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Abstract. In this paper, we introduce a new reduced basis methodology for accelerating the
computation of large parameterized systems of high-fidelity integral equations. Core to our method-
ology is the use of coarse-proxy models (i.e., lower resolution variants of the underlying high-fidelity
equations) to identify important samples in the parameter space from which a high quality reduced
basis is then constructed. Unlike the more traditional POD or greedy methods for reduced basis
construction, our methodology has the benefit of being both easy to implement and embarrassingly
parallel. We apply our methodology to the under-served area of integral equations, where the den-
sity of the underlying integral operators has traditionally made reduced basis methods difficult to
apply. To handle this difficulty, we introduce an operator interpolation technique, based on random
sub-sampling, that is aimed specifically at integral operators. To demonstrate the effectiveness of
our techniques, we present two numerical case studies, based on the Radiative Transport Equation
and a boundary integral formation of the Laplace Equation respectively, where our methodology pro-
vides a significant improvement in performance over the underlying high-fidelity models for a wide
range of error tolerances. Moreover, we demonstrate that for these problems, as the coarse-proxy
selection threshold is made more aggressive, the approximation error of our method decreases at an
approximately linear rate.
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1. Introduction. Across virtually all areas of science and engineering, physi-
cal simulation has become an absolutely indispensable tool for the advancement of
knowledge and the design of industrial products. However, as with any tool, there
are always practical caveats. In particular, high-fidelity simulations often require
tremendous computational resources and time to execute. This computational cost
often precludes high-fidelity simulations from being used in many important prob-
lems, such as uncertainty quantification or Bayesian inference, that require not just
one, but many queries to the underlying computational model. Making these many-
query problems tractable often requires fast approximation techniques to mitigate the
sheer computational cost of multiple queries to the underlying (full-order) model.

One such class of approximation techniques is reduced order models (ROMs). Re-
duced order models typically operate in two stages. First, there is a computationally
expensive offline stage (i.e., training stage), wherein the ROM is trained on a collec-
tion of solutions to the full-order model (FOM). In many cases, this entails finding a
basis for a low-dimensional linear subspace which captures solutions to the full-order
model (i.e., a reduced basis). Once this offline stage is complete, the reduced-order
model can be deployed in an online stage (i.e., test stage), where these methods can
compute fast approximations to new problem instances by exploiting the problem
structure learned during the offline phase. For example, one can project the new
problem instance onto a set of reduced basis and solve a low-dimensional reduced
problem instead of the high-dimensional full-order problem. We refer the reader to
[14, 4] and references therein for a more thorough overview of this topic.
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In this paper, we deal specifically with the class of ROM techniques falling un-
der the reduced basis method (RBM) [28, 22]. The groundwork for the reduced
basis method was set in the late 1970s with work on the approximation for nonlinear
structure analysis [1, 20, 21], particularly for beams and arches. This groundwork
later evolved into a more general framework for parameterized differential equations
[13, 23], with a corresponding swath of mathematical analyses of the approximation
error of the method [27, 3, 11, 25]. These nascent methods typically involved finding a
low dimensional approximation space around a parameter of interest — thereby mak-
ing them local approximation methods. Later, this line of inquiry evolved into finding
a global approximation space constructed from a sparse set of sampled solutions to
the full-order model [2, 16]. More recently, the first theoretical a priori convergence
guarantee was proved and numerically confirmed in [19]. This demonstrated the po-
tential of reduced basis methods as a robust approximation for parameterized partial
differential equations.

However, while these techniques are well-established for ordinary and partial dif-
ferential equations, there has been relatively little work done in the regime of model
order reduction for integral equations. The current most notable contributions in
this underserved area are taiylored specifically to boundary element formulations of
the electric field equations [10, 15, 24, 12]. The chief factor that contributes to this
research gap is likely the difficulties that come from the operators that arise from
discretizing integral equations, which are typically dense. This operator density pre-
cludes one from assembling the operators outright, which limits the applicability of
many existing model order reduction techniques, in part because even sampling a
single entry of the problem residual takes time on the order of the problem size. Re-
gardless, this gap in the literature is unfortunate, as integral equations have many
desirable properties over their differential counterparts. Integral equations are often
better conditioned than differential equations, and many important physical models,
such as electromagnetism and radiative transport, are amenable to special integral
formulations with desirable properties (e.g., boundary integral formulation).

2. Problem Statement. The goal of this paper is to solve parameterized inte-
gral equations of the form

(2.1) L(ω)u(ω) = f(ω), ω ∈ Ω∞,

where L(ω) ∈ Rn×n denotes a (dense) linear elliptic integral operator, f(ω) ∈ Rn
denotes a source term, and ω are parameters taken from some sample space Ω∞. The
underlying sample space Ω∞ is typically continuous with respect to ω, so in this paper
we concern ourselves with a discrete subset Ω of Ω∞, appropriately spaced so that
every point in Ω∞ is relatively close to a proxy or set of proxies in Ω. Approximate
solutions to equations whose parameters come from outside of Ω can then be formed
via interpolation. Throughout this paper, we represent Ω as a set

(2.2) Ω ≡ {ω1, ω2, . . . , ωp} ,

whose elements ωi denote the samples for which we would like to solve the integral
equation (2.1).

If the parameter ω wildly changes the underlying problem, then it is difficult
to perform this task more efficiently then simply solving all of the equations (2.1).
However, in many real-world contexts, the dependence on the parameter ω is such
that the solutions u(ω) form a space that is approximately low dimensional. In this
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case, the solutions u(ω) can be well represented by a few appropriately chosen degrees
of freedom. The goal of reduced basis methods is to extract these relevant degrees of
freedom and use them to accelerate the computation of the solutions u(ω).

Therefore, we ultimately want to find a small orthogonal basis matrix Q ∈ Rn×nrb ,
where nrb � n, whose columns approximately capture the solution set

(2.3) S ≡
[
u(ω1) u(ω2) . . . u(ωp)

]
.

Once the basis matrix Q is given, the solution u(ω) can be approximated by QQTu(ω),
and then applying the Galerkin projection on the system (2.1) yields

(2.4) [QTL(ω)Q][QTu(ω)] ≈ [QTf(ω)].

