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Abstract

Since proposed in [X. Zhang and C.-W. Shu, J. Comput. Phys., 229: 3091–3120, 2010], the Zhang–Shu

framework has attracted extensive attention and motivated many bound-preserving (BP) high-order discontin-

uous Galerkin and finite volume schemes for various hyperbolic equations. A key ingredient in the framework

is the decomposition of the cell averages of the numerical solution into a convex combination of the solution

values at certain quadrature points, which helps to rewrite high-order schemes as convex combinations of for-

mally first-order schemes. The classic convex decomposition originally proposed by Zhang and Shu has been

widely used over the past decade. It was verified, only for the 1D quadratic and cubic polynomial spaces, that

the classic decomposition is optimal in the sense of achieving the mildest BP CFL condition. Yet, it remained

unclear whether the classic decomposition is optimal in multiple dimensions. In this paper, we find that the

classic multidimensional decomposition based on the tensor product of Gauss–Lobatto and Gauss quadratures

is generally not optimal, and we discover a novel alternative decomposition for the 2D and 3D polynomial

spaces of total degree up to 2 and 3, respectively, on Cartesian meshes. Our new decomposition allows a larger

BP time step-size than the classic one, and moreover, it is rigorously proved to be optimal to attain the mildest

BP CFL condition, yet requires much fewer nodes. The discovery of such an optimal convex decomposition

is highly nontrivial yet meaningful, as it may lead to an improvement of high-order BP schemes for a large

class of hyperbolic or convection-dominated equations, at the cost of only a slight and local modification to

the implementation code. Several numerical examples are provided to further validate the advantages of using

our optimal decomposition over the classic one in terms of efficiency.

*Department of Mathematics and SUSTech International Center for Mathematics, Southern University of Science and Technology,

Shenzhen 518055, China (cuism@sustech.edu.cn).
†Department of Mathematics, Southern University of Science and Technology, Shenzhen 518055, China

(dingsr@sustech.edu.cn).
‡Corresponding author. Department of Mathematics and SUSTech International Center for Mathematics, Southern University of

Science and Technology, Shenzhen 518055, China; National Center for Applied Mathematics Shenzhen (NCAMS), Shenzhen 518055,

China (wukl@sustech.edu.cn). The work of K. Wu. is supported in part by National Natural Science Foundation of China (grant

No. 12171227).

1

ar
X

iv
:2

20
7.

08
84

9v
1 

 [
m

at
h.

N
A

] 
 1

8 
Ju

l 2
02

2



1 Introduction

This paper is concerned with high-order robust numerical schemes for hyperbolic conservation lawsut +∇ · fff (u) = 0, (xxx, t) ∈ Rd×R+,

u(xxx,0) = u0(xxx), xxx ∈ Rd,
(1)

where xxx denotes the spatial coordinate variable(s) in d-dimensional space, t denotes the time, the conservative

variable(s) u takes values in Rm, and the flux fff = ( f1, . . . , fd) takes values in (Rm)d . Our discussions in this

paper can also be applicable to other related hyperbolic or convection-dominated equations.

Solutions to the hyperbolic equations (1) often satisfy certain bounds, which constitute a convex invariant

region G ⊂ Rm. When numerically solving such hyperbolic equations, it is highly desirable or even essential

to preserve the intrinsic bounds, namely, to preserve the numerical solutions in the region G. In fact, if the

numerical solutions go outside the bounds, for example, negative density or pressure is produced when solving

the Euler equations, the discrete problem would become ill-posed due to the loss of hyperbolicity of the system,

and may lead to the instability or breakdown of the numerical computation.

As well known, first-order accurate monotone schemes, such as the Godunov scheme, the Lax–Friedrichs

scheme, and the Engquist–Osher scheme, are bound-preserving (BP) for scalar conservation laws and many

hyperbolic systems. However, seeking high-order accurate BP schemes is rather nontrivial. In the pioneering

work of [1, 2], Zhang and Shu proposed a general framework of designing high-order BP discontinuous Galerkin

(DG) and finite volume (FV) schemes for hyperbolic conservation laws on rectangular meshes, later generalized

to triangular meshes in [3]. Over the past decade, the Zhang–Shu framework has attracted extensive attention

and been applied to various hyperbolic systems (e.g., [4, 5, 6, 7, 8, 9, 10, 11, 12]) and convection-dominated

equations (e.g., [13, 14, 15, 16, 17]). Recently, motivated by a series of BP works [18, 19, 20, 21] for mag-

netohydrodynamics, the geometric quasilinearization (GQL) framework was proposed in [22] for studying BP

problems involving nonlinear constraints. For more developments on high-order BP schemes, we refer the reader

to the review papers [23, 24, 25] and some other BP techniques [26, 27, 28, 29].

An essential ingredient in the Zhang–Shu framework [1, 2] is to decompose the cell averages of the numerical

solution into a convex combination of the solution values at certain quadrature points. Based on such a convex

decomposition, one can reformulate a one-dimensional (1D) or multidimensional high-order FV or DG scheme

into a convex combination of formally 1D first-order schemes. This reformulation then leads to a sufficient

condition for the BP property of the updated cell averages, combined with a simple local scaling limiter that can

enforce the sufficient condition without losing the high-order accuracy [1, 2].

To illustrate the role of convex decomposition in Zhang–Shu’s BP framework, let us consider a (k+ 1)th-

order FV or DG scheme for 1D conservation laws with reconstructed or DG polynomials of degree k, denoted by

pi(x), on cell Ωi = [xi− 1
2
,xi+ 1

2
]. With forward Euler time discretization, the evolution equation of cell averages
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can be written as

ūn+1
i = ūn

i −λ

(
f̂ (u−

i+ 1
2
,u+

i+ 1
2
)− f̂ (u−

i− 1
2
,u+

i− 1
2
)

)
, (2)

where ūn
i is the cell average of pi(x) on Ωi at time level n, λ = ∆t/∆x is the ratio of the temporal and spatial

step-sizes, u+
i− 1

2
= pi(xi− 1

2
) and u−

i+ 1
2
= pi(xi+ 1

2
) for all i. Here, f̂ (·, ·) is a BP numerical flux with which the

first-order scheme is BP under a suitable CFL condition aλ ≤ c0, where a denotes the maximum characteristic

speed, and c0 is the maximum allowable CFL number for the corresponding first-order scheme. Note that the

L-point Gauss–Lobatto quadrature with L = dk+3
2 e is exact for polynomials of degree up to k. This implies the

following convex decomposition [1]:

ūn
i =

1
∆x

∫ x
i+ 1

2

x
i− 1

2

pi(x)dx = ω
GL
1 u+

i− 1
2
+ω

GL
L u−

i+ 1
2
+

L−1

∑
s=2

ω
GL
` pi(xGLi,s ), (3)

where {ωGL
s } are the Gauss–Lobatto weights with ωGL

1 =ωGL
L = 1/(L(L−1)), and {xGLi,s} are the quadrature nodes

on Ωi with xGLi,1 = xi− 1
2

and xGLi,L = xi+ 1
2
. Based on the decomposition (3), Zhang and Shu [1, 2] rewrote the scheme

(2) as

ūn+1
i = ω

GL
1 Π1 +ω

GL
L ΠL +

L−1

∑
s=2

ω
GL
s pi(xGLi,s ), (4)

where

Π1 := u+
i− 1

2
− λ

ωGL
1

(
f̂ (u+

i− 1
2
,u−

i+ 1
2
)− f̂ (u−

i− 1
2
,u+

i− 1
2
)

)
, ΠL := u−

i+ 1
2
− λ

ωGL
L

(
f̂ (u−

i+ 1
2
,u+

i+ 1
2
)− f̂ (u+

i− 1
2
,u−

i+ 1
2
)

)
are of the same form as the three-point first-order scheme with a scaled time step-size. Thanks to the convex

decomposition (4) and the BP property of the first-order scheme, if we use a BP limiter [1] to enforce

pi(xGLi,s ) ∈ G ∀i,s, (5)

then by the convexity of G, the high-order scheme (2) preserves ūn+1
j ∈ G under the CFL condition

aλ ≤ c0ω
GL
1 . (6)

As we have seen, the convex decomposition (3) plays a critical role in constructing high-order BP schemes.

