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Abstract

Computational fluid dynamics is a direct modeling of physical laws in a discretized space.
The basic physical laws include the mass, momentum and energy conservations, physically
consistent transport process, and similar domain of dependence and influence between the
physical reality and the numerical representation. Therefore, a physically soundable numer-
ical scheme must be a compact one which involves the closest neighboring cells within the
domain of dependence for the solution update under a CFL number (∼ 1). In the con-
struction of explicit high-order compact scheme, subcell flow distributions or the equivalent
degree of freedoms beyond the cell averaged flow variables must be evolved and updated,
such as the gradients of the flow variables inside each control volume. Under such a re-
quirement, the direct use of Riemann solver as the evolution model is not adequate in its
dynamics for the construction of high-order compact scheme. High-order dynamic process
has to be modeled on the scales of cell size and time step. The direct modeling of flow
evolution under generalized initial condition will be developed in this paper. In order to
provide reliable cell averaged flow variables and their gradients for the compact data re-
construction, the evolution process has to be able to provide discontinuous time-dependent
flow variables across a cell interface. At the same time, the time accurate flux function at
a cell interface can become a discontinuous function of time. Same as the spatial limiter in
the conventional CFD methods, such as TVD and WENO, the temporal limiter for the flux
function in time has to be designed properly as well. The direct modeling in this paper will
provide the updates of flow variables differently on both sides of a cell interface and limit
high-order time derivatives of the flux function nonlinearly in case of discontinuity in time,
such as a shock wave moving across a cell interface within a time step. The direct modeling
unifies the nonlinear limiters in both space for the data reconstruction and time for the time-
dependent flux transport. The equivalent treatment of space and time makes the scheme
be super robust and accurate for the compressible flow simulation. At the same time, the
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high-order compact scheme can use a large CFL number (∼ 0.8) in flow computation, even
in the hypersonic flow simulation. Under the direct modeling framework, as an example,
the high-order compact gas-kinetic scheme (GKS) will be constructed. The scheme shows
significant improvement in terms of robustness, accuracy, and efficiency in comparison with
the previous high-order compact GKS.

Keywords: Direct modeling; high-order compact scheme; WENO reconstruction; temporal
nonlinear limiter

1. Introduction

The development of high-order compact schemes has attracted great attention in the
past decades. Significant progress has been observed with the appearance of a wide variety
of high-order schemes, such as weighted essentially non-oscillatory (WENO), discontinuous
Galerkin (DG), correction procedure via reconstruction (CPR), dispersion-relation preserv-
ing (DRP), high-order weighted compact nonlinear schemes (WCNS) etc. [1, 2, 3, 4, 5, 6, 7,
8, 9]. However, the determinacy of the underlying principle and methodology for developing
high-order compact scheme is still vague. Difficulties and inferior performance are often en-
countered in almost all existing high-order compact schemes, especially in the complicated
flow simulations with shock interactions. The design of delicate nonlinear limiters and trou-
ble cell detection become the routine work in the pursuit of high-order compact schemes.
Here we will set up a framework for the construction of high-order compact scheme and
provide necessary dynamic processes in the gas evolution model. The direct modeling in-
cludes the capturing of a discontinuous shock wave passing through a cell interface within
a time step (never happens in the Riemann solver), the updating of multiple cell interface
values, and the limiting of time derivatives of a discontinuous flux function in time (equiv-
alent treatment in spatial reconstruction and time evolution). The numerical procedures of
reconstruction, evolution, and projection in a second-order scheme will be transformed to
the steps in the development of high-order scheme, and the emphasis is on the consistency
of the evolution model and the solution update.

In this paper, Section 2 will present the basic principles of direct modeling in the construc-
tion of high-order compact schemes. In Section 3, as an example, the high-order compact
gas-kinetic scheme will be presented by following the principles. Section 4 is the numerical
examples which are used to validate the scheme. The last section is the conclusion.

2. Direct modeling for high-order compact scheme

The fluid dynamic equations represent the physical laws of flow evolution in continuous
space and time. The domain of dependence and influence are determined by the wave
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propagating speed. The computational fluid dynamics is about the discrete representation
of physical conservation laws,

∫

Ωj

W(x, tn+1)dV =

∫

Ωj

W(x, tn)dV −
∫ tn+1

tn

∫

∂Ωj

F(t) · ndS, (1)

whereW is the conservative flow variables, such as mass, momentum, and energy distributed
in a control volume Ωj at discrete time steps tn and tn+1, and F(t) is the corresponding
flux across the cell interface ∂Ωj . The above conservation laws are valid in any space
and time scales and in any flow regimes from the rarefied to the continuum one once the
dynamics of F(t) is properly modeled. The quality of the scheme depends critically on the
modeling of the time-dependent interface flux function F(t), which subsequently requires
the reconstructed initial condition from W(tn) and the evolution models of W(t) and F(t)
at a cell interface. For example, the evolution models can be the Boltzmann solution in the
rarefied flow regime and the Navier-Stokes one in the continuum flow regime [10]. Due to the
particle composition of fluid system, the physical propagation speed is coming from particle
transport and collision, which has a limited value, such as the sound speed. The direct
modeling of W(t) and F(t) in Eq.(1) should have the numerical domains of dependence
and influence as close as possible to the physical one, which is equivalent to determining
time step ∆t = tn+1 − tn with a CFL number on the order (∼ 1), and including the closest
neighboring cells in the reconstruction and evolution. Therefore, only the compact schemes
with neighboring interaction are the physically consistent numerical algorithms.

For a high-order compact scheme, the update of cell averaged flow variables alone in
Eq.(1) is not enough to fully determine the local flow structure with high-order accuracy,
such as on the order (≥ 3). In order to recover a high-order flow distribution, large stencils
are usually used in the reconstruction which contradicts with the compactness requirement
and the consistency between the physical and numerical domain of dependence. Therefore,
besides the updates of cell averaged flow variables, other variable related to the subcell
resolution has to be evolved as well. The strategy of using coupled flow variable and their
derivatives to get high-order solution at an instant of time, such as the scheme of Lele, is
purely based on the numerical consideration, which is not the dynamic one. The DG scheme
uses the weak formulation to get the additional flow variables, such as the node values or
derivatives of subcell flow variable, which is more or less a dynamic model. The question
in DG is about the reliability of the updated solution through the weak form. As a direct
modeling, here we are trying to use the ”strong” solution or truly dynamic evolution solution
to update the cell averaged gradients inside each control volume, which can be equivalently
considered as node values inside the control volume Ωj as well. Similar to Eq.(1), the
cell-averaged gradients can be updated based on the Gauss-Green theorem,