Since the dimension nrb is much less than the dimension n of the original system
(2.1), the projected system (2.4) provides us with an inexpensive way of computing
approximations to the solutions u(ω). First, one solves for the quantity QTu(ω) in
the nrb×nrb projected system (2.4). Afterwards, applying the matrix Q to the result
QTu(ω) gives an approximation of the true solution u(ω).

2.1. Main difficulties. In the procedure of solving (2.4), there are two practical
difficulties which arise:

1. Assembling the reduced basis Q efficiently. (Offline). There are a number
of existing methods for constructing the basis Q. Unfortunately, they are
typically either computationally expensive or difficult to implement. One
can perform a proper orthogonal decomposition (POD) of solutions to the
full-order model to obtain such a basis Q [14]. However, this requires a sig-
nificant number of solves to the underlying full-order model. There are also
greedy methods [6, 19, 18, 28, 29, 5], which sequentially build up a reduced
basis by repeatedly selecting the solution u(ωi) which would yield the great-
est reduction in error, according to some error estimator. Unfortunately, the
implementation and construction of error estimators are very involved. More-
over, the inherently sequential nature of greedy selection algorithms means
that they are very difficult to parallelize.

2. Assembling the projected operator QTL(ω)Q efficiently. (Online). Since L(ω)
is an operator, it is usually too computationally expensive to assemble the
whole operator L(ω) explicitly. This means that a reduced basis method must
provide a cheap way of constructing the reduced operators QTL(ω)Q without
ever explicitly assembling their full-order counterparts L(ω).

2.2. Contribution. In this paper, we present a novel reduced basis approach
to integral equations that has the benefit of being both general-purpose and easy to
implement. Our contributions are twofold: we first present a novel method for efficient
selection of training samples. We use this selection scheme to address the first issue
of assembling the reduced basis Q efficiently. Next, we present a simple interpolation
technique for assembling reduced operators. We use this technique to address the
second difficultly of assembling the projected operator QTL(ω)Q efficiently.

The combination of these two techniques forms the core of our coarse-proxy re-
duced basis method, diagrammed in full in Fig. 2.1. Our method provides a model
order reduction framework for general linear integral equation problems that addresses
both of the above issues without the aforementioned pitfalls of existing methods. In
our numerical experiments, we apply our method to two examples, the radiative trans-
port equation and the boundary integral formulation of the Laplace equation—and
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demonstrate that on both of these problems, our methods allow for significant im-
provements in performance over a naive solve of all elements of the parameter space.

L " u " = f " , " ∈ Ω (*) L, " u, " = f, " , " ∈ Ω (-)Eqs:

Basis matrix Q = U 1: 234, ∶
6789 ≥ ;6< > 6789><

?S = [u B"< C B"D … C B"F ] Hℒ = vec L B"< … vec L B"F

ℒ ≈ HℒM

ℒ O, : ≈ Hℒ(O,: )M ⟶ M (least square)

ℒ34 ≈ Hℒ34M QTL " Q

Solve (C) for each " ∈ Ω

S, = [u, "< u, "D … u,("R)]

SΩ = {B"<, B"D,… , B"F} ⊂ Ω, B"W = "XY

Skeleton selection Tool: column pivoted QR

Solve (F) for each B" ∈ SΩ

Construct basis Tool: SVD: ?S=UΣV Affine assumption

Randomly subsample

Assemble operator

QTL " Qv(ω) = QTf (ω) ⟶ u(ω) ≈ Qv (ω)

Fig. 2.1: Diagram of the reduced method for the integral equation.

For the aforementioned efficient selection of training samples, we propose a novel
method of constructing the reduced basis Q by leveraging a coarse-proxy model to
identify a set of important parameters ω̂1, ..., ω̂s in the sample space Ω, where s� p.
As an example, one can use an inexpensive low-resolution model to identify which
parameters ω would be important in the construction of a reduced basis, and we only
solve the full-order equations (2.1) for these important parameters. The method has
the desirable property of being embarrassingly parallelizable.

For the aforementioned interpolation technique for assembling reduced operators,
we propose assembling the operators QTL(ω)Q by levering the power of random sam-
pling. To be more precise, we draw random samples of the operators L(ω) and then use
these samples to linearly interpolate between a subset of basis operators QTL(ω̂1)Q,
..., QTL(ω̂s)Q to approximately reconstruct QTL(ω)Q. This method is similar to the
matrix gappy POD technique proposed in [7] by Carlberg et al, but slightly different
because we cannot afford to orthogonalize operators.

The details of the proposed method are discussed in Section 3, and numerical
tests are presented in Section 4.
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3. Framework Details. Our framework for solving problems of the form in
(2.1) is based on the idea of using an inexpensive coarse-proxy model to extract the
important solutions from the solution set S. This model can be, for example, the
original fine problem, but at a much lower resolution. Alternately, one can use a
sparse basis of wavelets.

We write this coarse-proxy model as

(3.1) LC(ω)uC(ω) = fC(ω).

where LC(ω) ∈ RnC×nC is the coarse analogue of the operator L(ω), and uC(ω) ∈
RnC and fC(ω) ∈ RnC are the coarse-proxy solution and coarse-proxy source term
respectively. One should choose this coarse-proxy model so that it is inexpensive to
evaluate (i.e., n2

C � n2). But, as long as the solutions uC(ω) of the coarse-proxy
model can approximately capture the important features of their fine counterparts
u(ω), the particular choice of coarse-proxy model is not especially relevant. However,
one must still exercise the appropriate caution. For example, if the solutions u(ω)
contain important high frequency content, one should not expect that solving the
problem on a coarse grid will provide a good coarse-proxy model.

Notation. We use MATLAB notation to denote submatrices, i.e., if M ∈ Rn×m,
then for A ⊆ {1, ..., n} and B ⊆ {1, ...,m}, M(A,B) ∈ R|A|×|B| denotes the submatrix
of M formed with rows A and columns B. In the case where either A = {1, ..., n}
or B = {1, ...,m}, we use the shorthand M(:, B) ∈ Rn×|B| or M(A, :) ∈ R|A|×m,
respectively. The same notation also applies to vectors.

