given by

U(t,X)− UNMC (t,X) ∼ G
(

0,
σsa(t,X)√
NMC

)
. (B.2)

Figure 1 presents the results obtained on the uncertain configuration given by
U0 = 1.0,
X ∼ U([−1, 1]),
σs(X) = σa + σs + νfσf (X),
σa = 0.6, σs = 0.1, νfσf (X) = 0.1 + 0.21X,
σt = σa + σs + σf = 1.0.

(B.3)

Note that as X is uniformly distributed in [−1, 1], the Legendre basis is used for (φk(X))k∈{0,...,P}
(orthonormal with respect to the scalar product defined by the probability measure of X).
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Appendix C. The algorithms for the original MC-gPC schemes

In this section, we recall the sketch of the algorithm for the MC-gPC resolution described in
[1, 8, 9, 10]. It is detailed, for a backward resolution, just as algorithm 1 for the new solver, in
algorithm 6. This, to our opinion, eases the comparison of the two solvers. Note that paper [1]
describes some algorithmic comparisons of MC-gPC and the native MC code from which it is based.
Those comparisons are not recalled here.
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Function backward MC-gPC tracking()
for k ∈ {0, ..., P} do

set uk(x, t,v) = 0
set u2

k(x, t,v) = 0
end
for p ∈ {1, ..., NMC} do

set sp = t #this will be the life time of particle p
set xp = x
set vp = v
set Xp ∼ X
set ip=find cell(xp)

set wp(t) =
1

NMC

while sp > 0 do
if xp /∈ D(Xp) then

#here a general function for the application of arbitrary boundary conditions
apply boundary conditions(xp, sp,vp,Xp)

end
τcensus = sp
τexit = compute time until cell exit(xp,vp, gp)
τinter = sample interaction time(ip,vp,Xp)
τ = min(τinter, τexit, τcensus)
#set the life time of particle p to:
sp ←− sp − τ
#move the particle p
xp ←− xp + vpτ ,
K = compute weight modif(xp, vp, τ , τcensus, τexit, τinter, ip,Xp)
wp ←− K × wp
if τ == τcensus then

#tally the contribution of particle p for the first and second moments
for k ∈ {0, ..., P} do

uk(x, t,v)+ =wp × u0(xp,vp,Xp)φk(Xp)
u2
k(x, t,v)+ =wp × [u0(xp,vp,Xp)φk(Xp)]

2

end

end
if τ == τexit then

# find the new cell in which particle p will evolve
iold
p = ip
ip ←− find adjacent cell(iold

p ),

end
if τ == τinter then

#Sample the velocity V′ of particle p from P sV′(xp,vp · v′,Xp) dv′

v′ =sample velocity(xp, vp, Xp)
vp = V ′

end

end

end

end
Algorithm 6: The semi-analog and non-analog MC-gPC schemes described in term of algo-
rithmic operations in order to compute (adjoint) u(x, t,v,X).
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The tracking phase allowing to solve (17) with (the old version of) MC-gPC is described in
algorithm 6. It describes the ’tracking’ of an uncertain population of particles within the simulation
domain D. In order to present both implementations (of the semi-analog and non-analog MC
schemes) in the same general framework/code, we encapsulated some key parts of the resolution
in several functions: sample interaction time, compute weight modif, sample velocity21. The three
latter key functions are described in algorithms 7–8–9 but for the moment let us focus on the
common canvas (i.e. algorithm 6).

Function sample interaction time(int i, real v, real X)
set τ = REAL MAX
U =sample uniform law()
if MC scheme == semi− analog then

τ = − ln(U)

vσit(v,X)
end
if MC scheme == non− analog then

τ = − ln(U)

vσis(v,X)
end
return τ

end
Algorithm 7: The sampling of the interaction time function depending on the choice of the
MC scheme. The cross-sections are assumed constant in cell i.

Function sample velocity(real x, real v, real X)
V′ =sample from Ps(x,v,X)
return V′

end
Algorithm 8: Sampling of the velocity

In algorithm 6, we can see that each presented scheme relies on comparing three times, τinter
the interaction time, τexit the time at which an MC particle p would get out of the cell ip, τcensus
the time before ending the time step. For each scheme, the particle moves along vpτ where τ is
the minimum of the three above times. Its weight is modified or not (in compute weight modif)
depending on the scheme. Furthermore, depending on the minimum of τcensus, τexit, τinter, the par-
ticle sees its life time updated and finishes its treatment (census) or crosses the interface between
two cells (exit) or encounters an interaction (inter). In the latter case, its velocity change. All the
samplings potentially depends on the uncertain field Xp carried out by the uncertain MC particle p.
The first and second order moments of the gPC coefficients are computed during the MC resolution.
The instrumentation of the tracking corresponds to the tallying phases (i.e. the + = operations in
algorithm 6).