It determines not only the theoretical BP CFL condition (6) of the resulting scheme, but also the points (5) to

perform the BP limiter. In fact, one may choose a different convex decomposition in the above analysis. In the

1D case, any type of quadrature rule, with weights all positive and nodes including the two endpoints, would

give a feasible convex decomposition. However, different decomposition would affect the theoretical BP CFL

condition and thus the computational costs. It is natural to ask what decomposition is optimal in the sense of

achieving the mildest BP CFL condition. Zhang and Shu mentioned in [1, Remark 2.7] that they checked, for

k = 2,3, that their 1D decomposition (3) is optimal. For k ≥ 4, the optimality of the 1D decomposition (3) has

not been proved yet.
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This paper aims to make the first attempt at questing the optimal convex decomposition in the multidimen-

sional cases. In the multiple dimensions, Zhang and Shu [1, 2] proposed the classic convex decomposition based

on the tensor product of the Gauss–Lobatto quadrature and the Gauss quadrature rules; see (13). As the 1D

case, their decomposition has been an important foundation for constructing high-order BP multidimensional

schemes. Over the past decade, the classic Zhang–Shu decomposition has been widely adopted in designing

many high-order BP schemes for various hyperbolic or convection-dominated equations. It is natural to ask the

following question:

Is the classic convex decomposition optimal in multiple dimensions?

In this work, we find, in the multidimensional cases, that the classic decomposition is generally not optimal

for the Pk spaces, i.e. the multivariate polynomial spaces of total degree up to k. Seeking the optimal convex

decomposition in the multidimensional cases is highly complicated and challenging. In this paper, we restrict

our attention to two commonly used spaces (P2 and P3), which are typically used in the third-order and fourth-

order DG schemes, on the Cartesian meshes. For these polynomial spaces, we discover a novel alternative

decomposition, which is rigorously proved to be optimal, namely, to attain the mildest BP CFL condition, yet

requires much fewer nodes. Based on our novel optimal convex decomposition, we can establish more efficient

high-order BP DG schemes in the Zhang–Shu framework, as it allows a notably larger BP time step-size than

the classic one. The discovery of our optimal convex decomposition is highly nontrivial and may have a broad

impact, as it would lead to an overall improvement of third-order and fourth-order BP schemes for a large

class of hyperbolic or convection-dominated equations at the cost of only a slight and local modification to the

implementation code. We will present several numerical examples to further validate the remarkable advantages

of using our optimal decomposition over the classic one in terms of efficiency. It is worth mentioning that seeking

the optimal convex decomposition for general Pk spaces (k ≥ 4) in the multidimensional cases (on the Cartesian

meshes or unstructured meshes) seems challenging and is still open. We hope the present paper could be helpful

for motivating further discussions on this interesting problem in the future.

2 General convex decomposition for 2D high-order BP schemes

This section discusses the general feasible convex decomposition for constructing 2D high-order BP DG schemes

within the Zhang–Shu framework.

Let Pk denote the space of multivariate polynomials of total degree up to k. We consider the (k+1)th-order

Pk-based DG scheme with the forward Euler time discretization for solving the 2D hyperbolic conservation laws

ut + f1(u)x + f2(u)y = 0, (x,y, t) ∈ R×R×R+. (7)

All our discussions in this paper are also valid for high-order strong-stability-preserving (SSP) time discretiza-

tions [30], as they are convex combinations of forward Euler step. Following the Zhang–Shu framework [1, 2],
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in order to design a BP DG scheme, we only need to ensure the cell averages within the region G. As long as

the BP property of the updated cell averages is guaranteed, one may employ a simple BP limiter to enforce the

pointwise bounds of the piecewise DG polynomial solutions without affecting the high-order accuracy [1, 2].

On a rectangular cell Ωi j := [xi− 1
2
,xi+ 1

2
]× [y j− 1

2
,y j+ 1

2
], the evolution equation of cell averages for the (k+

1)th-order DG scheme reads

ūn+1
i j = ūn

i j−
∆t
∆x

Q

∑
q=1

ω
G
q

[
f̂1
(
u−

i+ 1
2 ,q

,u+
i+ 1

2 ,q

)
− f̂1

(
u−

i− 1
2 ,q

,u+
i− 1

2 ,q

)]
− ∆t

∆y

Q

∑
q=1

ω
G
q

[
f̂2
(
u−

q, j+ 1
2
,u+

q, j+ 1
2

)
− f̂2

(
u−

q, j− 1
2
,u+

q, j− 1
2

)]
,

(8)

where

u+
i− 1

2 ,q
= pi j

(
xi− 1

2
,yGj,q

)
, u−

i+ 1
2 ,q

= pi j
(
xi+ 1

2
,yGj,q

)
, u+

q, j− 1
2
= pi j

(
xGi,q,y j− 1

2

)
, u−

q, j+ 1
2
= pi j

(
xGi,q,y j+ 1

2

)
with pi j(x,y) ∈ Pk denoting the DG solution polynomial on Ωi j at time level n satisfying

ūn
i j =

1
∆x∆y

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

pi j(x,y)dydx,

and {xGi,q}
Q
q=1 and {yGj,q}

Q
q=1 respectively denote the Q-point Gauss quadrature nodes in the intervals [xi− 1

2
,xi+ 1

2
]

and [y j− 1
2
,y j+ 1

2
], with the corresponding quadrature weights {ωG

q} satisfying ∑
Q
q=1 ωG

q = 1. For the Pk-based DG

scheme, Q is typically taken as k+1, such that the quadrature has sufficiently high-order accuracy.

In (8), we take the numerical fluxes f̂1 and f̂2 as the BP numerical fluxes with which the corresponding 1D

three-point first-order schemes are BP, i.e., for any u1,u2,u3 ∈ G it holds that

u2−
∆t
∆x

(
f̂1(u2,u3)− f̂1(u1,u2)

)
∈ G, u2−

∆t
∆y

(
f̂2(u2,u3)− f̂2(u1,u2)

)
∈ G (9)

under a suitable CFL condition max{a1∆t/∆x,a2∆t/∆y} ≤ c0, where a1 and a2 denote the maximum character-

istic speeds in x- and y-directions, and c0 is the maximum allowable CFL number for the 1D first-order schemes.

For example, typically c0 = 1 for the Lax–Friedrichs flux [2, 10], and c0 =
1
2 for the HLL and HLLC fluxes [10].