3.1. Skeleton Extraction. To produce a reduced basis matrix Q, we select
fine solution candidates u(ω) that are important columns of the solution matrix S
and construct Q via an SVD of those important columns. However, the objective is
to minimize the number of full-order solves performed during this procedure — and
retrieving a column of S requires a full-order solve, which is expensive. To determine
the important columns of S without incurring this cost, we note that the coarse-proxy
solutions uC(ω) can serve as a good proxy for their fine counterparts. That is, we can
identify important columns of S by search for important solutions among their coarse
proxies uC(ω). Thus, our initial step is to compute the entire set of coarse-proxy
solutions (or alternatively, an appropriately subsampled version thereof), which we
write in matrix form as

(3.2) SC ≡
[
uC(ω1) uC(ω2) . . . uC(ωp)

]
.

Note that this step is embarrassingly paralellizable. Once these solutions are ready,
we identify the important elements of the sample space Ω via a column pivoted QR
decomposition of SC . This procedure returns a permutation π of the columns of SC .
Let the skeleton indices S be the set of columns indices in π whose corresponding
diagonal Rii is less than a certain threshold ε of R11. Let the parameters ω̂i corre-
sponding to these indices be denoted as the set of skeleton parameters Ω̂ ⊂ Ω. These
will be our approximation as to the important columns of S.

3.2. Skeleton Extraction Implementation. We give a concrete implemen-
tation of the skeleton extraction algorithm described above in Algorithm 1. This
method takes in a sample space Ω and extracts the important skeleton parameters
ω̂j . It returns the set of indices S = {i1, i2, ..., is} corresponding to the indices of
these skeletons, i.e. ω̂j = ωij . It is possible that the implementation can be better
tailored to the problem, but we provide this algorithm as a general-purpose default.
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Algorithm 1: GetSkeletons: Skeleton Extraction with a Coarse-Proxy
Model (Offline).

Input: A sample space Ω.
Output: The indices S of the important skeleton parameters.
/* Construct coarse-proxy solutions SC. */

for ωi in Ω do
LC(ωi)← CoarseOperator(ωi);
f(ωi)← CoarseSourceTerm(ωi);
SC(:, i)← LC(ωi)

−1f(ωi)
end
/* Perform column pivoted QR factorization on SC and denote the

column permutation of the CPQR factorization by ρ. */

(QC ,RC , ρ)← CPQR(SC);
/* Select all important column indices ρi based on RC,ii. */

S← ρ({i | RC,ii ≥ εRC,11});
return S;

3.3. Reduced Basis Construction. Once we have selected the skeletons Ω̂,
we calculate the corresponding solutions for the full-order model. We denote these
corresponding fine solutions denoted as the fine skeleton set,

(3.3) Ŝ ≡ S(:, Ω̂) =
[
u(ω̂1) u(ω̂2) . . . u(ω̂s))

]
.

Note that this step is once again embarrassingly parallelizable.
To compute the reduced basis, we apply an SVD decomposition to the fine skeleton

set Ŝ to obtain UΣVT = Ŝ. To build a reduced basis, we crop U by discarding all
columns with singular values σi less than εσ1,

(3.4) Q ≡ U(1 : nrb, :), with nrb such that σnrb
≥ εσ1 > σnrb+1 ,

where ε is the same ε used in Algorithm 1.
We take a moment to note that the coarse-proxy model is only used to select the

skeleton parameters and not for the actual construction of the reduced basis. Hence, it
is sufficient for the coarse-proxy model to be good enough to capture the main features
of the full-order model and for the important columns of the coarse-proxy solution
matrix SC to roughly correspond to the important columns of the fine solution matrix
S.

3.4. Reduced Operator Construction. Once we have constructed the re-
duced basis Q, it remains to solve the projected problem

(3.5) [QTL(ω)Q] v(ω) = [QTf(ω)] , u(ω) ≈ Q v(ω)

for arbitrary ω. As such, we require a fast method of assembling the projected operator
QTL(ω)Q. Assembling the full operator L(ω) and then projecting it is prohibitively

expensive. However, in solving for the fine solutions Ŝ in (3.3), we have already
assembled a subset of the operators L(ω). As we will see, the operators assembled
during (3.3) can be used to construct arbitrary QL(ω)QT via interpolation.

If the matrix of the vectorized fine operators L(ω) is denoted by

(3.6) L ≡
[
vec(L(ω1)) vec(L(ω2)) . . . vec(L(ωp))

]
,
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then, in the process of computing the fine skeleton set Ŝ, we have already assembled
a subset of the columns of L, given by

(3.7) L̂ ≡ L(:, Ω̂) =
[
vec(L(ω̂1)) vec(L(ω̂2)) . . . vec(L(ω̂s))

]
.

Since the operators L(ω) change only slightly with the parameter ω, it stands to reason
that it should be possible to use the operators we’ve already constructed to somehow
assemble arbitrary columns of the full set of projected operators,

(3.8) Lrb ≡
[
vec(QTL(ω1)Q) vec(QTL(ω2)Q) . . . vec(QTL(ωp)Q)

]
.

We propose a linear interpolation method based on random samples of the fine oper-
ators L(ω).

To motivate our method, we first make an affine assumption. That is, we assume
it is possible to assemble the L(ω) by interpolating between the skeleton operators

L(ω̂) in L̂ as such,

(3.9) L(ωi) ≈
s∑
j=1

L(ω̂j)mji.

It follows by linearity, that

(3.10) QTL(ωi)Q ≈
s∑
j=1

QTL(ω̂j)Qmji.

Note that both (3.9) and (3.10) can be written in matrix form,

L ≈ L̂M,(3.11)

Lrb ≈ L̂rbM,(3.12)

where L̂rb ≡ Lrb(:,S) are the fine skeleton operators projected into the reduced basis
space and the M = (mji) ∈ Rs×p is the mixing matrix of interpolation coefficients.
However, we must now consider how to actually compute such a mixing matrix M.

