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Abstract. In this paper, we evaluate the performance of the multilevel Monte Carlo method (MLMC) for
deterministic and uncertain hyperbolic systems, where randomness is introduced either in the modeling parameters
or in the approximation algorithms. MLMC is a well known variance reduction method widely used to accelerate
Monte Carlo (MC) sampling. However, we demonstrate in this paper that for hyperbolic systems, whether MLMC
can achieve a real boost turns out to be delicate. The computational costs of MLMC and MC depend on the interplay
among the accuracy (bias) and the computational cost of the numerical method for a single sample, as well as the
variances of the sampled MLMC corrections or MC solutions. We characterize three regimes for the MLMC and MC
performances using those parameters, and show that MLMC may not accelerate MC and can even have a higher cost
when the variances of MC solutions and MLMC corrections are of the same order. Our studies are carried out by
a few prototype hyperbolic systems: a linear scalar equation, the Euler and shallow water equations, and a linear
relaxation model, the above statements are proved analytically in some cases, and demonstrated numerically for the
cases of the stochastic hyperbolic equations driven by white noise parameters and Glimm’s random choice method for
deterministic hyperbolic equations.
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1. Introduction. The Monte Carlo (MC) method is a widely used computational tool from
multidimensional integration, to statistical physics and finance. It is a sampling method which gen-
erates a large number of samples to retrieve statistical information that can be a good approximation
of a given random or deterministic problem, without curse-of-dimensionality. The accuracy of MC
is governed by the variance of those samples and the bias induced by the discretization method.
To further reduce the variance and to accelerate the sampling algorithm, Multilevel Monte Carlo
(MLMC) method [12] can be adopted by decomposing the calculation of the quantity of interest
(QoI) to hierarchical levels. MLMC has achieved great success for the efficient simulation of stochas-
tic differential equations (SDE) [1, 9, 12], elliptic PDEs with random coefficients [5, 8], and particle
methods for transport equations [24].

In this paper, we consider linear and nonlinear hyperbolic systems where MC and MLMC can
be applied in the following circumstances: i), for hyperbolic equations with random parameters; ii),
for randomized algorithms of deterministic hyperbolic equations. These two cases have interesting
applications in random algorithms for deterministic problems [6, 13], or problems in uncertainty
quantification [2, 3, 16, 27]. Although MLMC has be shown to accelerate MC for many stochastic
PDEs and randomized algorithms, we will demonstrate that, at least in the context of hyperbolic
systems, the situation is more subtle.

Let us start by considering the stochastic differential equation du(t) = a(u, t)dt + b(u, t)dW .
To compute certain QoI, for example, E [u(T )], one can employ a discretization method such as the
explicit Euler method, un+1 = un + a(un, tn)∆t + b(un, tn)∆W , with time step ∆t. Let N be the
number of samples, and σ be the standard deviation of each sample. It is well known that, the mean
square error (MSE) is bounded by c1N

−1σ + c2∆t2, where c1, c2 are positive constants. The first
term comes from the statistical error of the MC estimation, and the second term comes from the
bias, which is in turn bounded by the discretization error of the numerical method. For SDE, σ is a
constant independent of ∆t, and we can take ∆t ≈ O(δ), N ≈ O(δ−2), such that the MSE is O(δ2)
and the computational cost is O(δ−3).

The multilevel Monte Carlo (MLMC) method proposed by Giles [12] et. al. is one of the state-of-
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the-art variance reduction techniques to further reduce the computational cost. MLMC samples the

solution P
(0)
0 on the coarsest level and corrections P

(l)
l −P

(l−1)
l on the finer levels, then assembles an

estimator for the QoI on the finest mesh by a telescoping sum. A sample correction P
(l)
l −P

(l−1)
l can

be obtained using solutions P
(l)
l , P

(l−1)
l with the same set of random variables (random trajectory)

on the lth level, but with different time steps ∆tl and ∆tl−1. The key to MLMC is the reduction of

Var
[
P

(l)
l − P

(l−1)
l

]
without changing the expectation E

[
P

(l)
l − P

(l−1)
l

]
. It can be proved that for

SDE, the computational cost of MLMC can be reduced to O(δ−2(log δ)2) [12, Theorem 3.1], under
certain conditions for the variances of corrections.

For hyperbolic equations, as one needs to consider both spatial and temporal variables, the
situation is more complex. It turns out that, whether or not MLMC can enhance the performance
of a MC sampling algorithm for hyperbolic problems, depends on the interplay between the bias
induced by the numerical method for a single sample, variances of the sampled MC solutions or
MLMC corrections, and the computational cost of the numerical method for a single sample, which
can be characterized by problem dependent parameters.

To be more specific, let P
(l)
l be the MC solution at the lth level, and Yl := P

(l)
l − P

(l−1)
l be the

MLMC correction at the lth level (l ≥ 1). Let
• α denote the order of accuracy for the numerical method of a single sample (bias). In this

paper, we always use first order method with α = 1 unless otherwise stated.
• β0 and β denote the orders of the variances of MC solutions and MLMC corrections, re-

spectively. Namely Vl := Var
[
P

(l)
l

]
≤ c2(∆tl)

β0 , and Vl := Var [Yl] ≤ c2(∆tl)
β .

• γ denote the order of the computational cost for a single sample such that the cost is
O(∆t−γ). For explicit numerical methods, γ corresponds to the physical dimension of the
problem, for example, γ = 1 for SDE, and γ = 2 for 1D SPDE.

We can estimate the cost of MLMC and MC algorithms through parameters α, β or β0, γ,
and the desired accuracy δ > 0, using Theorem 2.2 and Theorem 2.3 in § 2. In general, when
β0 ≤ β ≤ γ, up to a logarithmic factor, the cost of MC is O(δ−2−(γ−β0)/α), and the cost of MLMC
is O(δ−2−(γ−β)/α). Therefore, when β0 = β, the computational costs of MC and MLMC are of the
same order. Namely, MLMC does not accelerate and may even cost more than MC. In fact, we have
identified a few such examples, such as hyperbolic equations with white noise parameters, as well as
the random choice algorithm for the (deterministic) Jin-Xin model [18] which is a hyperbolic system
with relaxation.

We list the results in Table 1 for the problems from literature [1, 5, 8, 9, 12, 24] and the hyperbolic
problems that we study in this paper.

• Case 1: stochastic differential equation (SDE) [1, 9, 12];
• Case 2: random elliptic equation [5, 8];
• Case 3: particle method for transport equations [24];
• Case 4: scalar advection equation with random time dependent velocity a(t, ω), see § 3,

– 4.1, a is piecewise constant in finite number of time intervals,
– 4.2, a is uniform white noise in time;

• Case 5: Euler equations with random time dependent adiabatic constant λ(t, ω), see § 4.1,
– 5.1, λ is piecewise constant in finite number of time intervals,
– 5.2, λ is uniform white noise in time;

• Case 6: shallow water equation with random bottom topography B(x, ω), see § 4.2,
– 6.1, B has a finite number of random parameters,
– 6.2, B has uniform white noise parameters;

• Case 7: random choice method for deterministic Jin-Xin model, see § 5,
– 7.1, semi-random case, only use random choice for the relaxation step,
– 7.2, fully-random case, use random choice for both the convection and the relaxation

steps.
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Cases
Dimension Parameters cost

Regime
physical random (K) α β0 β γ MC MLMC

1 t T/∆t, in t 1 0 1 1 δ−3 δ−2(log δ−1)2 I
2 x O(1), in x 1.75∗ 0∗ 2∗ 1 δ−2.57 δ−2 I
3 x, t T/∆t, in t 1 0∗ 1 1 δ−3 δ−2(log δ−1)2 I

4
4.1 x, t O(1), in t 1 0 2 2 δ−4 δ−2(log δ−1)2 I
4.2 x, t T/∆t, in t 1 1 1 2 δ−3 δ−3 II

5
5.1 x, t O(1), in t 1 0∗ 1.5∗ 2 δ−4 δ−2.5 I
5.2 x, t T/∆t, in t 1 1∗ 1∗ 2 δ−3 δ−3 II

6
6.1 x, t O(1), in x 1 0∗ 1∗ 2 δ−4 δ−3 I
6.2 x, t T/∆t, in x 1 0∗ 0∗ 2 δ−4 δ−4 III

7
7.1 x, t (T/∆t)

2
, in x, t 1 0.5∗ 0.5∗ 2 δ−3.5 δ−3.5 II

7.2 x, t (T/∆t)
2
, in x, t 1 0∗ 0∗ 2 δ−4 δ−4 III

Table 1
Comparison of MLML and MC. Parameters α, β0, β, and γ are either analytically derived or obtained by

numerical experiments which are marked with a ∗. The complexities are computed using Theorem 2.2 and Theorem 2.3
in § 2, and numerically validated in literature or in the numerical experiments in § 3, § 4 and § 5. The expressions
‘in x’, ‘in t’, ‘in x, t’, in the ‘random (K)’ column indicate the dependence on the random parameters, K is the
number of random parameters (random dimension) in the problem, T is the computational time, and ∆t is the time
step of the numerical method.

From above results in Table 1, we can identify three regimes:
• Regime I, β > β0 = 0, for example, SDE and SPDEs with finite number of random param-

eters, where MLMC outperforms MC by orders of magnitude.
• Regime II, β0 = β > 0, where we can observe the decay of variances of MC solutions and

MLMC corrections. The costs of both MLMC and MC are of the order O(δ−4+β), which is
the case for the scalar advection equation and the Euler equations with uniform white noise
parameters in time, and the semi-random choice method for the Jin-Xin model.
• Regime III, β0 = β ' 0, namely, the variances of MC solutions and MLMC corrections do

not decay with respect to discretization parameters (time step and mesh size). The costs of
both MLMC and MC are of the worst possible order δ−4, which is the case for the shallow
water equation with uniform white noise parametrized topography and the fully-random
choice method for the Jin-Xin model.

Outline. The rest of this paper is organized as follows. In § 2, we describe the principle and
algorithm of MLMC, and present the main theorems – the cost analysis of MLMC and standard
MC methods. In § 3, we first carry out an in-depth analysis for the scalar advection equation
with a random velocity, then justify it with numerical experiments. In § 4 and § 5, we provide
comprehensive numerical experiments for other test examples, including hyperbolic equations with
random parameters such as the Euler equations and the shallow water equations, and the random
choice method for the multiscale Jin-Xin model. We conclude the paper in Section § 6.