∫

Ωj

∇W(x, tn+1)dV = Ωj(∇W)j =

∫

∂Ωj

W(tn+1)ndS, (2)

where the flow variables W should be provided at the inner sides of the cell boundary
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of the control volume at the time step tn+1. Eq.(2) is mathematically precise under the
assumption of smooth flow distribution inside each control volume Ωj . In the discrete
space, with the cell size resolution it is impossible to identify the subcell discontinuity
except using the shock fitting. As a shock capturing scheme, the appropriate approach is
to assume a continuous subcell flow distribution and contribute the possible discontinuity
at the cell interface. Therefore, Wj+1/2 may have multiple values, such as Wj+1/2,− and
Wj+1/2,+ at both sides of a cell interface under a single flux function Fj+1/2 = F(Wj+1/2,−) =
F(Wj+1/2,+). The outstanding example is that a shock is exactly located on the cell interface.
Therefore, in general the evolution model of the scheme should be able to update the values
Wj+1/2,±(t

n+1) separately in case of discontinuity, which requires a dynamic modeling rather
than mathematical manipulation. The updates of the flow variables and their gradients
depend on the direct modeling of flux function and flow variables at the cell interface. Their
evolution model plays a dominant role for the quality of the scheme. In general, the flux
function must be a time dependent function F(t) at a cell interface, and this function is not
necessary to be a continuous function of time t as analyzed later.

Based on the time-independent flux function F of the Riemann solver, the foundation
of the second-order scheme has been established in 1970s and 1980s, where the nonlinear
limiter in reconstruction of the initial data is the most important concept and practice for
its success [11]. In the traditional second order schemes, the basic numerical procedures are
composed of the reconstruction, evolution, and projection. The high-order compact scheme
proposed in this paper is based on the governing equations (1) and (2). The direct modeling
refers to the construction of the time evolution solutionW(t) and F(t) in order to close these
two equations in the updates of cell averaged flow variables and their gradients. The direct
modeling scheme can be also analyzed under the framework of reconstruction, evolution,
and projection procedures.
Reconstruction:

In the reconstruction stage, the most distinguishable achievement is the use of nonlinear
limiters on either flux or flow variables. For a second-order scheme, the reconstructed flow
variables inside each control volume avoid the creation of local extreme and have the property
of total variation of diminishing (TVD) [12]. Even for the linear equation, the scheme has
to be designed nonlinearly. Based on the reconstructed initial condition, theoretically a
generalized Riemann problem (GRP) for the NS equations should be used as the dynamical
model for the evaluation of time-dependent interface flux function in Eq.(1). However, due
to its complexity in GRP, a Riemann solver for the inviscid part and a central difference for
the viscous part are usually adopted in the construction of the flux function. In order to get
second order accuracy in time, the Runge-Kutta or Hancock method can be usually used in
the evolution. With the Riemann-solver based flux function, the cell averaged flow variables
can be updated through the numerical conservation laws in Eq.(1) for a second-order scheme.

For a high-order compact scheme, the stencil used should theoretically be the same as
the second-order one. Suppose that the compact scheme has reliable flow variables and
their derivatives updated in Eq.(1) and (2), a reconstruction with compact stencil can be
conducted through WENO or HWENO formulation. For example, a 6th or 8th-order poly-
nomial on structured mesh and a fourth-order one on unstructured mesh can be obtained
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[13, 14, 15].
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Figure 1: A possible solution in the dynamical evolution process. At the dot points, there may have
discontinuous W in space and discontinuous F in time.

Evolution:
The evolution stage is the most critical one in the determination of the physical solution

of W(t) and the flux function F(t) at a cell interface in order to close the system of Eq.(1)
and (2). Starting from the reconstructed piecewise polynomial as the initial condition, a
time accurate evolution solution should be modeled in a discretized space. Different from the
Riemann solution, here the solution can be much more complicated in order to recover the
physics, such as the NS solution and the dynamic effect of a discontinuous shock. Certainly,
the generalized Riemann solver helps, but it is limited to the inviscid Euler solutions. Here
we require a time accurate flow variable and flux function, where the possible discontinuities
in both flow variables and flux functions in space and time have to be taken into account.
The time marching methods involving the extra time derivatives can be used to achieve
high-order temporal accuracy. In order to fully utilize the time accurate evolution solution,
the time-dependent flux function and its time derivative at different intermediate stages can
be adopted to achieve high-order temporal accuracy. Let

Lj(W) = − 1

|Ωj |

∫

∂Ωj

F · ndS,

and

Lj,t(W) = − 1

|Ωj |

∫

∂Ωj

∂

∂t
F · ndS,

where the time-dependent flux function F(t) has to be modeled according to the flow regimes.
In this paper, we are mainly targeting on the NS solution in the continuum flow regime. A
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high-order polynomial approximation of Lj in time can be obtained based on the evolution
solutions at two stages t = tn and t = tn + ∆t/2. The optimal approximation of the time
integration of Lj is

∫ tn+1

tn
Lj(t)dt = ∆tLj(W

n) +
∆t2

2
Lj,t(W

n)− ∆t2

3
Lj,t(W

n) +
∆t2

3
Lj,t(W

n+1/2), (3)

where the first two terms of the RHS corresponds to a second-order solution from the
evolution at time stage tn, and the last two terms are the high-order terms combing the
evolution at middle stage tn+1/2. In addition, to get the evolution solution at tn+1/2, the
cell-averaged value and its derivative are required and updated by the evolution solution at
tn based on Eq.(1) and (2). As a result, the update of W

n+1/2
j and Wn+1

j can be given as

W
n+1/2
j = Wn

j +
1

2
∆tLj(W

n) +
1

8
∆t2Lj,t(W

n),

Wn+1
j = Wn

j +∆tLj(W
n) +

1

6
∆t2(Lj,t(W

n) + 2Lj,t(W
n+1/2)).

(4)

The detailed derivation will be given in Section 3. The above formula is the same as the
standard two-stage fourth-order (S2O4) method for the time discretization of semi-discrete
conservation laws [16]. In the above temporal evolution model, a flux function depending
continuously on time is assumed. Physically, the flow evolution can be much more com-
plicated than that, especially under a generalized high-order initial flow distribution. Here
there is the possibility in the flux function to appear discontinuity in time within a time
step ∆t, such as the high order evolution model in Fig.(1), where within the time step a
discontinuous W in space and a discontinuous F in time may appear at the cell interface
once a shock wave impinging on the cell interface. The high-order evolution model as shown
in Fig.(1) can appear in the S2O4 time discretization. Therefore, a reliable evolution model
should be able to update two states, such as Wl(xj+1/2,∆t) and Wr(xj+1/2,∆t) at the left
and right sides of the cell interface xj+1/2, for the update of the numerical solution in Eq.(2).
A single value of W(tn+1) at a cell interface is only a special case with the assumption of
continuous flow evolution, which has been used before in the compact GKS [17, 13, 18].
In this paper, a generalized cell interface value will be evolved, which greatly improve the
reliability of the updated slope in Eq.(2). On the other hand, as a shock moving across
the cell interface as shown in Fig.(1), the flux function of F(t) at a cell interface is not a
continuous function of time t anymore and the above temporal evolution in Eq.(3) or (4)
may become problematic for the update of the solution in Eq.(1). How to handle a possible
discontinuous flux function within a time step [tn, tn+1] combined with the high-order time
marching method is a problem we have to solve in the construction of high-order schemes.