Our answer is based on the observation that if one makes the affine assumption,
then to recover the coefficients mji, it suffices to randomly subsample important
parts of the operators (i.e., rows of L) and use the resulting samples to perform least
squares regression to obtain M. Let these important samples / row indices be denoted
by O. The choice O can be heavily dependent on the application. For example, if our
operators are diagonally dominant, then it would make sense to include the diagonal
of the fine operators in O. We can also select O to be slices of the operator, which
are cheap to construct, like a randomly chosen set of columns in the fine operators.
Ideally, we should have |O| � n2

rb.
Taking the rows corresponding to O in the above (3.11) gives

(3.13) L(O, :) ≈ L̂(O, :)M.

After computing L(O, :) for all fine operators, we then construct the mixing matrix
M via least-squares regression on (3.13). Once M is constructed, we can assemble any
projected operator QL(ω)QT by performing the linear interpolation given by (3.10).
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3.5. Reduced Basis and Mixing Matrix Construction Implementation.
Here, we provide an example implementation of both the construction of the reduced
basis, as described in Section 3.3, as well as the construction of the mixing matrix
described in Section 3.4. The pseudo-code for this example implementation is given in
Algorithm 2. To use the algorithm, we require that the user implement the following
primitives:

• FineSolve(ωi): This method takes in the parameter ωi and outputs the
corresponding fine solution u(ωi) as well as the corresponding vectorized fine
operator vec(L(ωi)). Nota bene that, in practice, it may be the case that
vec(L(ωi)) may be too large to store in memory. This is not an obstacle, as we
only use vec(L(ωi)) for notational convenience. To implement the following
algorithms, one only needs to be able to apply the operator L(ωi) and to be
able to sample a sparse subset of the entries of vec(L(ωi)).

• GetOperatorSamples(): This method chooses the set of operator entries
O (i.e., rows of the matrix L) to sample and outputs the operator samples
L(O, :), as described in Section 3.4.

Note that there is a part of the implementation which involves adding additional
skeletons to the skeleton set. This segment of the algorithm will be addressed in
Section 3.8.

3.6. Online Reduced Basis Solve Implementation. In this subsection, we
provide pseudo-code in Algorithm 3 for using the offline computations performed in
Algorithms 1 and 2 to compute fast online approximations to u(ω) for arbitrary ω ∈ Ω.
We suppose that we are provided with the following primitive:

• AssembleRightHandSide(Q, ωi): This method takes in the reduced ba-
sis Q and a paramter ωi and returns QTf(ωi) or an approximation thereof.
Depending on the problem being solved, there might be some intricacies to
this. However, if f(ωi) is inexpensive to assemble, then the oracle can simply
compute f(ωi) and apply QT. In other situations, one can use mathematical
manipulations to obtain an expression for f(ωi) in terms of already computed
expressions. See the radiative transport equation Section 4.2 for a nontrivial
case. In the worst case, if the entries of f(ωi) are not overly expensive to sam-
ple, one can sub-sample the f(ωi) and use the samples to linearly interpolate
between QTf(ω̂i) by constructing a mixing matrix using the technique in Sec-
tion 3.4. A more involved sub-sampling alternative could be to use a discrete
empirical interpolation method such as Q-DEIM [8] to compute sub-sampling
entries in f(ω) and interpolation weights for QTf(ω).

3.7. A Note on Gappy Matrix POD. We remark that the above method of
constructing reduced operators is close to Gappy Matrix POD in [7]. However, one key
distinction is that we do not orthogonalize the skeleton operators QTL(ω̂i)Q. Gappy
Matrix POD would involve vectorizing the skeleton operators L(ω̂i), taking SVD to
find a set of orthogonalized operators L⊥1 , ..., L

⊥
r , projecting them into the reduced

basis space, and then using QTL⊥1 Q, ...QTL⊥r Q to interpolate the general projected
operators QTL(ωi)Q. We do not do this. This is intentional. While performing
this orthogonalization may sometimes result in increased stability of interpolation,
for integral operators, it is not desirable to represent the underlying operators as full
dense matrices. Moreover, by virtue of how we select the skeleton operators, we ensure
to some extent that the interpolation problem is already relatively well-conditioned.
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Algorithm 2: Reduced Basis and Mixing Matrix Computation. (Offline)

Input: A sample space Ω
Output: A reduced basis matrix Q, a mixing matrix M, projections L̂rb of

fine skeleton operators into the reduced basis space.
/* Compute the important skeletons in the sample space */

S← GetSkeletons(Ω);

Ω̂← Ω(:,S);
/* Compute the corresponding fine skeleton solutions */

for ω̂j in Ω̂ do

(Ŝ(:, j), L̂(:, j))← FineSolve(ω̂j);

/* (Optional) Use additional skeleton extraction as described in

Section 3.8 */

if Using additional skeleton extraction then

(Ŝ(:, j), L̂(:, j))← AdditionalSkeletons(Ω, Ŝ, L̂,S,Lsamp);

/* Construct reduced basis matrix Q from fine skeletons Ŝ by

taking the first few left singular vectors of Ŝ. */

(U,Σ,V)← SVD(Ŝ);
Q← U(:,Σ > εσ1);
/* Compute the samples L(O, :) from each fine operators */

Lsamp ← GetOperatorSamples();
/* Perform least squares regression using the samples Lsamp to

compute the mixing matrix M. */

M← LeastSquares(Lsamp,Lsamp(:,S));

/* Project the skeleton operators L̂ into the reduced basis space

given by Q. Note L(ω̂j) has been reshaped into a matrix. */

for vec(L(ω̂j)) in L̂ do

L̂rb(:, j)← vec(QTL(ω̂j)Q);

return (Q,M, L̂rb);

3.8. Additional Skeleton Extraction. Sometimes, the fine operators L̂ we
assemble during our fine solves may not be sufficiently rich to reconstruct all of the
operators in Lrb via interpolation. If this is the case, then we must add additional
columns to our set of skeleton operators L̂. Note that we can use the fine operator
samples L(O, :) in the previous section to get a rough idea the important operators in
L. To find the operators we have failed to represent well with our choice of skeletons
L, we can consider the operator samples L(O, :) with our skeletons L(O,S) projected
out,

(3.14) Lres ≡ L(O, :)− PL(O, :),

where P is a projector onto the column space of L(O,S). We call these the residual
operator samples. This projection can be done via modified Gramm-Schmidt, for
example.