Notation. The symbol C (or c) denotes generic positive constants that may change from one
line of an estimate to the next. When estimating rates of decay or convergence, C will always remain
independent of approximation parameters. The dependence of C will be clear from the context or
stated explicitly. The expectation and variance of a random variable X is abbreviated as E [X] and
Var [X] respectively. The covariance of two random variables X, Y is abbreviated as Cov [X,Y ].
To further simplify notation we will often write ≈ to mean that both sides of ≈ are equivalent
infinitesimal.

2. The Multilevel Monte Carlo method. In this section, we first introduce the Multilevel
Monte Carlo (MLMC) method and formulate the MC and MLMC algorithms in § 2.1. Then we
present the theorems for their computational costs in § 2.2, which provide the crucial theoretical
foundation of the paper.

2.1. Formulation and algorithm.

This manuscript is for review purposes only.



4 JUNPENG HU, SHI JIN, JINGLAI LI AND LEI ZHANG

2.1.1. MLMC formulation. Given the time dependent hyperbolic problem with randomness,
we denote ∆tl as the time step on hierarchical levels l = 0, 1, . . . , L, with ∆tl−1 = Γ∆tl with the
integer refinement ratio Γ > 1, and ∆xl as the corresponding grid size which satisfies the CFL
stability condition.

For simplicity, we denote P (l) as the random numerical solution at final time T computed using
time step ∆tl. The QoI E

[
P (L)

]
for MLMC can be expanded as a telescoping sum

(2.1) E
[
P (L)

]
= E

[
P (0)

]
+

L∑
l=1

(
E
[
P (l)

]
− E

[
P (l−1)

])
.

Instead of approximating E
[
P (L)

]
on the finest level L, we can approximate the terms on the

right hand side of (2.1) by independent samples on hierarchical levels l = 0, 1, . . . , L, and sum them
together. The name of the game is now how to reduce the sample variances.

To be more precise, let P
(l′)
l (s) be the sth sampled solution at final time T computed using

random variables on the lth level, as well as the time step ∆tl′ and the grid size ∆xl′ on the level
l′, with l′ = l − 1, l. Let Nl be the number of samples on the lth level. That is to say, we have

samples P
(0)
0 (s) on the 0th level, with s = 1, . . . , N0, and P

(l)
l (s), P

(l−1)
l (s) on the lth level, with

s = 1, . . . , Nl, l = 1, . . . , L.

We call P
(l)
l − P

(l−1)
l as the MLMC correction. Since P

(l)
l (s) and P

(l−1)
l (s) are solutions on

successive levels using the same random variables on the lth level, we have E
[
P

(l)
l − P

(l−1)
l

]
=

E
[
P (l)

]
− E

[
P (l−1)

]
. At the same time, we hope that Var

[
P

(l)
l − P

(l−1)
l

]
is small.

Hence, we have the following MLMC estimate

(2.2)

P̂ (L) := N−1
0

N0∑
s=1

P
(0)
0 (s) +

L∑
l=1

N−1
l

Nl∑
s=1

(
P

(l)
l (s)− P (l−1)

l (s)
)

, P̂
(0)
0 +

L∑
l=1

(
P̂

(l)
l − P̂

(l−1)
l

)
.

2.1.2. Optimal parameters for MLMC. In the MLMC estimate (2.2), one needs to choose
the number of samples Nl on hierarchical levels. The optimal value of Nl can be determined in
terms of the cost and variance of MLMC corrections by the following argument.

Let C0, V0 be the computational cost and variance of P
(0)
0 , and Cl, Vl be the computational cost

and variance of P
(l)
l − P

(l−1)
l , then the computational cost C and the variance of P̂ (L) are

(2.3) C =

L∑
l=0

NlCl, Var
[
P̂ (L)

]
=

L∑
l=0

N−1
l Vl.

Let R = Var
[
P̂ (L)

]
be the variance of P̂ (L), and our aim is to minimize the cost with respect

to Nl. Using the Lagrange function L with the multiplier µ2, we have

(2.4) L(Nl, µ
2) =

L∑
l=0

NlCl + µ2

(
L∑
l=0

N−1
l Vl −R

)
.

The Kuhn-Tucker conditions (KKT) condition writes

(2.5)
∂L(Nl, µ

2)

∂Nl
= Cl − µ2VlN

−2
l = 0, ⇒ Nl = µ

√
Vl/Cl,

which means that the optimal Nl is proportional to
√
Vl/Cl. By substituting (2.5) into R =

Var
[
P̂ (L)

]
, one gets

(2.6) µ = R−1
L∑
l=0

√
VlCl, Nl = R−1

√
Vl/Cl

(
L∑
l=0

√
VlCl

)
.
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Remark 2.1. The variance Vl is not known a priori, and one needs to estimate these values
through samples in the implementation.

2.1.3. An adaptive algorithm. In this paper, we adopt the MLMC algorithm (as well as
MC) with adaptively refined discretization levels as formulated in Giles’ paper [12]. We decompose
the MSE into bias and variance, and require that both the squared bias and the variance of the
estimator are bounded by δ2/2. This requirement leads to the adaptive criteria for the finest level
L. The difference of MLMC and MC is that MLMC combines information from all the levels, while
MC only uses the samples on the finest level and the coarser levels are only used to determine the
finest level.

For simplicity, we denote P as the exact solution at the final time T , P̂
(l)
l , P̂

(l−1)
l as the estimated

MLMC solutions on level l with time step ∆tl, ∆tl−1 = Γ∆tl respectively, and

(2.7) Ŷl =

{
P̂

(0)
0 , l = 0,

P̂
(l)
l − P̂

(l−1)
l , l > 0,

as estimated MLMC corrections.
Given the accuracy threshold δ > 0 for the MLMC algorithm, we start from the initial 0th

level. Using an initial N0 = NI number of samples, we obtain the Monte Carlo estimates V̂0, Ŷ0

of V0, Y0 respectively. Then the updated number of samples on 0th level N ′0 can be determined by

N ′0 =
⌈
2δ−2V̂0

⌉
. If N ′0 > N0, we evaluate extra samples and update V̂0, Ŷ0, N0 = N ′0.

For the iteration l→ l+1, Vl+1, Yl+1 can be estimated by V̂l+1, Ŷl+1 at the new level l+1 using
Nl+1 = NI samples, then the optimal number of samples on the kth level N ′k, with k = 0, . . . , l+ 1,
can be determined by

(2.8) N ′k =

2δ−2

√
V̂k/Ck

 l+1∑
j=0

√
V̂jCj

 ,
where Cj is the computational cost on level j. If N ′k > Nk, we let Nk = N ′k, evaluate extra samples

and update V̂k, Ŷk.
We can identify the finest level L by an a posterior error estimate through the requirement

that the squared bias of the estimator is bounded by δ2/2. For a numerical scheme with (weak)
convergence rate α, we have

(2.9) E
[
P̂

(l)
l − P

]
= E

[
P

(l)
l − P

]
≈ c1(∆tl)

α.

The following estimate of the correction E
[
P̂

(l)
l − P̂

(l−1)
l

]
(2.10) E

[
P̂

(l)
l − P̂

(l−1)
l

]
≈ (1− Γα)c1(∆tl)

α ≈ (1− Γα)E
[
P̂

(l)
l − P

]
,

can be used to obtain the stopping criteria

(2.11)
∣∣∣Ŷl∣∣∣ =

∣∣∣P̂ (l)
l − P̂

(l−1)
l

∣∣∣ ≤ Γα − 1√
2

δ,

which leads to
∣∣∣E [P̂ (l)

l − P
]∣∣∣2 ≤ δ2/2.

We summarize the adaptive MLMC algorithm [12] as follows.

This manuscript is for review purposes only.
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Algorithm 2.1 Multilevel Monte Carlo method

Given NI ∈ N.

1: for l = 0, 1, . . . do
2: Draw Nl = NI samples to obtain V̂l, Ŷl;
3: Define optimal N ′k, k = 0, . . . , l using (2.8);

4: If N ′k > Nk, generate extra samples and update V̂k, Ŷk, Nk = N ′k for k = 0, . . . , l;
5: if l ≥ 1 & (2.11) is true then
5: Stop with L = l;
6: end if
7: l = l + 1;
8: end for

For MC, we only consider the solution P̂ (L) = P̂
(L)
L on the finest level. Denoting Vl = Var

[
P

(l)
l

]
,

we require

(2.12) Var
[
P̂

(L)
L

]
= N−1

L VL ≤ δ2/2,

in MC. For comparison, we require Var
[
P̂ (L)

]
=
∑L
l=0N

−1
l Vl ≤ δ2/2 in MLMC.

By (2.12), the optimal number of samples N ′l can be taken as

(2.13) N ′l =
⌈
2δ−2V̂l

⌉
,

where V̂l is the Monte Carlo estimate of Vl using initial NI samples. We use a similar a posterior
estimate as the stopping criteria

(2.14)
∣∣∣P̂ (l)
l − P̂

(l−1)
l−1

∣∣∣ < Γα − 1√
2

δ.

The adaptive MC algorithm can be given in the spirit of adaptive MLMC Algorithm 2.1.

Algorithm 2.2 Monte Carlo method

Given NI ∈ N.

1: for l = 0, 1, . . . do

2: Draw Nl = NI samples to obtain V̂l, P̂
(l)
l ;

3: Define N ′l using (2.13);

4: If N ′l > Nl, generate extra samples at level l and update V̂l, P̂
(l)
l , Nl = N ′l ;

5: if l ≥ 1 & (2.14) is true then
5: Stop with L = l;
6: end if
7: l = l + 1;
8: end for

2.2. Cost analysis. In this section, we present cost theorems for MLMC and MC methods,
as prescribed in Algorithm 2.1 and Algorithm 2.2, which are crucial for the hyperbolic equation
applications. The proofs are given in Appendix B.1 and B.2, respectively.

Theorem 2.2 (MLMC Computational Cost). Assume that the MLMC estimators Ŷl (l ∈ N)
defined in (2.7) has the following properties:
A1. E

[
P (l) − P

]
≤ c1(∆tl)

α,

A2. Var
[
Ŷl

]
= N−1

l Vl ≤ c2N−1
l (∆tl)

β,

A3. C
[
Ŷl

]
= NlCl ≤ c3Nl(∆tl)−γ ,

This manuscript is for review purposes only.
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where 2α ≥ γ, β, γ, c1, c2, c3 are positive constants. There exist L ∈ N+, Nl ∈ N+, l = 0, ..., L,
and a constant c4 > 0 such that for any δ < e−1, the multilevel estimator

(2.15) P̂ (L) =

L∑
l=0

Ŷl,

has the following MSE bound

(2.16) MSE ≡ E

[(
P̂ (L) − E [P ]

)2
]
< δ2,

and the computational cost C is bounded by

(2.17) C ≤


c4δ
−2, β > γ,

c4δ
−2(log δ−1)2, β = γ,

c4δ
−2−(γ−β)/α, 0 < β < γ.