In order to find a proper way to handle the discontinuous flux function in time, similar
to the slope limiter in space, a nonlinear limiter in time is also needed. The limiting process
of flux function in time is different from the nonlinear hybrid flux functions of low order and
high orders, such as the flux-corrected transport (FCT) method, or any other mixed fluxes in
the implicit scheme [19, 20]. The introduction of nonlinear time limiter in the flux function
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in this paper is to modify the high-order time derivatives in Eq.(3) and the corresponding
solution update in Eq.(4). This approach unifies the nonlinear limiting or reconstruction in
both space and time which seem absent in the previous construction of high-order schemes,
where great effort has been paid on the spatial reconstruction. More precisely, this practice
extends the WENO-type concept in space to the temporal flux transport and the flow
dynamics has been treated equivalently in the space and time for a shock wave propagating.
In other words, the above S2O4 method in Eq.(4) for the temporal evolution has to be
nonlinearly limited in case of a discontinuous flux function in the high-order time evolution,
where the assumption of continuous flux function in time may be violated. In this paper,
a weighted limiter function will be introduced in Eq.(4) in the high-order compact GKS in
later sections.

Another commonly used time marching method is the multi-stage Runge-Kutta meth-
ods with the strong stability-preserving property (RK-SSP) which are developed for the
time-independent numerical fluxes [21, 22]. The high-order accuracy and strong stability-
preserving property are achieved by a convex combination of first-order forward Euler
method in each stage. However, such a technique cannot directly applied to the time-
dependent flux function with high-order time derivatives, especially with the possible dis-
continuity in time. For a truly high-order compact scheme, similar to the space complexity
the flux transport in time has the counterpart as well. In addition, the strong stability-
preserving (SSP) property can be hardly extended to evolution model with time derivatives
in the flux function. Only limited progress has been reported for the multi-stage multi-
derivative (MSMD) method with SSP property [23].

In the evolution stage, the recipes introduced in this paper are the limiting in the flux
function F(t) in time and the constructing discontinuous solutions W(xj+1/2,±) at the cell
interface in the updates of the solutions in Eq.(1) and (2). The development of a high-order
compact GKS will be an example which is equipped with the above recipes. As a result, the
compact GKS has 4th-order accuracy in space and time in both structured and unstructured
meshes, shows super robustness in compressible flow simulation at high Mach number flow
simulation, and takes a large CFL number, such as 0.8 or above.

The stagnation in the development of high-order compact schemes in the CFD commu-
nity is coming from the absence of high-order gas evolution model for the updating flow
variables and their gradients in Eq.(1) and (2). In other words, there are lack of reliable
evolution solutions W(t) and F(t) to close the modeling equations (1) and (2), especially
the physical solution cannot be well-resolved by the numerical mesh size and time step. The
side effect for almost all existing high-order compact schemes, such as the lack of robustness
and extremely limited CFL number, come from the inadequate dynamics in the evolution
modeling, such as the simple adoption of the Riemann solver. In this paper, we provide
much more sophisticated dynamic model in the flow evolution. For example, with the in-
troduction of discontinuous cell interface values, the updated gradients become much more
reliable for spatial reconstruction and make the scheme insensitive to the parameters in the
reconstruction WENO methods. With the use of nonlinearly time limited flux function, the
high-order compact scheme can use a much large CFL number in the simulation, such as
0.8 in the fourth-order compact GKS instead of 0.1 in the corresponding same order DG
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method. Equipped with the above recipes in the direct modeling, the common practice in
many high-order compact schemes, such as the trouble cell detection and additional delicate
limiting processes, can be avoided.
Projection:

With the above evolution model, the time accurate solutions of W(t) and F(t) at the
cell interface can be used to close the equations (1) and (2).

According to the above reconstruction, evolution, and projection procedures, the corre-
sponding high-order compact GKS will be presented in the next section for the Euler and NS
solutions. The direct modeling in this section can be a good reference in the analysis of any
other high-order compact scheme and provide a vital approach for the further development
of high-order compact schemes.

3. High-order compact gas-kinetic scheme

3.1. Gas evolution model

In this section, we are going to present the gas-kinetic scheme with all recipes introduced
in the previous section, especially for the updates of cell interface flow variables and the
nonlinearly limited time-dependent flux function. The gas-kinetic evolution model is based
on the kinetic BGK equation [24],

ft + u · ∇f =
g − f

τ
, (5)

where u = (u, v) is the particle velocity, f is the gas distribution function, g is the correspond-
ing equilibrium state that f approaches, and τ is particle collision time. The equilibrium
state g is a Maxwellian distribution,

g = ρ(
λ

π
)
K+2

2 e−λ((u−U)2+(v−V )2+ξ2),

where λ = m/2kT , and m, k, T are the molecular mass, the Boltzmann constant, and
temperature, respectively. K is the number of internal degrees of freedom, i.e. K = (4 −
2γ)/(γ−1) for two-dimensional flow, and γ is the specific heat ratio. ξ is the internal variable
with ξ2 = ξ21 + ξ22 + ...+ ξ2K. Due to the conservation of mass, momentum and energy during
particle collisions, f and g satisfy the compatibility condition,

∫
g − f

τ
ψψψdΞ = 0, (6)

at any point in space and time, where ψψψ = (ψ1, ψ2, ψ3, ψ4)
T = (1, u, v,

1

2
(u2 + v2 + ξ2))T ,

dΞ = dudvdξ1...dξK .
The macroscopic mass ρ, momentum (ρU, ρV ), and energy ρE can be evaluated from
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the gas distribution function,

W =




ρ
ρU
ρV
ρE


 =

∫
fψψψdΞ. (7)

The corresponding fluxes for mass, momentum, and energy in i-th direction is given by

Fi =

∫
uifψψψdΞ, (8)

with u1 = u and u2 = v in the 2D case. On the mesh size scale, the conservation of mass,
momentum and energy in a control volume has been given in Eq.(1), and it is rewritten as

Wn+1
j = Wn

j +

∫ tn+1

tn
Lj(t)dt, (9)

where Wj is the cell-averaged conservative variables defined as

Wj ≡
1∣∣Ωj

∣∣

∫∫

Ωj

W(x, y)dxdy. (10)

The line integral in Lj(t) is discretized by a q-point Gaussian integration formula,

Lj(t) = − 1

|Ωj |

∫

∂Ωj

F · ndS = − 1

|Ωj |

l0∑

l=1

( q∑

k=1

ωkF(xk) · nl

)∣∣Γl

∣∣, (11)

where F = (F1,F2),
∣∣Γl

∣∣ is the side length of the cell, l0 is the number of cell sides, nl is the
unit outer normal vector, and q and ωk are the number of integration points and weight of
the Gaussian integration formula.