2.1 Feasible convex decomposition in 2D

Similar to the 1D case (3), the BP analysis and design of a 2D scheme (8) also require certain 2D quadrature rule

to decompose the cell average ūn
i j into a convex combination of the values of pi j at some points. A qualified 2D

quadrature, which we call feasible convex decomposition, should satisfy three requirements, as defined below.

Definition 1 (Feasible convex decomposition in 2D). A 2D convex decomposition

ūn
i j =

Q

∑
q=1

ω
G
q

[
ω
−
1 u+

i− 1
2 ,q

+ω
+
1 u−

i+ 1
2 ,q

+ω
−
2 u+

q, j− 1
2
+ω

+
2 u−

q, j+ 1
2

]
+

S

∑
s=1

ωs pi j(x
(s)
i j ,y

(s)
i j ) (10)

is said to be feasible for the polynomial space Pk, if it simultaneously satisfies the following three conditions:
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(i) the convex decomposition holds exactly for all p ∈ Pk;

(ii) the weights {ω±1 ,ω±2 ,ωs} are all positive (their summation equals one);

(iii) the internal node set Si j := {(x(s)i j ,y
(s)
i j )}S

s=1 ⊂Ωi j.

Based on the tensor product of the L-point Gauss quadrature (with L= dk+3
2 e) and the Q-point Gauss–Lobatto

quadrature, the cell average ūn
i j can be decomposed into a convex combination of point values of pi j as follows:

ūn
i j =

1
∆x∆y

∫ y
j+ 1

2

y
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

pi j(x,y)dxdy =
L

∑
s=1

ω
GL
s

 1
∆y

∫ y
j+ 1

2

y
j− 1

2

pi j
(
xGLi,s ,y

)
dy

=
L

∑
s=1

Q

∑
q=1

ω
GL
s ω

G
q pi j

(
xGLi,s ,y

G
j,q
)

=
Q

∑
q=1

ω
G
q ω

GL
1

[
u+

i− 1
2 ,q

+u−
i+ 1

2 ,q

]
+

L−1

∑
s=2

Q

∑
q=1

ω
GL
s ω

G
q pi j

(
xGLi,s ,y

G
j,q
)
. (11)

Similarly, by applying the quadrature rules in a different order, one obtains

ūn
i j =

Q

∑
q=1

ω
G
q ω

GL
1

[
u+

q, j− 1
2
+u−

q, j+ 1
2

]
+

L−1

∑
s=2

Q

∑
q=1

ω
GL
s ω

G
q pi j

(
xGi,q,y

GL
j,s
)
. (12)

Zhang–Shu classic convex decomposition. In [1, 2], Zhang and Shu proposed the classic convex decomposition

by using the tensor-product decomposition formulas (11) and (12):

ūn
i j = κ1 · ūn

i j +κ2 · ūn
i j = κ1 · equation (11)+κ2 · equation (12)

=
Q

∑
q=1

ω
G
q ω

GL
1

[
κ1u+

i− 1
2 ,q

+κ1u−
i+ 1

2 ,q
+κ2u+

q, j− 1
2
+κ2u−

q, j+ 1
2

]
+

L−1

∑
s=2

Q

∑
q=1

ω
GL
s ω

G
q
[
κ1 pi j

(
xGLi,s ,y

G
j,q
)
+κ2 pi j

(
xGi,q,y

GL
j,s
)]

(13)

with

κ1 :=
a1
∆x

a1
∆x +

a2
∆y
, κ2 :=

a2
∆y

a1
∆x +

a2
∆y
.

This classic convex decomposition has been widely used over the past decase.

Jiang–Liu convex decomposition. In [10], Jiang and Liu used a simpler convex decomposition:

ūn
i j =

1
2
· ūn

i j +
1
2
· ūn

i j =
1
2
· equation (11)+

1
2
· equation (12)

=
Q

∑
q=1

ωG
q ωGL

1

2

[
u+

i− 1
2 ,q

+u−
i+ 1

2 ,q
+u+

q, j− 1
2
+u−

q, j+ 1
2

]
+

L−1

∑
s=2

Q

∑
q=1

ωGL
s ωG

q

2
[
pi j
(
xGLi,s ,y

G
j,q
)
+ pi j

(
xGi,q,y

GL
j,s
)]
. (14)

Remark 1. Both the Zhang–Shu decomposition (13) and the Jiang–Liu decomposition (14) are examples of 2D

feasible convex decomposition, and they share the same (classic) internal node set

SZhang−Shui j =
L−1⋃
s=2

Q⋃
q=1

{
(xGLi,s ,y

G
j,q),(x

G
i,q,y

GL
j,s)
}
. (15)
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2.2 BP conditions via general convex decomposition

Motivated by [1, 2, 10], this subsection studies the BP conditions for the scheme (8) via the general feasible

convex decomposition (10). One can rewrite (10) as

ūn
i j =

Q

∑
q=1

ω
G
q ω̂1

(
u+

i− 1
2 ,q

+u−
i+ 1

2 ,q

)
+

Q

∑
q=1

ω
G
q ω̂2

(
u+

q, j− 1
2
+u−

q, j+ 1
2

)
+Π, (16)

where ω̂1 := min{ω−1 ,ω+
1 }, ω̂2 := min{ω−2 ,ω+

2 }, and

Π :=
Q

∑
q=1

ω
G
q

[
(ω−1 − ω̂1)u+i− 1

2 ,q
+(ω+

1 − ω̂1)u−i+ 1
2 ,q

+(ω−2 − ω̂2)u+q, j− 1
2
+(ω+

2 − ω̂2)u−q, j+ 1
2

]
+

S

∑
s=1

ωs pi j(x
(s)
i j ,y

(s)
i j ).

(17)

By using a local scaling limiter [1, 2], one can enforce the DG solution polynomial pi j to satisfy the desired

bounds on the boundary nodes:

u+
i− 1

2 ,q
∈ G, u−

i+ 1
2 ,q
∈ G, u+

q, j− 1
2
∈ G, u−

q, j+ 1
2
∈ G, q = 1, . . . ,Q, ∀i, j, (18)

and on the internal nodes:

pi j(x
(s)
i j ,y

(s)
i j ) ∈ G, s = 1, . . . ,S, ∀i, j. (19)

Noting that (17) expresses Π as a convex combination of the values in (18) and (19), we conclude that Π ∈ G,

because G is convex. Substituting the decomposition (16) into (8), one can rewrite the scheme (8) as

ūn+1
i j =

Q

∑
q=1

ω
G
q ω̂1(H−i+ 1

2 ,q
+H+

i− 1
2 ,q

)+
Q

∑
q=1

ω
G
q ω̂2(H−q, j+ 1

2
+H+

q, j− 1
2
)+Π (20)

with

H−
i+ 1

2 ,q
= u−

i+ 1
2 ,q
− ∆t

ω̂1∆x

(
f̂1
(
u−

i+ 1
2 ,q

,u+
i+ 1

2 ,q

)
− f̂1

(
u+

i− 1
2 ,q

,u−
i+ 1

2 ,q

))
,

H+
i− 1

2 ,q
= u+

i− 1
2 ,q
− ∆t

ω̂1∆x

(
f̂1
(
u+

i− 1
2 ,q

,u−
i+ 1

2 ,q

)
− f̂1

(
u−

i− 1
2 ,q

,u+
i− 1

2 ,q

))
,

H−
q, j+ 1

2
= u−

q, j+ 1
2
− ∆t

ω̂2∆y

(
f̂2
(
u−

q, j+ 1
2
,u+

q, j+ 1
2

)
− f̂2

(
u+

q, j− 1
2
,u−

q, j+ 1
2

))
,

H+
q, j− 1

2
= u+

q, j− 1
2
− ∆t

ω̂2∆y

(
f̂2
(
u+

q, j− 1
2
,u−

q, j+ 1
2

)
− f̂2

(
u−

q, j− 1
2
,u+

q, j− 1
2

))
,

which are formally 1D three-point first-order schemes (9) that satisfy

H−
i+ 1

2 ,q
∈ G, H+

i− 1
2 ,q
∈ G, H−

q, j+ 1
2
∈ G, H+

q, j− 1
2
∈ G,

under the CFL type conditions

a1∆t ≤ ω̂1∆x, a2∆t ≤ ω̂2∆y. (21)