Theorem 2.3 (MC Computational Cost). Assume that the MC estimators P̂
(l)
l (l ∈ N) has the

following properties:
A4. E

[
P (l) − P

]
≤ c1(∆tl)

α,

A5. Var
[
P̂

(l)
l

]
= N−1

l Vl ≤ c2N−1
l (∆tl)

β0 ,

A6. C
[
P̂

(l)
l

]
= NlC

[
P

(l)
l

]
≤ c3Nl(∆tl)−γ ,

where 2α ≥ γ, β0, γ, c1, c2, c3 are positive constants. There exist L ∈ N+, Nl ∈ N+, l = 0, ..., L,

and a constant c4 > 0 such that for any δ < e−1, the MC estimator P̂
(L)
L has the following MSE

bound

(2.18) MSE ≡ E

[(
P̂

(L)
L − E [P ]

)2
]
< δ2,

and the computational cost C∗ is bounded by

(2.19) C∗ ≤


c4δ
−2, β0 > γ,

c4δ
−2 log δ−1, β0 = γ,

c4δ
−2−(γ−β0)/α, 0 < β0 < γ.

Comparing the results of Theorem 2.2 and Theorem 2.3, we can see that when 0 < β0 < β < γ,
the MLMC method outperforms the MC method.

3. Comparing MLMC and MC for the scalar advection equation with random ve-
locity. In sections § 3, § 4 and § 5, we use four examples to compare MLMC and MC methods for
both linear and nonlinear problems. In this section, we consider the first example, the scalar advec-
tion equation with a time dependent random velocity. For this example, we analyze the variances of
the MC solutions and MLMC corrections, and provide the complexity estimates of MLMC and MC
methods in Theorem 3.2 for two cases: 1) the number of random parameters is finite, 2) the random
parameter is modeled as white noise. In the first case, MLMC does outperform MC, while in the
second case, MLMC has the same order of computational cost δ−3 as MC. We then use numerical
experiments to justify those theoretical results.

We first consider the scalar advection equation

(3.1) ut + a(t, ω)ux = 0,

with x ∈ [−1, 1], t ∈ [0, T ], initial condition u(0, x) = u0(x), and periodic boundary condition
u(−1, t) = u(1, t).

This manuscript is for review purposes only.
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We assume that the random variable is of the form ω = (ω1, . . . , ωK), such that K is the random
dimension. The random time dependent velocity a = a(t, ω) can be modeled as piecewise constants
over K equal length time intervals

(3.2) a(t, ω) = ā+ ωk for
k − 1

K
T ≤ t < k

K
T, k = 1, . . . ,K,

where ā = 1, ωk ∼ U(−1, 1). The corresponding solution is denoted as u(x, t, ω).
Let a(t, ω(s)) be a sample of a(t, ω). We denote vni (s) as the numerical solution at (xi, tn), with

the random variable ω(s), xi = −1 + i∆xl, tn = n∆tl, where ∆tl is the time step and ∆xl is the
mesh size, with ∆tl

∆xl
= κ ≤ 1 by the CFL condition. In the following, when no confusion arises, we

also use notations vni or vn for simplicity. We denote Xl := 2
∆xl

and Ml := T
∆tl

as the spatial and
temporal degrees of freedom.

Equation (3.1) can be discretized by the first order upwind scheme

(3.3)
vn+1
i (s)− vni (s)

∆t
+ a(tn, ω(s))

vni (s)− vni−1(s)

∆x
= 0, a > 0.

3.1. Analysis. We now carry out an analysis for this simple model. Denoting u(·, t, ω(s)) as
the exact solution of (3.1) using the random variable ω(s), which can be obtained by method of
characteristics. At the final time T , we have the following expression

(3.4) u (x, T, ω(s)) = u

(
x− (ā+ ωK(s))

T

K
,
K − 1

K
T

)
= · · · = u0

(
x− āT −

∑K
k=1 ωk(s)

K
T

)
.

Proposition 3.1. Denote P = u (·, T, ω(s)) as the exact solution and P (l) as the numerical
solution using time step ∆tl and mesh size ∆xl at final time T . The variances of P , P (l) satisfy the
following properties
P1. Var [P ] :=

∑
i Var [P (xi)] ∆xl = O(K−1),

P2. Var
[
P (l) − P

]
:=
∑
i Var

[
(P (l) − P )(xi)

]
∆xl = O((∆tl)

2),

P3. Var
[
P (L)

]
:=
∑
i Var

[
P (l)(xi)

]
∆xl = O(K−1).

Proof. (a) Proof of P1. Defining ū = u0(x− āT ), we calculate P − ū as follows

(3.5) |(P − ū)(xi)|2 = |u(xi, T, ω(s))− ū(xi)|2 ≤ ‖u′0(·)‖2∞ T 2

∣∣∣∣∣
∑K
k=1 ω

(s)
k

K

∣∣∣∣∣
2

,

and

(3.6) E

∣∣∣∣∣
∑K
k=1 ω

(s)
k

K

∣∣∣∣∣
2
 = Var

[∑K
k=1 ω

(s)
k

K

]
=

Var [ω1]

K
.

Property P1 then follows by

(3.7) Var [P ] =
∑
i

Var [(P − ū) (xi)] ∆xl ≤
∑
i

E
[
(P − ū)

2
(xi)

]
∆xl = O(K−1).

(b) Proof of P2. We define the following intermediate variable with respect to the upwind scheme
(3.3),

ũ(xi, tn+1, ω(s)) := u(xi, tn, ω(s))− a(tn, ω(s))
∆tl
∆xl

(u(xi, tn, ω(s))− u(xi−1, tn, ω(s))).
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The local truncation error of the upwind scheme is

(3.8)

τni := u(xi, tn+1, ω(s))− ũ(xi, tn+1, ω(s))

=
a(tn, ω(s))(∆tl)

2

2

(
a(tn, ω(s))uxx(xi, tη)− ∆xl

∆tl
uxx(xξ, tn)

)
≤ C1a(tn, ω(s))

2

(
a(tn, ω(s)) +

∆xl
∆tl

)
(∆tl)

2

≤
(

2 +
1

κ

)
C1(∆tl)

2,

where C1 = sup |uxx|. Then

‖τn‖2 ≤
(

2 +
1

κ

)
C1
√
Xl(∆tl)

2.

The stability of the upwind scheme is obvious since

(3.9)
∥∥vn+1

∥∥2

2
=
∑
i

∣∣vn+1
i

∣∣2 ≤∑
i

(1− κa(tn, ω(s))) |vni |
2

+ κa(tn, ω(s))
∣∣vni−1

∣∣2 = ‖vn‖22 ,

where the CFL condition κ ≤ 1 is used. The error P (l) − P can be bounded by

(3.10)

∥∥∥P (l) − P
∥∥∥

2
=
∥∥vMl − u (·, tMl

, ω(s))
∥∥

2

≤
∥∥vMl − ũ (·, tMl

, ω(s))
∥∥

2
+ ‖u (·, tMl

, ω(s))− ũ (·, tMl
, ω(s))‖2

(stability) ≤
∥∥vMl−1 − u (·, tMl−1, ω(s))

∥∥
2

+
∥∥τMl−1

∥∥
2

≤ · · ·

≤ 0 +

Ml−1∑
j=0

∥∥τ j∥∥
2

≤
(

2 +
1

κ

)
C1T

√
Xl∆tl.

Property P2 follows by

(3.11) Var
[
P (l) − P

]
≤
∑
i

E

[(
P (l) − P

)2

(xi)

]
∆xl = E

[∥∥∥P (l) − P
∥∥∥2

2

]
∆xl = O((∆tl)

2).

(c) Proof of P3. Property P3 follows by the assumption that ∆tl = O(K−1), and the inequality(√
Var

[
P (l) − P

]
−
√

Var [P ]

)2

≤ Var
[
P (l)

]
≤
(√

Var
[
P (l) − P

]
+
√

Var [P ]

)2

.

We compute MLMC corrections, which are the difference of solutions P
(l)
l and P

(l−1)
l , the

numerical solutions at final time T of (3.1) on the lth level, with time step ∆tl, ∆tl−1 = Γ∆tl
respectively. We have the following theorem for the computational costs of MLMC and MC for the
scalar random advection equation.

Theorem 3.2. We consider two cases,
• Case I: When the number of random variables K is fixed, and M0 ≥ K, we have β0 = 0,
β = 2, i.e.

(3.12) Var
[
P

(l)
l

]
= O(1), Var

[
P

(l)
l − P

(l−1)
l

]
= O((∆tl)

2).

Given the accuracy threshold δ > 0, the cost of MLMC is O
(
δ−2

(
log δ−1

)2)
and the cost

of MC is O
(
δ−4
)
.
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• Case II: The random velocity is modeled as white noise, namely the number of random
variables depends on l, Kl = T

∆tl
= Ml for each level l. We have β0 = β = 1, i.e.

(3.13) Var
[
P

(l)
l

]
= O(∆tl), Var

[
P

(l)
l − P

(l−1)
l

]
= O(∆tl).

Given the accuracy threshold δ > 0, the computational costs of MLMC and MC are both
O
(
δ−3
)
.

Proof. The values of β0 can be obtained directly from Property P3. In the following, we will
explain how random variables are used in both cases and evaluate β.

• Proof of Case I. We first generate K random variables for one sample on level l. Since K

is fixed, we use the same random variables {ωk(s)}Kk=1 to calculate P
(l)
l (s) and P

(l−1)
l (s).

Therefore similar error analysis as in (3.8), (3.10), (3.11) leads to the following estimate

(3.14) Var
[
P

(l)
l − P

(l−1)
l

]
≤ E

[∥∥∥P (l)
l − P

(l−1)
l

∥∥∥2

2

]
= O((∆tl)

2).

Thus Property A2 holds with β = 2. The computational costs of MLMC and MC follow
by the application of Theorem 2.2, Theorem 2.3, and the fact that α = 1, γ = 2, β0 = 0,
β = 2.