In GKS, the evolution solution W(t) and F(t) at cell interface are determined by the
time accurate gas distribution function f . The integral solution of BGK equation is [25],

f(x0, t,u, ξ) =
1

τ

∫ t

0

g(x′, t′,u, ξ)e−(t−t′)/τdt′

+ e−t/τf0(x0 − u(t− t0), u, v, ξ),

(12)

where x0 is the numerical quadrature point at the cell interface, and x0 = x
′

+ u(t − t
′

) is
the particle trajectory. Here f0 is the initial state of gas distribution function f at t = 0.

In order to obtain the solution f , both f0 and g in Eq.(12) need to be modeled. Based
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on the integral solution, the gas distribution function with a second-order accuracy is [25]

f(x0, t,u, ξ) =(1− e−t/τ )g0 + ((t+ τ)e−t/τ − τ)(a1u+ a2v)g0

+(t− τ + τe−t/τ )Āg0

+e−t/τgr[1− (τ + t)(a1ru+ a2rv)− τAr)]H(u)

+e−t/τgl[1− (τ + t)(a1lu+ a2lv)− τAl)](1−H(u)), (13)

where the terms related to g0 are from the integral of the equilibrium state and the terms
related to gl and gr are from the initial term f0 in the Eq.(12). All the coefficients in Eq.(13)
can be determined from the initially reconstructed macroscopic flow variables at the left and
right sides of the cell interface. Higher-order evolution model, such as the third-order one,
can be obtained as well [26].

3.2. Solution update at a cell interface

In the previous compact GKS, based on the gas-kinetic evolution model in Eq.(13) and
S2O4 method for temporal discretization, both flow variables and the fluxes can be explicitly
evaluated at each cell interface. Then, the cell-averaged slope can be obtained with the flow
variables at the cell interfaces by Green-Gauss theorem in Eq.(2). In 1D case, flow variables
variation in cell j becomes

Wn+1
j,x ≡

∫

Ij

∂

∂x
W(x, tn+1)dx =

1

∆x
(Wn+1

j+1/2 −Wn+1
j−1/2), (14)

where W
n+1/2
j+1/2 is the evolved solution at the cell interface. Based on the both cell averaged

flow variables and their slopes, the compact GKS with a single flow variable solution at a
cell interface has been constructed [13, 15, 18]. One of the weakness in the above modeling
is that a unique cell interface value Wj+1/2 is assumed. As analyzed in Section 2, even for a
unique flux function F, there may correspond to different W, such as a shock front is exactly
located on the cell interface. Since the initial condition for the flow variables are piecewise
discontinuous polynomials on both sides of the cell interface, in the evolution process a
discontinuous Wj+1/2 may appear at the cell interface. Based on the distribution function
(13), the flow variables at the cell interface can be obtained from the same distribution
function,

We(x, tn+1) =

∫
f(x0, t

n+1,u, ξ)ψψψdΞ, (15)

which are the macroscopic flow variables for the equilibrium state. In the early compact
GKS, the above We is used for the update of cell averaged slopes, where a smooth solution
in space is assumed at (x0, t

n+1). Under the non-equilibrium condition, discontinuities in
the macroscopic flow variables may exist at a cell interface. Based on the initial piecewise
polynomials Wl(x, tn),Wr(x, tn), two evolution solutions on both sides of the cell interface
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can be constructed based on the assumption of independent evolution,

f l,r(x0, t) = gl,r(x0, t = 0)(1 + Al,rt),

where the time evolution term Al,r is determined by the compatibility condition

∫
(al,ru+ Al,r)ψψψgl,rdΞ = 0

and al,r is given by
∂

∂x
Wl,r =

∫
al,rψψψgl,rdΞ.

More detailed formulation can be found in [27]. Based on the independently evolved non-
equilibrium gas distribution functions at the left and right sides of a cell interface, the
corresponding macroscopic flow variables can be evaluated,

W
l,r
0 (x, tn+1) =

∫
ψψψf l,rdΞ. (16)

The final evolution solution of flow variables at cell interface are modeled as

Wl(x, tn+1) = (1− e−∆t/τ0)We(x, tn+1) + e−∆t/τ0Wl
0(x, t

n+1),

Wr(x, tn+1) = (1− e−∆t/τ0)We(x, tn+1) + e−∆t/τ0Wr
0(x, t

n+1).
(17)

The contributions from Wl
0, Wr, and We(x, tn+1) in the determination of Wl and Wr

depend on the ratio of time step ∆t to the relaxation time τ for the local solution to
approaching an equilibrium state. The weighting function e−∆t/τ is consistent with the
physical relaxation process used in GKS. In the smooth flow region and in the continuum
flow regime, ∆t≫ τ holds. Here, in the above equation, the relaxation time τ0 is defined as

τ0 = C|pl − pr
pl + pr

|∆t,

where C is a constant coefficient and a uniform value 5 is used in this paper. In the smooth
flow region, the initially reconstructed pressure pl,r at the left and right hand sides of a cell
interface will be close to each other and a single equilibrium macroscopic flow variables will
be approached at the cell interface.

3.3. Nonlinear limiter on temporal discretization

The high-order temporal discretization can be developed through the multi-stage ad-
vancing process, such as four-stage fourth-order Runge-Kutta method (RK4) and two-stage
fourth-order (S2O4) method based on time-accurate numerical flux function [16, 28], as
shown in Eq.(4). In the above time evolution process, the possible discontinuity of the flux
function in time has not been considered. In practice, the flux function may become discon-
tinuous in time, as shown in Fig.(1). Without properly handling the discontinuity, the CFL
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number can be limited to a small value. In order to increase the accuracy and robustness
in the modeling of the flux function, a nonlinear limiter for temporal discretization will be
designed. As an example, the S2O4 formulation will be modified. The idea can be extended
to other high-order time evolution model as well.

In order to understand the limiting process, the high-order time discretization in Eq.(4)
will be derived in detail in a different way from the previous one [16, 29]. To discretize
the time integration of Lj(t) in Eq.(9) in a time step [tn, tn+1], a high-order interpolation
approximation of Lj(t) is defined first. For simplicity and without loss of generality, a time
step [0,∆t] is considered in this section. For a fourth-order time discretization, a third-order
polynomial is constructed

P 3(t) =

3∑

k=0

bk
tk

k!