Then, before we compute the mixing matrix, we can perform a column pivoted
QR decomposition of Lres to find operators we’re unable to approximate well. Similar
to what was done in Section 3.3, we select the columns with a diagonal R-factor which
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Algorithm 3: Reduced Basis Solve for u(ω) (Online).

Input: A sample ω ∈ Ω for which to compute a reduced basis approximation,
the mixing matrix M, the projected skeleton operators L̂rb, and the
reduced basis matrix Q.

Output: An approximation urb of u(ω).
/* Assemble our approximation for the projected operator

Lrb ≡ QTL(ω)Q using the projected skeleton operators L̂rb and

the mixing matrix M. */

vec(Lrb)← L̂rb M(:, i);
/* Have the oracle assemble the right hand side of the equation,

i.e., frb(ω) ≡ QTf(ω), for us and project it into the reduced

basis space. */

frb ← AssembleRightHandSide(Q, ω);
/* Solve the system and return the result. */

v← L−1
rb frb;

/* Lift result from reduced basis space to Rn. */

urb ← Q v;
return urb;

is smaller than ηε multiplied by the largest column norm in the unprojected L(O, :),
where η is an arbitrary constant set by the user. Whatever columns A are selected
by this process, we append them to our set of fine operator skeletons L̂ as such,

(3.15) L̂ ←
[
L̂ L(:,A)

]
.

In addition, depending on the problem at hand, one can also add the corresponding
fine solutions of A to the fine solution skeleton set Ŝ, as these may add important fine
scale information which our coarse-proxy model may have missed,

(3.16) Ŝ←
[
Ŝ S(:,A)

]
.

Afterwards, one can continue with everything detailed in Section 3.4 without any
changes, using (3.15) instead of (3.7) for the skeleton operators L.

3.9. Implementation of Additional Skeleton Extraction. We now provide
a pseudo-code implementation in Algorithm 4 of the additional skeleton extraction
algorithm presented above in Section 3.8.

3.10. Interpolating Operators with an Offset. There are many problems
in which the operators L(ω) take on a natural form,

(3.17) L(ω) = A + B(ω),

where A does not depend explicitly on ω, and is shared among all of the operators
L(ω). We will see such examples of this later. In such situations, it may be more
advisable to interpolate the operator B(ω) instead of the full operator L(ω) when con-
structing reduced operators. All techniques from Section 3.4 carry over with minimal
modification. One assumes that there exist interpolation coefficients for the operators
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Algorithm 4: AdditionalSkeletons: Optional Additional Skeleton Extrac-
tion (Offline).

Input: A sample space Ω, a set of fine skeletons Ŝ, their corresponding
operator skeletons L̂ and indices S, and a matrix of operator samples
Lsamp.

Output: A possibly enlarged set of operator skeletons L̂ and fine solution
skeletons Ŝ.

/* Compute the maximum energy in the operator samples before we

project out the fine skeletons. */

a← maxi ‖Lsamp(:, i)‖2;
/* Project out the fine skeletons Lsamp(:,S) we’ve computed in

algorithm 1 from the samples Lsamp. */

Lres ← ProjectOut(Lsamp,Lsamp(:,S));
/* Extract important operators we’ve missed during reduced basis

extraction via QR decomposition of residual samples Lres. */

(Q, R, ρ)← CPQR(Lres);
/* Select only column indices for which rii ≥ ηεa. In practice,

this should be done by stopping the above QR factorization

when this first happens. */

A← ρ(rii ≥ ηεa);

/* Compute new set of additional fine operators L̂A and

additional fine solutions ŜA for the selected columns A. */

for ω′j in Ω(:,A) do

(ŜA(:, j), L̂A(:, j))← FineSolve(ω′j);

end

/* Add additional skeleton solutions ŜA to our existing skeleton

solutions Ŝ. */

Ŝ←
[
Ŝ ŜA

]
;

/* Append new skeletons L̂A to our existing skeletons L̂ */

L̂ ←
[
L̂ L̂A

]
;

return (Ŝ, L̂);

L(ω),

(3.18) B(ωi) ≈
∑
j

αijB(ω̂j).

Then one can find a mixing matrix M with

(3.19) Brb ≈ B̂rbM,

by simply performing a least squares solve of the equation

(3.20) B(O, :) ≈ B̂(O, :)M.

where B, B̂, Brb, B̂rb are defined analogously to L, L̂, Lrb, and L̂rb in Section 3.4.
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Once the mixing matrix M has been computed, note that the corresponding co-
efficients mji can then be used to interpolate the reduced operators QTL(ωi)Q,

(3.21) QTL(ωi)Q ≈ QTAQ +

s∑
j=1

QTB(ω̂j)Qmji.

The quantity QTAQ can be computed alongside the skeleton operators QTB(ω̂j)Q
when projecting operators into the reduced basis space.

4. Numerical results. To demonstrate that our framework is both a practical
and efficient approach to model order reduction for integral equations, we perform
simulations on the two following examples.

4.1. Boundary Integral Formulation of the Laplace Equation. We con-
sider the Laplace equation

(4.1)
∆ϕ = 0, in D,
ϕ = f, on ∂D,

where D ⊂ R2 is a bounded Lipschitz domain. Introduce the single layer potential u,
which is given by the solution to the integral equation

(4.2) f(x) =
1

2
u(x)−

ˆ
∂D

∂G(x,y)

∂n(y)
u(y) ds(y),

where G denotes the Green’s function of the Laplace equation in 2D,

(4.3) G(x,y) =
1

2π
ln

1

|x− y|
.

Then once u has been computed by solving the integral equation (4.2), the solution
φ to Laplace equation can be recovered by

(4.4) ϕ(x) = −
ˆ
∂D

∂G(x,y)

∂n(y)
u(y) ds(y).