In this case, {ωk(s)}Kk=1 can be directly used to calculate P
(l−1)
l , and the numerical imple-

mentation of Algorithm 2.1 is straightforward.
• Proof of Case II. We need to generate Kl = T/∆tl random variables for one sample on level

l, denoted by {ωk}Kli=1. For example, let a be a uniform white noise

(3.15) a(t) = ā+ ω(t), ω(t) ∼ U(−1, 1),

with correlation B(t) = Var [ω] δ(t) = 1
3δ(t). At each time tn−1, a(tn−1) = ā + ωn, n =

1, . . . ,Kl. The computation of P
(l)
l is also straightforward, while the computation of P

(l−1)
l

is a little tricky. To compute P
(l−1)
l , we need to construct Kl−1 random variables from the

Kl random variables, such that

1. They are strongly correlated with {ωk}Klk=1, so that Var
[
P

(l)
l − P

(l−1)
l

]
is kept small;

2. The distribution of the coarse random variables is the same as its finer counterpart, so

that E
[
P

(l−1)
l

]
= E

[
P

(l−1)
l−1

]
still holds.

To that end, we use the following trick [24] to construct those coarse random variables

(3.16)
ã(t(n−1)Γ)

2
=

(
max

1≤j≤Γ

{
a(tnΓ−j)

2

})Γ

∼ U(0, 1), n = 1, . . . ,Kl−1(= Kl/Γ).

The inequality (3.14) does not work since the random velocities {ã(tn−1)}Kl−1

n=1 , {a(tn−1)}Kln=1

are not the same now, although strongly correlated. Nevertheless, the Cauchy-Schwarz
inequality implies that

(3.17) Var
[
P

(l)
l − P

(l−1)
l

]
≤

(√
Var

[
P

(l)
l

]
+

√
Var

[
P

(l−1)
l

])2

= O(∆tl).

The Property A2 holds with β = 1. The computational costs of MLMC and MC follow by
the application of Theorem 2.2, Theorem 2.3, and the fact that α = 1, γ = 2, β0 = 1, β = 1.

3.2. Numerical results: Case I. In the numerical experiments for Case I, we choose two
constants K = 1 and K = 32. We take

(3.18) κ =
∆tl
∆xl

= 0.5, Γ = 2, ∆x0 =
1

32
, NI = 500,

This manuscript is for review purposes only.



ON MLMC FOR HYPERBOLIC EQUATIONS 11

where Γ is the refinement ratio, NI is the initial number of sampling, the CFL condition is satisfied
since |a| ≤ 2. We also choose the initial condition

(3.19) u0(x) =
sin(x) + 1

2
,

and the periodic boundary condition.
In view of our theoretical results, we will show the computational costs of MC and MLMC vs.

the accuracy level δ, also their variances vs. level. Let Nl, N
∗
l represent the number of samples

of MLMC and MC respectively. The computational cost of MLMC can be estimated as the total
number of time steps and gird points on all levels normalized by that on the level 0,

(3.20) C = N0 +

L∑
l=1

Nl

(
Γ2l + Γ2(l−1)

)
.

Namely, the computational cost of one sample on level 0 (C0) is regarded as 1 unit, and Cl+1/Cl =
Γ2, l ≥ 1 since we refine the grid in both spatial and temporal dimensions.

The computational cost of MC can be estimated similiarly as

(3.21) C∗ = N∗0 +

L∑
l=1

N∗l Γ2l.

In Figure 1 and Figure 2, the numerical results are shown in solid lines, while the theoretical order

is plotted in dashed lines. We observe that as long as K is a constant, we have Var
[
P

(l)
l

]
= O(1)

and Var
[
P

(l)
l − P

(l−1)
l

]
= O((∆tl)

2), i.e. β0 = 0, β = 2. The costs of MC and MLMC are of order

O(δ−4) and O(δ−2), respectively. In this case, to achieve the same accuracy, MLMC outperforms
MC by two orders of magnitude in terms of the computational cost.

1. K = 1

Fig. 1. Example 1: Case I, K = 1, the computational cost w.r.t accuracy threshold δ (left) and variance on
different levels (right).

2. K = 32
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Fig. 2. Example 1: Case I, K = 32, the computational cost w.r.t accuracy threshold δ (left) and variance on
different levels (right).

3.3. Numerical results: Case II. In this case, we need to generate Kl = T/∆tl random
variables ωk ∼ U(−1, 1) on the l th level. Using (3.16), we can construct Kl−1 random variables and

use them to calculate P
(l−1)
l . Figure 3 shows that both Var

[
P

(l)
l

]
and Var

[
P

(l)
l − P

(l−1)
l

]
decays

with order O(∆tl), i.e. β0 = β = 1, which is consistent with the derivation in (3.17). The costs of
MC and MLMC are both of the order O(δ−3), while MLMC appears to have a larger constant than
MC.

Fig. 3. Example 1: Case II, the computational cost w.r.t accuracy threshold δ (left) and variance on different
levels (right).

4. Comparing MLMC and MC for the Euler equation and the shallow water equa-
tion. In this section, we extend our study to more practical examples such as the Euler equation
with a time dependent random adiabatic constant, and the shallow water equations with space
dependent random tomography. The Euler equation example is qualitatively similar to the scalar
advection example, albeit more complex. However, the shallow water equation example is quali-
tatively distinct, and has computational cost δ−4 if the random tomography is modeled as white
noise. In [25], Mishra et. al. applied MLMC to Euler equations with random initial data, while
we consider Euler equations with time dependent random parameters in § 4.1. Mishra et. al. also
applied MLMC to shallow water equations with uncertain topography in [26], where the bottom
topography is treated as a fixed number of random variables with uniform distribution. That is
similar to our Case I, but we also consider the white noise Case II in § 4.2.

4.1. Euler equation with random adiabatic constant λ(t, ω). In this subsection, we con-
sider the Euler equations as a prototypical nonlinear partial differential equations with time depen-
dent random parameters. When the number of random variables K is fixed, the analysis of Property
A2 is similar as (3.14); while the white noise case is now hard to analyze due to nonlinearity, we

can numerically estimate Var
[
P

(l)
l

]
, Var

[
P

(l)
l − P

(l−1)
l

]
and their decay orders β0, β.
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Given the Euler equations with gravity

(4.1)


ρt + (ρv)x = 0,

(ρv)t + (vρv)x + px = −ρφx,
Et + [(E + p)v]x = −ρvφx,

where
E = ρe+

ρ

2
v2, φ(x) = gx.

Here ρ(t, x) is the density, v(t, x) is the velocity, E(t, x) is the total energy, p(t, x) is the pressure,
e(t, x) is the specific internal energy, and g is the gravitational constant. The adiabatic constant λ
can be modeled as a time dependent random parameter λ(t, ω) in the equation of state

p = ρe(λ− 1) = Aρλ.

Problems with uncertain λ were considered in, for example, [29].
We impose the initial condition

(4.2) ρ0(x) = 2− φ(x), p0(x) = A0ρ(x)λ0 , λ0 =
4

3
, A0 = 1,

and the Neumann boundary condition on x ∈ [0, 2].
To be more precise, we let

(4.3) λ = λ̄+ ωk for
k − 1

K
T ≤ t < k

K
T, k = 1, . . . ,K,

with λ̄ = 4
3 , ωk ∼ U(− 1

3 ,
1
3 ).

We use a well-balanced scheme introduced by Käppeli and Mishra [19], where the hydrostatic
steady state of (4.1) is

(4.4) v ≡ 0, px = −ρφx, h+ φ = const, h = e+
p

ρ
.

The numerical parameters are chosen as follows

(4.5) κ =
∆tl
∆xl

= 0.1, Γ = 2, ∆x0 = 0.25, T = 2, NI = 500.

Here we show the numerical results for Case I: λ with fixed K, and Case II: white noise λ.

4.1.1. Case I. Figure 4 (K = 1) and Figure 5 (K = 8) show that Var
[
P

(l)
l

]
≈ O(1) and

Var
[
P

(l)
l − P

(l−1)
l

]
≈ O((∆t)

1.5
), i.e. β0 = 0, β = 1.5. The costs of MC and MLMC are O(δ−4)

and O(δ−2.5) respectively. Both results are consistent with the analysis.
1. K = 1

Fig. 4. Example 2: Case I, K = 1, the computational cost w.r.t accuracy threshold δ (left) and variances on
different levels (right).
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2. K = 8

Fig. 5. Example 2: Case I, K = 8, the computational cost w.r.t accuracy threshold δ (left) and variance on
different levels (right).

4.1.2. Case II. In this case, we generate white noise λ with Kl = T/∆tl on the lth level, and
use similar trick as (3.16) to construct coarser random variables.

From Figure 6, we observe that Var
[
P

(l)
l

]
and Var

[
P

(l)
l − P

(l−1)
l

]
are both O(∆tl), i.e. β0 =

β = 1. Comparing with the variances in Figure 4, Figure 5, it is evident that the temporal white

noise leads to the decay of Var
[
P

(l)
l

]
. The costs of MC and MLMC are both O(δ−3).

Fig. 6. Example 2: Case II, the computational cost w.r.t accuracy threshold δ (left) and variance on different
levels (right).

4.2. Shallow water equations with random tomography B(x, ω). In this example, we
consider space dependent random parameters instead of time dependent random parameters, using
the shallow water equations

(4.6)


ht + (hu)x = 0,

(hu)t +

(
hu2 +

gh2

2

)
x

= −ghBx.

Here h(t, x) is the height, u(t, x) is the mean velocity, with the gravitational acceleration constant
g, and the bottom topography B(x). In view of the measurement error [22], we can introduce the
following random tomography B(x, ω) defined via K random variables, such that

(4.7) B(x, ω) = 1 + ωk sin(πx) for
k − 1

K
≤ x < k

K
, k = 1, . . . ,K,
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with ωk ∼ U(0, 1) and the steady state

(4.8) q := hu ≡ q̂ = const, E :=
u2

2
+ g(h+B) ≡ Ê = const.

We treat the still water case with q ≡ 0 (v ≡ 0) using the well-balanced central-upwind scheme
[21]. The initial conditions

(4.9) h(x, 0) = 5 + ecos(2πx), u(x, 0) = sin(cos(2πx)),

and the periodic boundary condition on x ∈ [0, 1] are imposed.
We use the following numerical parameters

(4.10) κ =
∆t

∆x
= 0.05, Γ = 2, ∆x0 =

1

64
, T = 0.1, NI = 500.

Similarly as before, we have two qualitatively different cases: Case I: B(x, ω) with fixed K, and
Case II: spatial white noise B(x, ω).

4.2.1. Case I. We use K = 1 in Figure 7 and K = 8 in Figure 8. We observe that

Var
[
P

(l)
l

]
= O(1) (β0 = 0), the numerical values for the decay orders of Var

[
P

(l)
l − P

(l−1)
l

]
in

these two experiments are β = 2.5 (K = 1) and β = 1.0 (K = 8) respectively.
The cost of MC is approximately O(δ−4) since β0 = 0. In the case K = 1, since β = 2.5 > γ,

the cost of MLMC is approximately O(δ−2). While in the case K = 8, the cost of MLMC is
approximately O(δ−3). As we expected, MLMC is better than MC method by one or two orders of
magnitude.