= Lj(t) +O(∆t4),

(18)

where Lj is one of the components of Lj . In order to determine the polynomial, the following
conditions are given.

P 3(0) = b0 = Ln
j ,

P 3
t (0) = b1 = Ln

j,t,
(19)

P 3(∆t/2) =
3∑

k=1

bk
(∆t/2)k−1

(k − 1)!
= L

n+1/2
j ,

P 3
t (∆t/2) =

3∑

k=2

bk
(∆t/2)k−2

(k − 2)!
= L

n+1/2
j,t .

(20)

Thus b2 and b3 can be uniquely determined as

b2 =
4

t2
(
−∆tL

n+1/2
t + 6Ln+1/2 − 2∆tb1 − 6b0

)
,

b3 =
24

t3
(
∆tL

n+1/2
t − 4Ln+1/2 +∆tb1 + 4b0

)
,

(21)

and the integration of Lj(t) is obtained as

∫ ∆t

0

Lj(t)dt =

∫ ∆t

0

P 3(t)dt +O(∆t5)

=∆tLn
j +

∆t2

2
Ln
j,t

− ∆t2

3
Ln
j,t +

∆t2

3
L
n+1/2
j,t +O(∆t5),

(22)

where the third and fourth terms of the RHS in Eq.(22) are from the higher-order terms
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(third- and fourth-order terms) of P 3(t). Based on the conservation laws of Eq.(9), the
update of Wn+1

j is given as

Wn+1
j =Wn

j +∆tLj(W
n) +

∆t2

2
Lj,t(W

n)

− ∆t2

3
Lj,t(W

n) +
∆t2

3
Lj,t(W

n+1/2),

(23)

Ln+1/2
j,t can be determined by the time-accurate solver based on the intermediate stage vari-

able W
n+1/2
j which is updated by Eq.(9) in the time step [0,∆t/2] as

W
n+1/2
j = Wn

j +

∫ ∆t/2

0

Lj(t)dt,

and the evolution solution can be determined as

Lj(t) = Ln
j + tLn

j,t,

where Ln
j and Ln

j,t have been determined before. Thus the update of W
n+1/2
j is

W
n+1/2
j = Wn

j +
∆t

2
Lj(W

n) +
∆t2

8
Lj,t(W

n). (24)

Eq.(24) gives a third-order approximation to Wj(∆t/2), which is

W
n+1/2
j = Wj(∆t/2) +O(∆t3).

Substituting W
n+1/2
j into Ln+1/2

j,t into Eq.(23), the error of Wn+1
j maintains O(∆t5). There-

fore, Eq.(24) and Eq.(23) together give a temporal discretization with a fourth-order accu-
racy for the conservation laws Eq.(9), and the formulations are the same as those in Eq.(4),
the so-called S2O4 method [16, 30]. The time derivative of numerical flux is required to
obtain Lj,t and it is given by the time-accurate flux solver based on the initial piecewise
polynomials, for details refer to [29, 15].

The high-order approximation in Eq.(23) or S2O4 method is valid when F(t) and Lj(t)
are continuous function of time. In the general case, as analyzed in Section 2, F(t) can
be discontinuous in time, and the high-order expansion in the temporal discretization in
Eq.(23) may be flawed. To obtain a robust high-order temporal discretization without
reducing the CFL number, the nonlinear temporal discretization is developed. The basic
idea for designing nonlinear limiter in time is to switch the high-order evolution model to
the second-order one in case of discontinuous solution, where the high-order evolution model
is obtained by unifying the evolutions at two time stages within a time step. In the basis for
the above limiting process on the high-order time derivatives is that the one-step second-
order evolution model will not have the mechanism described in Fig.(1). In order to limit
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the time evolution, the S2O4 method can be re-written as

Wn+1
j =Wn +∆tLj(W

n) +
∆t2

2
Lj,t(W

n)

− ∆t2

3
L̃j,t(W

n) +
∆t2

3
L̃j,t(W

n+1/2),

(25)

where L̃j,t(W
n) and L̃j,t(W

n/2) are the limited time derivatives. Based on Lj, L̃j is con-
structed as

L̃j(W) = − 1∣∣Ωj

∣∣
l0∑

l=1

ωt
l

( q∑

k=1

ωkF(xk) · nl

)∣∣Γl

∣∣, (26)

where ωt
l is a nonlinear weight for the lth side of the cell and ωt

l ∈ [0, 1]. Eq.(24) and Eq.(25)
together give a nonlinear S2O4 formula for the conservation laws of Eq.(9). A small value of
ωt
l corresponds to a strong discontinuity of the flux function in time. In smooth regions, ωt

l

is approximately equal to 1 with high-order accuracy, and in the region near shock waves,
ωt
l tends to 0. In this paper, ωt

l is defined as

α̃k
1 = 1 +

( τkZ
ISk

min + ǫ

)2
, α̃k

2 = 1 +
( τkZ
ISk

max + ǫ

)2
, k = L,R,

αk
2 = 2

α̃k
2

α̃k
1 + α̃k

2

,

ωt
l = min{αL

2 , α
R
2 },

(27)

where ISL,R
min and ISL,R

max are the minimum and maximum smooth indicators in the nonlinear
compact spatial reconstruction in the cells on both sides of the lth side, and τkZ is the
corresponding local higher-order reference value to indicate smoothness of the large stencil
in the spatial reconstruction. ǫ is a small positive number which takes a value 1×10−5 for all
numerical tests in this paper. The nonlinear compact spatial reconstruction will be given in
the next section. In smooth regions, the current nonlinear temporal discretization formula
can return to the linear one in the sense of accuracy. By Taylor series expansion, there is

α̃k
i = C0

(
1 + O(h2(rτ−2)+r)

)
,

where C0 is a constant parameter, h is the cell size, rτ is the order of τkZ , and r is the order
of the corresponding polynomial for obtaining ISmin (with i = 1) or ISmax (with i = 2). For
example, if ISmin is determined by a linear polynomial, then r = 1. The minimum order
of the candidate polynomials is 1 in the nonlinear reconstruction adopted in this paper. τkZ
has at least the order of O(h3), and it will be defined in the next section. In smooth regions
ωt
l becomes

ωt
l = 1 +O(h3).

Thus, the truncation error introduced by ωt
l in Eq.(25) is O(h3∆t2), and the nonlinear

S2O4 formula has a fourth-order accuracy in smooth region. In the region near shock wave,
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suppose the size of the discontinuities is always O(1), and the order of ωt
l becomes

ωt
l = O(h4).