Because (20) is a convex combination form, by the convexity of G we conclude that ūn+1
i j ∈G under the conditions

(21), which are equivalent to the following BP CFL condition (22). In summary, we arrive at the following

theorem.
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Theorem 1 (BP via general convex decomposition). If there is a 2D feasible convex decomposition in the form

of (24) and the solution polynomial pi j satisfies (18) and (19) for all i and j, then the high-order scheme (8)

preserves ūn+1
i j ∈ G under the BP CFL condition

∆t ≤ c0 min
{

ω
−
1 ∆x
a1

,
ω

+
1 ∆x
a1

,
ω
−
2 ∆y
a2

,
ω

+
2 ∆y
a2

}
. (22)

As direct consequences of Theorem 1, we have the following two corollaries.

Corollary 1 (BP via Zhang–Shu convex decomposition). If for all i and j, the solution polynomial pi j satisfies

(18) and pi j(x,y) ∈ G for all (x,y) ∈ SZhang−Shui j , then the high-order scheme (8) preserves ūn+1
i j ∈ G under the

BP CFL condition (
a1

∆x
+

a2

∆y

)
∆t ≤ ω

GL
1 c0 =

c0

L(L−1)
with L =

⌈
k+3

2

⌉
. (23)

Corollary 2 (BP via Jiang–Liu convex decomposition). If for all i and j, the solution polynomial pi j satisfies

(18) and pi j(x,y) ∈ G for all (x,y) ∈ SZhang−Shui j , then the high-order scheme (8) preserves ūn+1
i j ∈ G under the

BP CFL condition

2max
{

a1

∆x
,

a2

∆y

}
∆t ≤ ω

GL
1 c0 =

c0

L(L−1)
with L =

⌈
k+3

2

⌉
.

3 Optimal 2D convex decomposition for P2 and P3 on rectangular cells

As we have seen, a convex decomposition like (10) plays a critical role in constructing 2D high-order BP

schemes: the choice of decomposition, in particular, the corresponding weights {ω−1 ,ω+
1 ,ω−2 ,ω+

2 } affect the

resulting BP CFL condition (22). While the feasible convex decomposition approaches are not unique, it is nat-

ural to seek the optimal convex decomposition such that the resulting BP CFL condition (22) is mildest, i.e., it

maximizes

min
{

ω
−
1 ∆x
a1

,
ω

+
1 ∆x
a1

,
ω
−
2 ∆y
a2

,
ω

+
2 ∆y
a2

}
.

Seeking such an optimal convex decomposition in 2D is challenging. We find that the classic Zhang–Shu

decomposition (13) and the Jiang–Liu decomposition (14) both are generally not optimal for the Pk spaces.

Moreover, we discover the following novel convex decomposition on Ωi j := [xi− 1
2
,xi+ 1

2
]× [y j− 1

2
,y j+ 1

2
] for P2

and P3.

Optimal 2D convex decomposition. For pi j ∈ P2 or P3, the cell average ūn
i j has the following convex decompo-

sition

ūn
i j =

µ1

2

Q

∑
q=1

ω
G
q

[
u+

i− 1
2 ,q

+u−
i+ 1

2 ,q

]
+

µ2

2

Q

∑
q=1

ω
G
q

[
u+

q, j− 1
2
+u−

q, j+ 1
2

]
+ω ∑

s
pi j (x̂s, ŷs) , (24)
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with the internal nodes

Soptimali j = {(x̂s, ŷs)}=



(
xi,y j±

∆y
2
√

3

√
φ∗−φ2

φ∗

)
, if φ1 ≥ φ2,(

xi±
∆x

2
√

3

√
φ∗−φ1

φ∗
,y j

)
, if φ1 < φ2,

(25)

where

φ1 =
a1

∆x
, φ2 =

a2

∆y
, φ∗ = max{φ1,φ2}, ψ = φ1 +φ2 +2φ∗, µ1 =

φ1

ψ
, µ2 =

φ2

ψ
, ω =

φ∗
ψ
.

It can be verified that the proposed 2D convex decomposition (24) is feasible and optimal (see Theorem 2)

for both P2 and P3. As a direct consequence of Theorem 1, we have following corollary.

Corollary 3 (BP via optimal convex decomposition). If for all i and j, the solution polynomial pi j satisfies (18)

and pi j(x,y) ∈ G for all (x,y) ∈ Soptimali j , then the P2-based or P3-based high-order DG scheme (8) preserves

ūn+1
i j ∈ G under the BP CFL condition[

2
a1

∆x
+2

a2

∆y
+4max

{
a1

∆x
,

a2

∆y

}]
∆t ≤ c0. (26)

In Table 1, we list and compare the corresponding BP CFL conditions and the internal node sets of decom-

positions (24), (13) and (14) for P2 and P3. We observe that our novel convex decomposition (24) has some

remarkable advantages, as summarized in the following remarks.

Remark 2 (Advantage in mildest BP CFL condition). One can observe from Table 1 that the proposed convex de-

composition (24) achieves a notably milder BP CFL condition than the existing ones, i.e., our BP CFL condition

(26) is weaker than (13) and (14) respectively obtained via the Zhang–Shu and Jiang–Liu convex decomposi-

tions. In fact, for the P2 or P3 space, no other 2D feasible convex decomposition can achieve an even milder

BP CFL condition than (26), i.e., the proposed convex decomposition (24) is optimal. This will be theoretically

proved in Theorem 2.

Remark 3 (Advantage in fewer nodes). The internal node set Soptimali j of the optimal convex decomposition

(24) contains only two nodes, which merge to a single node (xi,y j) in case of φ1 = φ2. In comparison, the

classic convex decomposition (13) or (14) needs much more internal nodes (approximately 2Q(L−2) in total).

These two internal node sets, SZhang−Shui j and Soptimali j , are shown in Figure 1 for further comparison. When the

local scaling BP limiter is performed at the internal nodes in all computational cells, using the optimal convex

decomposition (24) reduces the computational cost of the BP limiting procedure.

9



Table 1: The theoretical BP CFL conditions and the internal node sets of the optimal convex decomposition (24)

and the convex decompositions (13) and (14) in 2D for the P2 and P3 spaces.