1. K = 1

Fig. 7. Example 3: Case I, K = 1, the computational cost w.r.t accuracy threshold δ (left) and variance on
different levels (right).

2. K = 8
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Fig. 8. Example 3: Case I, K = 8, the computational cost w.r.t accuracy threshold δ (left) and variance on
different levels (right).

4.2.2. Case II. When B(x, ω) is modeled by spatially dependent white noise, we have Kl = Xl

for the lth level. When a sample P
(l)
l is computed on level l, the value of B(xi, ω) is generated by

(4.11) B(xi−1, ω) = 1 + ωi sin(πxi−1), ωi ∼ U(0, 1), i = 1, . . . , Xl.

To calculate P
(l−1)
l , we first construct {ω̃i}

Xl−1

i=1 using (3.16), then let

(4.12) B̃(x(i−1)Γ, ω) = 1 + ω̃i sin(πx(i−1)Γ), i = 1, . . . , Xl−1(= Xl/Γ).

Figure 9 shows that the decays of Var
[
P

(l)
l

]
and Var

[
P

(l)
l − P

(l−1)
l

]
are very slow, namely, we

have β ' 0 and β0 ' 0. In this case, both MC and MLMC methods are expensive. In fact, MLMC
has a higher cost compared to MC.

Fig. 9. Example 3: Case II, the computational cost w.r.t accuracy threshold δ (left) and variance on different
levels (right).

5. Comparing MLMC and MC for the linear Jin-Xin relaxation model with random
choice method. While the first three examples in § 3 and § 4 are hyperbolic equations with random
parameters, the last example is of different nature. In this example, we apply a randomized algorithm
to a multiscale deterministic equation–the Jin-Xin hyperbolic relaxation model [18]. This algorithm
is in the spirit of the Glimm’s random choice method [13], and the random variables are in both
spatial and temporal dimensions. We identify similar behavior of MLMC in this example as the
third example. This simple model can shed some light on the application of randomized algorithms
to more complicated problems.
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In particular, we deal with the following one-dimensional linear Jin-Xin relaxation model [18]

(5.1)


∂u

∂t
+
∂v

∂x
= 0,

∂v

∂t
+ a

∂u

∂x
= −1

ε
(v − bu),

where (x, t) ∈ [−1, 1] × [0, T ] with the periodic boundary condition, and the initial data u(x, 0) =
u0(x), v(x, 0) = v0(x). a > 0, b ∈ R, and ε > 0 is the relaxation parameter. Asymptotic analysis
[18, 28] shows that when ε is small, the stability condition a ≥ b2 ensures the well-posedness of
model. In the limit ε→ 0, the second equation of (5.1) relaxes to the local equilibrium v = bu, and
the first equation of (5.1) reduces to the scalar advection equation ut + bux = 0. The Jin-Xin model
is a prototypical multiscale hyperbolic equation, and can be treated by the so-called asymptotic
preserving (AP) method [17].

In the following, we will develop the asymptotic preserving Monte Carlo method (APMC) for the
equation (5.1), by combining the Glimm’s random choice method [13] and the asymptotic preserving
principle. A random algorithm is interesting not only for theoretical interest [13] but also of practical
interest [4, 7, 10]. We will compare the APMC method with its multilevel version (MLAPMC). We
will demonstrate that, since the random variables in the APMC method involves both spatial and
temporal dimensions, the cost of MLAPMC is of the same order as APMC.

5.1. Asymptotic preserving Monte Carlo method (APMC). The equation (5.1) is stiff
in the sense that the time step of any explicit method has to satisfy ∆t = O(ε) by the stability
requirement, which is prohibitively expensive as ε → 0. The asymptotic preserving (AP) method
[15] allows to choose ∆t independent of ε, while it still attains the correct asymptotic limit. To be
precise, (5.1) can be split into two steps,

(5.2) (convection step)


∂u

∂t
+
∂v

∂x
= 0,

∂v

∂t
+ a

∂u

∂x
= 0,

which is a linear convection equation, and

(5.3) (relaxation step)


∂u

∂t
= 0,

∂v

∂t
= −1

ε
(v − bu),

which is a relaxation equation with a stiff source only in the equation for v.
We can construct a random choice method for the split system,
• convection step: (5.2) can be transformed to a diagonal form as

(5.4)


∂ρ

∂t
+
√
a
∂ρ

∂x
= 0,

∂l

∂t
−
√
a
∂l

∂x
= 0,

by introducing the characteristic variables

(5.5) ρ =
√
au+ v, l =

√
au− v.

The explicit upwind scheme to (5.4) writes

(5.6)

ρ
n+ 1

2
i − ρni

∆t
= −
√
a
ρni − ρni−1

∆x
,

l
n+ 1

2
i − lni

∆t
=
√
a
lni+1 − lni

∆x
,
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namely,

(5.7)
ρ
n+ 1

2
i = (1− ν)ρni + νρni−1,

l
n+ 1

2
i = (1− ν)lni + νlni+1,

where ν =
√
a

∆t

∆x
is the CFL number. u

n+ 1
2

i and v
n+ 1

2
i can be obtained by

(5.8)

u
n+ 1

2
i =

ρ
n+ 1

2
i + l

n+ 1
2

i

2
√
a

,

v
n+ 1

2
i =

ρ
n+ 1

2
i − ln+ 1

2
i

2
.

The Monte Carlo method can be applied to update ρ and l, since (5.7) are convex combi-
nations. For example, we generate samples according to the following distribution

(5.9)

ρ
n+ 1

2
i =

{
ρni , with probability 1− ν,
ρni−1, with probability ν,

l
n+ 1

2
i =

{
lni , with probability 1− ν,
lni+1. with probability ν.

In the implementation, we let ρ
n+ 1

2
i = ρni and sample a random variable ξni ∼ U(0, 1). If

ξni < ν, we update ρ
n+ 1

2
i = ρni−1.

• relaxation step: we use the fully implicit Euler’s method to treat the stiff relaxation equation
(5.3),

(5.10)

un+1
i − un+ 1

2
i

∆t
= 0,

vn+1
i − vn+ 1

2
i

∆t
= −1

ε

(
vn+1
i − bun+1

i

)
.

Thus

(5.11)
un+1
i = u

n+ 1
2

i ,

vn+1
i =

ε

ε+ ∆t
v
n+ 1

2
i +

∆t

ε+ ∆t
bu
n+ 1

2
i .

vn+1
i is a convex combination of v

n+ 1
2

i and bu
n+ 1

2
i , which has the following Monte Carlo

approximation

(5.12) vn+1
i =

{
v
n+ 1

2
i , with probability p,

bu
n+ 1

2
i . with probability 1− p,

with p =
ε

ε+ ∆t
.

The APMC algorithm can be summarized as follows
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Algorithm 5.1 Asymptotic Preserving Monte Carlo (APMC) - fully-random version

Given the number of samples N ∈ N, T > 0, time step ∆t, mesh
size ∆x (or equivalently, ν =

√
a∆t/∆x). Generating N samples

{u(k), v(k)}Nk=1.

1: Initialize u0
i (k) = u0(xi), v

0
i (k) = v0(xi), k = 1, . . . , N ;

2: for n = 0, . . . , T/∆t− 1 do
3: for k = 1, . . . , N do
4: Compute ρni (k), lni (k) as in (5.5);

5: Sample ρ
n+ 1

2
i (k) and l

n+ 1
2

i (k) as in (5.9);

6: Compute u
n+ 1

2
i (k), v

n+ 1
2

i (k) as in (5.8);

7: un+1
i (k) = u

n+ 1
2

i (k);

8: Sample vn+1
i (k) = v

n+ 1
2

i (k) as in (5.12);
9: end for

10: ûni = 1
N

∑N
k=1 u

n
i (k), v̂ni = 1

N

∑N
k=1 v

n
i (k);

11: end for

We can replace the convection Step 5 in Algorithm 5.1 by the deterministic scheme (5.7). The
resulting algorithm is called the semi-random version of APMC. Also, we can obtain the deterministic
method if we replace the Step 5 by (5.7) and the Step 8 by (5.10), respectively.

5.2. Variance analysis. The deterministic method is asymptotic preserving since it has the
correct ε → 0 limit, as proved in Appendix C. To apply the Monte Carlo method as ε → 0, the
variance should be uniformly bounded, i.e.

(5.13) Var [uni ] ,Var [vni ] ≤ C,

where C is a constant independent of ε.
We present the following lemmas for the expectations and variances. The proofs are given in

Appendix D.

Lemma 5.1. Under the condition a ≥ b2, the energy

(5.14) En :=
∑
i

[
(a− b2) (E [uni ])

2
+ (E [buni − vni ])

2
]

∆x,

is monotonically decreasing,

(5.15) En ≤ En−1 ≤ · · · ≤ E0.

Moreover, the l2 norms of E [un] ,E [vn] remain bounded in the sense that

(5.16) ‖E [un]‖2 =

√∑
i

(E [uni ])
2

∆x ≤
√
E0

a− b2
,

(5.17) ‖E [vn]‖2 =

√∑
i

(E [vni ])
2

∆x ≤
√

2aE0
a− b2

.

Remark 5.2. We have the following estimate for E
[
uni+1 − uni

]
and E

[
vni+1 − vni

]
,

(5.18)

∑
i

[
(a− b2)

(
E
[
un+1
i+1 − u

n+1
i

])2
+
(
E
[
b(un+1

i+1 − u
n+1
i )− (vn+1

i+1 − v
n+1
i )

])2]
∆x

≤
∑
i

[
(a− b2)

(
u0
i+1 − u0

i

)2
+
(
b
(
u0
i+1 − u0

i

)
−
(
v0
i+1 − v0

i

))2]
∆x := C0(∆x)2.

This manuscript is for review purposes only.



20 JUNPENG HU, SHI JIN, JINGLAI LI AND LEI ZHANG

Similar as (5.16), (5.17), we have
(5.19)√√√√∑

i

(
E

[
un+1
i+1 − u

n+1
i

∆x

])2

∆x ≤
√
C0

a− b2
,

√√√√∑
i

(
E

[
vn+1
i+1 − v

n+1
i

∆x

])2

∆x ≤
√

2aC0
a− b2

.

Lemma 5.3. As ε→ 0+, E [buni − vni ]→ 0, and for any fixed ε > 0,
∑
j

∑
i

(
E
[
buji − v

j
i

])2

∆x

is uniformly bounded in the sense that

(5.20)

∞∑
j=1

∑
i

(
E
[
buji − v

j
i

])2

∆x ≤ p2

1− p2 E0.