Hence, the key of this problem is to solve the boundary integral equation (4.2).
To bring this problem in the many-query setting of our framework, we suppose

that the shape of the domain D(ω) is parameterized by ω taken from a sample space
Ω∞. Thus, the integral equations we would like to solve are given by

(4.5) f(x) =
1

2
u(x;ω)−

ˆ
∂D(ω)

∂G(x,y)

∂n(y)
u(y;ω) ds(y),

where f(x) is a function prescribed on R2, which we hold constant across all problem
instances in Ω∞. One can discretize this equation by taking a discrete number of
samples of u on ∂D, and using an appropriate integral quadrature for the integral
kernel above. An example oracle for this problem is one that uses a significantly
reduced number of quadrature points on ∂D as its coarse-proxy model. Note that
using a coarse-proxy model with low resolution becomes difficult when the source
function f exhibits singular behavior near the boundary ∂D, as the high frequency
content in u is difficult to resolve. Nonetheless, even if such a coarse-proxy model
is used for skeleton extraction, our results suggest that using the additional skeleton
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extraction techniques discussed in Section 3.8 will compensate for the information
which the coarse-proxy model cannot resolve, since this high-frequency information
will present itself in the operator samples.

Regardless of the exact implementation of the oracle’s scheme for extracting skele-
tons, the discretized equation (4.5) reads

(4.6) L(ω)u(ω) = f(ω),

where u(ω) is the discretized version of the double layer potential u, f(ω) is the source
term f sampled on ∂D(ω). And L(ω) is a matrix that has the form

(4.7) L(ω) =
1

2
I− G(ω),

where I is the identity, and G(ω) is the discretized integral kernel in (4.5).
After skeleton extraction and construction of the reduced basis Q, the projected

equations in the reduced basis are given by

(4.8)

(
1

2
I− QTG(ω)Q

)
v(ω) = QTf(ω) u(ω) ≈ Q v(ω)

One can construct the reduced operators QTG(ω)Q via the techniques discussed in
Section 3.4. For our operator samples, we sample a few columns of all operators G(ω).
In general, f(ω) is inexpensive to assemble, so one can simply construct the source
term f(ω) and project it into the reduced basis space by applying QT during an online
reduced basis solve.

4.1.1. Results. We parameterize the boundary ∂D(ω) by a polar curve γ(θ;ω) :
R× Ω −→ R2, where θ ∈ [0, 2π) and

(4.9) γ(θ;ω) ≡ r(θ;ω) [cos(θ), sin(θ)]
T
,

where r(θ;ω) : R×Ω −→ R is the radial distance of this curve from the origin at angle
θ. To specify the radial function, we chose a set of interpolation points θ = 2πk/N
for k ∈ {0, ..., N − 1} and require that

(4.10) r(2πk/N ;ω) = bk(ω)

where bk(ω) are interpolation value for the radial function r(θ;ω) at the interpolation
points θ = 2πk/N . We then determine remainder of the curve γ by Fourier interpo-
lation. Viewing the continuous parameter set Ω∞ as a probability space, we take the
radial interpolation points bk(ω) to be i.i.d. uniformly random in the interval,

(4.11) bk(ω) ∼ U([1− κ, 1 + κ]).

Finally, to make the problem challenging, we take the source function f(x) to have a
singularity which can potentially be situated near the curve γ. In particular, we take

(4.12) f(x) ≡ 1

‖x− x0‖2
.

To ensure there are problem instances where the curve γ comes close to the singularity
located at y we take our parameters to be

(4.13) κ = 0.4, x0 = (0.6, 0), N = 8.
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Finally, to extract a discrete parameter space Ω ⊂ Ω∞, we draw |Ω| = 32768 random
samples from Ω∞.

For our full-order model, we use a total of nf = 2048 quadrature samples.
Whereas, for our coarse-proxy model, we use a total of nc = 128 quadrature sam-
ples. For selecting additional skeletons, we use a selection threshold multiplier of
η = 1.5.

0 20 40 60
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-6

-4

-2

0

(a) Diagonal of R

0 20 40 60
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-6

-4

-2

0

(b) Sigular value σk

Fig. 4.1: Left: the normalized diagonal values of R in the skeleton selection for the
described Laplace equation problem. Right: the normalized singular values in the
basis construction for the described Laplace equation problem.

Plot (a) in Figure 4.1 presents the diagonal values of R in Algorithm 1 for this
numerical experiment. As indicated in Algorithm 1, we compute these diagonal values
from the coarse-proxy model solutions and use them to select skeleton parameters.
Plot (b) in Figure 4.1 shows the values of the singular values σk in Algorithm 2, which
are used to construct the reduced basis. One sees that, if the threshold ε satisfies
ε < 1 × 10−4, then log10(Rii/R11) and log10(σk/σ1) decay almost linearly. We also
provide a visualization of the first 36 reduced basis (with respect to σk) in Fig. 4.2.
Note that, as the singular values σk decay, the corresponding basis vectors contain
increasingly more high frequency information. For further evaluation, we provide
Fig. 4.3, a side-by-side comparison of our reduced basis method for ε = 1 × 10−6

with the underlying full-order model on three different parameter instances. We note
that our method provides an accurate approximation of the solution to the Laplace
problem.

To quantitatively demonstrate the performance gains of our reduced-order model
over the full-order model, as well as the reduced-order model’s validity for different
thresholds, we evaluated both the full-order and reduced-order solutions for each
element of Ω. The resulting relative L2 error ‖u(ω)−urb(ω)‖2/‖u(ω)‖2 and the runtime
are all recorded in Table 4.1. When evaluating all solutions in bulk, our reduced basis
method provides between a ten-fold and twenty-fold performance increase over the
full-order model for a wide range of accuracy targets between .1% and 10% relative
L2 error, as recorded in (4.6). Note, crucially, that this figure includes the expensive
offline phase of our reduced basis method. Moreover, if one halves the threshold ε, the
average relative L2 shrinks by an approximate factor of two. Therefore, this method
approximately exhibits linear convergence with respect to the threshold. This fact is
further illustrated in Fig. 4.4.

We also note that the offline stage for ε = 5 × 10−6 in Table 4.1 takes less time
than the offline stage for ε = 1×10−5, which is because proportionally fewer skeletons
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Fig. 4.2: Profiles of the reduced basis generated for the described boundary integral
form of the Laplace equation problem for different singular values σk.

are selected during the additional skeleton extraction phase.