Thus the high-order temporal interpolation for Wj(t) and Lj(t) in Eq.(25) returns to the
lower-order one. For two-dimensional flows, four ωt

l at each interface can be obtained corre-
sponding to the four characteristic variables if the characteristics reconstruction is adopted.
Since the shock wave can only correspond to the first or fourth characteristic variables, the
unique ωt

l of each interface can be obtained by taking the minimum one from the first and
fourth variables. The analysis and modification of the numerical scheme in this paper are
well verified by numerical tests. The second-order temporal discretization is proved to have
good robustness in numerical tests, thus only the higher-order terms (third order and fourth
order) in the evolution process is modified by nonlinear weighting function in Eq.(25). In a
special case of a stationary shock wave at a cell interface, the flux function is a continuous
function of time and the scheme works well even without the nonlinear limiting process.

3.4. Compact reconstruction

The high-order compact spatial reconstruction will be briefly presented. Compared with
the compact schemes without updating different cell interface flow variables and limiting
time-dependent flux function [13, 15], the reconstructions in the current new scheme become
simpler and the solution will not be sensitive to the reconstruction schemes due to the reliable
evolution model and accurate cell averaged slopes. Several reconstruction schemes behave
equally well. In this section, a simple reconstruction scheme will be given and used for all
numerical tests. Based on the candidate polynomials, the nonlinear combination is

R(x) =

n∑

k=1

wkqk(x) + w0

(1 + C

C
P (x)−

n∑

k=1

Ck

C
qk(x)

)
, (28)

where P (x) is the high-order polynomial obtained by the large stencil, and qk(x) are the
lower-order polynomials obtained by the sub-stencils. The formula is a nonlinear combina-
tion of the high-order and lower-order polynomials, i.e., the so-called a combination of ENO
and WENO methodology. The nonlinear weights wk are

wk =
w̃k∑n
j=0 w̃j

,

w̃k = dk
(
1 +

( τZ
ISk + ǫ

)2)
,

(29)

and dk are

d0 =
C

1 + C
, dk =

Ck

1 + C
, k = 1, · · · , n, (30)

where ǫ is a small positive number with a value 1 × 10−5 for all numerical tests in this
paper, n is the number of the sub-stencils, and τZ is the local higher-order reference value
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to indicate smoothness of the large stencil given by ISk [31]. Coefficients C and Ck are
required to satisfy

k=n∑

k=1

Ck = 1, C > 0.

The compact scheme based on the current nonlinear reconstruction is insensitive to the
values of C and Ck. C = 5 and Ck = 1/n used in [15] can work very well. In addition,
the candidate polynomial q0 is a higher-order one, and the calculation of IS0 makes the
high-order compact reconstruction less efficient. An efficient and robust technique is to take
IS0 = max{IS1, IS2, · · · , ISn}, which has been confirmed by the numerical examples in this
paper.

3.4.1. Compact reconstruction on structured mesh

IjIj−1 Ij+1 Ij+2

Figure 2: A schematic of candidate stencils (including the large stencil and sub-stencils) for left side value at
the cell interface xj+1/2 in 8th-order compact GKS: The square represents the cell-averaged slope, and the
circle represents the cell average of flow variables. One high-order large stencil and five low-order stencils
are used.

The 8th-order compact GKS has been developed in [13]. The high resolution and good
robustness of the scheme for compressible flow and aeroacoustic simulations have been val-
idated [13, 14]. Fig. 2 presents a schematic of the stencil selection for left side value at
the cell interface xj+1/2 in the current 8th-order compact reconstruction. Totally, one large
stencil and five sub-stencils are used,

S0 = {Qj−1, Qj , Qj+1, Qj+2, Q
′

j−1, Q
′

j, Q
′

j+1, Q
′

j+2}
S1 = {Qj−1, Qj , Q

′

j−1}, S2 = {Qj−1, Qj, Qj+1}, S3 = {Qj, Qj+1, Qj+2},
S4 = {Qj−1, Qj , Qj+1, Q

′

j}, S5 = {Qj , Qj+1, Qj+2, Q
′

j+1}.

16



All stencils appear in the previous 8th-order compact reconstruction and the detailed for-
mulas of the reconstructed values at the cell interface and the smoothness indicators can
be found in [13], where a 7th-order polynomial can be determined from S0, three quadratic
polynomials from S1 S2 and S3, and two cubic polynomials from S4 and S5. The nonlinear
reconstruction is given in Eq.(28). The local reference value τZ is constructed as [13]

τZ = |3(IS1 − IS2) + (IS3 − IS2)| . (31)

3.4.2. Compact reconstruction on triangular mesh

0

ij

k

j1

j2

k1 k2

i1

i2

Figure 3: A schematic of the large reconstruction stencil in compact GKS: The green dotted circle is a
schematic of the largest physical domain of dependence at a reasonable CFL number, that is, the fluid
element in cell 0 may interact with the fluid element in the range of the circle. In each cell of the stencil,
three datum, i.e., one cell averages and two cell-averaged derivatives, are known.

0

i

0

ij

j1 i2

Figure 4: A schematic of two of the sub-stencils in compact GKS: The left is a schematic of S1, and the right
is a schematic of S4. Because the cell-averaged derivatives are known, a linear polynomial and a quadratic
polynomial can be obtained by these two sub-stencils respectively based on least square method.

A class of 4th-order compact GKS on triangular mesh has been developed in [15]. Here a
simple sub-stencil selection will be presented. Fig. 3 shows a schematic of the large stencil in
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the compact GKS, where the compactness means the compatibility between the physical and
numerical domain of dependence. The candidate stencils for the nonlinear reconstruction
are given as follows.

S0 = {Q0, Qi, Qj, Qk, Qi1 , Qi2, Qj1, Qj2 , Qk1, Qk2 ,∇Q0,∇Qi,∇Qj ,∇Qk},
S1 = {Q0, Qi,∇Qi}, S2 = {Q0, Qj,∇Qj}, S3 = {Q0, Qk,∇Qk},
S4 = {Q0, Qi, Qj, Qi2 , Qj1,∇Q0}, S5 = {Q0, Qj, Qk, Qj2, Qk1 ,∇Q0}.
S6 = {Q0, Qk, Qi, Qk2 , Qi1,∇Q0},

A cubic polynomial can be determined by S0, three linear polynomials from S1 S2 and S3,
and three quadratic polynomials from S4 S5 and S6. The least square method is used to
determine these candidate polynomials and the details can be found in [15]. In the nonlinear
reconstruction given by Eq.(28), the local reference value τZ is constructed as

τZ =
(
|2IS0 − IS1 − IS2|+ |2IS0 − IS2 − IS3|+ |2IS0 − IS3 − IS1|

)
/3. (32)

4. Numerical examples

Here we are going to validate the compact GKS on both structured and unstructured
meshes. The time step is determined by the CFL condition with CFL = 0.8 in all test
cases if not specified. For viscous flow, the time step is also limited by the viscous term as
∆t = 0.8h2/(2ν) as well, where ν is the kinematic viscosity coefficient and h is the cell size.
For one-dimensional uniform mesh, h = ∆x; and for the two-dimensional triangular mesh,
hj = |Ωj |/2|Γj| which is the radius of the inscribed circle in the control volume Ωj . In all
test cases, the same nonlinear reconstruction is used. There is no additional ”trouble cell”
detection and additional limiter designed for any specific test.