In particular,
∑
i (E [buni − vni ])

2
∆x→ 0 as n→∞.

To better understand the variances introduced in the convection step and in the relaxation step,
respectively, we first consider the semi-random APMC with the random relaxation step and the
deterministic convection step. We have the following lemma for variances.

Lemma 5.4. The variance of the semi-random APMC solution is bounded in the sense that

(5.21)
∑
i

[
(a− b2)Var [ũni ] + Var [bũni − ṽni ]

]
∆x ≤ p

1 + p
E0, ∀n,

where E0 =
∑
i

[
(a− b2)

(
u0
i

)2
+
(
bu0
i − v0

i

)2]
∆x. Namely, for any ε� 1, the variance is uniformly

bounded and tends to zero as ε→ 0.

Remark 5.5. We can use the same trick as in the proof of Lemma 5.3 to get an estimate of
Var [buni − vni ],

(5.22)

n+1∑
j=1

∑
i

Var
[
buji − v

j
i

]
∆x ≤ 1

p

n+1∑
j=1

∑
i

(
E
[
buji − v

j
i

])2

∆x ≤ p

1− p2 E0, ∀n,

in particular,

(5.23)
∑
i

Var [buni − vni ] ∆x→ 0, as n→∞.

The main difference for the variance analysis of the fully-random APMC in the following
Lemma 5.6, is to use the conditional variance formula for characteristic variables in the random
convection step.

Lemma 5.6. The variance of the fully-random APMC solutions is bounded in the sense that

(5.24)
∑
i

[
(a− b2)Var [uni ] + Var [buni − vni ]

]
∆x ≤ p

1 + p
E0 +

a(1− ν)

ν
TC0∆t, ∀n,

where

E0 =
∑
i

[
(a− b2)

(
u0
i

)2
+
(
bu0
i − v0

i

)2]
∆x,

C0 =
∑
i

[
(a− b2)

(
u0
i+1 − u0

i

∆x

)2

+

[
b

(
u0
i+1 − u0

i

∆x

)
−
(
v0
i+1 − v0

i

∆x

)]2
]

∆x.

Then for any ε � 1, the variance is uniformly bounded and tends to zero as ε → 0, ∆t → 0.
Therefore, the APMC method still works in the regime when ε � 1 and ∆t independent of ε, i.e.
has the asymptotic preserving property.
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5.3. Multilevel APMC. We introduce the multilevel version of APMC (MLAPMC) algo-
rithm here. Since the random variables are distinct at the finest temporal and spatial discretization
level, we encounter similar situation as the Case II in Example 3, Example 4.1 and Example 4.2.
Therefore, we need to use the trick introduced in [24] and in (3.16) to construct coarser random
variables and compute MLMC corrections.

The fully-random MLAPMC algorithm of one sample on level l can be stated as follows.

Algorithm 5.2 Multilevel APMC (MLAPMC) - fully-random version

Given T > 0, time step ∆tl, CFL number ν =
√
a∆tl/∆xl.

1: Initialize u0
i = u0(xi), v

0
i = v0(xi), ū

0
i1

= u0(xi1Γ), v̄0
i1

= v0(xi1Γ), for i1 = 0, . . . , Xl−1 − 1;
2: for n = 0, . . . ,Ml−1 − 1 do
3: for k = 0, . . . ,Γ− 1 do
4: compute ρn

′

i , l
n′

i as in (5.5), where n′ = nΓ + k;

5: sample ρ
n′+ 1

2
i with ξi,k ∼ U(0, 1) and l

n′+ 1
2

i with ηi,k ∼ U(0, 1) as in (5.9);

6: compute u
n′+ 1

2
i , v

n′+ 1
2

i as in (5.8);

7: un
′+1
i = u

n′+ 1
2

i ;

8: sample vn
′+1

i with ζi,k ∼ U(0, 1) as in (5.12);
9: end for

10: compute ρ̄ni1 , l̄
n
i1

as in (5.5);

11: ξi1 = (maxi1≤i<i1+Γ,0≤k<Γ{ξi,k})Γ2

, ηi1 = (maxi1≤i<i1+Γ,0≤k<Γ{ηi,k})Γ2

;

12: sample ρ̄
n+ 1

2
i1

with ξi1 and l̄
n+ 1

2
i1

with ηi1 as in (5.9);

13: compute ū
n+ 1

2
i1

, v̄
n+ 1

2
i1

as in (5.8);

14: ūn+1
i1

= ū
n+ 1

2
i1

;

15: ζi1 = (maxi1≤i<i1+Γ,0≤k<Γ{ζi,k})Γ2

;
16: sample v̄n+1

i1
with ζi1 as in (5.12);

17: end for

As discussed before, the variance in the asymptotic regime (ε� 1) is small, and APMC performs
well enough. For comparison, we apply MLAPMC in the non-stiff regime (ε = 1) with semi-random
and fully-random schemes respectively. We consider the initial value

(5.25) u0(x) =
sin(x) + 1

2
, v0(x) = 0,

with x ∈ [−1, 1], t ∈ [0, T ], and periodic boundary condtion.
We take the numerical parameters

(5.26) ν =
√
a

∆tl
∆xl

=
1

2
, Γ = 2, ∆x0 =

1

32
, T = 1, NI = 500, a = 1, b = 2.

We implement both MLAPMC and APMC algorithms with accuracy thresholds δ = 0.02, 0.01,
0.005, 0.002, 0.001. The results are shown in Figure 10 and Figure 11. The costs of two algorithms

with respect to δ are plotted in the left subfigure, and the right subfigure shows the variances of P
(l)
l

and P
(l)
l − P

(l−1)
l . We can see that both Var

[
P

(l)
l

]
and Var

[
P

(l)
l − P

(l−1)
l

]
decay as ∆tl decreases

in semi-random case, and the decay orders are about 0.5, i.e. β0 = β = 0.5. The costs of APMC and

MLAPMC are both O(δ−3.5). While in the fully-random case, Var
[
P

(l)
l

]
and Var

[
P

(l)
l − P

(l−1)
l

]
decay very slowly, i.e. β ' 0 and β0 ' 0. The costs of APMC and MLAPMC in fully-random case
are both O(δ−4).
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Fig. 10. The computational cost w.r.t accuracy threshold δ (left) and variance on different levels (right) using
semi-random APMC and MLAPMC methods.

Fig. 11. The computational cost w.r.t accuracy threshold δ (left) and variance on different levels (right) using
fully-random APMC and MLAPMC methods.

6. Conclusion. In this paper, we study the Multilevel Monte Carlo method, and compare it
with Monte Carlo method for applications in linear and nonlinear hyperbolic systems with random-
ness originated from either random parameters or randomized algorithms. In many cases, MLMC
has lower cost than MC. Nevertheless, if the variance of MC solutions decays at the same rate
as MLMC corrections, the standard MC performs well and a multilevel method may not provide
improvement.

We conclude through both analytic studies and a few numerical experiments with different levels
of randomness, that the possible cause is white noise like random variables in the SPDE or random
algorithm, which may influence the decay rates for MLMC corrections and lead to the deterioration
of the MLMC complexity. If the white noise random variables depend only on time, the variances
have first order decay with respect to the discretization level or time step, and both MLMC and
MC have O(δ−3) computational cost. While if the white noise random variables depend further on
space, the variances do not decay and both MLMC and MC have O(δ−4) cost. A rigorous analysis
of the scalar advection equation with a random velocity is given and is consistent with our numerical
results.

In summary, we have identified three regimes for the performances of MLMC and MC for
hyperbolic equations. More research is needed to investigate SPDEs driven by Gaussian and Levy
white noise [14, 30], and to develop acceleration methods for SPDEs and random algorithms for
interesting physical applications.
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Appendix A. Some known results of MLMC for differential equations.
We review some applications of MLMC in the literature. For consistency of notations, we always

denote P
(l)
l , P

(l−1)
l as the numerical solutions (at final time T if time-dependent) using time step

∆tl or ∆tl−1 and mesh size ∆xl or ∆xl−1 on level l respectively.
• Stochastic differential equations [1, 9, 12].

For example, we consider the forward Euler method with time step ∆t of the SDE

du(t) = a(u, t)dt+ b(u, t)dW,
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(A.1) un+1 = un + a(un, tn)∆t+ b(un, tn)∆Wn.

In this case, the random variables are Gaussian white noises. Due to the additivity of
Gaussian distribution, it is natural to obtain a random variable on the coarser level by adding

up the random variables on the finer level, leading to the reduction of Var
[
P

(l)
l − P

(l−1)
l

]
.

As proved in [12], we have Var
[
P

(l)
l

]
= O(1), Var

[
P

(l)
l − P

(l−1)
l

]
= O(∆tl), i.e. β0 = 0,

β = 1.
• PDE with random coefficients [5, 8].

In subsurface flow applications, the hydraulic conductivity can be modelled as a random
field k = k(x, ω) on D×Ω. We have the following Darcy’s equation with random coefficients
in the form

(A.2) −∇ · (k(x, ω)∇p(x, ω)) = f(x), in D.

To apply MLMC, we need to sample from the input random field k(x, ω), e.g. by a truncation
of the Karhunen-Loève (KL) expansion [20, 23]. Then for each sample with fixed ω, we solve
the PDE with multigrid methods. In this case, the dimension of random variables is fixed by
the truncation order of the KL expansion and same random variables are used to calculate

P
(l−1)
l , P

(l)
l . The numerical results in [8] show that Var

[
P

(l)
l

]
= O(1), Var

[
P

(l)
l − p

(l−1)
l

]
=

O((∆t)2), i.e. β0 = 0, β = 2.
• Particle method for transport equations [24]. For the BGK model

(A.3) ∂tf(x, v, t) +
v

ε
∂xf(x, v, t) =

1

ε2
(M(v)ρ(x, t)− f(x, v, t)) ,

where f(x, v, t) is the particle density distribution at time t, position x with particle velocity
v andM(v) is the absolute Maxwellian. ε is the Knudsen number, the dimensionaless mean
free path. An asymptotic preserving particle scheme was proposed in [11]. Given the current
state of a particle in the position-velocity phase space, its position is updated based on its
velocity in the transport step. Then, the particle changes its velocity with the probability
p∆tl = ∆tl

ε2+∆tl
in the collision step, such that the collision is performed if ξl ≤ p∆tl with

ξl ∼ U(0, 1).
To apply MLMC, Løvbak, Samaey, and Vandewalle [24] proposed to use random variables

{ξl,k}Γk=1 in the finer level to construct coarser level random varibales,

(A.4) ξl−1 =

(
max

1≤k≤Γ
ξl,k

)Γ

∼ U(0, 1).