BP CFL condition BP CFL condition Internal Internal

general case ∆x
a1

= ∆y
a2

= h P2 nodes P3 nodes

Optimal
[
2 a1

∆x +2 a2
∆y +4max

{
a1
∆x ,

a2
∆y

}]
∆t ≤ c0 ∆t ≤ c0

8 h 1 ∼ 2 1 ∼ 2

Zhang & Shu [1]
[
6 a1

∆x +6 a2
∆y

]
∆t ≤ c0 ∆t ≤ c0

12h 5 8

Jiang & Liu [10]
[
12max

{
a1
∆x ,

a2
∆y

}]
∆t ≤ c0 ∆t ≤ c0

12h 5 8

(a) Boundary nodes (black)

and optimal internal nodes

Soptimali j (red) for P2.

(b) Boundary nodes (black)

and optimal internal nodes

Soptimali j (red) for P3.

(c) Boundary nodes (black)

and classic internal nodes

SZhang−Shui j (red) for P2.

(d) Boundary nodes (black)

and classic internal nodes

SZhang−Shui j (red) for P3.

Figure 1: Nodes of the convex decompositions (24) and the classic convex decomposition (13) on Ωi j = [−1,1]2,

for the P2 and P3 spaces, in the case of ∆x
a1

= ∆y
a2

.

Remark 4 (Easy implementation). It is worth emphasizing that one only requires a slight and local modification

to an existing code to enjoy the above-mentioned advantages of our optimal convex decomposition. Specifically,

one only needs to replace the classic internal node set SZhang−Shui j with the optimal internal node set Soptimali j in

the BP limiting procedure, and then the theoretical BP CFL condition is improved to (26).

Theorem 2. For both P2 and P3 spaces, the 2D convex decomposition (24) is optimal among all feasible candi-

dates.

Proof. It can be easily verified that the 2D convex decomposition (24) is feasible for P2 and P3. We will prove

its optimality by contradiction. Assume that there is another feasible convex decomposition of the form

ūn
i j =

Q

∑
q=1

ω
G
q

[
ω
−
1 u+

i− 1
2 ,q

+ω
+
1 u−

i+ 1
2 ,q

+ω
−
2 u+

q, j− 1
2
+ω

+
2 u−

q, j+ 1
2

]
+

S

∑
s=1

ωs pi j(x
(s)
i j ,y

(s)
i j ), (27)
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which achieves a BP CFL condition milder than (24), that is,

c0 min
{

ω
−
1 ∆x
a1

,
ω

+
1 ∆x
a1

,
ω
−
2 ∆y
a2

,
ω

+
2 ∆y
a2

}
> c0 min

{
µ1∆x
2a1

,
µ1∆x
2a1

,
µ2∆y
2a2

,
µ2∆y
2a2

}
=

c0

2 a1
∆x +2 a2

∆y +4max
{

a1
∆x ,

a2
∆y

} .
In case of a1

∆x ≥
a2
∆y , we have

1 < min
{

ω
−
1 ∆x
a1

,
ω

+
1 ∆x
a1

,
ω
−
2 ∆y
a2

,
ω

+
2 ∆y
a2

}[
6

a1

∆x
+2

a2

∆y

]
≤ 3

ω
−
1 ∆x
a1

a1

∆x
+3

ω
+
1 ∆x
a1

a1

∆x
+

ω
−
2 ∆y
a2

a2

∆y
+

ω
+
2 ∆y
a2

a2

∆y
= 3(ω+

1 +ω
−
1 )+(ω+

2 +ω
−
2 ).

(28)

In case of a1
∆x <

a2
∆y , we have

1 < min
{

ω
−
1 ∆x
a1

,
ω

+
1 ∆x
a1

,
ω
−
2 ∆y
a2

,
ω

+
2 ∆y
a2

}[
2

a1

∆x
+6

a2

∆y

]
≤

ω
−
1 ∆x
a1

a1

∆x
+

ω
+
1 ∆x
a1

a1

∆x
+3

ω
−
2 ∆y
a2

a2

∆y
+3

ω
+
2 ∆y
a2

a2

∆y
= (ω+

1 +ω
−
1 )+3(ω+

2 +ω
−
2 ).

(29)

No matter the hypothetical convex decomposition (27) is feasible for P2 or P3, it should hold exactly for

pi j(x,y) = (x− xi)
2 and pi j(x,y) = (y− y j)

2. This gives

∆x2

12
= (ω+

1 +ω
−
1 )

∆x2

4
+(ω+

2 +ω
−
2 )

∆x2

12
+

N

∑
s=1

ωs(x
(s)
i j − xi)

2,

∆y2

12
= (ω+

1 +ω
−
1 )

∆y2

12
+(ω+

2 +ω
−
2 )

∆y2

4
+

N

∑
s=1

ωs(y
(s)
i j − y j)

2,

implying

3(ω+
1 +ω

−
1 )+(ω+

2 +ω
−
2 )≤ 1 and (ω+

1 +ω
−
1 )+3(ω+

2 +ω
−
2 )≤ 1, (30)

which contradict with either (28) or (29). Hence the assumption is incorrect, and decomposition (24) is optimal.

Remark 5. The standard CFL condition for linear stability of the Pk-based DG method with a (k + 1)-stage

(k+1)-order Runge–Kutta (RK) time discretization [31] is given by the following empirical formula(
a1

∆x
+

a2

∆y

)
∆t ≤ 1

2k+1
. (31)

Table 2 gives a comparison of different CFL conditions in the special case of ∆x
a1

= ∆y
a2

= h for the P2-based (third-

order) and P3-based (fourth-order) DG methods. One can see that if c0 = 1, the optimal BP CFL condition (26)

of the DG schemes (with the BP limiter) is even weaker than the standard one (31).

Remark 6. We would like to clarify that the optimal BP CFL condition (26) is merely the best among all those

achieved via feasible convex decomposition. It does not mean that such an optimal condition is always sharp or

necessary, as other possible analysis approaches may give perhaps weaker BP conditions.
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Table 2: Comparison of different CFL conditions in the special case of ∆x
a1

= ∆y
a2

= h.

linear stability
c0 = 1 c0 = 1/2

optimal classic optimal classic

P2 ∆t ≤ 1
10h

∆t ≤ 1
8h ∆t ≤ 1

12h ∆t ≤ 1
16h ∆t ≤ 1

24h

P3 ∆t ≤ 1
14h

4 Optimal 3D convex decomposition for P2 and P3 on cuboid cells

The proposed 2D optimal convex decomposition (24) can be extended to 3D and higher dimensions. We denote

the maximum characteristic speeds in the x-, y- and z-directions by a1, a2, and a3, respectively. Let Ωi j` =

[xi− 1
2
,xi+ 1

2
]× [y j− 1

2
,y j+ 1

2
]× [z`− 1

2
,z`+ 1

2
] be a cuboid cell, with ∆x, ∆y, and ∆z denoting its lengths in the x-, y-

and z-directions, respectively.

Optimal 3D convex decomposition. For pi j` ∈ P2 or P3, the optimal 3D convex decomposition on Ωi j` is given

by

ūi j` =
µ1

2

Q

∑
q=1

Q

∑
r=1

ω
G
q ω

G
r

[
u+

i− 1
2 ,q,r

+u−
i+ 1

2 ,q,r

]
+

µ2

2

Q

∑
q=1

Q

∑
r=1

ω
G
q ω

G
r

[
u+

r, j− 1
2 ,q

+u−
r, j+ 1

2 ,q

]

+
µ3

2

Q

∑
q=1

Q

∑
r=1

ω
G
q ω

G
r

[
u+

q,r,`− 1
2
+u−

q,r,`+ 1
2

]
+

ω

2 ∑
s

pi j` (x̂s, ŷs, ẑs) ,

(32)

where ūi j` denotes the cell average of pi j` over Ωi j`, and

u∓
i± 1

2 ,q,r
= pi j`

(
xi± 1

2
,yGj,q,z

G
`,r
)
, u∓

r, j± 1
2 ,q

= pi j`
(
xGi,r,y j± 1

2
,zG`,q

)
, u∓

q,r,k± 1
2
= pi j`

(
xGi,q,y

G
j,r,z`± 1

2

)
.