The collision time τ for the inviscid flow is defined by

τ = ε∆t+ C|pl − pr
pl + pr

|∆t,

where ε = 0.05, C = 5, and pl and pr are the pressure at the left and right sides of a cell
interface. For the viscous flow, the collision time is related to the viscosity coefficient,

τ =
µ

p
+ C|pl − pr

pl + pr
|∆t,

where µ is the dynamic viscosity coefficient and p is the pressure at the cell interface.
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mesh length L1 error Order L∞ error Order
1/10 2.7627e-04 5.6985e-04
1/20 3.5968e-06 6.26 8.1259e-06 6.13
1/40 1.2672e-08 8.15 6.3630e-08 7.00
1/80 5.9689e-11 7.73 1.5194e-10 8.71

Table 1: 1-D accuracy test: errors and convergence orders of the current 8th-order compact GKS with
nonlinear reconstruction and ∆t = 0.5∆x2.

4.1. Accuracy test

The one-dimensional advection of density perturbation is tested first. The initial condi-
tion is given as follows

ρ(x) = 1 + 0.2 sin(πx), U(x) = 1, p(x) = 1, x ∈ [0, 2].

The periodic boundary condition is adopted. The results from the current 8th-order compact
GKS are listed in Table 1.
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Figure 5: Blast wave problem: the density distribution at t = 0.038 on a uniform 400 mesh points. The
CFL number takes a value CFL = 0.8

4.2. Blast wave problem in 1D

To valid the scheme for the strong shock interaction, the Woodward-Colella blast wave
problem is tested [32]. The initial conditions is given by

(ρ, U, p) =






(1, 0, 1000), 0 ≤ x < 0.1,
(1, 0, 0.01), 0.1 ≤ x < 0.9,
(1, 0, 100), 0.9 ≤ x ≤ 1.
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The computational domain is [0, 1]. The reflecting boundary conditions are imposed on both
ends. The density distributions and local enlargement from the current 8th-order compact
GKS and the previous 8th-order GKS [13] are presented in Fig. 5, where the output time
is t = 0.038 and 400 mesh points are used. Even based on the same reconstruction, in
comparison with the previous 8th-order scheme without two flow variables update at a cell
interface and limited flux function in [13], the current method can use a much large CFL
number 0.8 for time step, where the previous can only use CFL number 0.2.
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Figure 6: Shu-Osher problem: the density distributions and local enlargement at t = 1.8 on a uniform mesh
with 200 mesh points from the current and previous 8th-order compact GKS [13].

4.3. Shu-Osher problem in 1D

The initial condition of Shu-Osher problem is [33],

(ρ, U, p) =

{
(3.857143, 2.629369, 10.33333), x ≤ 1,
(1 + 0.2 sin(5x), 0, 1), 1 < x ≤ 10.

The computational domain is [0, 10] and 200 uniform mesh points are used. The non-
reflecting boundary condition is used at both ends. The density profiles and local enlarge-
ment at t = 1.8 from the current and previous 8th-order GKS are shown in Fig. 6. A large
CFL number can be used in the current calculation.
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Figure 7: Linear advection problem: the results of 8th-order compact GKS at t = 400 with b = 2.0 and
b = 1.5. The mesh size is 1.

4.4. Advection of entropy wave in 1D

The test is a problem of advection of 1-D entropy wave in a stationary mean flow. The
initial condition is defined as

ρ = 1 + 0.5e− ln 2x2/b2 ,

p = 1,

U = 1,

where different b = 2.0 and b = 1.5 are tested respectively. The computational domain is
[−800, 1000]. Free flow boundary condition is adopted. The similar test has been presented
in [34], where the linear advection equation is solved directly and a very small CFL number
(CFL < 0.05) is adopted for their high-order finite difference and DG schemes. The initial
value problem solved in [34] has no a background uniform flow distribution, but the solution
is consistent with the test in this paper.

Fig. 7 shows the results of compact GKS with different CFL numbers and reconstruc-
tions. The cell size of the uniform mesh is h = 1. The only difference between the linear
compact GKS-8th and the compact GKS-8th is that the linear reconstruction is used in the
linear case, which is achieved simply by replacing the nonlinear weights with the linear ones.
At the same time, one of the best results listed in [34], which comes from the sixth-order
DG-P 5 scheme, is used for comparison. For the DG-P 5 scheme, there are six independently
evolution equations in each mesh cell, the cell size used in the solution of the DG-P 5 is h = 6,
and the CFL number is 1/30. In the compact GKS, there is only one evolution equation for
the gas distribution function at a cell interface for the updates of cell-averaged values and
cell-averaged gradients. The CFL numbers in the GKS are CFL= 0.4 and 0.8. The output
time step is dt= 0.2. In comparison with the results of DG-P 5 scheme, the current scheme
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works very well even for the linear wave propagation.

4.5. Blast wave problem in 2D on triangular mesh

To test the compact scheme on unstructured mesh, the Woodward-Colella blast wave
problem is tested again [32]. The computational domain is [0, 1]× [0, 0.25], and the reflecting
boundary conditions are imposed on all boundaries. The triangular mesh with h = 1/400 is
used. In this test case, the CFL number also takes 0.8. The computed density and velocity
profiles at t = 0.038 along the central horizontal line of the computational domain are shown
in Fig. 8.
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Figure 8: Blast wave problem: the density and velocity distributions along the horizontal centerline by the
4th-order compact GKS on triangular mesh at t = 0.038 with cell size h = 1/400. The CFL number takes
a value CFL = 0.8.

4.6. Mach 3 step problem on triangular mesh

The step problem was extensively studied in [32] for inviscid flow. The computational
domain is [0, 3]× [0, 1] \ [0.6, 3]× [0, 0.2]. The height of the wind tunnel is 1, and the length
is 3. The step is located at x = 0.6 with height 0.2 in the tunnel. The gas in the tunnel
has an initial condition ρ = 1, U = 3, V = 0, p = 1/1.4. The same state is used as the left
boundary condition. The upper and lower boundaries are imposed with slip Euler boundary
condition. The corner of the step is the center of a rarefaction fan. The method of modifying
the density and velocity magnitude on the several cells around the corner has not been used
in the current computation [32]. The local solution at the corner is properly resolved by the
compact GKS on the regular mesh with mesh size 1/120. The density distribution at time
t = 4.0 is plotted in Fig. 9. The current scheme provides a high resolution solution, such
as the capturing of the physical instability around the slip line. At the same time, excellent
shock capturing capability of the compact scheme has been validated.
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Figure 9: Forward step problem: the density by 4th-order compact GKS on triangular mesh at t = 4.0 with
cell size h = 1/120.