If ξl−1 ≤ p∆tl−1
, collision is performed on the coarser level. Therefore the trajectories of

particles in the finer level and the coarser level are correlated. In this case, particles are

independent of each other, similar to the SDE case. Var
[
P

(l)
l − P

(l−1)
l

]
= O(∆t), i.e. β = 1

is proved in [24, Lemma 9]. The numerical results show that Var
[
P

(l)
l

]
= O(1), i.e. β0 = 0.

Appendix B. Analysis of MLMC and MC in § 2.2.

B.1. Proof of Theorem 2.2, cost of MLMC.

Proof. Let L =
⌈

log(
√

2c1T
αδ−1)

α log Γ

⌉
, the bias term c1(∆tL)α is controlled from above and below by

(B.1)
1√
2

Γ−αδ < c1(∆tL)α ≤ 1√
2
δ,

where Γ = ∆tl−1/∆tl. Equivalently, we have

(B.2)
∣∣∣E [P̂ (L) − P

]∣∣∣2 =
∣∣∣E [P (L) − P

]∣∣∣2 ≤ 1

2
δ2.
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According to (2.5), the variance of the MLMC estimate P̂ (L) is

(B.3) Var
[
P̂ (L)

]
=

L∑
l=0

N−1
l Vl = µ−1

L∑
l=0

√
ClVl =

1

2
δ2,

which implies µ = 2δ−2
∑L
l=0

√
ClVl, and Nl =

⌈
µ
√
Vl/Cl

⌉
, l = 0, . . . , L. The total computational

cost is

(B.4) C =

L∑
l=0

NlCl ≤
L∑
l=0

(
µ
√
ClVl + Cl

)
= 2δ−2

(
L∑
l=0

√
ClVl

)2

+

L∑
l=0

Cl.

By properties A2, A3, we have

(B.5)

L∑
l=0

√
ClVl ≤

√
c2c3

L∑
l=0

(∆tl)
β−γ

2 =


c5, β > γ,

L+ 1 ≤ c6 log δ−1, β = γ,

c7(∆tL)
β−γ

2 ≤ c8δ−(γ−β)/(2α), 0 < β < γ,

and

(B.6)

L∑
l=0

Cl ≤ c3
L∑
l=0

(∆tl)
−γ ≤ c9δ−γ/α ≤ c9δ−2.

In summary, the computational cost C is bounded by

(B.7) C ≤


c4δ
−2, β > γ,

c4δ
−2
(
log δ−1

)2
, β = γ,

c4δ
−2−(γ−β)/α, 0 < β < γ.

B.2. Proof of Theorem 2.3, cost of MC.

Proof. We can perform similar analysis for the adaptive MC given in Algorithm 2.2. The
difference is that, for MLMC the bound for the total variance in (B.3) is needed, while for MC, we

only need the bound for the variance on each level, as Var
[
P̂

(l)
l

]
in (B.10).

We have similar estimate for the bias by taking L =
⌈

log(
√

2c1T
αδ−1)

α log Γ

⌉
,

(B.8)
1√
2

Γ−αδ < c1(∆tL)α ≤ 1√
2
δ,

where Γ = ∆tl−1/∆tl, and equivalently,

(B.9)
∣∣∣E [P̂ (L)

L − P
]∣∣∣2 =

∣∣∣E [P (L) − P
]∣∣∣2 ≤ 1

2
δ2.

The variances of each level should be bounded by

(B.10) Var
[
P̂

(l)
l

]
= N−1

l Vl ≤
1

2
δ2, ⇒ Nl =

⌈
2δ−2Vl

⌉
, l = 0, . . . , L.

to make sure that MSE < δ2. The total computational cost C∗ is

(B.11) C∗ =

L∑
l=0

NlC
[
P

(l)
l

]
≤ 2δ−2

L∑
l=0

C
[
P

(l)
l

]
Vl +

L∑
l=0

C
[
P

(l)
l

]
.
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With properties A5, A6, we have

(B.12)

L∑
l=0

C
[
P

(l)
l

]
Vl ≤ c2c3

L∑
l=0

(∆tl)
β0−γ =


c5, β0 > γ,

L+ 1 ≤ c6 log δ−1, β0 = γ,

c7(∆tL)β0−γ ≤ c8δ−(γ−β0)/α, 0 < β0 < γ,

and

(B.13)

L∑
l=0

C
[
P

(l)
l

]
≤ c3

L∑
l=0

(∆tl)
−γ ≤ c9δ−γ/α ≤ c9δ−2.

In summary, the computational cost C∗ is bounded by

(B.14) C∗ ≤


c4δ
−2, β0 > γ,

c4δ
−2 log δ−1, β0 = γ,

c4δ
−2−(γ−β0)/α, 0 < β0 < γ.

Appendix C. AP property for the deterministic method of the Jin-Xin model. For
completeness, we formulate the AP property of the deterministic numerical method in § 5.1 in the
following proposition.

Proposition C.1. The deterministic numerical method in § 5.1 is asymptotic preserving since
it has the correct numerical ε→ 0 limit, namely, in the limit ε→ 0, the numerical solutions uni , vni
tends to the numerical solutions of the limit equations

(C.1) v = bu,
∂u

∂t
+ b

∂u

∂x
= 0.

We provide a heuristic argument in the following, for complete theory, please refer to [15]. As
ε→ 0, the implicit Euler’s method used in relaxation step collapses to

(C.2) vn+1
i = bun+1

i , n = 0, . . . ,Ml − 1.

Applying (C.2) into the convection step gives

(C.3) ρni = (
√
a+ b)uni , lni = (

√
a− b)uni ,

and

(C.4) un+1
i = (1− ν)uni +

(
√
a+ b)ν

2
√
a

uni−1 +
(
√
a− b)ν
2
√
a

uni+1,

which is equivalent to

(C.5)
un+1
i − uni

∆t
+ b

uni+1 − uni−1

2∆x
=

√
a∆x

2

uni+1 − 2uni + uni−1

(∆x)2
.

(C.2), (C.5) is a first-order consistent and stable discretization of (C.1), with leading truncation
error

(C.6)

√
a∆x

2

∂2u

∂x2
.

Thus this scheme has the correct asymptotic limit and is expected to capture the correct limiting
behavior in the regime when ε� 1 and ∆t� ε, with a first-order accuracy.

Appendix D. Analysis for the APMC method in § 5.2.
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D.1. Proof of Lemma 5.1.

Proof. Combining (5.7) and (5.8), we obtain the formula of E
[
u
n+ 1

2
i

]
, E
[
v
n+ 1

2
i

]
,

(D.1)
E
[
v
n+ 1

2
i

]
= (1− ν)E [vni ] +

ν

2

(
E
[
vni+1

]
+ E

[
vni−1

])
− ν
√
a

2

(
E
[
uni+1

]
− E

[
uni−1

])
,

E
[
u
n+ 1

2
i

]
= (1− ν)E [uni ] +

ν

2

(
E
[
uni+1

]
+ E

[
uni−1

])
− ν

2
√
a

(
E
[
vni+1

]
− E

[
vni−1

])
.

We compute the following quadratic sums and simplify them as follows
(D.2)∑

i

[
a
(

E
[
u
n+ 1

2
i

])2

+
(

E
[
v
n+ 1

2
i

])2
]

=
1

2

∑
i

[(
E
[
ρ
n+ 1

2
i

])2

+
(

E
[
l
n+ 1

2
i

])2
]

=
(1− ν)2 + ν2

2

∑
i

[
(E [ρni ])

2
+ (E [lni ])

2
]

+ ν(1− ν)
∑
i

[
E [ρni ] E

[
ρni+1

]
+ E [lni ] E

[
lni+1

]]
=
[
(1− ν)2 + ν2

]∑
i

[
a (E [uni ])

2
+ (E [vni ])

2
]

+ 2ν(1− ν)
∑
i

[
aE [uni ] E

[
uni+1

]
+ E [vni ] E

[
vni+1

]]
,

(D.3)

∑
i

[
E
[
u
n+ 1

2
i

]
E
[
v
n+ 1

2
i

]]
=

1

4
√
a

∑
i

[(
E
[
ρ
n+ 1

2
i

])2

−
(

E
[
l
n+ 1

2
i

])2
]

=
(1− ν)2 + ν2

4
√
a

∑
i

[
(E [ρni ])

2 − (E [lni ])
2
]

+
ν(1− ν)

2
√
a

∑
i

[
E [ρni ] E

[
ρni+1

]
− E [lni ] E

[
lni+1

]]
=
[
(1− ν)2 + ν2

]∑
i

[E [uni ] E [vni ]] + ν(1− ν)
∑
i

[
E [uni ] E

[
vni+1

]
+ E [vni ] E

[
uni+1

]]
,

which lead to the following estimate

(D.4)

En+ 1
2

=
∑
i

[
(a− b2)

(
E
[
u
n+ 1

2
i

])2

+
(

E
[
bu
n+ 1

2
i − vn+ 1

2
i

])2
]

∆x

=
∑
i

[
a
(

E
[
u
n+ 1

2
i

])2

+
(

E
[
v
n+ 1

2
i

])2

− 2bE
[
u
n+ 1

2
i

]
E
[
v
n+ 1

2
i

]]
∆x

= [(1− ν)2 + ν2]
∑
i

[
(a− b2) (E [uni ])

2
+ (E [buni − vni ])

2
]

∆x

+ 2ν(1− ν)
∑
i

[
(a− b2)

(
E [uni ] E

[
uni+1

])
+ E [buni − vni ] E

[
buni+1 − vni+1

]]
∆x

≤
∑
i

[
(a− b2) (E [uni ])

2
+ (E [buni − vni ])

2
]

∆x = En.

In the relaxation step, by (5.11), we have

(D.5) E
[
un+1
i

]
= E

[
u
n+ 1

2
i

]
, E

[
bun+1
i − vn+1

i

]
= pE

[
bu
n+ 1

2
i − vn+ 1

2
i

]
,

thus

(D.6) En+1 =
∑
i

[
(a− b2)

(
E
[
u
n+ 1

2
i

])2

+ p2
(

E
[
bu
n+ 1

2
i − vn+ 1

2
i

])2
]

∆x ≤ En+ 1
2
≤ En.

Therefore the energy decreases monotonically. And (5.16) can be easily derived from (5.15). The
boundedness of ‖E [vn]‖2 (5.17) follows by the fact that

(D.7)
∑
i

(E [vni ])
2

∆x ≤ 2
∑
i

[
(E [buni − vni ])

2
+ b2 (E [uni ])

2
]

∆x ≤ 2a

a− b2
En.
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D.2. Proof of Lemma 5.3.