In (32), the weights µ1, µ2, µ3, and ω are given by

µ1 =
φ1

ψ
, µ2 =

φ2

ψ
, µ3 =

φ3

ψ
, ω =

φ∗
ψ

with

φ1 = a1/∆x, φ2 = a2/∆y, φ3 = a3/∆z, ψ = φ1 +φ2 +φ3 +2φ∗, φ∗ = max{φ1,φ2,φ3},
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and the internal nodes are given by

Soptimali j` =
{(

x̂s, ŷs, ẑs
)}

=



(
xi,y j±

∆y√
6

√
φ∗−φ2

φ∗
,z`

)
and

(
xi,y j,z`±

∆z√
6

√
φ∗−φ3

φ∗

)
, if φ1 = max{φ1,φ2,φ3},(

xi,y j,z`±
∆z√

6

√
φ∗−φ3

φ∗

)
and

(
xi±

∆x√
6

√
φ∗−φ1

φ∗
,y j,z`

)
, if φ2 = max{φ1,φ2,φ3},(

xi±
∆x√

6

√
φ∗−φ1

φ∗
,y j,z`

)
and

(
xi,y j±

∆y√
6

√
φ∗−φ2

φ∗
,z`

)
, if φ3 = max{φ1,φ2,φ3}.

Theorem 3. For both P2 and P3 spaces, the 3D convex decomposition (32) is optimal among all feasible candi-

dates.

The proof of Theorem 3 is similar to that of Theorem 2 and is thus omitted. As summarized in Table 3, the

advantages of the optimal 3D convex decomposition (32), over the 3D versions of the classic decompositions,

are even greater than the 2D case. Figure 2 shows the boundary and internal nodes for further comparison.

Table 3: BP CFL conditions and the internal node sets of the optimal 3D convex decomposition (32) and the 3D

versions of the Zhang–Shu and Jiang–Liu convex decompositions for the P2 and P3 spaces.

BP CFL condition BP CFL condition Internal Internal

general case ∆x
a1

= ∆y
a2

= ∆z
a3

= h P2 nodes P3 nodes

Optimal
[
2 a1

∆x +2 a2
∆y +2 a3

∆z +4max
{

a1
∆x ,

a2
∆y ,

a3
∆z

}]
∆t ≤ c0 ∆t ≤ c0

10h 1 ∼ 4 1 ∼ 4

Zhang & Shu [1]
[
6 a1

∆x +6 a2
∆y +6 a3

∆z

]
∆t ≤ c0 ∆t ≤ c0

18h 19 48

Jiang & Liu [10]
[
18max

{
a1
∆x ,

a2
∆y ,

a3
∆z

}]
∆t ≤ c0 ∆t ≤ c0

18h 19 48

5 Numerical experiments

In this section, we test the accuracy, robustness, and efficiency of the high-order BP DG schemes designed via

the proposed optimal convex decomposition (24), which are referred to as the “optimal approach” for short.

For comparison, we also consider the high-order BP DG schemes designed via the classic Zhang–Shu convex

decomposition (13), which are referred to as the “classic approach” for short. While the convex decomposition

is independent of the choice of BP numerical fluxes, we adopt the global Lax–Friedrichs flux with c0 = 1 in all

13



(a) Boundary nodes (black)

and optimal internal nodes

Soptimali j` (red) for P2.

(b) Boundary nodes (black)

and optimal internal nodes

Soptimali j` (red) for P3.

(c) Boundary nodes (black)

and classic internal nodes

SZhang−Shui j` (red) for P2.

(d) Boundary nodes (black)

and classic internal nodes

SZhang−Shui j` (red) for P3.

Figure 2: Nodes of the optimal 3D decomposition (32) and the 3D version of the classic Zhang–Shu decompo-

sition on Ωi j` = [−1,1]3, for P2 and P3, in the case of ∆x
a1

= ∆y
a2

= ∆z
a3

. We only plot the nodes in the first octant

[0,1]3, while the other nodes are distributed symmetrically.

the presented tests. Unless otherwise stated, we employ the three-stage third-order SSP RK discretization [30]

(abbreviated as SSPRK3) for the P2-based (third-order) DG scheme, and the five-stage fourth-order SSP RK time

discretization [30] (abbreviated as SSPRK4) for the P3-based (fourth-order) DG scheme. The SSP coefficients for

SSPRK3 and SSPRK4 are CSSP = 1 and CSSP ≈ 1.508, respectively. All the methods are implemented using C++

language with double precision on a Linux server with Intel(R) Xeon(R) Platinum 8268 CPU @ 2.90GHz 2TB

RAM.

Example 1 (Linear convection equation). We start with the two-dimensional linear convection equation

ut +ux +uy = 0, (x,y, t) ∈ [−1,1]× [−1,1]×R+, (33)

with periodic boundary conditions and the initial data u(x,y,0) = sin(π(x+ y)). The exact solution satisfies a

maximum principle, implying the convex invariant region G = [−1,1]. We simulate this problem until t = 50

to study the long-time stability of the BP DG schemes with the BP limiter on the uniform mesh of 100× 100

cells. Figure 3 shows the time evolution of the numerical errors in the L1, L2, and L∞ norms, respectively. In

the simulations, we adopt three different time step-sizes, namely, τ0 :=CSSPτBPO with τBPO being the maximum ∆t

determined by the optimal BP CFL condition (26), τ1 :=CSSPτBPC with τBPC being the maximum ∆t determined by

the classic Zhang–Shu BP CFL condition (23), and τ2 := CSSPτLS with τLS being the maximum ∆t determined

by the standard CFL condition (31) for linear stability. The CPU time of all these simulations is presented in

Table 4. One can see that all the errors shown in Figure 3 do not exhibit any sign of exponential growth, which

indicates the simulations are stable. We also observe that, when the identical time step is used, the errors of the

optimal approach is smaller or comparable to those of the classic one, but the optimal approach uses less

CPU time (see Table 4) due to the fewer internal nodes. It is seen that the numerical errors are slightly larger, if
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Figure 3: Example 1: Time evolution of the L1, L2, and L∞ errors in the numerical solutions obtained using the

third-order (P2; top row) and fourth-order (P3; bottom row) BP DG schemes designed via different approaches

and by using different time step-sizes.

a bigger time step is adopted, as expected. The optimal approach allows a larger time step, with which the CPU

time is much less, as shown in Table 4.

Example 2 (Riemann problem of Burgers’ equation). This example [32] considers the inviscid Burgers’ equation

ut +

(
u2

2

)
x
+

(
u2

2

)
y
= 0, (x,y, t) ∈ [0,1]× [0,1]×R+, (34)

with outflow boundary conditions and the initial condition

u(x,y,0) =



−0.2, if x < 0.5,y > 0.5,

−1, if x > 0.5,y > 0.5,

0.5, if x < 0.5,y < 0.5,

0.8, if x > 0.5,y < 0.5.