4.7. Hypersonic flow around a cylinder on unstructured mesh

The incoming inviscid flow has a Mach number 8 and 20 separately. The adiabatic
reflective boundary condition is imposed on the wall of the cylinder. The mesh and pressure
distributions are presented in Fig. 10. The regular triangular mesh is used, and the mesh is
refined near the cylinder. The results agree well with those calculated on structured mesh
by the non-compact high-order GKS. The CFL number used in the calculation is CFL= 0.8
and the 4th-order compact GKS can work well for Mach 20 flow starting at t = 0 without
additional treatment in the initial phase.

The scheme is further tested for viscous flow computation at a Mach number 5 on trian-
gular mesh with a large aspect ratio. The Mach Ma = 5 incoming flow has a temperature
T∞ = 124.94K. The Reynolds number is Re = 1.835 × 105. The isothermal non-slip
wall boundary condition is imposed on the surface of the cylinder with a wall tempera-
ture Tw = 294.44K. The right boundary is set as outflow boundary condition. Because of
the viscous flow, a CFL number CFL=0.35 is used in the calculation. The mesh and flow
distributions are shown in Fig.12.

4.8. Viscous shock tube on triangular mesh

Viscous shock tube problem is the computation of complicated flow phenomena asso-
ciated with shock wave and boundary layer interaction. This problem requires not only
the robustness of the scheme, but also the accuracy of the numerical method. The flow is
bounded in a unit square cavity. The computational domain is set as [0, 1]× [0, 0.5] and a
symmetrical boundary condition is used on the top boundary. The non-slip and adiabatic
wall conditions are imposed on other boundaries. The initial condition is

(ρ, U, V, p) =

{
(120, 0, 0, 120/γ), 0 ≤ x < 0.5,

(1.2, 0, 0, 1.2/γ), 0.5 ≤ x ≤ 1.
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Figure 10: Inviscid cylinder flow at mach 20: the computational mesh and the local enlargement.

The viscosity coefficient is µ = 0.005 with a corresponding Reynolds number Re = 200. The
Prandtl number in the current computation is set to be Pr = 1. Initially, the shock wave,
followed by a contact discontinuity, moves towards to the right wall. A thin boundary layer
is created above the lower wall. The complex shock and boundary layer interaction occurs
and results in a lambda-shape shock pattern after the reflecting shock wave from the right
wall. The local mesh and density field at t = 1 are presented in Fig. 13. The complex flow
structure, including the lambda shock and the vortex configurations, are well resolved by
the current compact GKS with a mesh size h = 1/400. A quantitative verification for the
result is also given in Fig. 14. The density distribution along the lower wall is presented.
The result from non-compact high-order GKS [26] with h = 1/720 structured mesh is used
as the reference solution. The result of third-order CPR-GKS scheme [35] with h = 1/500
triangular mesh is also plotted. The current 4th-order compact GKS has a better resolution
even with a coarse mesh. The third-order CPR-GKS needs trouble cell detection for the
shock, which isn’t needed in the current GKS.

4.9. Lid-driven cavity flow

The lid-driven cavity problem is a test case for incompressible viscous flow. The fluid is
bounded in a unit square where the top boundary is moving with a uniform speed U0 = 1
and temperature T0 = 1. The corresponding Mach number isMa = U0/

√
γRT0 = 0.15. The

non-slip and isothermal boundary conditions are imposed on all boundaries with the wall
temperature Tw = T0. The initial flow is stationary with density ρ1 = ρ0 and temperature
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Figure 11: Inviscid cylinder flow at mach 20: pressure and Mach number distributions of Ma = 8 and 20
cases by the 4th-order compact GKS on triangular mesh. CFL number takes a value CFL= 0.8

T1 = T0. The computational domain is [0, 1] × [0, 1]. The case of Re = 1000 is tested.
The computational mesh and the streamlines are shown in Fig. 15. A total of 33 × 33× 2
mesh cells are used, and the stretching rate in mesh size is 1.2. The mesh is refined close
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Figure 12: Viscous flow around a cylinder. The pressure and Mach number distributions at Ma = 5 by
4th-order compact GKS on triangular mesh.
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Figure 13: Viscous shock tube flow. Local computational mesh with cell size h = 1/400 and the density
contours.

the wall and the minimum mesh size is about h = 0.0052. The velocities distribution along
horizontal and vertical center lines are shown in Fig. 16. The numerical results agree well
with the reference solutions.

5. Conclusion

In this paper, based on the framework of reconstruction, evolution, and projection proce-
dures in a numerical scheme, we present a direct modeling for the construction of high-order
compact scheme. The current difficulty in the compact scheme development is mainly com-
ing from the requirement of reliable flow variables updates, such as the averaged conservative
flow variables and their gradients, and the corresponding high evolution model in both space
and time, where the low order dynamic model of Riemann solver cannot accomplish the mis-
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Figure 15: Cavity flow: the computational mesh and the streamlines.

sion. It becomes more problematic once a unsteady discontinuous shock moves across a cell
interface within a time step. In order to evolve reliable flow variables inside each control
volume, two recipes through the direct modeling have been proposed. One is to evolve the
discontinuous flow variables at a cell interface for the update of cell averaged gradients. The
other is to limit time accurate flux function once it is a discontinuous function of time as a
shock passing through the cell interface within a time step. Similar to the nonlinear limiter
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x = 0.5 by 33× 33× 2 triangular mesh points.

in space, such as the WENO scheme in reconstruction, for the first time the limiting process
is introduced in the high-order time derivatives of the flux function as well. In other words,
the S2O4 discretization is generalized to the discontinuous case.

In summary, the direct modeling of CFD is based on the evolution solutions in Eq.(1)
and (2). In order to close the equations, the development of high-order evolution model
becomes necessary. In order to construct reliable evolution model, the nonlinearly limited
flux function in time and accurately evolved multiple cell interface values in space have been
proposed in this paper. Equipped with the above two recipes, the developed high-order com-
pact GKS shows a significant favorable performance in comparison with previous compact
GKS without them, in terms of robustness and efficiency of the schemes. For example, the
computation of a Mach number 20 flow impinging on a cylinder can be started from time
t = 0 without any difficulty in the current scheme for both structured and unstructured
mesh. At the same time, a large CFL number can be used in the scheme, such as the CFL
number 0.8 in most numerical examples. Based on the direct modeling, this paper provides
a general framework in the construction of high-order compact schemes. The essential point
is to follow the discretized conservation laws and to construct high-order evolution model to
close the discretized governing equations. This kind of direct modeling has been successfully
used in the construction of multiscale method as well [10].
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