Proof. (D.6) implies that

(D.8) En+1 +
∑
i

(1− p2)
(

E
[
bu
n+ 1

2
i − vn+ 1

2
i

])2

∆x = En+ 1
2
≤ En.

Therefore

(D.9)

En+1 +

n∑
j=0

∑
i

(1− p2)
(

E
[
bu
j+ 1

2
i − vj+

1
2

i

])2

∆x

≤ En +

n−1∑
j=0

∑
i

(1− p2)
(

E
[
bu
j+ 1

2
i − vj+

1
2

i

])2

∆x

≤ · · ·

≤ E1 +
∑
i

(1− p2)
(

E
[
bu

1
2
i − v

1
2
i

])2

∆x

≤ E0.

Noting that E
[
bun+1
i − vn+1

i

]
= pE

[
bu
n+ 1

2
i − vn+ 1

2
i

]
, we have

(D.10)

n+1∑
j=1

∑
i

(
E
[
buji − v

j
i

])2

∆x = p2
n∑
j=0

∑
i

(
E
[
bu
j+ 1

2
i − vj+

1
2

i

])2

∆x ≤ p2

1− p2 E0, ∀n,

namely, (5.20) holds. Therefore, as ε→ 0, p→ 0, E [bun − vn] converges to zero in `2.

D.3. Proof of Lemma 5.4, for the semi-random APMC.

Proof. We have the following identities, for the change of variances in the convection step,
(D.11)∑

i

[
aVar

[
ũ
n+ 1

2
i

]
+ Var

[
ṽ
n+ 1

2
i

]]
=

1

2

∑
i

[
Var

[
ρ̃
n+ 1

2
i

]
+ Var

[
l̃
n+ 1

2
i

]]
=
[
(1− ν)2 + ν2

]∑
i

[aVar [ũni ] + Var [ṽni ]] + 2ν(1− ν)
∑
i

aCov
[
ũni , ũ

n
i+1

]
+ Cov

[
ṽni , ṽ

n
i+1

]
,

∑
i

Cov
[
ũ
n+ 1

2
i , ṽ

n+ 1
2

i

]
=

1

4
√
a

∑
i

[
Var

[
ρ̃
n+ 1

2
i

]
−Var

[
l̃
n+ 1

2
i

]]
=
[
(1− ν)2 + ν2

]∑
i

Cov [ũni , ṽ
n
i ] + ν(1− ν)

∑
i

[
Cov

[
ũni , ṽ

n
i+1

]
+ Cov

[
ṽni , ũ

n
i+1

]]
.

Combining above identities, we have

(D.12)

∑
i

[
(a− b2)Var

[
ũ
n+ 1

2
i

]
+ Var

[
bũ
n+ 1

2
i − ṽn+ 1

2
i

]]
= [(1− ν)2 + ν2]

∑
i

[
(a− b2)Var [ũni ] + Var [bũni − ṽni ]

]
+ 2ν(1− ν)

∑
i

[
(a− b2)Cov

[
ũni , ũ

n
i+1

]
+ Cov

[
bũni − ṽni , bũni+1 − ṽni+1

]]
≤
∑
i

[
(a− b2)Var [ũni ] + Var [bũni − ṽni ]

]
.

We then treat the relaxation step, using the conditional variance formula

(D.13)
Var

[
ũn+1
i

]
= Var

[
ũ
n+ 1

2
i

]
,

Var
[
bũn+1
i − ṽn+1

i

]
= pVar

[
bũ
n+ 1

2
i − ṽn+ 1

2
i

]
+ p(1− p)

(
E
[
bũ
n+ 1

2
i − ṽn+ 1

2
i

])2

.
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By substituting (D.12) into (D.13), we have

(D.14)

∑
i

[
(a− b2)Var

[
ũn+1
i

]
+ Var

[
bũn+1
i − ṽn+1

i

]]
≤
∑
i

[
(a− b2)Var [ũni ] + Var [bũni − ṽni ]

]
+ p(1− p)

∑
i

(
E
[
bũ
n+ 1

2
i − ṽn+ 1

2
i

])2

≤ · · ·

≤ 0 + p(1− p)
n∑
j=0

∑
i

(
E
[
bũ
j+ 1

2
i − ṽj+

1
2

i

])2

=
1− p
p

n∑
j=0

∑
i

(
E
[
bũj+1
i − ṽj+1

i

])2

.

(5.21) follows by a combination of (D.14) and Lemma 5.3.

D.4. Proof of Lemma 5.6, for the fully-random APMC.

Proof. We have the similar identities for the change of the variances, when we compute u
n+ 1

2
i , v

n+ 1
2

i

from the characteristic variables ρ
n+ 1

2
i , l

n+ 1
2

i ,

(D.15)

∑
i

[
aVar

[
u
n+ 1

2
i

]
+ Var

[
v
n+ 1

2
i

]]
=
∑
i

[
Var

[
ρ
n+ 1

2
i + l

n+ 1
2

i

2

]
+ Var

[
ρ
n+ 1

2
i − ln+ 1

2
i

2

]]

=
1

2

∑
i

[
Var

[
ρ
n+ 1

2
i

]
+ Var

[
l
n+ 1

2
i

]]
,

∑
i

Cov
[
u
n+ 1

2
i , v

n+ 1
2

i

]
=
∑
i

Cov

[
ρ
n+ 1

2
i + l

n+ 1
2

i

2
√
a

,
ρ
n+ 1

2
i − ln+ 1

2
i

2

]

=
1

4
√
a

∑
i

[
Var

[
ρ
n+ 1

2
i

]
−Var

[
l
n+ 1

2
i

]]
.

Combining the identities in (D.15), we have

(D.16)

∑
i

[
(a− b2)Var

[
u
n+ 1

2
i

]
+ Var

[
bu
n+ 1

2
i − vn+ 1

2
i

]]
=

1

2

∑
i

[
Var

[
ρ
n+ 1

2
i

]
+ Var

[
l
n+ 1

2
i

]]
− b

2
√
a

∑
i

[
Var

[
ρ
n+ 1

2
i

]
−Var

[
l
n+ 1

2
i

]]
=

1

2

∑
i

[(
1− b√

a

)
Var

[
ρ
n+ 1

2
i

]
+

(
1 +

b√
a

)
Var

[
l
n+ 1

2
i

]]
.

We apply the conditional variance formula

(D.17)
Var

[
ρ
n+ 1

2
i

]
= (1− ν)Var [ρni ] + νVar

[
ρni−1

]
+ ν(1− ν)

(
E
[
ρni − ρni−1

])2
,

Var
[
l
n+ 1

2
i

]
= (1− ν)Var [lni ] + νVar

[
lni+1

]
+ ν(1− ν)

(
E
[
lni+1 − lni

])2
,

and write

(D.18)
Var [ρni ] = Var

[√
auni

]
+ Var [vni ] + 2

√
aCov [uni , v

n
i ] ,

Var [lni ] = Var
[√
auni

]
+ Var [vni ]− 2

√
aCov [uni , v

n
i ] .
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By substituting (D.17), (D.18) into (D.16), it leads to the following identity

(D.19)

∑
i

[
(a− b2)Var

[
u
n+ 1

2
i

]
+ Var

[
bu
n+ 1

2
i − vn+ 1

2
i

]]
=
∑
i

[aVar [uni ] + Var [vni ]− 2bCov [uni , v
n
i ]]

+
ν(1− ν)

2

[(
1− b√

a

)∑
i

(
E
[
ρni − ρni−1

])2
+

(
1 +

b√
a

)∑
i

(
E
[
lni+1 − lni

])2]
.

We then derive

(D.20)

1

2

[(
1− b√

a

)∑
i

(
E
[
ρni − ρni−1

])2
+

(
1 +

b√
a

)∑
i

(
E
[
lni+1 − lni

])2]
=
∑
i

[
a
(
E
[
uni+1 − uni

])2
+
(
E
[
vni+1 − vni

])2 − 2bE
[
uni+1 − uni

]
E
[
vni+1 − vni

]]
=
∑
i

[
(a− b2)

(
E
[
uni+1 − uni

])2
+
(
E
[
b
(
uni+1 − un+1

i

)
−
(
vni+1 − vn+1

i

)])2]
:= Vn,

by noticing that

(D.21)

(
E
[
ρni − ρni−1

])2
=
(
E
[√
auni −

√
auni−1 + vni − vni−1

])2
,(

E
[
lni+1 − lni

])2
=
(
E
[√
auni+1 −

√
auni − vni+1 − vni

])2
.

In the convective part, we have

(D.22)

∑
i

[
(a− b2)Var

[
u
n+ 1

2
i

]
+ Var

[
bu
n+ 1

2
i − vn+ 1

2
i

]]
=
∑
i

[
(a− b2)Var [uni ] + Var [buni − vni ]

]
+ ν(1− ν)Vn,

and also Vn∆x ≤ C0(∆x)2 by (5.18).
The analysis of the relaxation part is similar to that of (D.13), namely,

(D.23)∑
i

[
(a− b2)Var

[
un+1
i

]
+ Var

[
bun+1
i − vn+1

i

]]
≤
∑
i

[
(a− b2)Var

[
u
n+ 1

2
i

]
+ Var

[
bu
n+ 1

2
i − vn+ 1

2
i

]]
+ p(1− p)

∑
i

(
E
[
bu
n+ 1

2
i − vn+ 1

2
i

])2

≤
∑
i

[
(a− b2)Var [uni ] + Var [buni − vni ]

]
+ p(1− p)

∑
i

(
E
[
bu
n+ 1

2
i − vn+ 1

2
i

])2

+ ν(1− ν)Vn

≤ · · ·

≤ (1− p)
p

n+1∑
j=1

∑
i

(
E
[
buji − v

j
i

])2

+ ν(1− ν)

n∑
j=0

Vn.

Thus

(D.24)

∑
i

[
(a− b2)Var [uni ] + Var [buni − vni ]

]
∆x ≤ p

1 + p
E0 + ν(1− ν)nC0(∆x)2

≤ p

1 + p
E0 +

a(1− ν)

ν
TC0∆t, ∀n,
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where

E0 =
∑
i

[
(a− b2)

(
u0
i

)2
+
(
bu0
i − v0

i

)2]
∆x,

C0 =
∑
i

[
(a− b2)

(
u0
i+1 − u0

i

∆x

)2

+

[
b

(
u0
i+1 − u0

i

∆x

)
−
(
v0
i+1 − v0

i

∆x

)]2
]

∆x.
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