The exact solution of this example also obeys the maximum principle with G = [−1,0.8]. Figure 4 displays the

numerical results at t = 0.5 computed with 256×256 uniform cells. We observe that the optimal approach with

time step-size τ0 =CSSPτBPO and the classic approach with time step-size τ1 =CSSPτBPC give very similar results,
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Table 4: CPU time in seconds for Example 1.

optimal approach classic approach

τ0 τ1 τ2 τ1 τ2

P2 1563.22 2410.99 1980.90 2603.67 2166.29

P3 3058.73 4564.84 5330.88 4947.13 5775.08

and the discontinuities are equally well resolved by both approaches. However, the CPU time of the optimal

approach is much less than that of the classic approach, as exhibited in Table 5.

Table 5: CPU time in seconds for Examples 2–4.

Approach
Example 2 Example 3 Example 4

2D Riemann problem Mach 80 jet Mach 2000 jet

P2
optimal-τ0 309.39 13297.97 10708.38

classic-τ1 504.95 20501.56 16527.88

P3
optimal-τ0 664.71 30861.78 24304.09

classic-τ1 1106.00 42714.91 34896.86

Example 3 (Mach 80 jet problem of Euler equations). This example simulates a Mach 80 jet [33, 2, 34] by

solving the two-dimensional Euler equations, which can be written in the form of (7) with

u =


ρ

ρv1

ρv2

E

 , f1(u) =


ρv1

ρv1
2 + p

ρv1v2

(E + p)v1

 , f2(u) =


ρv2

ρv1v2

ρv2
2 + p

(E + p)v2

 (35)

with E = 1
2ρ(v1

2 + v2
2)+ρe and p = (γ − 1)ρe. Here, ρ is the density, (v1,v2) denotes the velocity, p is the

pressure, E is the total energy, and e is the specific internal energy. The ratio of specific heats γ is set to be 5/3.

The density and pressure should be positive, yielding the invariant region G = {u : ρ > 0, p > 0}, which is a

convex set [2].

Initially, the computation domain [0,2]×[−0.5,0.5] is full of the ambient gas with (ρ,v1,v2, p)= (5,0,0,0.4127).

The jet with state (ρ,v1,v2, p) = (5,30,0,0.4127) is injected into the domain from the left boundary between

y = −0.05 and 0.05. All the other boundaries are set as outflow boundary conditions, as in [33, 34]. This is
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(a) P2: optimal approach. (b) P2: classic approach.
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(c) P2: cut along the diagonal line x= 1−y.

(d) P3: optimal approach. (e) P3: classic approach.
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(f) P3: cut along the diagonal line x= 1−y.

Figure 4: Example 2: The numerical solutions at t = 0.5 obtained via the optimal approach and the classic

approach.

a benchmark yet challenging test, and a high-order numerical scheme without any BP techniques may easily

produce negative density and/or negative pressure, which eventually causes the breakdown of the simulation

code. We perform the simulation until t = 0.07 on the uniform mesh of 480×240 cells. The numerical results

of density are presented in Figure 5, from which we clearly observe that the critical features of the jet: cocoons,

bow shock, shear flows, etc. All these features are well captured by the BP DG methods and agree with those

presented in [33, 34]. The results of the optimal approach with time step τ0 =CSSPτBPO are comparable to those

of the classic approach with time step τ1 = CSSPτBPC . As shown in Table 5, the optimal approach allows a

larger time step and takes much less CPU time than the classic approach.

For both approaches, the local scaling BP limiter [2] is necessary to enforce the conditions (18) and (19).

Due to the presence of strong shocks in this and next examples, the WENO limiter [35] is also used, right before

the BP limiter, within some adaptively detected troubled cells to suppress potential numerical oscillations.

Example 4 (Mach 2000 jet problem of Euler equations). Last, a Mach 2000 jet is considered with the Euler
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(a) P2: optimal approach. (b) P2: classic approach.

(c) P3: optimal approach. (d) P3: classic approach.

Figure 5: Example 3: The numerical density at t = 0.07 obtained by using the third-order (top row) and the

fourth-order (bottom row) BP DG schemes designed via the optimal approach and the classic approach.

equation (35) in the domain [0,1]× [−0.25,0.25]. The setup is the same as Example 3, except the jet state fixed

as (ρ,v1,v2, p) = (5,800,0,0.4127) for y ∈ [−0.05,0.05] on the left boundary (x = 0). All the other boundaries

are of outflow conditions. The much higher Mach number renders this jet test more challenging than Example

3. The simulation is performed until t = 0.001 with 480× 240 cells. Figure 6 presents the numerical results

of density, which demonstrate the comparably high resolution and excellent robustness for both the optimal

approach and the classic approach. Table 5 also displays the CPU time in this test for both approaches, further

confirming the notable advantage of the optimal approach in efficiency.

6 Summary

In this paper, we proposed the problem of seeking the optimal convex decomposition of the cell average for

constructing high-order BP schemes of hyperbolic conservation laws in multiple dimensions within the Zhang–

Shu framework. It was observed that the classic Zhang–Shu convex decomposition, based on the tensor product

of Gauss–Lobatto and Gauss quadratures, is generally not optimal in the multidimensional cases. For the P2 and

P3 spaces, which are typically used in the third-order and fourth-order DG schemes, we discovered the optimal

convex decomposition that achieves the mildest BP CFL condition yet requires much fewer internal nodes.

Based on our optimal convex decomposition, we established more efficient high-order BP schemes, which allow
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(a) P2: optimal approach. (b) P2: classic approach.

(c) P3: optimal approach. (d) P3: classic approach.

Figure 6: Same as Figure 5 except for Example 4 (Mach 2000 jet) at t = 0.001.

a larger BP time step-size than the classic one, in the Zhang–Shu framework. We presented several numerical

examples to validate the remarkable advantages of using our optimal decomposition over the classic one in terms

of efficiency.

The discovery of the optimal convex decomposition was quite nontrivial and might have a broad impact, as it

would lead to an overall improvement of third-order and fourth-order BP schemes for a large class of hyperbolic

or convection-dominated equations at the cost of only a slight and local modification to the implementation

code. Our work in this paper was limited to the multivariate polynomial spaces P2 and P3. In more general

cases, many questions about the optimal convex decomposition are yet open; for example, what are the optimal

decompositions for more general polynomial spaces Pk with k ≥ 4 on Cartesian meshes, triangular meshes, and

more general unstructured meshes? We hope this paper could motivate further exploration along this direction

in the future.

References

[1] Xiangxiong Zhang and Chi-Wang Shu. On maximum-principle-satisfying high order schemes for scalar

conservation laws. J. Comput. Phys., 229(9):3091–3120, 2010.

[2] Xiangxiong Zhang and Chi-Wang Shu. On positivity-preserving high order discontinuous Galerkin

19



schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys., 229(23):8918–8934,

2010.

[3] Xiangxiong Zhang, Yinhua Xia, and Chi-Wang Shu. Maximum-principle-satisfying and positivity-

preserving high order discontinuous Galerkin schemes for conservation laws on triangular meshes. J. Sci.

Comput., 50(1):29–62, 2012.

[4] Yulong Xing, Xiangxiong Zhang, and Chi-Wang Shu. Positivity-preserving high order well-balanced dis-

continuous Galerkin methods for the shallow water equations. Adv. Water Resour., 33(12):1476–1493,

2010.