4.2. Radiative Transport Equation with Isotropic Scattering. We con-
sider the steady state radiative transport equation with the form

v · ∇xΦ(x,v) + µt(x)Φ(x,v) =
µs(x)

2π

ˆ
S1

Φ(x,v′) dv′ + g(x), in D × S1,

Φ(x,v) = 0, on Γ−,

(4.14)

where Φ(x,v) denotes the photon flux at spatial position x ∈ R2 in direction v ∈ S1,
and g(x) is the light source. D ⊂ R2 is the problem domain, S1 is the unit sphere in
R2. Γ− is the inward facing problem boundary, given by

(4.15) Γ− ≡ {(x,v) ∈ ∂D × S1 | n(x) · v < 0},

where n(x) is the normal of domain D at position x. The boundary condition in (4.2)
enforces that no light is entering the domain of interest. The transport coefficient
µt(x) measures the total absorption at x, which results from both physical absorption
as well as from scattering, the latter of which is quantified by the scattering coefficient
µs(x).
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Fig. 4.3: Three examples of the solutions evaluated by the reduced basis method
(RBM) for the single layer potential u(θ;ω) for the parameter set Ω described for
the boundary integral form of the Laplace equation and their corresponding reference
solution (ref) with threshold ε = 1× 10−6. The upper figures are the domain D and
the red point is the location of the singularity in (4.13).

In this scenario, our quantity of interest is the local mean density m(x) defined
as

(4.16) m(x) ≡ 1

2π

ˆ
S1

Φ(x,v′) dv′.

As studied in [26, 9], one can reformulate the differential equation (4.14) into an
integral equation using the method of characteristics. This transformation yields the
integral equation

(4.17)

[
1

µs(x)
−K

]
u(x) = Kg(x) with Kφ(x) ≡

ˆ
D
K(x,y)φ(y) dy,
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ε s nrb T
(offline)
rb T

(online)
rb Tfine Tfine/Trb L2 error

2× 10−4 52 6 157 sec 4.00 sec 4380 sec 27.2× 0.4997
1× 10−4 67 11 186 sec 6.09 sec 4380 sec 22.8× 0.1764
5× 10−5 77 15 206 sec 6.48 sec 4380 sec 20.6× 0.0648
2× 10−5 98 20 252 sec 7.51 sec 4380 sec 16.9× 0.0292
1× 10−5 115 26 283 sec 8.92 sec 4380 sec 15.0× 0.0136
5× 10−6 132 30 229 sec 10.03 sec 4380 sec 18.3× 0.0060
2× 10−6 150 38 254 sec 12.59 sec 4380 sec 16.4× 0.0038
1× 10−6 179 43 295 sec 15.77 sec 4380 sec 14.1× 0.0023
5× 10−7 194 48 315 sec 18.11 sec 4380 sec 13.2× 0.0018

Table 4.1: Test results for our reduced basis method on the described Laplace equa-
tion problem. Here ε denotes the selection threshold used for reduced basis construc-
tion, s denotes the number of skeletons selected by our method (i.e., the number of
fine solves used to construct the reduced basis), nrb denotes the dimension of the

reduced basis constructed, T
(offline)
rb denotes the amount of time in seconds used

in reduced basis construction, T
(online)
rb denotes the amount of time in seconds used

to solve all problem instances from Ω using our method once the reduced basis has

been constructed, Trb = T
(offline)
rb + T

(online)
rb denotes the total amount of time in

seconds used by our method to compute approximations to all problem instances in
Ω, and Tfine/Trb denotes the ratio between the time taken by our method to com-
pute approximate solutions to all problem instances in Ω and the time Tfine taken
to naively compute all exact fine solutions in Ω, i.e., the computational speed-up
our algorithm provides. Finally, L2 error denotes the average relative L2 error, i.e.,
‖u(ω)− urb(ω)‖2/‖u(ω)‖2 averaged over the parameter set Ω.

where u(x) = µs(x)m(x) the integral kernel K(x,y) of the operator K is given by

(4.18) K(x,y) ≡ 1

|S1|
1

|x− y|
exp

(
−|x− y|

ˆ 1

0

µt(x− τ(x− y)) dτ

)
.

To bring this problem into the many-query setting of our reduced basis framework,
we now suppose that the scattering and transmission coefficients µs and µt have an
explicit dependence on a parameter ω taken from some sample space Ω∞. Henceforth,
we will therefore write them as µs(x;ω) and µt(x;ω). Here, ω can encode small
fluctuations or uncertainties about the underlying medium that the light propagates
through. Making the dependence on the parameter ω explicit in (4.17) gives us the
set of integral equations to solve,

(4.19) [I − µs(x;ω)K(ω)]u(x;ω) = µs(x;ω)K(ω)g(x) ,

where I is the identity operator.
To discretize the above equation, we use a collocation method combined with

Gauss-Legendre quadrature, as outlined in [9]. This discretization gives us the linear
system

(4.20) L(ω)u(ω) = f(ω) ,

where L(ω) and f(ω) have the forms

(4.21) L(ω) = I + B(ω), f(ω) ≡ −B(ω)g ,
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Fig. 4.4: A log-log convergence plot of our method on the Laplace equation example,
showing the average error 〈E〉 over the parameter set Ω against the inverse of the
selection threshold ε.

and I, B(ω), and g are the discretized versions of I, −µs(x;ω)K(ω), and g(x) respec-
tively.

The application of our framework to this problem is now straightforward. To
solve the full-order model, we use hierarchical interpolative factorization [17]. For our
coarse-proxy model, we simply use significantly fewer collocation points in D. We
then use the method described in Sections 3.1 and 3.3 to compute a suitable reduced
basis matrix Q for this problem in the offline stage.

In the remainder of the offline stage, we use the method described in Sections 3.4
and 3.10 to sample B(ω) and construct a mixing matrix M such that

(4.22) Brb ≈ B̂rbM,

where once again we define Brb to be the matrix vectorized reduced operators,

(4.23) Brb ≡
[
vec(QTB(ω1)Q) vec(QTB(ω2)Q) . . . vec(QTB(ωn)Q)

]
,

and B̂rb ≡ Brb(:,S) are our reduced operator skeletons. For the samples O in the
computation of M, we use a small number of randomly selected columns.