Let us now focus on the encapsulated functions. First, note that they all only depend on particle
fields (xp,vp, ip,Xp, ...). The first one, to sample the interaction time, only needs the particle energy
vp and the uncertain one Xp and is detailed in algorithm 7. Depending on the chosen scheme, the

21We do not detail the functions compute time until cell exit, find cell and find adjacent cell as they depend more
on the type of grid (cartesian, structured, unstructured) than on the MC resolution scheme.
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interaction time is sampled from the total cross-section σt (semi-analog) or from the scattering
one σs in the current cell ip. Both are obtained inversing the cumulative density function of an
exponential law.

The second encapsulated function corresponds to the modification of the weight of the particle,
detailed in algorithm 9. For this function, the event the particle encounters explicitly appears in
the treatment. The non-analog scheme is the only one having a treatment independent of the event.
The weight of a particle remains unchanged for the semi-analog schemes for the census and cell exit
events. It changes in the case of an interaction: for the semi-analog scheme, the weight is multiplied
by the probability of being scattered σs

σt
.

Function compute weight modif(real v, real τmin, real τcensus, real τexit, real τinter, integer
i, real X)

set K = 1
if MC scheme == semi− analog then

if τmin == τexit or τmin == τcensus then
K = 1

end
if τmin == τinter then

K =
σis(v,X)

σit(v,X)
end

end
if MC scheme == non− analog then

K = e−v(σit(v,X)−σis(v,X))τmin

end
return K

end
Algorithm 9: The weight modification depending on the MC scheme

At the interaction time, each scheme needs the sampling of the outer velocity V′, summed up
in algorithm 8. We do not spend time commenting 8, its details mainly depends on the format of
the velocity scattering file/data and is classical in MC codes.

Appendix D. The resolution of uncertain eigenproblems with MC-gPC and its new
variant

In this section, we recall the sketch of the algorithm for the MC-gPC resolution of uncertain
eigenproblems described in [9]. The difference, in this case, is simple: only one line needs to be
added, cf. the cyan line in algorithm 10, in order to recompute the fission cross-section which
depends on keff(X). Note that this must be done for every material.
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Data: ∆t, NMC , P
Result: The gPC coefficients (kkeff)k∈{0,...,P} of keff and eigenvector which can be built

from list of particles
begin

#initialisation of a population of particles
list of particles=sampleUncertainParticles(NMC)
#old gPC coefficients of the number of physical particles in the domain D × V
set U0

old = 1
#new gPC coefficients of the number of physical particles in the domain D × V
set U0

new = 1
#gPC coefficients of the estimated eigenvalue
set k0

eff = 1
for k ∈ {1, ..., P} do

Ukold = 0
Uknew = 0
kkeff = 1

end
while iter < iter max do

for mat ∈ list of materials do
compute fission cross section from keff(Rmat, R

−1
mat, k

0
eff, ..., k

P
eff)

end

(Uknew)k∈{0,..,P}=trackUncertainParticles(list of particles, ∆t, k0
eff, ..., k

P
eff)

#build punctual uncertain values
(UPnew(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (U

k
new)k∈{0,...P})

(UPold(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (U
k
old)k∈{0,...P})

(kPeff(Xg))g∈{1,..,NG} = buildPunctualV alues((Xg)g∈{1,..,NG}, (k
k
eff)k∈{0,...P})

#update the gPC coefficients of the eigenvalue
for k ∈ {0, ..., P} do

kkeff ←
NG∑
g=1

kPeff(Xg)×
UPnew(Xg)

UPold(Xg)
φk(Xg)wg

end
#update the old number of physical particles
for k ∈ {0, ..., P} do

Ukold ← Uknew

end
#apply a population control algorithm
uncertainPopulationControl(list of particles, NMC)
iter++

end

end
Algorithm 10: General canvas of a stochastic/uncertain keff calculation Monte Carlo code

Function compute fission cross from keff is described in algorithm 11. It needs the integration
of the scattering cross-section with respect to the uncertain parameter X and the current values of
gPC coefficients of the keff . It builds Λs which is used in trackUncertainParticles which is nothing
more than a call to algorithm 1, see [9].
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Function compute fission cross section(R,R−1, k0
eff, ..., k

P
eff)

for l ∈ {0, ..., P} do
for k ∈ {0, ..., P} do

Σl,ks ← 0
#Use of NG Gauss quadrature points in order to integrate Σs

Σl,ks ←
NG∑
g=1

σs(Xg) +
νf (Xg)

P∑
k=0

kkeffφk(Xg)

σf (Xg)

× φk(Xg)φl(Xg)wg

end

end
Λs = R−1ΣsR
return Λs

end
Algorithm 11: The update of the fission cross-section across the stochastic power iteration of
algorithm 10.
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