[5] Xiangxiong Zhang and Chi-Wang Shu. Positivity-preserving high order discontinuous Galerkin schemes

for compressible Euler equations with source terms. J. Comput. Phys., 230(4):1238–1248, 2011.

[6] Cheng Wang, Xiangxiong Zhang, Chi-Wang Shu, and Jianguo Ning. Robust high order discontinuous

Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys., 231(2):653–665, 2012.

[7] Xiangxiong Zhang and Chi-Wang Shu. A minimum entropy principle of high order schemes for gas dy-

namics equations. Numer. Math., 121(3):545–563, 2012.

[8] Tong Qin, Chi-Wang Shu, and Yang Yang. Bound-preserving discontinuous Galerkin methods for relativis-

tic hydrodynamics. J. Comput. Phys., 315:323–347, 2016.

[9] Kailiang Wu. Design of provably physical-constraint-preserving methods for general relativistic hydrody-

namics. Phys. Rev. D, 95(10), 2017.

[10] Yi Jiang and Hailiang Liu. Invariant-region-preserving DG methods for multi-dimensional hyperbolic

conservation law systems, with an application to compressible Euler equations. J. Comput. Phys., 373:385–

409, 2018.

[11] Jie Du, Cheng Wang, Chengeng Qian, and Yang Yang. High-order bound-preserving discontinuous

Galerkin methods for stiff multispecies detonation. SIAM J. Sci. Comput., 41(2):B250–B273, 2019.

[12] Kailiang Wu. Minimum principle on specific entropy and high-order accurate invariant region preserving

numerical methods for relativistic hydrodynamics. SIAM J. Sci. Comput., 43(6):B1164–B1197, 2021.

[13] Xiangxiong Zhang, Yuanyuan Liu, and Chi-Wang Shu. Maximum-principle-satisfying high order finite vol-

ume weighted essentially nonoscillatory schemes for convection-diffusion equations. SIAM J. Sci. Comput.,

34(2):A627–A658, 2012.

20



[14] Yifan Zhang, Xiangxiong Zhang, and Chi-Wang Shu. Maximum-principle-satisfying second order dis-

continuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys.,

234:295–316, 2013.

[15] Xiangxiong Zhang. On positivity-preserving high order discontinuous Galerkin schemes for compressible

Navier-Stokes equations. J. Comput. Phys., 328:301–343, 2017.

[16] Zheng Sun, José A Carrillo, and Chi-Wang Shu. A discontinuous Galerkin method for nonlinear parabolic

equations and gradient flow problems with interaction potentials. J. Comput. Phys., 352:76–104, 2018.

[17] Jie Du and Yang Yang. Maximum-principle-preserving third-order local discontinuous Galerkin method

for convection-diffusion equations on overlapping meshes. J. Comput. Phys., 377:117–141, 2019.

[18] Kailiang Wu and Huazhong Tang. Admissible states and physical-constraints-preserving schemes for rela-

tivistic magnetohydrodynamic equations. Math. Models Methods Appl. Sci., 27(10):1871–1928, 2017.

[19] Kailiang Wu. Positivity-preserving analysis of numerical schemes for ideal magnetohydrodynamics. SIAM

J. Numer. Anal., 56(4):2124–2147, 2018.

[20] Kailiang Wu and Chi-Wang Shu. A provably positive discontinuous Galerkin method for multidimensional

ideal magnetohydrodynamics. SIAM J. Sci. Comput., 40(5):B1302–B1329, 2018.

[21] Kailiang Wu and Chi-Wang Shu. Provably physical-constraint-preserving discontinuous Galerkin methods

for multidimensional relativistic MHD equations. Numer. Math., 148:699–741, 2021.

[22] Kailiang Wu and Chi-Wang Shu. Geometric quasilinearization framework for analysis and design of bound-

preserving schemes. arXiv preprint arXiv:2111.04722, 2021.

[23] Xiangxiong Zhang and Chi-Wang Shu. Maximum-principle-satisfying and positivity-preserving high-order

schemes for conservation laws: survey and new developments. Proc. R. Soc. A, 467:2752–2776, 2011.

[24] Zhengfu Xu and Xiangxiong Zhang. Bound-preserving high order schemes. In Handbook of Numerical

Methods for Hyperbolic Problems: Applied and Modern Issues, edited by R. Abgrall and Chi-Wang Shu,

volume 18, pages 81–102, North-Holland, Amsterdam, 2017. Elsevier.

[25] Chi-Wang Shu. A class of bound-preserving high order schemes: The main ideas and recent developments.

In Susanne C. Brenner, Igor E. Shparlinski, Chi-Wang Shu, and Daniel B. Szyld, editors, 75 Years of Math-

ematics of Computation, volume 754 of Contemporary Mathematics, page 247. American Mathematical

Society, 2020.

[26] Zhengfu Xu. Parametrized maximum principle preserving flux limiters for high order schemes solving

hyperbolic conservation laws: one-dimensional scalar problem. Math. Comp., 83(289):2213–2238, 2014.

21



[27] Tao Xiong, Jing-Mei Qiu, and Zhengfu Xu. Parametrized positivity preserving flux limiters for the high

order finite difference WENO scheme solving compressible Euler equations. J. Sci. Comput., 67(3):1066–

1088, 2016.

[28] Kailiang Wu and Huazhong Tang. High-order accurate physical-constraints-preserving finite difference

WENO schemes for special relativistic hydrodynamics. J. Comput. Phys., 298:539–564, 2015.

[29] Jean-Luc Guermond and Bojan Popov. Invariant domains and second-order continuous finite element ap-

proximation for scalar conservation equations. SIAM J. Numer. Anal., 55(6):3120–3146, 2017.

[30] Sigal Gottlieb, David I Ketcheson, and Chi-Wang Shu. Strong stability preserving Runge-Kutta and multi-

step time discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.

[31] Bernardo Cockburn and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin methods for convection-

dominated problems. J. Sci. Comput., 16(3):173–261, 2001.

[32] Jianfang Lu, Yong Liu, and Chi-Wang Shu. An oscillation-free discontinuous Galerkin method for scalar

hyperbolic conservation laws. SIAM J. Numer. Anal., 59(3):1299–1324, 2021.

[33] Youngsoo Ha, Carl L. Gardner, Anne Gelb, and Chi-Wang Shu. Numerical simulation of high Mach number

astrophysical jets with radiative cooling. J. Sci. Comput., 24(1):29–44, 2005.

[34] Yong Liu, Jianfang Lu, and Chi-Wang Shu. An essentially oscillation-free discontinuous Galerkin method

for hyperbolic systems. SIAM J. Sci. Comput., 44(1):A230–A259, 2022.

[35] Jianxian Qiu and Chi-Wang Shu. Runge–Kutta discontinuous Galerkin method using WENO limiters.

SIAM J. Sci. Comput., 26(3):907–929, 2005.

22


	1 Introduction
	2 General convex decomposition for 2D high-order BP schemes
	2.1 Feasible convex decomposition in 2D
	2.2 BP conditions via general convex decomposition

	3 Optimal 2D convex decomposition for P2 and P3 on rectangular cells
	4 Optimal 3D convex decomposition for P2 and P3 on cuboid cells
	5 Numerical experiments
	6 Summary