With the offline stage complete, we now switch focus to the online stage. To solve
the desired equation

(4.24) (I + QTB(ω)Q)v(ω) = −QTB(ω)g, u(ω) ≈ Q v(ω),

we can assemble the reduced operator I + QTB(ω)Q from the reduced operator skele-
tons Brb by using (4.22). Consider the matrix

(4.25) Frb ≡
[
−QTB(ω1)g −QTB(ω2)g . . . −QTB(ωn)g

]
,

and note that the interpolation weights computed for the reduced operators QTB(ω)Q
carry over to this matrix. That is,

(4.26) Frb ≈ F̂rbM,

where F̂rb ≡ F(:,S). Since we must assemble the quantities −B(ω̂i)g during the
computation of fine solutions for our reduced basis regardless, computing the matrix
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F̂rb is fairly inexpensive, and only involves applying the matrix QT to the vectors
−B(ω̂i)g. This means, if we compute F̂rb during the offline stage, we then have an
inexpensive method of assembling the right hand side, regardless of the fact that the
expression involves the operator B(ω).

4.2.1. Results. As a test case for the above example, we consider the domain
D ≡ [0, 1]2. We let µs(x;ω) and µt(x;ω) be Guassians with varying centers and
widths,

µt(x;ω) ≡ µs(x;ω) ≡ 1 +Aω exp(−((x1 − c1ω)2 − (x2 − c2ω)2)/θ2
ω),(4.27)

where the parameters ω ∈ Ω have the form

(4.28) ω ≡
[
Aω c1ω c2ω θω

]
.

We take the source term g(x) to be

(4.29) g(x) ≡ exp(−256((x1 − 0.5)2 + (x2 − 0.5)2)).

To build the parameter space Ω we vary both the width and the location of the
Gaussian ensemble above. Let ΩA,θ,N be defined as

(4.30) ΩA,θ,N ≡
{[
A i/N j/N θ

]
| i, j = 0, ..., N

}
,

that is, parameters for Gaussians with width θ and amplitude A centered at grid
points (i/N, j/N). Take our parameter space Ω to consist of these Gaussians with
three different widths/amplitudes,

(4.31) Ω ≡
⋃
A∈A

⋃
θ∈Θ

ΩA,θ,N ,

where

A ≡ {2, 4, 6, 8, 10}, Θ ≡ {0.2, 0.3, 0.4, 0.5, 0.6}, N = 20.

This gives a total parameter space size of |Ω| = 11025. Our full-order model is the
model described in Section 4.2, with a grid size of nf × nf where nf = 128. We
use the algorithm described in this paper to build a reduced basis for this model
and approximate true solutions. For our coarse-proxy model with the same model
described in Section 4.2 but with a grid size of nc × nc instead, where nc = 32. We
use the procedure described in Section 3.8 to add additional skeletons to our skeleton
set when operator samples cannot be well-represented using a linear combination the
operator samples of the selected skeletons. For selecting additional skeletons, we use
a selection threshold multiplier of η = 1.5.

Plot (a) in Figure 4.5 presents the diagonal values of R in Algorithm 1 for this
numerical experiment. As indicated in Algorithm 1, we compute these diagonal values
from the coarse-proxy model solutions and use them to select skeleton parameters.
Plot (b) in Figure 4.5 shows the values of the singular values σk in Algorithm 2,
which are used to construct the reduced basis for ε = 5 × 10−6. We also provide a
visualization of the first 25 reduced basis (with respect to σk) in Fig. 4.6. Note that,
as the singular values σk decay, the corresponding basis vectors contain increasingly
more high frequency information.
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Fig. 4.5: Left: the normalized diagonal values of R in the skeleton selection for the
described radiative transport problem. Right: the normalized singular values in the
basis construction for the described radiative transport problem.

Once again for the visualization proposes, we present the reduced basis for ε =
1 × 10−4 in Fig. 4.6 — together with side-by-side comparisons, on three different
parameter instances, of our reduced basis approximation for ε = 1 × 10−4 to the
underlying full-order solution, in Fig. 4.7. We note the reduced basis method gives a
good approximation of the solution.

To further test the validity and efficiency of our reduced-order model, we run a
parallel battery of tests to those we ran for the previous numerical example. For each
element of Ω, we compute both the true solution u(ω) and the reduced basis approxi-
mation urb(ω), and afterwards evaluate the relative L2 error ‖u(ω)−urb(ω)‖2/‖u(ω)‖2.
We present the results of this computation in Table 4.2. When evaluating all solutions
in bulk, our reduced basis method provides between a seventeen-fold and thirty-five-
fold performance increase over the full-order model for a wide range of accuracy targets
between .8% and 5% relative L2 error, as recorded in (4.6). Note, once again, that
this figure includes the expensive offline phase of our reduced basis method. While
this numerical example does not quite match the linear convergence of the previous
numerical example, we still note that the error always decreases as the parameter ε
decreases. Therefore, our method exhibits convergence, as seen in Table 4.2.

5. Conclusion and Future Work. We have developed a simple and general-
purpose reduced basis approximation technique for linear elliptic integral operators.
As shown by the empirical results, this method results in significant performance
increases on the simple problems we have applied it to. Due to the complexity scaling
exhibited by numerical simulations, this method might produce even more significant
performance increases at scale. Moreover, we hope that the techniques put forth in
this paper will provide a useful starting point for future work in model order reduction
for integral equations.

Possible avenues for such future work include the application of these techniques
to larger scale problems, or perhaps, the application of these techniques to electromag-
netic scattering to give a real comparison to currently existing work in [10, 15]. Other
possible areas for future work include the method by which the reduced operators
QTL(ω)Q are assembled. One could imagine finding a better operator sampling mask
than the randomly selected ones in this paper. It may also be possible that at scale,
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Fig. 4.6: Reduced basis vectors generated for the described radiative transport prob-
lem and their corresponding normalized singular values σ̃k.

the method we use to compute interpolation coefficients may be subject to overfitting.
However, in our experience working on the radiative transport and Laplace equation
examples, the interpolation error for the reduced operators is not a dominant source
of error except at very small values of the threshold ε where the total average error
is already very small. Finally, for problems at scale, there is a trade-off that must
be made between the quality and computation time for the coarse-proxy model. It
may be useful in this situation to use a series of coarse-proxy models (rather than a
single one), each subsequent one finer than the last, to progressively filter down the

parameter set Ω to the skeleton set Ω̂.
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